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Abstract

Data privacy has attracted increasing attention in the past decade due to the emerging

technologies that require our data to provide utility. Service providers (SPs) encourage

users to share their personal data in return for a better user experience. However, users’

raw data usually contains implicit sensitive information that can be inferred by a third

party. This raises great concern about users’ privacy.

In this dissertation, we develop novel techniques to achieve a better privacy-utility trade-

off (PUT) in various applications. We ҥrst consider smart meter (SM) privacy and employ

physical resources to minimize the information leakage to the SP through SM readings.

We measure privacy using information-theoretic metrics and ҥnd private data release

policies (PDRPs) by formulating the problem as a Markov decision process (MDP).

We also propose noise injection techniques for time-series data privacy. We characterize

optimal PDRPs measuring privacy via mutual information (MI) and utility loss via added

distortion. Reformulating the problem as an MDP, we solve it using deep reinforcement

learning (DRL) for real location trace data. We also consider a scenario for hiding an

underlying ҡsensitiveә variable and revealing a ҡusefulә variable for utility by periodically

selecting from among sensors to share the measurements with an SP. We formulate

this as an optimal stopping problem and solve using DRL. We then consider privacy-

aware communication over a wiretap channel. We maximize the information delivered

to the legitimate receiver, while minimizing the information leakage from the sensitive

attribute to the eavesdropper. We propose using a variational-autoencoder (VAE) and

validate our approach with colored and annotated MNIST dataset. Finally, we consider

defenses against active adversaries in the context of security-critical applications. We

propose an adversarial example (AE) generation method exploiting the data distribution.

We perform adversarial training using the proposed AEs and evaluate the performance

against real-world adversarial attacks.
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zorlukta pes etmeyerek, kendime ve yapabileceklerime olan inancımı körükleyerek il-
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Chapter 1

Introduction

1.1 Motivation

Data sharing has become a common practice in the past decade due to the emerging

technologies that utilize personal data to provide better services. In particular, the

recent advances in Internet of things (IoT) devices have increased the variety of services

they provide, such as health and activity monitoring, ҥnancial analysis, weather analysis,

location-based services, smart speakers and smart metering. Moreover, the integration of

some IoT devices with social networks has encouraged the users to share their personal

data in return of utility that provides them with a better user experience on these social

platforms. While the users can receive hotel, restaurant and product recommendations

from Facebook, Twitter or YouTube when they share their location information, they can

also beneҥt from the personalized dietary tips as a result of sharing their Fitbit activity.

However, in most of these applications, data collected by IoT devices contain sensitive

personal information about the users. The concerning fact is that as soon as the user’s

raw data is sent to the service provider’s cloud, the sensitive information can be inferred,

misused or leaked through security vulnerabilities even if the service provider (SP), or

utility provider (UP) in energy consumption context, and/or the communication link are

trusted third parties. This causes the violation of the user’s privacy.

Account balances, biomedical measurements, location trace, smart assistant search his-

tory, metadata of uploaded pictures and smart meter readings are typical examples of

data which carry sensitive personal information. For instance, a malicious third party

can derive an individual’s frequently visited destinations, ҥnancial situation or social

relationships using the shared location information [4]. The information containing the

camera model and the location where a picture is taken is embedded in its metadata.

This information is preserved even when the pictures are inserted in another document,

16
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e.g., Microsoft office documents, and anyone receiving that document does not only see

the picture but also ҥnds out where and when it was taken, and which camera was used.

Sharing a picture on social media or an item on online marketing platforms can unwit-

tingly disclose the user’s home address [5]. Using non-intrusive load monitoring tech-

niques on smart meter data, an eavesdropper can deduce the user’s presence at home,

disabilities and even political views due to the TV channel the user is watching [6]. Be-

sides all, the most sensitive private information, such as patient history, chronic diseases,

disabilities, psychological state and daily habits can be revealed by health monitoring

systems [7, 8]. Therefore, privacy is an important concern when using IoT services, and

there is a growing demand from consumers to keep their personal information private

against malicious attackers or untrusted service providers, while preserving the utility

obtained from these IoT services.

The need for better data privacy was recently put high on the global cybersecurity agenda

by the EU General Data Protection Regulation (GDPR) that took effect on May 25, 2018

[9]. Thanks to the emerging privacy legislation worldwide, such as California Consumer

Privacy Act (CCPA), Personal Information Protection and Electronic Documents Act

(PIPEDA), companies increasingly recognize that data privacy is mission critical and an

essential expenditure. Therefore, there has been a surge of interest in privacy measures

and privacy preserving techniques in the literature [10ҫ17].

Besides differential privacy (DP) which is the most widely adopted one [10], various al-

ternative privacy metrics can be used including mutual information (MI) [13ҫ15], total

variation distance [18], maximal leakage [19,20], and guessing leakage [21]. DP assumes a

worst-case adversary and requires large amount of noise injection to the data to preserve

privacy. Since the applied noise is limited to have a certain form, e.g., Gaussian, rather

than an arbitrary distribution optimized by an objective function, DP faces loss of util-

ity as the data size increases. In addition to DP, total variation distance and maximal

leakage also focus on the privacy of a single data point. On the other hand, information

theoretic measures focus on preserving the privacy in an average sense against an adver-

sary who is interested in the statistics of the sensitive information, and these measures

provide guaranteed bounds on the information leakage which can also be characterized

for large size or time-dependent data. Unlike the measures preserving single data privacy,

MI privacy allows arbitrary noise distributions on the sensitive data, which provides a

better privacy-utility trade-off (PUT). Moreover, information theoretic guarantees enable

privacy by design, which describes data protection at the design phase of any system,

since information theoretic measures do not require making assumptions on a potential

adversary’s capabilities. However, there is still a need for advanced methods to cover the

shortcomings of different methods.
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Most privacy preserving techniques require solving difficult optimization problems for

the best PUT. However, it is usually intractable to solve these problems using tradi-

tional statistical methods. With the emerging technology and computational power that

enables artiҥcial intelligence (AI)-powered tools, such as machine learning (ML) or deep

neural networks (DNN), data privacy and private data sharing are carried to a more prac-

tical level. For instance, large organizations such as the U.S. Census Bureau, Google,

Facebook, Uber, Amazon, and Microsoft leverage AI-powered DP techniques to protect

their user’s sensitive data against potential privacy attacks [22]. A study published in

2019 by Gartner predicts that 40% of the privacy compliance technology will utilize AI

in edge and IoT environments by 2023 [23]. Although there is an increasing demand for

ML-based privacy protection, there is a lack of ML-based information theoretic privacy

(ITP) works in the literature.

Besides privacy-preserving applications, DNNs are commonly used in a wide-variety of

security-critical applications such as self-driving cars, spam detection, malware detection

and medical diagnosis [24]. Apart from all their beneҥts, robustness and trustworthiness

of neural network models are critical for these applications. In addition to the context

of a passive adversary in privacy applications, i.e., the SP which tries to infer sensitive

information about the user, there are also active adversaries which try to evade detection

in DNN-based security-critical applications. DNNs have been shown to be vulnerable

and can be deliberately fooled, evaded or misled by adversarial examples (AEs), which

are perturbed inputs designed by real-world adversaries [25ҫ27]. To mitigate this prob-

lem, a line of research has focused on adversarial robustness of DNNs as well as the

certiҥcation of these methods [24, 28ҫ33]. While any ML model can be vulnerable to

attacks, e.g., RL agents [34, 35], most defenses in the literature focus on the evasion of

classiҥers. Moreover, defense mechanisms in the literature mainly consider computer

vision (CV) domain applications; however, other domains, such as malware, ҥnance, and

social networks, show different characteristics, and the robustness techniques proposed

for CV are not effective in these domains. Therefore, there is a need for exploration of

adversarial robustness techniques out of the CV domain.

1.2 Objectives

This dissertation analyzes private data sharing techniques that protect a user’s privacy

in the presence of a third party, which tries to infer the user’s sensitive information from

the released data. This untrusted third party might be an honest-but-curious legitimate

receiver of the released data, e.g., the SP/UP. The goal of the data sharing mechanism is

to protect the privacy of the sensitive information by reporting a modiҥed version of the
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user’s data to the SP, while preserving the utility received from the service as much as

possible. We focus on a relatively under-explored area by utilizing information theoretic

metrics for privacy and/or utility, compared to widely explored DP. The advantages that

information theoretic PUT offer include guaranteed information theoretic bounds under

statistical assumptions on the data, capability of hiding underlying sensitive informa-

tion, capability of revealing different levels of sensitive information to different users and

enabling the usage of prior information and time dependency. Besides the information

content of the user data, physical characteristics of the communication channels between

the user and third parties are also exploited.

We utilize various tools for numerically solving these PUT problems, speciҥcally dynamic

programming (DyP), deep reinforcement learning (DRL) and generative networks. DyP

and DRL enable tractable solutions for online private data sharing due to their sequential

nature. Similarly, the end-to-end structure of generative networks, e.g., autoencoders,

is an effective representation of communication systems, and enables learning encoding

and decoding simultaneously. Although DNNs are highly effective tools in solving op-

timization problems, they have vulnerabilities against adversarial manipulations. For

instance, in decision making, adversarially perturbed input samples can cause evasion of

the DNN model. This vulnerability is highly risky for security-critical applications, such

as malware, fraud or bot detection. This dissertation analyzes the robustness of neural

networks against such adversarial perturbations in security applications, and provides

empirical defenses and their provable certiҥcation.

1.2.1 Contributions

Firstly, we establish theoretical guarantees on the privacy and utility level achieved by

our proposed data sharing mechanisms, regardless of the computational capability of the

attacker, by using information-theoretic tools. We speciҥcally consider MI privacy and

its SM, location and activity monitoring privacy applications. Secondly, we reformu-

late the time-series data sharing problem as a Markov decision process (MDP) to take

the temporal correlations into account, and solve it numerically by powerful optimiza-

tion tools, such as DyP for SM and DRL for location and activity monitoring privacy

applications. Considering temporal correlations is of signiҥcant importance, as current

privacy-preserving techniques often ignore the prior information and time dependencies

due to computational complexity, whereas integration of DNNs reinforces optimal MDP

solutions. Furthermore, we provide an understanding of privacy-aware communications

between the user and the SP, which is the legitimate receiver, in the presence of imperfect

communication channels. Exploiting the physical characteristics of the SP’s channel over

an eavesdropper’s, we allow communication with privacy guarantees. Deep learning in
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wireless communications and physical layer security has only recently become popular,

and hence there is a need in the literature for exploration of real-world limitations in

privacy-aware communications. Despite all its beneҥts, ҥnally, we also investigate the

vulnerabilities of DNNs in security critical applications. In addition to passive adversaries

that we consider, we also provide defenses against active adversaries which target these

vulnerabilities. We provide empirical and provable guarantees for robustness against

malicious adversaries in various domains.
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1.3 Outline and Related Publications

In this dissertation, we ҥrst present preliminary materials for privacy measures, infor-

mation theoretic metrics and MDPs in Chapter 2. Then, an overview of the SM privacy

problem and privacy enabling techniques using physical resources are presented in Chap-

ter 3, followed by time-series data obfuscation and data release mechanism selection

techniques for PUT using DRL in Chapters 4 and 5, respectively. In Chapter 6, private

data sharing is investigated over a wiretap channel scenario using generative networks,

while Chapter 7 is dedicated to robustness of neural networks in security critical ap-

plications. In the following sections, we brieѕy present the content, results and the

corresponding publications of each chapter.

Chapter 3

In Chapter 3, we present an overview of SM privacy-preserving techniques. While the

SM data is modiҥed before being reported to the UP in data manipulation, demand

shaping requires direct manipulation of the real energy consumption by exploiting phys-

ical resources, such as a renewable energy source (RES) or a rechargeable battery (RB).

Privacy-preserving techniques that we present in this chapter contain a data manipula-

tion and three different demand shaping techniques that consider SM with a RES and

an RB, SM with only an RB and SM with only a RES. Information theoretic measures

are used to quantify SM privacy. Optimal energy management strategies and bounds

which are obtained using control theory, speciҥcally MDPs, and rate distortion theory

are analyzed. The content of this chapter has been published as a book chapter and a

conference paper in:

• Ecenaz Erdemir, Deniz Gündüz, and Pier Luigi Dragotti, ҡSmart Meter Privacy,ә in

Privacy in Dynamical Systems, F. Farokhi (editor), Ed. Singapore: Springer, 2020,

pp. 19-41,

• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡPrivacy-cost trade-off

in a smart meter system with a renewable energy source and a rechargeable bat-

tery,ә IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP), Brighton, UK, May 2019.

Chapter 4

In Chapter 4, we consider a user that measures time-series data generated by an IoT

device, e.g., GPS readings, and periodically reports a modiҥed version of her true data

to an untrusted SP to gain utility. Unlike the demand shaping techniques in Chapter 3,

here the measurements are obfuscated with noise up to a certain level for PUT before

sharing with the SP. We use the mutual information between the true and distorted data
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sequences as a measure of privacy loss, and measure the utility by a distortion metric

between the true and distorted samples. For the PUT, we introduce an online private

data release policy (PDRP) that minimizes the mutual information while keeping the

distortion below a certain threshold. We consider data release policies which take the

entire release history into account, and show its information theoretic optimality. We

recast the information theoretic time-series data PUT problem as an MDP and evaluate

the optimal PDRP numerically using advantage actor-critic deep reinforcement learning

(A2C-DRL). We apply our PDRP on the location trace privacy scenario, and evaluate

its performance using both synthetic and real trajectory datasets. The content of this

chapter has been published as a conference paper and a journal paper in:

• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡPrivacy-aware location

sharing with deep reinforcement learning,ә IEEE Workshop on Information Forensics

and Security (WIFS), Delft, Netherlands, Dec. 2019,

• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡPrivacy-aware time-series

data sharing with deep reinforcement learning,ә in IEEE Transactions on Information

Forensics and Security, vol. 16, pp. 389-401, 2021.

Chapter 5

In Chapter 5, we consider an active learning scenario for PUT against an honest-but-

curious SP. Unlike in the previous scenarios, in this setting, the IoT measurements contain

two correlated underlying information, namely the useful variable, to be disclosed for

utility, and the secret variable, to be kept private. We assume that a user wants to

share these measurements with the SP by periodically choosing a different data release

mechanism with different statistics at each time instance, and stop data release before

the SP is conҥdent about the true value of the secret. The user’s goal is to determine the

best selection mechanism to prevent the secret from being accurately detected by the SP

while revealing the useful data accurately for utility. While the ҥrst scenario presented in

this chapter focuses only on the PUT, the latter one takes the time aspect into account

and targets the quickest detection. Both active learning problems are reformulated as

an MDP, and numerically solved by utilizing DRL for both for synthetic and real data

in human activity privacy scenario. The results in this chapter have been published as

a conference paper which has also received the third place in the ICICS-CAIDA Best

Poster Prize competition in the 2021 North American School of Information Theory

(NASIT), and also submitted for a journal publication in:

• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡActive privacy-utility trade-

off against a hypothesis testing adversary,ә IEEE International Conference on Acous-

tics,Speech and Signal Processing (ICASSP), June 2021,
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• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡActive privacy-utility trade-

off against inference in time-series data sharing,ә submitted.

Chapter 6

In Chapter 6, we take into account the physical characteristics of the communication

channel between the user and the SP for the ҥrst time. Similarly to the previous sce-

narios, the user wants to reliably transfer her data which contains a latent sensitive

information, i.e., the secret, to the SP. However, in this setting, the communication is

performed over noisy channels and a passive eavesdropper wants to infer the secret over

his channel. For example, the user data may be an image or a video while the secret may

be the presence of a particular object or an activity within the scene. In this wiretap

channel scenario, we assume binary symmetric channels (BSCs) from the user to both

the SP and the eavesdropper. We optimize the trade-off between the reconstruction dis-

tortion of the data by the SP and the privacy leakage of the secret to the eavesdropper,

which is measured by the MI between the secret and the noisy user data observed by the

eavesdropper. Moreover, we propose a data-driven approach using variational autoen-

coder (VAE)-based joint source channel coding (JSCC), and show through simulations

with the colored MNIST dataset that our approach provides high reconstruction quality

at the receiver while confusing the eavesdropper about the secret, which consists of the

color and thickness of the digits. Finally, we consider a parallel-channel scenario, and

show that our approach arranges the information transmission such that the channels

with higher noise levels at the eavesdropper carry the sensitive information, while the

non-sensitive information is transmitted over more vulnerable channels. The results of

this chapter have been submitted for publication in:

• Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gündüz, ҡPrivacy-aware communi-

cation over a wiretap channel with generative networksә, against a hypothesis testing

adversary,ә IEEE International Conference on Acoustics,Speech and Signal Processing

(ICASSP), May 2022.

Chapter 7

Complementary to passive adversaries that we have mention in the previous chapter, in

Chapter 7, we consider the trustworthiness of DNNs in the presence of active adversaries

in security critical applications. Neural network robustness against potential adversaries

is signiҥcant, since DNN models have been shown to be vulnerable against small modiҥ-

cations in the samples and can be fooled. Adversarial robustness has widely been studied

in the literature to mitigate these weaknesses of DNNs both empirically and provably.

Prior work, which mostly contains CV domain applications, mainly focus on crafting AEs
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with small uniform norm-bounded perturbations across features to maintain the require-

ment of imperceptibility [24, 28ҫ33]. However, uniform perturbations do not result in

realistic AEs in domains such as malware, ҥnance, and social networks. For these types

of applications, features typically have some semantically meaningful dependencies. The

key idea of the proposed approach in this chapter is to enable non-uniform perturbations

that can adequately represent these feature dependencies during adversarial training.

We propose using characteristics of the empirical data distribution, both on correlations

between the features and the importance of the features themselves. Using experimen-

tal datasets for malware classiҥcation, credit risk prediction, and spam detection, we

show that our approach is more robust to real-world attacks. Finally, we present robust-

ness certiҥcation utilizing non-uniform perturbation bounds, and show that non-uniform

bounds achieve better certiҥcation. This chapter contains work done during the remote

internship with Amazon Web Services, New York City, US, and published in:

• Ecenaz Erdemir and Jeffrey Bickford and Luca Melis and Sergül Aydöre, ҡAdversar-

ial Robustness with Non-uniform Perturbationsә, Thirty-Fifth Conference on Neural

Information Processing Systems (NeurIPS), Dec. 2021

Chapter 8

Finally, in Chapter 8, we conclude our research on privacy and security in cyber-physical

systems, and discuss potential future directions, as well as open questions and challenges

that need to be addressed.



Chapter 2

Preliminaries

In this chapter, fundamental measures and methods which are used throughout the

dissertation are introduced, and a brief literature review about each topic is provided.

We ҥrst introduce the most commonly used privacy measures and mention seminal works

that utilize these measures. We give a detailed background speciҥcally for ITP, since it

is the main focus of the proposed approaches in Chapters 3, 4, 5 and 6. Moreover, we

explain MDPs which have extensively been used throughout Chapters 4 and 5, as we

reformulate our time-series data release problems as MDPs. A2C-DRL algorithm will

be introduced as a tool for solving MDPs numerically, and used to ҥnd approximations

for optimal policies of private data release in the following chapters. Finally, we give

a brief introduction to adversarial attacks and neural network robustness to provide a

background for Chapter 7.

2.1 Privacy Measures

Data privacy has been widely studied in the literature [10, 12ҫ17, 36ҫ49], and numer-

ous privacy measures have been introduced, including differential privacy [10, 12], k-

anonymity [38, 40], mutual information (MI) [13ҫ15], total variation distance [18], max-

imal leakage [19, 20], and guessing leakage [21]. Previous work has mostly focused on

protecting the privacy of a single data point, e.g., an individual’s identity among mul-

tiple user’s, or the current measurement in a sequence [40ҫ42, 45, 46], whereas only few

works have investigated sequential data privacy, such as electrocardiogram (ECG), body

temperature, physical activity, location, weather forecast, account balance and SM read-

ings [50, 51].

25
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2.1.1 Differential Privacy (DP)

DP, which was ҥrst introduced for querying databases, has emerged as a widely adopted

privacy measure [10]. DP provides guarantee that the changes in one record of the input

database do not signiҥcantly affect the query output changes in the database. Since this

guarantee is required for all adjacent inputs uniformly, DP requires high level of noise

and it is considered as a worst-case measure. The formal deҥnition of DP is as follows:

Definition 2.1. [10] For a positive real number ϵ and a randomized algorithm A, the

algorithm A is said to provide ϵ-differential privacy if, for all datasets D1 and D2 that

differ on a single element, and all subsets S of range A,

Pr(A(D1) ∈ S) ≤ eϵ · Pr(A(D2) ∈ S) (2.1)

where the probability is over the random algorithm.

In a scenario where a data sequence or multi-dimensional data of a single user is to be

kept private instead of the identity of an individual among multiple users, DP suffers

from high utility loss due to the noise injection for every data point. This is because DP

is meant to ensure the privacy of a single data point in time. In [52], it is stated that DP

and k-anonymity [38, 40], which also guarantees a sensitive data to be indistinguishable

from at least k − 1 other data points, are not appropriate measures for sequential data

privacy since temporal correlations are not taken into account.

2.1.2 Pufferfish Privacy

As an intermediate framework between DP, which assumes complete independence, and

group-DP which assumes complete correlation, pufferfish privacy considers low average

temporal correlations in time-series data [53]. In [53], continuous aggregate location

sharing is considered in a pufferҥsh privacy framework under temporal correlations mod-

eled as a Markov chain. This approach takes into account a certain number of steps

forward and backward, while minimizing the DP loss of the current location. Hence,

the accumulating privacy loss of DP mechanism is limited to a level determined by the

number of forward and backward steps.

2.1.3 Information-Theoretic Privacy (ITP)

ITP usually refers to MI privacy since MI is a measure of information ѕow which suits

well for quantifying privacy.
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In information theory, entropy is a measure of the uncertainty of a random variable (r.v.).

Let X be a discrete r.v. with probability mass function p(x) = Pr{X = x} over alphabet

X . The entropy of X is denoted by

H(X) = −
∑

x∈X

p(x) log p(x). (2.2)

The MI between two r.v.’s X and Y is the relative entropy between the joint probability

mass function, p(x, y), and the product of their marginal probability mass functions,

p(x)p(y), and is given by

I(X;Y ) =
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.3)

=Ep(x,y) log
p(X,Y )

p(X)p(Y )
. (2.4)

MI can also be written as the reduction in the uncertainty of X due to the knowledge of

Y , i.e., I(X;Y ) = H(X)−H(X|Y ), where H(X|Y ) is the conditional entropy.

ITP can often be related with information theoretic secrecy which dates back to 1949

when perfect secrecy was ҥrst introduced by Shannon [54]. Both can be considered under

an umbrella term information security which emerged from communication applications.

Certain levels of information leakage exist in all data sharing and communications ap-

plications, which poses a privacy risk through unwanted inferences. Quantifying this

leakage using information theoretic measures is the ҥrst step towards ITP.

While secrecy focuses on negligible or zero information leakage, privacy relaxes this con-

dition in return of the PUT. ITP offers guaranteed information theoretic bounds with

statistical assumptions on the data, capability of hiding underlying sensitive informa-

tion, capability of revealing different levels of sensitive information to different users and

enabling the usage of prior information and time dependency. On the other hand, while

DP tries to hide the true value of a sensitive information which targets the worst-case

adversaries, ITP covers a wide range of privacy measures that can hide the information

in an average sense, e.g., MI [55], f-divergences [56], average total variation distance [18],

and maximal leakage [19,20].

It is proved in [54] that there exists an encoding scheme such that an adversary having

full access to the communication channel between a transmitter and a receiver has no

information about the transmitted message. The perfect secrecy system is impractical

since it requires a key of the same size as the message to fully hide the message from the

adversary while the receiver can correctly decode the message using the key. [57], and

later [58], proposed the wiretap channel which eliminated the need for a key by exploiting
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the uncertainties of the physical medium such as channel noise and fading ѕuctuations.

However, practicality of [57] comes at the cost of zero information leakage, i.e., Wyner’s

weak secrecy tolerates a small amount of information leakage rate and achieves perfect

secrecy asymptotically.

One of the biggest advantage of ITP over DP and pufferҥsh privacy is that it enables the

usage of prior information and temporal correlations, which allows arbitrary stochastic

transformations of data samples rather than being limited to addition of noise of a speciҥc

form. This due to the fact that the MI between two time-series data sequences can be

written, by the chain rule, as

I(Xn;Y n) =

n
∑

t=1

I(Xn;Yt|Y t−1), (2.5)

where Xn = {X1, X2 . . . , Xn} and Y n = {Y1, Y2 . . . , Yn} are two sequences of r.v.’s.

As a result of introducing the memory in (2.5), the analysis becomes computationally

complex as the horizon increases as the MI involves an increasing number of r.v.’s. In the

literature, single-letter expressions for the information leakage in time-series data privacy

problems have been obtained considering independent and identically distributed (i.i.d.)

or Markov relation between the r.v.’s. Single letter expressions guarantee that, no matter

how long the problem horizon is, the minimal leakage can be written as a function of the

joint distribution of the involved r.v.’s single realization.

2.1.3.1 Applications of ITP

Techniques that would allow controllable amount of information leakage have attracted

a growing interest over the past decades. One of the earliest works using source coding

for ITP of a sensitive variable that is correlated with the source data is studied in [59], in

which a PUT is proposed by associating it with Shannon’s rate-distortion theory. Given

the publicly revealed encoding of the source, equivocation rate of the sensitive variable

is used as a privacy measure. Similarly, in [55], PUT is proposed as a rate-distortion

optimization problem, in which privacy leakage is measured by the MI between the source

and the legitimate receiver’s reconstruction.

An early work on MI privacy proposed in [60] provides foundations for measurement of

the effectiveness of privacy-preserving data mining algorithms. Being the ҥrst MI privacy

paper for privacy-preserving data collection and data mining, [60] proposes perturbing

the data and reconstructing the distributions at an aggregate level. The performed

expectation maximization algorithm is proved to converge to the maximum likelihood
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estimate of the original distribution based on the perturbed data. Privacy is measured

by the MI between the original and the perturbed records.

As an example of time-series data privacy, in [50], an SM system is considered assuming

Markovian energy demands. Privacy is measured by the MI between the demand-side

measurements and the SM readings, and achieved by ҥltering the energy demand with the

help of a rechargeable battery. ITP problem is formulated as an MDP, and the minimum

leakage is obtained numerically through DyP, while a single-letter expression is obtained

for an i.i.d. demand. This approach is extended to the scenario with a renewable energy

source in [36]. In [61], PUT is examined with a rechargeable battery. Due to Markovian

demand and price processes, the problem is formulated as a partially observable MDP

with belief-dependent rewards (ρ-POMDP), and solved by DyP for inҥnite-horizon.

In [62], PUT of time-series data is considered in both online and offline settings. A user

continuously releases data samples which are correlated with its private information,

and in return obtains utility from an SP. The proposed schemes are cast as convex opti-

mization problems and solved under hidden Markov model assumption. The simulation

results are provided for binary time-series data for a ҥnite time horizon. However, the

dimensions of the optimization problems in both schemes grow exponentially with time

and the number of sample states. Therefore, in a setting when ҥne-grained sensor data

is considered for a long time horizon, computational complexity of the proposed schemes

is very high.

2.1.4 Error Probability

Privacy metrics based on the SP’s error probability focus on concealing the true realiza-

tion of the sensitive information. In [16], the goal is to increase the ҥdelity of the shared

data quantiҥed through an additive distortion measure, while guaranteeing privacy in

an online manner. Privacy leakage is measured by the error probability of the SP in

estimating the true value of the underlying variables.

In [63], a r.v. containing latent sensitive variable S ∈ S and non-sensitive variable U ∈ U
is considered to go through a sensor, and a third party can infer these variables from

the noisy sensor measurement Z. The objective is to design an estimator for the non-

sensitive r.v. which minimizes a loss function while the information leakage about the

sensitive variable is kept below a certain level. The conditional discrete entropy is used

as the privacy metric, since the error probability of estimating the sensitive r.v. after

observing the noisy measurements can be lower bounded in terms of this privacy metric
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using Fano’s inequality [64], i.e.,

Perr(S) = P (S ̸= Ŝ) ≥ H
[

S|Z
]

− 1

log |S| . (2.6)

2.2 MDP Formulation

Throughout the dissertation, we consider privacy-preserving scenarios in which the data

of interest is time-series measurements. It is usually intractable to solve these opti-

mization problems while taking the data release history and temporal correlations into

account. Therefore, we reformulate them as sequential decision making problems by ex-

ploiting the Markov property of the time-series data, and solve by using classical MDP

solution methods. Next, we will brieѕy deҥne MDPs and provide a speciҥc RL solution.

Consider a sequential decision making problem under uncertainty. At each time instance,

an external decision maker (agent, controller, etc.) observes the state of the system and

takes an action accordingly. As a result of the action taken at a particular state, a reward

is received by the decision maker. The goal of such a problem is to ҥnd the decision rules

that specify the best actions to take at each system state, such that the maximum total

reward is accrued by the decision maker under the system constraints [65].

Markov property is based on the idea that the future is independent of the past given

the present. Since considering the effect of entire time horizon in a decision problem

is computationally complex, these problems are modeled for Markovian state space.

Hence, MDPs are discrete time stochastic control processes which are used to model

sequential decision problems with uncertainty. MDPs take into account both the short-

term outcomes of current decisions and the possible future gain. An MDP is formally

deҥned as a 4-tuple < S,A, T ,R >, which represent the state space S, action space A,

transition probabilities reѕecting the system dynamics T , and reward (or, inversely, cost)

R of taking a certain action at a certain state [66]. The state is Markov if

P (St+1|St) = P (St+1|St, St−1, . . . , S1), (2.7)

where St ∈ S. For deterministic policies, transition probabilities are the mappings from

each state-action pair to the next state,

T : S ×A → S, (2.8)
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whereas for stochastic policies, each state-action pair is mapped to a probability distri-

bution over the next states,

T : S ×A → P (S). (2.9)

The goal of an MDP is to obtain a set of decision rules, so called policy, that performs

optimally with respect to a certain performance criterion. A policy q is a function speci-

fying the action that the decision maker takes in a particular state, i.e., q : S → A. The

objective functions of MDPs map inҥnite or ҥnite sequences of rewards (or costs) to a

single real number. MDPs can have objectives, such as discounted, expected-total or aver-

age costs (rewards) to minimize (maximize) over a speciҥed duration, i.e., finite-horizon

setting, or an indeҥnite time, i.e., infinite-horizon setting [65]. To solve MDPs optimally,

Bellman optimality equations are used. Value function of the decision problem in state

s is denoted by Vq(s) which represents the expected reward/cost obtained following the

policy q in state s. Bellman optimality equation for a Markov reward process is denoted

by

Vq(s) = max
q(s)∈A

{

r(s, q(s)) +
∑

s′∈S

T (s, q(s), s′)Vq(s
′)
}

, (2.10)

where the maximization is over all the possible actions induced by the policy q for each

state s. The optimal value can be achieved by maximizing/minimizing the right hand side

of (2.10) using dynamic programming, which is an optimization method used to avoid

redundant calculations in recursive problems with an additive objective function [67].

A POMDP is a generalization of an MDP when the decision maker does not have com-

plete information about the system state. Instead, she can maintain a belief which is

a conditional probability distribution over the possible states given the past observa-

tions from the environment. POMDPs can be modeled as belief MDPs by inducing a

continuous belief state. In the literature, there are various approaches to solve belief

MDPs using ҥnite-state MDP solution methods, e.g. value iteration, policy iteration

and gradient-based methods. These are based on the discretization of continuous belief

states to obtain a ҥnite state MDP [68].

2.2.1 Advantage Actor-Critic DRL

DRL is a combination of DNNs and RL training methods based on rewarding desired

actions and/or punishing unwanted ones. It is a very broad topic that has received

signiҥcant attention in recent years [69]. In this section, we will brieѕy mention RL and

introduce a speciҥc algorithm A2C-DRL.
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Figure 2.1: RL for a known model.

In RL, an agent discovers the best action to take in a particular state by receiving instan-

taneous rewards/costs from the environment [69]. RL methods can be divided into three

groups: value-based, policy-based, and actor-critic [70]. Actor-critic methods combine

the advantages of value-based (critic-only) and policy-based (actor-only) methods, such

as low variance and continuous action producing capability. The actor represents the

policy structure, while the critic estimates the value function [69]. In our settings that

will be presented in the following chapters, we parameterize the value function by the

parameter vector θ ∈ Θ as Vθ(β), and the stochastic policy by ξ ∈ Ξ as qξ. The differ-

ence between the right and the left hand side of (2.10) is called temporal difference (TD)

error, which represents the error between the critic’s estimate and the target differing

by one-step in time [71]. The TD error for the experience tuple (βt, at, yt, βt+1, Ct) is

estimated as

δt = Ct(βt, at) + γVθt(βt+1)− Vθt(βt), (2.11)

where Ct(βt, at) + γVθt(βt+1) is called the TD target, and γ is a discount factor that we

choose very close to 1 to approximate the Bellman equation in (2.10) for our inҥnite-

horizon average cost MDP. To implement RL in the inҥnite-horizon problem, we take

sample averages over independent and ҥnite data sequences, which are generated by

experience tuples at each time t via Monte-Carlo roll-outs.

Instead of using value functions in actor and critic updates, we use advantage function

to reduce the variance in policy gradient methods. The advantage can be approximated

by TD error. Hence, the critic is updated by gradient descent as:

θt+1 = θt + ηct∇θℓc(θt), (2.12)

where ℓc(θt) = δ2t is the critic loss and ηct is the learning rate of the critic at time t. The

actor is updated similarly as,

ξt+1 = ξt − ηat∇ξℓa(ξt), (2.13)
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where ℓa(ξt) = ln(qs(yt|βt, ξt))δt is the actor loss and ηat is the actor’s learning rate. This

method is called advantage actor-critic RL.

2.3 Adversarial Robustness

There is a large variety of adversarial attacks that target ML systems, such as evasion,

poisoning and exploratory attacks [72]. The most common attack type in the litera-

ture is the evasion attack, which adjust malicious samples in testing time for evading

classiҥcation. On the other hand, poisoning attacks contaminate a percentage of the

training data with carefully crafted malicious samples to either reduce the classiҥcation

accuracy or create a backdoor to exploit during test time. Unlike the previous two meth-

ods, exploratory attacks try to gain as much knowledge about the learning algorithm as

possible instead of modifying the training or testing data. In this section, we will focus

speciҥcally on evasion attacks and adversarial examples (AEs) crafted by them.

AEs are intentionally crafted samples by attackers that aim to cause ML models to

make mistakes. Although any ML model can be fooled, e.g., RL agents [34, 35], most

adversarial attacks in the literature focus on the evasion of classiҥers. The adversary’s

objective is to maximize the error or loss function of the classiҥer by adding perturbations

to the samples to cause misclassiҥcation. Given a dataset {xi, yi}ni=1 with input xi ∈ R
d

and classes yi ∈ Y, we can formalize the AE generation as a solution to the following

optimization:

x∗i = xi + argmin
δ∈∆

{∥δ∥p : fθ(xi + δ) ̸= yi}, (2.14)

where x∗i is the AE, fθ : R
d → Y is DNN function, and ∆ is the set of possible adversarial

perturbations around the original samples. Various solutions to (2.14) in the literature

are called adversarial attacks. Some of the most common state-of-the-art adversarial

attacks, such as fast gradient sign method (FGSM) [73] and projected gradient descent

(PGD) [24], perturb training samples under a norm-ball constraint to maximize the loss

of the network.

2.3.1 Fast Gradient Sign Method (FGSM)

A solution to the optimization (2.14) is proposed in [73], and AEs are crafted as follows:

x∗i = xi + ϵ ∗ sign(∇xiℓ(fθ(xi), yi)) (2.15)

where ℓ(.) is the loss, e.g. cross-entropy, ∇xi is the gradient of the model with respect to

xi, and ϵ is the parameter which determine the size of the perturbation. That is, (2.15)
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crafts AEs that are within an ℓ∞ norm-ball of radius ϵ around the original sample and

maximize ℓ(·). Other variations of FGSM appear in the literature as targeted-FGSM and

Basic Iterative Method (BIM), where the former maximizes the probability of a speciҥc

target class in AE generation and the latter is a straightforward extension of FGSM to

iteratively ҥnding the optimal AEs [74].

2.3.2 Projected Gradient Descent (PGD)

In Chapter 7, we propose defenses which take PGD [24] as the base AE generation

method and build on top of it. PGD is a state-of-the-art perturbation method for AE

generation. It is a well-studied extension of FGSM to ℓp norm and iterative optimization,

and can be formalized as

x∗i = P(xi + α ∗ ∇xiℓ(fθ(xi), yi)) (2.16)

where the operation is applied at each time-step with step size α, P is the projection

function that applies the norm-ball constraint ∥δ∥p ≤ ϵ. A more detailed explanation for

PGD is provided in Chapter 7.

Adversarial training (AT) is one of the most effective empirical defenses against these

adversarial attacks [24,73,74]. The goal of the AT is to minimize the loss of the DNN when

perturbed samples are used during training. This way, the model becomes robust to real-

world adversarial attacks. Though these empirical defenses do not provide theoretically

provable guarantees, they have been shown to be robust against the strongest known

attacks [73]. AT can formally be represented as a min-max optimization minimizing the

DNN loss which is maximized by adversarial perturbations δ. Given {xi, yi}ni=1 as before,

the objective of AT is denoted by

min
θ

1

n

n
∑

i=1

max
δ∈∆

ℓ(fθ(xi + δ), yi). (2.17)

The adversary’s objective is the inner maximization term in (2.17), and the perturbed

samples found as a solution to the norm-constrained inner maximization are the AEs,

which is exempliҥed in Sections 2.3.1 and 2.3.2.

Empirical defenses are effective against many real-world attacks, however, their robust-

ness is not certiҥable. The goal of certiҥcation, on the other hand, is to report whether

an AE exists within an ℓp norm centered at a given sample with a ҥxed radius. Certiҥed

defense approaches introduce theoretical robustness guarantees against norm-bounded

perturbations [31,32,75,76].



Chapter 3

Smart Meter Privacy

3.1 Introduction

An electrical grid is a network that distributes electricity to consumers. The foundations

of the current electrical grid were laid out in the late 19th century as a centralized uni-

directional transmission and distribution system. However, the current grid has reached

its capacity and is not ҥt to manage the growing energy demand [77].

Developing technology has led to an increasing number of electronic appliances, electrical

vehicles and integration of renewable energy sources. In order to handle load imbalance,

inefficient usage of energy, and blackouts with domino effect a new energy grid is currently

being introduced. Smart grid (SG) is an energy grid which controls energy generation,

distribution, transmission and consumption using advanced communication and sensing

technologies. SGs are developed to increase the efficiency of energy infrastructure, reli-

ability against attacks, ѕexibility with bidirectional energy ѕows and the load balancing

against variations [78]. For instance, thanks to SG’s ability to support customer energy

generation, farms that produce electricity using methane generators, consumers with

solar panels or wind turbines can sell excess generated energy back to the UP.

One of the main enablers of SGs are the SMs, computerized replacement of the tradi-

tional analog electrical meters attached to the exterior of households [79]. Unlike tradi-

tional electrical meters, which measure only the total consumption, SMs can monitor ҥne

grained electricity usage of a household and report it to the UP. This provides efficient

use of energy resources since the SM owners can track and control their consumption

almost real-time. SM data can also be used for time-of-usage pricing, which can reduce

peak electricity demands by controlling customer behavior. Moreover, SMs also facili-

tate detecting energy theft, trading user-generated energy to increase grid efficiency, and

mitigating effects of load variations [78].

35
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Figure 3.1: Electricity consumption profile of a household for 24 hour period [1].

3.1.1 Privacy and Security Concerns

SM measurements contain detailed information related to the real-time state of the cus-

tomers. The UP or a third party can deduce power signatures of speciҥc home appliances

by using non-intrusive load monitoring (NILM) techniques [80]. NILM systems identify

appliances by using a series of changes in their power draw. For instance, appliances

such as kitchen ovens, tumble dryers and dishwashers go through a number of states,

where heaters and fans are turned on and off in various combinations. Such appliances

are modelled as ҥnite state machines. On the other hand, when on, a light bulb draws

power continuously.

In Figure 3.1, an example of the 24 hour period of SM measurements for a household

is illustrated. Speciҥc appliances with distinguishable power signatures are highlighted

with different colors. As in Figure 3.1, the high resolution consumption data reveals

details about private activities of the user. This real-time data might enable a malicious

eavesdropper to learn user’s presence at home, illnesses, disabilities and even political

views due to the TV channel the user is watching [81]. SM privacy becomes even more

critical when we consider businesses, since their power consumption might reveal the

state of their business to competitors. The controversy about SM roll-out plans due to

privacy concerns have attracted public and political attention across the world. In 2009,

a court in Netherlands decided that mandatory installation of SMs would be a violation

to the customer’s right to privacy, and would be in breach of the European Convention

of Human Rights [82]. In 2018, in the case of Naperville Smart Meter Awareness v.

City of Naperville, a court in the United States has agreed that the Fourth Amendment

protects user’s energy consumption data collected by SMs. That is, user’s expectation for

SMs data privacy is reasonable and the government’s access to this private information
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Figure 3.2: SM privacy enabling techniques.

constitutes a search [83]. SM privacy concerns can be a major roadblock on the path of

achieving worldwide SM usage.

3.2 SM Privacy Techniques

Various SM privacy enabling techniques have been proposed in the literature [51,84ҫ94],

which can be categorized as into two groups (see Figure 3.2): those based on SM data

manipulation and those based on demand shaping. While the techniques in the former

group focus on modifying SM measurements [84, 85], there in the latter group directly

manipulate user’s energy consumption exploiting physical resources, such as a RB [86ҫ90]

or a RES [51, 91ҫ94]. Representative works for each group are brieѕy explained in the

following sections.

3.2.1 Data Manipulation

Data manipulation techniques modify SM measurements before sending them to the UP.

There are many different approaches to SM data manipulation in the literature, such as

data obfuscation, data aggregation, data anonymization and down-sampling.

SM data obfuscation can be performed by corrupting the SM measurements with additive

noise. A cooperative state estimation technique is proposed in [85] to preserve privacy

by obfuscating the power consumption measurement. As the amount of noise added

increases, information leaked to the UP decreases. However, such a modiҥcation makes

SM measurements less relevant to the UP for prediction and control purposes, which

contradicts the purpose of installing SMs. In [95], a general theoretical framework is

proposed for both utility and privacy requirements of data release mechanisms using

information theoretic tools. In this context, SM measurements are perturbed before being
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reported to the UP. The goal is to minimize the information leakage rate between the

perturbed data and the private data of user’s choice while keeping the distortion between

the real and perturbed meter measurements below a certain level. For a stationary

Gaussian Markov model of the electricity load, the optimal utility-privacy trade-off is

characterized in [96] using the framework proposed in [95].

Data aggregation, on the other hand, proposes sending aggregated SM readings, instead

of individual readings, to the UP. In [84], data aggregation is used in combination with

homomorphic encryption and secret sharing techniques. The UP has access only to

encrypted SM readings and the total consumption. Moreover, the users send their ran-

dom shares to the UP after encrypting with each others public keys and aggregating.

Hence, the UP does not have access to individual consumption information. However,

encryption methods increase the computational complexity substantially [97].

Data anonymization approach [98], instead, considers utilizing pseudonyms rather than

the real identities of consumers such that information gleaned from the SM cannot be

easily associated with an identiҥed person.

In [99], two data manipulation techniques are combined, namely down-sampling and noise

addition. The SM data is ҥrst down-sampled by summing up n consecutive samples, then

noise is added to the down-sampled data. Similarly to [85], perturbation of SM readings

can cause undesired data loss.

3.2.2 Demand Shaping

Manipulating SM readings reduces the relevance of the reported values for grid manage-

ment and load prediction, limiting the beneҥts of SMs. Moreover, the grid operator can

place sensors outside a household or a business, and obtain the real consumption data,

since they own and control the infrastructure. Therefore, data manipulation cannot pro-

vide strict privacy against UPs. Demand shaping tackles these issues by manipulating

the real energy consumption. Unlike in data manipulation, UP receives accurate mea-

surements of the energy taken from the grid. However, these measurements do not belong

to the actual energy consumption of the household; and therefore, only provide very lim-

ited information about user behavior. Instead, the energy demand of the appliances are

supplied either by alternative energy sources, such as renewable energy sources, or from

rechargeable energy storage devices. Hence, the instantaneous energy demand of an ap-

pliance is supplied only partially by the power grid, if at all, and the rest can be provided

by the RB or RES. This effectively ҥlters the real energy consumption time series, and

creates a new time series for the energy received from the grid, which has only limited
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correlation with the original time series, and consequently reduces the information leak-

age to the UP. Note that, in the extreme cases of unlimited RES or RB capacity, the two

time series can be made completely independent, leading to zero information leakage,

i.e., perfect privacy [100]. The objective of the SM privacy demand shaping problem is

to determine the optimal energy management strategy between the grid, RB, RES and

the appliances, under given physical limitations, such as RB capacity, RES generation

rate, peak power constraints, etc. which provide the maximum privacy.

In [50], information theoretic privacy in an SM system with an RB is formulated as an

MDP. Markovian energy demand is considered, and the minimum leakage is obtained

numerically through DyP, while a single-letter expression is obtained for an i.i.d demand.

This approach is extended to the scenario with a RES in [51], which considers both cases

where the energy generation process is private and known to the UP. When the energy

generation process is known by the UP, it is numerically shown in [2] that the inҥnite-

horizon MDP performance can be achieved by a low complexity algorithm under the

assumption of a special energy generation process.

Privacy-cost trade-off is examined in an SM system with an RB in [90]. Due to Marko-

vian demand and price processes, the problem is formulated as a POMDP with belief-

dependent rewards. Bellman equation for stationary strategies is provided. However,

due to the non-linear and belief-dependent reward, the Bellman equation corresponds to

a continuous state, continuous action, continuous reward MDP. Obtaining optimal poli-

cies using continuous action Bellman equation is computationally complex. Therefore,

the authors provided upper and lower bounds, and presented numerical results using

classical rate-distortion theory in [90].

Information theoretic SM privacy with RB and RES is studied in [91] with average

and peak power constraints on RES. While closed-form expressions are obtained for the

scenarios with zero and inҥnite capacity RB, low complexity energy management policies

are proposed for ҥnite capacity. For a zero-capacity RB, rate-distortion theory is used

to obtain a single letter expression under the assumption of i.i.d. demand process. The

SM privacy problem in the existence of an alternative energy source, e.g. RES, is also

studied in [92] exploiting rate-distortion theory, and numerical results are obtained by

Blahut Arimoto algorithm. This approach is extended to multiple-user scenario in [101].

3.3 Information Theoretic SM Privacy

In this section, SM privacy problem is examined from information theory perspective. SM

privacy enabling techniques with data manipulation and demand shaping are presented
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in detail in Sections 3.3.1 and 3.3.2, respectively.

3.3.1 SM privacy with data perturbation

Privacy aware data release mechanism was studied in [95] for the ҥrst time, in which a

theoretical framework of privacy-utility trade-off for data manipulation is proposed. This

framework was later applied to SMs in [96]. In SM systems, load measurements are com-

plex valued including real and reactive components. The empirical load measurements

are shown to be approximately Gaussian in [102]; hence the continuous valued discrete-

time SM data can be modeled as a sequence {Yt} of r.v.’s Yt ∈ Y, t = {. . . ,−1, 0, 1, . . . },
generated by a stationary continuous Gaussian source with memory.

SM data sequence {Yt} contains private information {Xt} of the data collector’s choice,

such as the energy consumption of a particular home appliance. This private information

Xt ∈ X is correlated with and can be inferred from Yt. Formally, the encoding function

on SM side is a mapping from the meter reading sequence Y n = (Y1, Y2, . . . , Yn), where

Yt ∈ R, to an index Zn ∈ Zn = {1, 2, . . . , Zmax} given by

Fenc : Yn → Zn, (3.1)

where each index is a quantized sequence. The decoder at the UP side computes a

distorted output sequence Ŷ n = (Ŷ1, Ŷ2, . . . , Ŷn), Ŷt ∈ R, using the decoding function,

Fdec : Z → Ŷ n. (3.2)

To obtain a certain level of privacy in the SM problem, the encoding function Fenc is

chosen such that the private information Xt cannot be inferred from the distorted output

Ŷt. However, the distortion level must be kept limited such that the UP can still achieve

utility from the distorted SM readings. The utility is measured by the mean-square error

(MSE) distortion function,

Dn =
1

n

n
∑

t=1

E

[

(

Yt − Ŷt
)2
]

, (3.3)

where the expectation in is over the joint distribution p(yn, ŷn) = P (yn)pt(ŷ
n|yn). Pri-

vacy leakage is measured by the mutual information rate between the SM measurements

received by the UP {Ŷt} and the private information sequence {Xt},

Ln =
1

n
I(Xn; Ŷ n). (3.4)
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For a coding scheme given by (3.1) and (3.2) which satisҥes (3.3) and (3.4), the SM

utility-privacy trade-off region is a set of all (D,L) pairs, where D and L are the limit

values ofDn and Ln as n→∞, respectively. However, this utility-privacy trade-off region

does not bound the number of encoded sequences. The rate-distortion-leakage (RDL)

trade-off region is the set of all (R,D,L) triplets for which there exists a sequence of

coding schemes with (3.1), (3.2), each with a bounded number of encoded sequences

Zmax ≤ 2n(Rn+ϵ), (3.5)

where ϵ > 0, Rn = (logZmax)/n and Dn ≤ D+ ϵ while we have R = limn→∞Rn. Under

the constraints (3.3) and (3.4), SM utility-privacy trade-off can be quantiҥed by the RDL

trade-off region, where the rate-distortion and minimal leakage functions are denoted by

R(D,L) = lim
n→∞

inf
p(yn,xn)p(ŷn|yn)

1

n
I(Y n; Ŷ n), (3.6)

λ(D) = lim
n→∞

inf
p(yn,xn)p(ŷn|yn)

1

n
I(Xn; Ŷ n). (3.7)

Rate-distortion function for Gaussian sources is well known [64] and can be obtained from

the covariance matrix which is obtained by transforming the correlated source sequence

into its eigen-space where the MSE function and the mutual information leakage are

invariant. For example, the optimal encoding strategy for independent Gaussian r.v.’s

can be obtained using the reverse water-ҥlling algorithm [96].

3.3.2 SM privacy with demand shaping

In this section, SM privacy problem is examined in the presence of a renewable energy

source and a rechargeable battery, which allow the user to physically manipulate its con-

sumption [51,91,93]. A discrete time model of the SM system is illustrated in Figure 3.3,

in which the energy demand of the user and energy requested from the grid at time slot t

are denoted by Xt ∈ X and Yt ∈ Y, respectively, where (|X |, |Y| <∞). The RB state of

charge at the beginning of time slot t is denoted by Bt ∈ B := {0, . . . , Bm}, in which the

initial state B1 is distributed with probability pB1
. The battery charging and discharging

process is assumed ideal without any losses (see [88,103] for a model with energy losses).

Et ∈ E := {0, . . . , Em} units of energy are generated by the RES at the beginning of each

time slot t, and these can be used by the appliances only through the RB. The Et process

is assumed to be independent of Xt, and as the most general case, the realizations of Et

are not known by the UP. Xt and Et are assumed to be ҥrst-order time-homogeneous

Markov chains with transition probabilities qX and qE , and initial state distributions pX1

and pE1
for their initial states X1 and E1, respectively. Time-homogeneity and Markov
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Figure 3.3: Illustration of the SM system model with RB and RES.

chain assumptions imply that the transition probabilities between two time instances

depend only on the difference between those times, and the stochastic process is memo-

ryless given the previous time, respectively. The Et process is assumed to be independent

of Xt. These assumptions are realistic in stationary environments, and stationarity can

be approximated by choosing appropriate time-horizons for the process.

The appliances’ energy demand is always satisҥed by assuming Et + Bt + Yt ≥ Xt, ∀t.
In addition, intentional energy waste to provide privacy, or selling energy to the grid are

not allowed.

3.3.2.1 SM privacy with a RES

First, we consider the special case where the RB capacity of the SM system illustrated in

Figure 3.3 is zero, i.e., Bm = 0. Here the energy from the grid or RES cannot be stored

in an RB to provide additional privacy. Since the UP cannot access the amount of energy

generated by the RES at a particular time instant, users can achieve a certain level of

privacy depending on the amount of energy they can receive from the RES. Assume that

the RES is limited in terms of the average and peak power it can provide. Therefore, the

objective of the SM privacy problem with RES is to obtain the optimal policy providing

the best privacy under the average and peak power constraints of the RES. Information

leakage rate to be minimized can be written as the mutual information rate between the

user demand and the grid energy, i.e.,

IT =
1

T
I(XT ;Y T ). (3.8)

The maximum power which can be received from the RES in a time slot t is denoted by

P̂ , and must satisfy 0 ≤ Xt − Yt ≤ P̂ . Moreover, the average power, P̄T , that the RES
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can provide over a ҥnite horizon T is deҥned by,

P̄T = E

[ 1

T

T
∑

t=1

(Xt − Yt)
]

, (3.9)

where the expectation is taken over the joint probability distribution of the user demand

and the grid power. Under these constraints, the asymptotic performance limit of the n-

letter problem becomes an inҥnite dimensional optimization problem. On the other hand,

using single-letter r.v.’s allows achieving the optimal solution solving a ҥnite-dimensional

optimization problem. A single letter expression for the minimum information leakage

rate can be obtained under the assumption of i.i.d. demand, and it can be characterized

by the privacy-power function deҥned as,

I(P̄ , P̂ ) = inf
PY |X∈F

I(X;Y ), (3.10)

where F := {PY |X : y ∈ Y,E[(X − Y )] ≤ P̄ , 0 ≤ X − Y ≤ P̂}. Here, the energy

constraints are not affected by the past, since there is no battery, and thus no memory

in the system. The optimal energy management policy minimizing (3.10) is stochastic

and memoryless, and depends only on the current demand.

We note that the objective function (3.10) is similar to rate-distortion function R(D)

in information theory, which describes the minimum required compression rate R, in

bits per sample, for an i.i.d. source sequence XT with distribution pX such that the

receiver can reconstruct the source sequence achieving a particular expected distortion

level D [64]. Average distortion between sequences XT and X̂T is denoted by D =
1
T

∑T
t=1 d(xt, x̂t), where d(x, x̂) and X̂ represent the distortion measure used, and the

reconstruction alphabet, respectively. The information rate-distortion function R(I)(D)

for a source X with distortion measure d(x, x̂) is deҥned by Shannon as [64],

R(I)(D) = min
p(x|x̂)∈F̃

I(X; X̂), (3.11)

where F̃ := {P (x|x̂) :
∑

(x,x̂) P (x)P (x̂|x)d(x, x̂) ≤ D}. The analogy between the

privacy-power function (3.10) and the rate-distortion function (3.11) can be made as-

suming the distortion measure:

d(x, y) =







x− y, if 0 ≤ x− y ≤ P̂ ,
Dmax, otherwise,

(3.12)

where Dmax < ∞ is a very large scalar. Hence, this enables us to use tools from rate-

distortion theory to examine SM privacy problems with RES [91,92,101]. However, there

are two major differences between the rate-distortion and SM privacy problems, namely
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i) grid energy Y T is the direct output of the "encoder", which is represented by the

EMU in the SM problem, rather than the reconstruction of the decoder, and ii) unlike

the lossy encoder, EMU determines the output load Yt instantaneously after receiving

the demand. Since the mutual information is a convex function of the distribution PY |X ,

the privacy-power function can be written as a constrained convex optimization problem

and solved numerically using the Blahut Arimoto algorithm [64].

3.3.2.2 SM privacy with an RB

Here, we consider another special case where the SM system illustrated in Figure 3.3 has

an RB, and no RES, i.e., Et = 0 for all t. The energy demand of the user is supplied by

the grid energy through the RB, and charging of the RB can only be performed by the

energy grid. This scenario is studied in [50] and [90], where both recast the problem as

an MDP.

The battery state of charge is updated by,

Bt+1 = Bt + Yt −Xt, (3.13)

where Yt is chosen such that Bt+1 ≤ Bm.

The amount of energy requested from the grid is determined by a randomized bat-

tery charging policy q = {qt}∞t=1, where qt is a conditional probability distribution

qt(Yt|Xt, Bt, Y t−1) which randomly decides on the amount of energy received from the

grid at time t given the histories of demand Xt:={X1, . . . , Xt}, battery charge Bt and

grid energy Y t−1, i.e.,

qt : X t × Bt × Yt−1 → Y. (3.14)

The goal of the SM privacy problem is to ҥnd an energy management policy, {q∗t }∞t=1,

which provides the best privacy.

Privacy of an energy management policy over a time period T can be measured by the

information leakage rate, which is deҥned as the average mutual information between

the demand side load (XT , BT ), and SM readings Y T :

Lq(T ) :=
1

T
I(XT , BT ;Y T ). (3.15)

The RB state of charge, i.e., BT , is included in the privacy measure, since a potential

adversary having access to BT can deduce the SM measurements due to the deterministic

relationship between Xt, Yt, Bt and Bt+1 in (3.13). In [50], it is proved that there is no
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loss of optimality in considering policies of the form qt(Yt|Xt, Bt, Y
t−1); that is, it is

sufficient to consider only the current demand and battery state. Hence, (3.15) can be

rewritten in an additive form

Lq(T ) =
1

T

T
∑

t=1

I(Xt, Bt;Yt|Y t−1). (3.16)

Markovity of optimal actions and the additive objective function of information leak-

age rate enable this problem to be cast as a stochastic control problem, which can be

formulated as an MDP.

SM privacy problem in the existence of RB can be cast as an average cost, inҥnite-

horizon MDP with state St={Xt, Bt} ∈ S. However, the leakage at time t depends on

Y t−1, which leads to a growing state space in time. Therefore, the problem is formulated

as a belief MDP and belief state βt(st) is deҥned as the causal posterior probability

distribution over the state space of (Xt, Bt) given Y t−1:

βt(st) = P q(St = st|Y t−1 = yt−1). (3.17)

The control actions chosen by randomized policies are the conditional probabilities of

energy received from the grid given the state and belief, denoted by at(yt|st) = P q(Yt =

yt|St=st, βt), where at ∈ A [50]. As a result of the action taken at time t, belief is

updated for the next time interval as follows:

β(st+1) = p(st+1|yt) =

∑

st

p(st+1, st, yt|yt−1)

p(yt|yt−1)
(3.18a)

=

∑

st

p(st|yt−1)p(yt|st, yt−1)p(st+1|yt, st)
∑

st,st+1

p(st|yt−1)p(yt|st, yt−1)p(st+1|yt, st)
(3.18b)

=

∑

st

β(st)at(yt|st)qX(xt+1|xt)
∑

st,st+1

β(st)at(yt|st)qX(xt+1|xt)
× 1bt+1

{bt + yt − xt}
1bt+1

{bt + yt − xt}
. (3.18c)

where (3.18b) follows from the Bayes rule and the Markov chain Y t−1 → (St, Yt)→ St+1;

and (3.18c) from the deҥnitions of β and at. Given Y t−1, per-step leakage of taking action

at(yt|st) due to policy q is,

lt(st, at, y
t; q) := log

at(yt|st)
P q(yt|yt−1)

. (3.19)

Taking the expectation of the per-step leakage over a ҥnite-horizon T ,
1
T Eq[

∑T
t=1 lt(st, at, y

t)], results in an objective function equivalent to the original
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formulation in (3.16). Given belief and action probabilities, average information leakage

at time t is formulated as,

Eq[lt(st, at, y
t)] = I(St;Yt|Y t−1 = yt−1)

=
∑

st∈Syt∈Y

βt(st)at(yt|st) log
at(yt|st)

∑

ŝt∈S

βt(ŝt)at(yt|ŝt)
.

= I(St;Yt|βt, at). (3.20)

SM privacy problem which is cast as an average cost belief-MDP can be solved by DyP.

While an exact DyP solution cannot be achieved due to the continuous belief state,

approximate numerical solutions can be obtained by using belief quantization methods

[68]. To formulate the corresponding Bellman equation, which is a necessary condition

for the optimality of DyP [104], Bellman operator T is written as,

[Tav](β) = l(s, q(β), β) +
∑

s∈S,y∈Y

β(s)a(y|s)v(ϕ(β, y, a)), (3.21)

where v is the value function and the updated belief state is represented by βt+1 =

ϕ(βt, yt, at). Implementation of DyP for the ҥnite-horizon and inҥnite-horizon settings

is as follows:

Finite horizon DyP

• For vn+1(β) = 0 and t ∈ {n, . . . , 1}, value functions, vt, are recursively deҥned [65]:

vt(β) = min
a∈A

[Tavt+1](β). (3.22)

Optimal leakage rate is given by v1(β1)/n, where β1(s) = pX1
pB1

.

• The optimal policy minimizing the right hand side of (3.22) is denoted by q∗ =

(q∗1, . . . , q
∗
n):

q∗t (yt|st, β) = at(yt|st). (3.23)

Infinite horizon DyP

• For λ constant [65], the value function v is time-homogeneous and deҥned iteratively:

λ+ v(β) = min
a∈A

[Tav](β). (3.24)

Optimal leakage rate is given by λ.
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• Time-homogeneous optimal policy, q∗ = (q∗, q∗, . . . ),

q∗(yt|st, β) = a(yt|st). (3.25)

3.3.2.2.1 Single letter expression for i.i.d. demand Under the assumption that

Xt is i.i.d. with probability distribution pX , it is possible to achieve the optimal policy

by solving a cost function in a single letter form. Consider an auxiliary state variable

Wt = Bt − Xt, where w ∈ {b − x : b ∈ B, x ∈ X}. Then, the single letter minimum

information leakage rate is given by [50],

J∗ = min
θ∈PB

I(B −X;X) = min
θ∈PB

{H(B −X)−H(B)}, (3.26)

where r.v.’s X and B are independent; θ is the probability distribution over B given

the past observations and actions, i.e., θ := p(bt|yt−1, at−1); and actions at are the

conditional probabilities of grid load given the current demand, battery charge and the

belief. Contrary to the Markovian demand case, here belief states are on Wt. Since the

objective function (3.26) is convex over θ, the optimal policy can be obtained by Blahut-

Arimoto algorithm [64]. The resulting grid load is i.i.d., and the optimal charging policy

is memoryless and time-invariant.

3.3.2.2.2 Privacy-Cost Trade-Off In practice, in addition to privacy, energy cost

is an important concern. Indeed, home energy storage devices are mainly installed to

reduce energy consumption by storing energy during off-peak price periods [105,106]. It

is possible to maximize privacy by constantly purchasing high amount of energy from

the grid and wasting the extra energy. However, this is against the purpose of SM from

both the user and the UP point of view.

The same as minimizing the mutual information to maximize the achievable privacy, the

conditional entropy of the demand process given the observations of UP can also be used

as a privacy measure to maximize. In [90], the authors take both privacy and cost into

account and recast the problem as an MDP. The privacy is formulated as,

P(q) := 1

T
H(XT |Y T , P T ), (3.27)

where P T = (P1, . . . , PT ) is the price of the energy purchased from the grid for t =

{1, . . . , T}. Unlike privacy, energy cost has an additive formulation and can be easily

incorporated into the MDP formulation. Following policy q, the average cost savings per
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time slot are deҥned by,

C(q) := 1

T

T
∑

t=1

c(Xt, Bt+1, Yt, Pt), (3.28)

where c(Xt, Bt+1, Yt, Pt) = (Xt−Yt)Pt, ∀Bt+1 ∈ B. The objective of the SM privacy-cost

trade-off problem with RB is considered as the weighted sum of privacy, P, and average

cost savings per time slot, C. That is, the weighted reward function to be maximized is

given by R(q, λ) = λP(q)+ (1−λ)C(q), where λ ∈ [0, 1] denotes user’s choice regarding

the balance between privacy and cost. If λ = 0, only the cost savings are maximized,

whereas if λ = 1, only the privacy is maximized. The problem in [90] is reformulated

as a belief MDP. A Bellman equation which corresponds to a continuous state, contin-

uous action, continuous reward MDP is written for stationary policies. However, due

to the high computational complexity, only the privacy of cost-optimal, deterministic

and greedy policies are studied in [90]. Optimal privacy-cost trade-off bounds are also

obtained using rate distortion theory.

3.3.2.3 SM privacy with a RES and an RB

In this section, we consider a more general case in which the SM system is equipped with

a ҥnite capacity RB and a RES with non-zero energy generation (see Figure 3.3) [2,51].

While the RB provides demand shifting, the RES supplies alternative energy to mask

the energy consumption of the appliances. However, the memory introduced by the RB

and the additional randomness due to the energy generation process of the RES, the

SM privacy problem becomes more complicated than the previous cases with only RB

or RES.

Here, the battery state of charge is updated by,

Bt+1 = min(Et +Bt −Xt, Bm) + Yt, ∀t, (3.29)

where Yt is chosen such that Bt+1 ≤ Bm. When the realizations of the energy generation

process Et are not known by the UP, information leakage rate of the SM system with

RB and RES is deҥned by

Lq(T ) :=
1

T
I(XT , BT , ET ;Y T ). (3.30)

Randomized battery charging policies in the existence of an RB and a RES are deҥned

such that qt : X t × E t × Bt × Yt−1 → Y . Similarly to Section 3.3.2.2, there is no loss

of optimality in considering battery charging policies of the form qt(Yt|Xt, Bt, Et, Y
t−1).
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Therefore, (3.30) can be rewritten in an additive form

Lq(T ) =
1

T

T
∑

t=1

I(Xt, Bt, Et;Yt|Y t−1). (3.31)

Employing Markovian actions and additive objective function, SM privacy problem with

RB and RES can be cast as an average cost MDP with states St = {Xt, Bt, Et} ∈ S. As

before, the history dependence of the information leakage due to RB causes a growing

state space in time. Hence, the problem is formulated as a belief MDP and belief state

βt(st) is deҥned as the causal posterior probability distribution over the state space of

(Xt, Bt, Et) given Y t−1. As a result of the action at(yt|st) ∈ A taken at time t, belief is

updated for the next time interval as follows:

β(st+1) =
∑

st

β(st)at(yt|st)qE(et+1|et)qX(xt+1|xt)1bt+1
{min(et + bt − xt, Bm) + yt}

∑

st,st+1

β(st)at(yt|st)qE(et+1|et)qX(xt+1|xt)1bt+1
{min(et + bt − xt, Bm) + yt}

. (3.32)

The derivation of the intermediate steps can be performed following (3.18) with the cor-

responding modiҥcations. Given Y t−1 = yt−1, the average information leakage in (3.31)

can be written in terms of belief and actions by averaging the per-step leakage in (3.19)

over the belief and action probabilities, when St = {Xt, Bt, Et}. With the integration of

renewable energy generation, the resulting objective (3.20) can be minimized by following

the DyP steps (3.22)-(3.25).

3.3.2.3.1 Renewable Energy Known by the UP Here, we consider a special case

of the SM privacy problem with an RB and a RES, in which the UP knows the realizations

of Et. In this scenario, energy management policies of the form qt(Yt|Xt, Bt, E
t, Y t−1)

are taken into account, and the information leakage rate induced by policy q is denoted

by,

Lq(T ) :=
1

T
I(XT , BT ;Y T |ET ) = 1

T

T
∑

t=1

I(Xt, Bt;Et, Yt|Y t−1, Et−1). (3.33)

Similarly to the Et unknown case, the problem can be reformulated as a belief MDP. The

belief state is deҥned as the conditional probability on the system state St := (Xt, Bt),

given the observation history (Y t−1, Et−1), i.e., β(st) := p(st|yt−1, et−1). As a result of
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the action at(yt|st, et) = P q(Yt = yt|St=st, Et = et, βt), belief is updated as follows,

β(st+1) =
∑

st

β(st)at(yt|st, et)qE(et|et−1)qX(xt+1|xt)1bt+1
{min(et + bt − xt, Bm) + yt}

∑

st,st+1

β(st)at(yt|st, et)qE(et|et−1)qX(xt+1|xt)1bt+1
{min(et + bt − xt, Bm) + yt}

, (3.34)

where the intermediate steps can be derived from the Bayes rule, Markovity of Et, and

the Markov chain (Y t−1, Et−1)→ (St, Yt, Et)→ St+1. Unlike the Et unknown scenario,

energy generation process is not included in belief since the UP has the exact information

about Et realizations. Given (Y t−1, Et−1), per-step information leakage of taking action

at(yt|st, et) incurred by policy q is,

lt(st, e
t, at, y

t; q) := log
at(yt|st, et)qE(et|et−1)

P q(yt, et|yt−1, et−1)
. (3.35)

Taking average leakage over a ҥnite-horizon T , 1
T Eq[

∑T
t=1 lt(st, e

t, at, y
t)], is equal to the

original formulation in (3.33). Given belief and action probabilities, average information

leakage at time t is denoted by:

Eq[lt(st, e
t, at, y

t)] = I(St;Et, Yt|Y t−1 = yt−1, Et−1 = et−1)

=
∑

st∈S
et∈Eyt∈Y

βt(st)at(yt|st, et)qE(et|et−1) log
at(yt|st, et)qE(et|et−1)

∑

ŝt∈S

βt(ŝt)at(yt|ŝt, êt)qE(et|et−1)

= I(St;Et, Yt|βt, qE , at). (3.36)

The problem is recast as a belief MDP, and the Bellman equation to be used in DyP is

modiҥed with the integration of observed energy generation process,

[Tav](β) = l(s, q(β), β, qE) +
∑

s∈S
e∈Ey∈Y

β(s)a(y|s, e)qE(e|ê)v(ϕ(β, y, a, e)), (3.37)

where ê is the energy generated in the previous step and the updated belief state is

represented by βt+1 = ϕ(βt, yt, at, et). Finite-horizon and inҥnite-horizon MDP steps

can be followed from (3.22)-(3.25).

3.3.2.3.2 Special Renewable Energy Generation Process Here, we propose low

complexity policies and numerical solutions for SM privacy-cost trade-off in the existence

of both RES and RB by exploiting a special energy arrival process that fully recharges the

battery at random time instances, i.e, Et ∈ {0, Bm}. The realizations of the renewable

energy generation process Et is assumed to be known by the UP. Due to the special

energy arrival process, the problem is an episodic MDP, which resets to an initial state
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Figure 3.4: Illustration of the RB state of charge under the special energy generation
process assumption in [2].

of full RB at every renewable energy instant. Between two consecutive energy arrivals,

energy transitions occur only between the grid, the battery and the home appliances.

An example for the RB state of charge for Bm = 5 under the special energy generation

process assumption is given in Figure 3.4. Red bars express the fully charged battery state

at time instances t = 0, 5, 8, 12, when the renewable energy is generated. Between two

consecutive energy arrivals, the RB state of charge is represented by grey bars. Hence,

for each time period between two RES charging instants, the system can be modeled as

an SM with only an RB and no RES. Accordingly, a ҥnite-horizon privacy-cost trade-

off problem is formulated for an SM system with an initially full RB, which is used

to propose a low-complexity policy as well as a lower bound for the original problem.

Between two RES charging instants, battery update is performed according to (3.13)

and the ҥnite-horizon average information leakage is formulated as in (3.16). Energy

cost has an additive formulation and can be incorporated into the MDP formulation.

Price process of the energy purchased from the grid at time t is deҥned as Pt. Following

policy q, the average energy cost per time slot is deҥned by,

Cq(T ) :=
1

T

T
∑

t=1

YtPt. (3.38)

Due to the growing space of observations of the UP, belief states are deҥned and the

problem is recast as a belief-MDP. The weighted objective function is given by Uq(λ, T ) =

λLq(T )+ (1−λ)Cq(T ), where λ ∈ [0, 1] denotes user’s choice regarding the privacy-cost

balance, is represented in terms of belief states and actions, and minimized over the

action space. The optimal policy for each episode is obtained by applying ҥnite-horizon

DyP via the Bellman operator given in (3.21).
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Figure 3.5: Renewable energy generation instances and privacy-cost rate for the
corresponding intervals.

Threshold Policy (TP)

According to the low complexity proposed in [2], after each RB recharge instance, the

optimal policy obtained for a ҥxed ҥnite-horizon n is employed. The optimal policy

for horizon n is followed until either the battery is recharged again, in which case the

algorithm restarts with the same policy, or the time horizon n is reached. If the RB is not

recharged at time (n+1), it is assumed that all the energy demand is directly supplied by

the grid, resulting in full information leakage. The intuition behind this scheme follows

from the law of large numbers, which suggests that, with high probability, the RB will

be charged after n = 1
PE

time slots, where PE is the energy generation probability at

any t. We consider policies with a ҥxed time horizon of n = 1
PE

, as well as those with

an optimized time horizon.

Battery Conditioned Policy (BCP)

We propose another low-complexity policy which depends only on the current input load.

In BCP, when there is no demand, we allow the RB to be recharged by the grid with a

probability PCi
for each battery state Bt=i, for i={0, . . . , Bmax}. On the other hand,

when there is energy demand, the RB is discharged with a probability PDi
for each

battery state. As before, intentional energy waste is not allowed. When there is demand

in the case of an empty RB, it is entirely supplied from the grid. We choose (PCi
, PDi

)

values that minimize (3.16) by an exhaustive grid search on [0, 1]2.

Lower Bound

Next, we provide a lower bound on the privacy-cost trade-off by assuming that the user

non-causally knows the times at which the RES recharges the RB. In Figure 3.5, these

time instances are represented by consecutive arrows. The weighted sum of ҥnite-horizon

leakage rate and average energy cost, minimized over policy q, is denoted by Ū∗(γ, Tk)

in Figure 3.5. Given i.i.d. PE , the probability that the RB is recharged after Tk time

slots is given by

f(Tk;PE) = PE(1− PE)Tk . (3.39)
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Figure 3.6: Privacy-cost trade-off of the lower bound, TP, BCP and infinite-horizon
MDP w.r.t. PE for γ=0.5 and PX=0.5.

If the RB recharge instances are known in advance, the problem reduces to the ҥnite-

horizon MDP for each inter-arrival period.

Once the optimal performance is evaluated for all Tk > 0, the lower bound can be derived

by taking their average using the probability mass function in (3.39):

Fγ(PE) =

∞
∑

k=1

f(Tk;PE)Ū
∗(γ, Tk), (3.40)

where the coefficient f(Tk;PE) approaches zero as T → ∞, while Ū∗(γ, Tk) approaches

the inҥnite-horizon privacy-cost trade-off. For the numerical solution of the inҥnite-

sum indicated in (3.40), we perform the summation for ҥnite k={1, . . . ,K} such that
∑∞

k=K+1{f(Tk;PE)Ū∗(γ, Tk)} < ϵ. To obtain the minimum K satisfying this inequality,

we ҥrst consider the worst case information leakage rate and average energy cost, where

all the demand is supplied by the grid, Yt = Xt, and denote the lower bound by

Fγ(PE) ≤
K
∑

k=1

f(Tk;PE)Ū
∗(γ, Tk) +

∞
∑

k=K+1

f(Tk;PE)Ūw(γ), (3.41)

where Ūw(γ) := [γH(X) + (1− γ)E[X]] represents the worst case privacy-cost trade-off,

in which H(X) and E[X] are the entropy and expected value of the demand, respectively.

Hence, we choose the minimum K value that satisҥes
∑∞

k=K+1 f(Tk;PE)Ūw(γ) = (1 −
PE)

TK Ūw(γ) < ϵ. We can ҥnd a ҥnite TK satisfying this inequality for any ϵ > 0.

A simple binary example

We consider a simple scenario with (X ,Y)={0, 1}, E={0, 2} and B={0, 1, 2}. We em-

phasize that obtaining numerical results for larger alphabets is challenging as the belief
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grows with the state space, and so does the computational complexity, also due to the

quantization of the belief. For simplicity, demand and energy generation processes are

assumed to be i.i.d. with Bernoulli PX=0.5 and PE ∈ [0, 1], respectively. Extensions to

Markovian Et process is straightforward for TP and BCP; however, the MDP formula-

tion requires including Et in the state, and updating the belief accordingly. We consider

a privacy-cost trade-off weight of γ=0.5.

The weighted total privacy leakage and energy cost for TP, BCP and inҥnite-horizon

MDP are depicted in Figure 3.6, together with the lower bound. The average weighted

cost decreases with PE , since the demand can be mostly supplied by the RES, decreasing

both the cost and leakage. The lower bound is obtained from (3.40) evaluated over a

sufficiently long T . While the lower bound is not tight in general, it also shows us the

value of predicting the energy generation instances for optimizing the privacy and cost.

Two plots of TP are obtained corresponding to different horizons. For the ҥrst TP plot,

the ҥnite-horizon is set to be n= 1
PE

. Since TP leads to full information leakage when

energy arrives later than the set horizon, this approach has a higher privacy-cost trade-off

compared to the inҥnite-horizon DyP solution of the original problem. For the second

TP plot, for each PE value, the best horizon value is selected by searching over the

set n = [1 : 15]. We observed that, the optimal ҥxed horizon is typically longer than
1
PE

, which reduces the probability of full leakage. Interestingly, the performance of TP

with optimized yet ҥxed horizon follows that of the inҥnite-horizon MDP solution very

closely. We remark here that the curve obtained for the inҥnite-horizon MDP solution is

an approximation as well, due to the quantization of the belief. Finally, we observe that

the performance of the BCP scheme can outperform that of ҥxed horizon TP policy for

high PE values.

3.4 Conclusions

SMs are end user interfaces that monitor the energy consumption of users. SMs pro-

vide accurate, high frequency consumption data to the UPs, and they are being widely

deployed around the world. The adoption of SM s has created a multi-billion dollar

business. However, private information about user’s personal lives can be inferred from

detailed SM readings by the UP, which has led to signiҥcant consumer outrage, creating

a serious roadblock in front of the widespread deployment of SMs. Therefore, enabling

privacy-aware SM technology has an undeniable importance both for consumers and for

other stakeholders in this multi-billion dollar industry.

In this chapter, SM privacy-preserving techniques have been discussed. They are classi-

ҥed into two: data manipulation methods which modify SM measurements and, demand
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shaping methods which manipulate the energy received from the grid physically. The

second group of methods, which use physical resources, such as RB and RES, have been

examined in detail as they provide privacy without compromising the role of SM in

providing timely and accurate energy consumption information. Unlike SM data manip-

ulation, demand shaping methods report accurate and real consumption measurements

to the UP, which maintains the beneҥts of the SG concept. We have mainly focused on

information theoretic privacy measures, in particular the mutual information between the

real energy consumption and the energy received from the grid, which is also what the

SMs report to the UP. Other measures have also been considered in the literature, see for

example [107, 108]. Rate-distortion theory and MDPs have been used as mathematical

tools to study the fundamental information theoretic privacy measures.

Although there are a vast number of solutions which have been proposed in the lit-

erature, SM privacy problem still has many challenges to be addressed. Among the

various privacy metrics deҥned, there is still lack of a privacy measure which is generic,

device-independent and well suited to various privacy-preserving methods. Information

theoretic privacy metrics provide solutions independent of the attacker behavior, such as

the particular detection technology employed by the attacker; however, they depend on

an underlying statistical model governing the various processes involved. The assumed

statistical models may not be valid in practice, or more involved models might be needed,

under which clean optimal solutions may not be possible, requiring computationally lim-

ited sub-optimal solution that can provide reasonable privacy guarantees. Moreover, the

cost of privacy-preserving techniques and installation of RB or RES is still considerably

high compared to cost savings due to SM usage. However, this cost may reduce as renew-

able energy becomes more widespread making RES and RBs more commonly available

to households.



Chapter 4

Time-Series Data Privacy

In this chapter, we study PUT in time-series data sharing. In the previous chapter, we

mainly focused on demand shaping techniques which preserve the privacy by physically

modifying the data to be shared. Here, we focus on PUT by obfuscating the data with

noise before sending it to the SP. Existing approaches to PUT with data obfuscation

mainly focus on a single data point; however, temporal correlations in time-series data

introduce new challenges. Methods that preserve the privacy for the current time may

leak signiҥcant amount of information at the trace level as the adversary can exploit

temporal correlations in a trace. In this chapter, a distorted version of a user’s true

data sequence is shared with the SP, and the privacy leakage is measured by the MI

between the user’s true data sequence and its shared version. Both the instantaneous

and average distortion between the two sequences, under a given distortion measure, are

considered as the utility loss metric. To tackle the history-dependent MI minimization,

we reformulate the problem as an MDP, and solve it using A2C-DRL. The performance

of the proposed solution in location trace privacy are evaluated on both synthetic and

real GPS trajectory datasets. For the latter, the validity of the proposed solution is

shown by testing the privacy of the released location trajectory against an adversary

network.

4.1 Introduction

In this chapter, we study the fundamental PUT when sharing sensitive time-series data.

We consider the scenario in which the user measures time-series data (e.g., location,

heartbeat, temperature or energy consumption) generated by a ҥrst-order Markov pro-

cess through an IoT device, and periodically reports a distorted version of her true data

to an untrusted SP to gain utility. We assume that the true data becomes available

56
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to the user in an online manner. We use the MI between the true and distorted data

sequences as a measure of privacy loss, and measure the utility of the reported data by

a speciҥc distortion metric between the true and distorted samples. For the PUT, we

introduce an online private data release policy (PDRP) that minimizes the MI while

keeping the distortion below a certain threshold. We consider both instantaneous and

average distortion constraints. We consider data release policies which take the entire

released data history into account, and show its information theoretic optimality. To

tackle the complexity, we exploit the Markovity of the user’s true data sequence, and

recast the problem as an MDP. After identifying the structure of the optimal policy, we

use A2C-DRL framework as a tool to evaluate our continuous state and action space

MDP numerically. To the best of our knowledge, this is the ҥrst time DRL tools are

used to optimize information theoretic time-series data privacy.

The performances of the proposed PDRPs are examined in two speciҥc scenarios: In the

ҥrst scenario, synthetic location traces are generated considering a user moving in a grid-

world with a known Markov mobility pattern. In the second scenario, we use GPS traces

of a user from GeoLife dataset [109,110]. For the average distortion constrained case, the

proposed PDRP is compared with a myopic location data release mechanism [47]. While

the privacy leakage of the considered PDRPs can be evaluated for the synthetic dataset,

this cannot be done for the GeoLife trace since we do not know the true statistics of this

dataset. Instead, we compare the privacy achieved by the proposed and myopic policies

using an adversary which predicts the current location of the user from the past released

locations. The adversary is represented by a long short-term memory (LSTM) predictor.

The performances of the proposed policies are tested under various adversary memory

sizes.

This chapter contains our previous work on PUT for location sharing [111], and its

extension to generic time-series data sharing. Our contributions are summarized as

follows:

• We propose a simpliҥed PDRP by exploiting the Markov property of the user’s true

data sequences. Then, we prove the information theoretic optimality of the simpliҥed

strategy.

• We recast the information theoretic time-series data PUT problem as an MDP and

evaluate the optimal PDRP numerically using A2C-DRL.

• We apply the obtained information-theoretically optimal PDRP on the location trace

privacy problem, and evaluate its performance under instantaneous and average dis-

tortion constraints using both synthetic and GeoLife [109] trajectory datasets.

The remainder of this chapter is organized as follows. We present the problem statement

in Section 4.2 where we also introduce the privacy and utility metrics used in this chapter.
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Table 4.1: Notation Summary

Notation Deҥnition

W Time-series data set

n Time-series data length

Xt, Yt Random variables representing the user’s true

and distorted data at time t

px1 Probability distribution of the true data at t = 1

qx(.|.) Markov transition of user data

Qx Markov transition matrix of transition probabilities

q(.|.) Conditional probability distribution, (policy)

QH Probability space of history dependent policies

QS ,Q′ Probability space of simpliҥed policies under ҥrst-order

and m-th order Markov assumptions

In Section 4.3, we introduce simpliҥed data release mechanisms for the time-series data

PUT problem. In Section 4.4, we reformulate the problem as an MDP and propose a

numerical evaluation approach utilizing advantage actor-critic deep RL. In Section 4.5,

we apply the proposed solution to the location trace privacy problem, and compare the

performance of the proposed location release strategy with a myopic policy numerically.

Finally, we conclude our work in Section 4.6.

4.2 System Model

We consider a time-series {Xt}t≥1, taking values from a ҥnite discrete set W . The user

shares {Xt} with an SP to gain utility through some online service. We assume that the

user’s true data sequence {Xt}t≥1 follows a ҥrst-order time-homogeneous Markov chain

with transition probabilities qx(xt+1|xt), and initial probability distribution px1 . While

the ҥrst-order Markov structure assumed for the true data may seem restrictive, we will

show that our solution techniques generalize to higher-order Markov chains, albeit with

increased complexity in the numerical solutions. In the literature, Markov structure is a

common assumption for time-series data, and it is proved to be a reasonable assumption

for location trajectories [112], smart meter readings [113] and ҥnancial data [114] due to

the history dependent behavior of these time-series.

Instead of sharing its true data at time t, the user shares a distorted version of her current

data, denoted by Yt ∈ W . The released data at time t, Yt, does not depend on future

data samples; i.e., for any 1 < t < n, Yt → (Xt, Y t−1) → (Xn
t+1, Y

n
t+1) form a Markov

chain, where we have denoted the sequence (Xt+1, . . . , Xn) by Xn
t+1, and the sequence

(X1, . . . , Xt) by Xt. The notations which have been used throughout the chapter are

listed in Table 4.1.
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Figure 4.1: Markov chain example for the true data generation.

For a better understanding of the user’s private time-series data generation process, a

simple Markov chain with state spaceW = {w1, w2, w3} and state transition probabilities

pi,j for (i, j) ∈ {1, 2, 3} are presented in Figure 4.1. The sensitive data Xt takes the values

{w1, w2, w3} according to the state transition probabilities. The user becomes aware of

Xt in an online manner and releases a distorted version Yt ∈ {w1, w2, w3}, following her

privacy-preserving strategy.

4.2.1 Privacy and Utility Measures

Drawing from Section 2.1, we quantify the privacy by the information leaked to the

untrusted SP measured by the MI between the true and released data sequences. Ac-

cordingly, the information leakage of the user’s release strategy for a time period n is

given by

I(Xn;Y n) =
n
∑

t=1

I(Xn;Yt|Y t−1) =
n
∑

t=1

I(Xt;Yt|Y t−1), (4.1)

where the ҥrst equality follows from the chain rule of MI, while the second from the

Markov chain Y t → (Xt, Y
t−1)→ Xn

t+1. Even though a malicious third party can obtain

the statistics of the user’s data release strategy over an inҥnite time horizon, i.e., n→∞,

he cannot infer the realizations of the private information due to the privacy measure

based on uncertainty. Since information theoretic metrics are independent of the attack’s

behavior and computational capabilities, they are preferable as privacy measures.

In the time-series data privacy problem, we want to minimize the information leakage

to the SP. However, as we apply more distortion to the true data sequence for privacy,

the more utility is lost due to increased deviation from the original sequence. That

is, releasing distorted data reduces the utility received from the SP, and the distortion
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applied by the user should be limited to a certain level. Therefore, our main purpose

is to characterize the trade-off between the privacy and utility. The distortion between

the true data sample Xt and the released version Yt is measured by a distortion measure

d(Xt, Yt) speciҥed based on the underlying application (e.g., Manhattan distance or

Euclidean distance), where d(Xt, Yt) <∞, ∀Xt, Yt ∈ W.

Our main goal is to minimize the information leakage rate to the SP while satisfying

the distortion constraint for utility. Throughout this chapter, we consider two different

constraints on the distortion introduced by PDRP, namely an instantaneous distortion

constraint and an average distortion constraint. The inҥnite-horizon optimization prob-

lem can be written as:

lim
n→∞

min
{qt(yt|xt,yt−1):

d(Xt,Yt)≤D̂}nt=1

1

n

n
∑

t=1

Iq(Xt;Yt|Y t−1) (4.2)

under the instantaneous distortion constraint D̂, and as

lim
n→∞

min
qt(yt|xt,yt−1):

E

[

1

n

n∑

t=1

d(Xt,Yt)
]

≤D̄

1

n

n
∑

t=1

Iq(Xt;Yt|Y t−1) (4.3)

under the average distortion constraint D̄, where xt and yt represent the realizations ofXt

and Yt, q = {qt(yt|xt, yt−1)}nt=1 is a conditional probability distribution which represents

the user’s randomized data release policy at time t. The randomness stems from both the

Markov process generating the true data sequence, and the random release mechanism

qt(yt|xt, yt−1). The MI induced by policy qt(yt|xt, yt−1) ∈ q is calculated using the joint

distribution

P q(Xn = xn, Y n = yn) = px1q1(y1|x1)
n
∏

t=2

[

qx(xt|xt−1)qt(yt|xt, yt−1)
]

. (4.4)

In the next section, we characterize the structure of the optimal data release policy, and

using this structure we recast the problem as an MDP, and ҥnally evaluate the optimal

trade-off numerically using A2C-DRL.

4.3 PUT for Time-Series Data Sharing

In this section, we analyze the optimal PUT achievable by a privacy-aware time-

series data release mechanism under the notion of MI minimization with both instan-

taneous and average distortion constraints. Moreover, we propose simpliҥed PDRPs

that still preserve optimality. By the deҥnition of MI, the objectives (4.2) and (4.3)
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depend on the entire history of X and Y . Therefore, the user must follow a history-

dependent PDRP qht (yt|xt, yt−1), where the feasible set QH consists of policies that sat-

isfy
∑

yt∈W
qht (yt|xt, yt−1) = 1. As a result of strong history dependence, computational

complexity of the minimization problem increases exponentially with the length of the

data sequence. To tackle this problem, we introduce a class of simpliҥed policies, and

prove that they do not cause any loss of optimality in the PUT.

4.3.1 Simplified PDRPs

In this section we introduce a set of policies QS ⊆ QH of the form qst (yt|xt, xt−1, y
t−1),

which samples the distorted data only by considering the true data in the last two time

instances and the entire released data history. Hence, the joint distribution (4.4) induced

by qs ∈ QS , where qs = {qst (yt|xt, xt−1, y
t−1)}nt=1 can be written as

P qs(Xn = xn, Y n = yn) = px1q
s
1(y1|x1)

n
∏

t=2

[

qx(xt|xt−1)q
s
t (yt|xt, xt−1, y

t−1)
]

. (4.5)

Next, we show that considering PDRPs in set QS is without loss of optimality.

Theorem 4.1. In both minimization problems (4.2) and (4.3), there is no loss of opti-

mality in restricting the PDRPs to the set of policies qs ∈ QS. Furthermore, information

leakage induced by any qs ∈ QS can be written as:

Iqs(Xn, Y n) =
n
∑

t=1

Iqs(Xt, Xt−1;Yt|Y t−1) (4.6)

=

n
∑

t=1

∑

yt∈Wt

xt,xt−1∈W

P qs(xt, xt−1, y
t) log

qst (yt|xt, xt−1, y
t−1)

P qs(yt|yt−1)
, (4.7)

and the average distortion induced by any qs ∈ QS can be written as:

E
qs

[ 1

n

n
∑

t=1

d(Xt, Yt)
]

=
1

n

n
∑

t=1

E
qs [d(Xt, Yt)] (4.8)

=
1

n

n
∑

t=1

∑

yt,xt∈W

P qs(xt, yt)d(xt, yt), (4.9)

where the first equation comes from the linearity of expectation.

The proof of Theorem 4.1 relies on the following lemmas and will be presented later.
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Lemma 4.2. For any q ∈ QH ,

Iq(Xn;Y n) ≥
n
∑

t=1

Iq(Xt, Xt−1;Yt|Y t−1) (4.10)

with equality if and only if q ∈ QS.

Proof: For any q ∈ QH ,

Iq(Xn;Y n) =

n
∑

t=1

Iq(Xt;Yt|Y t−1) (4.11)

≥
n
∑

t=1

Iq(Xt, Xt−1;Yt|Y t−1), (4.12)

where (4.11) follows from (4.1), and (4.12) from the fact that MI cannot be negative.

Lemma 4.3. For any qh ∈ QH , there exists a policy qs ∈ QS such that

n
∑

t=1

Iqh(Xt, Xt−1;Yt|Y t−1) =
n
∑

t=1

Iqs(Xt, Xt−1;Yt|Y t−1), (4.13)

for both cases where qh and qs satisfy an instantaneous distortion constraint

d(Xt, Yt) ≤ D̂, and average distortion constraints E
qh

[

1
n

n
∑

t=1
d(Xt, Yt)

]

≤ D̄ and

E
qs

[

1
n

n
∑

t=1
d(Xt, Yt)

]

≤ D̄, respectively.

Proof: For any qh ∈ QH , we choose the policy qs ∈ QS such that

qst (yt|xt, xt−1, y
t−1)=P

qh

Yt|Xt,Xt−1,Y t−1(yt|xt, xt−1, y
t−1), (4.14)

and we show that P
qh

Xt,Xt−1,Y t = P
qs

Xt,Xt−1,Y t . Then, Iqh(Xt, Xt−1;Yt|Y t−1) =

Iqs(Xt, Xt−1;Yt|Y t−1) holds, which proves the statement in Lemma 4.3. The proof of

the equality P
qh

Xt,Xt−1,Y t = P
qs

Xt,Xt−1,Y t requires the proof of P
qh

Xt,Xt−1,Y t−1 = P
qs

Xt,Xt−1,Y t−1

which is derived by induction as follows,

P qh(xt+1, xt, y
t) =

∑

xt−1∈W

qx(xt+1|xt)qht (yt|xt, xt−1, y
t−1)P qh(xt, xt−1, y

t−1)

=
∑

xt−1∈W

qx(xt+1|xt)qst (yt|xt, xt−1, y
t−1)P qs(xt, xt−1, y

t−1)

= P qs(xt+1, xt, y
t), (4.15)

where (4.14) holds, and P
qh

X1
(x) = px1(x) = P

qs

X1
(x) is used for the initialization of the

induction.
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Having shown that the equality P
qh

Xt,Xt−1,Y t−1 = P
qs

Xt,Xt−1,Y t−1 and (4.14) hold, the proof

of P
qh

Xt,Xt−1,Y t = P
qs

Xt,Xt−1,Y t is straightforward:

P qh(xt, xt−1, y
t) = qht (yt|xt, xt−1, y

t−1)P qh(xt, xt−1, y
t−1)

= qst (yt|xt, xt−1, y
t−1)P qs(xt, xt−1, y

t−1)

= P qs(xt, xt−1, y
t). (4.16)

Following (4.16), the equality Iqh(Xt, Xt−1;Yt|Y t−1) = Iqs(Xt, Xt−1;Yt|Y t−1) holds, and

the integration of the instantaneous distortion constraint into the additive MI is straight-

forward and does not affect the optimality, and hence, (4.13) holds.

Furthermore, we show that there is no loss of optimality in including the average distor-

tion constraint into the MI optimization when the policy is chosen according to (4.14),

as follows:

E
qh [d(Xt, Yt)] =

∑

yt∈Wt,
xt,xt−1∈W

P qh(xt, xt−1, y
t)d(xt, yt) (4.17)

=
∑

yt∈Wt,
xt,xt−1∈W

P qs(xt, xt−1, y
t)d(xt, yt), (4.18)

=
∑

yt,xt∈W

P qs(xt, yt)d(xt, yt), (4.19)

= E
qs [d(Xt, Yt)] (4.20)

where (4.17) follows from the history independence of d(Xt, Yt), (4.18) follows from (4.16),

and (4.19) from history-independence of d(xt, yt). Following the linearity of expectation,

the average distortion constraint can be written in an additive form, and hence, (4.13)

holds.

Proof of Theorem 4.1: Following Lemmas 4.2 and 4.3, for any qh ∈ QH , there exists a

qs ∈ QS such that

Iqh(Xn;Y n) ≥ Iqs(Xn;Y n). (4.21)

Hence, there is no loss of optimality in using the time-series data release policies of the

form qst (yt, |xt, xt−1, y
t−1), and information leakage and the average distortion constraint

reduce to (4.7) and (4.9), respectively.
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Figure 4.2: Markov chain induced by the simplified PDRP.

4.3.1.1 mth Order Markov Chain

Although the proof of Theorem 4.1 assumes that the true data sequence is a ҥrst-

order Markov chain, it is possible to generalize it to higher-order Markov chains, i.e.,

qx(Xt|Xt−1) = qx(Xt|Xt−1
t−m) for order m. Let Qm

S ⊆ QH denote the set of policies q′

q′t(yt|xtt−m, yt−1) = P q′

Yt|Xt
t−m,Y

t−1(yt|xtt−m, yt−1). (4.22)

Then the following theorem holds.

Theorem 4.4. If the true data sequence {Xt} is a Markov chain of order m, then there

is no loss of optimally in using a PDRP from the set Qm
S . Moreover, information leakage

induced by q′ ∈ Qm
S can be written as:

Iq
′
(Xn, Y n) =

n
∑

t=1

Iq
′
(Xt

t−m+1;Yt|Y t−1), (4.23)

and the average distortion induced by any q′ ∈ QmS can be written as:

E
q′
[ 1

n

n
∑

t=1

d(Xt, Yt)
]

=
n
∑

t=1

∑

yt,xt∈W

P q′
(xt, yt)d(xt, yt). (4.24)

Then the simpliҥed PDRP followed by the user is illustrated by the Markov chain in

Figure 4.2, where Y t denotes the released data history, i.e., {Y1, . . . , Yt}. That is, the

user samples the distorted data, Yt, at time t following qst (yt|xt, xt−1, y
t−1) by considering

the current and previous true data, (Xt, Xt−1), and the released data history, Y t−1.

4.3.2 Online PDRP with an Instantaneous Distortion Constraint

As we have stated earlier, we are assuming that the utility gained by the user by sharing

its private data diminishes as the distortion between the true data sequence and the

released version increases, under the speciҥed distortion measure. Therefore, the utility

requirements of the user imposes distortion constraints on the PDPR. Here, we assume
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that the user would like to guarantee a minimum utility level at each time instant,

which, in turn, imposes an instantaneous constraint on the distortion between the true

data sample Xt and the released version Yt at each time instance, i.e., d(Xt, Yt) ≤ D̂, ∀t.

Accordingly, given (Xt, Xt−1, Y
t−1) = (xt, xt−1, y

t−1), the set of feasible simpliҥed

PDRPs satisfying an instantaneous distortion constraint is qIs ∈ QI
S , and the set of

the released data samples induced by qIs is given by

YqI
s(xtt−1, y

t−1) :=
{

yt ∈ W : d(xt, yt) ≤ D̂
}

. (4.25)

Furthermore, we require qIs to satisfy

∑

yt∈Yq
I
s (xtt−1

,yt−1)

qIs (yt|xtt−1, y
t−1) = 1. (4.26)

The objective of the PUT for online PDRP with an instantaneous distortion constraints

(PDRP-IDC) can be rewritten as

min
qIs (yt|x

t
t−1

,yt−1)

1

n

n
∑

t=1

Iq
I
s(Xt, Xt−1;Yt|Y t−1). (4.27)

4.3.3 Online PDRP with an Average Distortion Constraint

Alternatively, the user may want to limit only the average distortion applied to the true-

data sequence. That is, the utility loss averaged over the time horizon n is denoted

by D(Xn;Y n) = E
qAs [ 1n

∑n
t=1 d(Xt, Yt)]. The feasible set of simpliҥed PDRPs with an

average distortion constraint is qAs ∈ QA
S , and the feasible set of the released Yt induced

by qAs is given by

YqA
s (xtt−1, y

t−1) :=
{

yt ∈ W : D(xn, yn) ≤ D̄
}

, (4.28)

where the constraint follows from the linearity of expectation, i.e., D(Xn;Y n) =
1
n

∑n
t=1 E

qA
s [d(Xt, Yt)], and the expectation is taken over the joint probabilities of xt

and yt. Similarly to (4.25), qAs is required to satisfy

∑

yt∈Yq
A
s (xtt−1

,yt−1)

qAs (yt|xtt−1, y
t−1) = 1. (4.29)
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Hence, the objective of the problem for online PDRP with an average distortion con-

straint (PDRP-ADC) can be written as:

min
qAs (yt|xtt−1

,yt−1)

1

n

n
∑

t=1

Iq
A
s (Xt, Xt−1;Yt|Y t−1). (4.30)

Minimization of the MI subject to a distortion constraint can be converted into an

unconstrained minimization problem using Lagrange multipliers. Since the distortion

constraint induced by the simpliҥed PDRP is memoryless, we can integrate it into the

additive MI objective easily. Hence, the unconstrained minimization problem for time-

series data release PUT can be rewritten as

min
qs∈Qs

1

n

n
∑

t=1

[

Iqs(Xt, Xt−1;Yt|Y t−1) + λ(Eqs [d(Xt, Yt)]− D̄)
]

, (4.31)

where λ is the Lagrangian multiplier, and determines the operating point on the trade-off

curve, i.e., it represents where the gradients of the MI and the distortion constraint point

in the same direction. When λ = 0, the user releases data samples which only minimize

the information leakage. On the other hand, as λ→∞, the released data minimizes only

distortion constraint rather than information leakage, which results in full information

leakage.

In the following section, we present the MDP formulation of the problem for both PDRPs

and the evaluation method utilized by advantage actor-critic RL.

4.4 MDP Formulation

Markovity of the user’s true data sequence and the additive objective functions in both

(4.27) and (4.31) allow us to represent the problem as an MDP with state Xt. However,

the information leakage at time t depends on Y t−1, resulting in a growing state space

in time. Therefore, for a given policy qs and any realization yt−1 of Y t−1, we deҥne a

belief state βt ∈ PX as a probability distribution over the state space:

βt(xt−1) = P qs(Xt−1 = xt−1|Y t−1 = yt−1). (4.32)

This represents the SP’s belief on the true data sample at the beginning of time instance

t, i.e., after receiving the distorted-data yt−1. The actions are deҥned as probability

distributions with which the user samples the released value Yt at time t and determined

by the randomized PDRPs. The user’s action induced by a policy qs can be denoted
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by at(yt|xt, xt−1) = P qs(Yt = yt|Xt = xt, Xt−1, βt). At each time t, the SP updates its

belief on the true data sample βt+1(xt), after observing its distorted version yt by

βt+1(xt) =
p(xt, yt|yt−1)

p(yt|yt−1)
=

∑

xt−1
p(xt, xt−1, yt|yt−1)

∑

xt,xt−1
p(xt, xt−1, yt|yt−1)

=

∑

xt−1
p(xt|xt−1)q

s
t (yt|xt, xt−1, y

t−1)p(xt−1|yt−1)
∑

xt,xt−1
p(xt|xt−1)qst (yt|xt, xt−1, yt−1)p(xt−1|yt−1)

=

∑

xt−1
qx(xt|xt−1)a(yt|xt, xt−1)βt(xt−1)

∑

xt,xt−1
qx(xt|xt−1)a(yt|xt, xt−1)βt(xt−1)

. (4.33)

We deҥne the per-step information leakage of the user due to taking the action

at(yt|xt, xt−1) at time t as,

lt(xt, xt−1, at, y
t; qs) := log

at(yt|xt, xt−1)

P qs(yt|yt−1)
. (4.34)

The expectation of n-step sum of (4.34) over the joint probability P qs(Xt, Xt−1, Y
t) is

equal to the MI expression in the original problem (4.6). Therefore, given the belief and

action probabilities, average information leakage at time t can be formulated as,

E
qs [lt(x

t
t−1, at, y

t)] =
∑

xt,xt−1,yt∈W

βt(xt−1)at(yt|xt, xt−1)qx(xt|xt−1)

× log
at(yt|xt, xt−1)

∑

x̂t,x̂t−1∈W

βt(x̂t−1)at(yt|x̂t, x̂t−1)qx(x̂t|x̂t−1)

:= L(βt, at). (4.35)

We can recast the PDRP-IDC problem in (4.27) as a continuous state and action space

MDP. The actions satisfying the instantaneous distortion constraint are denoted by

aIDC
t (yt|xt, xt−1) and induced by the simpliҥed PDRP qIs (yt|xtt−1, y

t−1). The solution

of the MDP for PDRP-IDC problem relies on minimizing the objective

CIDC(βt, a
IDC
t ) := L(βt, aIDC

t ), (4.36)

where L(βt, aIDC
t ) is the average information leakage obtained by taking the actions

aIDC
t (yt|xt, xt−1), at each time step t.

We remark that the representation of average distortion in terms of belief and action

probabilities is straightforward due to its additive form. Similarly to (4.35), average
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distortion for PDRP-ADC at time t can be written as,

E
qs [d(xt, yt)] =

∑

xt,xt−1,yt∈W

βt(xt−1)at(yt|xt, xt−1)qx(xt|xt−1)d(xt, yt)

:= D(βt, at), (4.37)

where there is no restriction on how the actions are chosen, i.e., yt ∈ W. Hence, we can

recast the PDRP-ADC problem in (4.31) as a continuous state and action space MDP

with a per-step cost function given by

CADC(βt, at) := L(βt, at) + λ(D(βt, at)− D̄). (4.38)

Finding optimal policies for continuous state and action space MDPs is a PSPACE-hard

problem [115]. In practice, they can be solved by various ҥnite-state MDP evaluation

methods, e.g., value iteration, policy iteration and gradient-based methods. These are

based on the discretization of the continuous belief states to obtain a ҥnite state MDP

[68]. While ҥner discretization of the belief reduces the loss from the optimal solution,

it causes an increase in the dimension of the state space; hence, in the complexity of

the problem. To overcome the complexity limitation, we will employ a deep learning

based method as a tool to numerically solve our continuous state and action space MDP

problem.

4.4.1 A2C-DRL Solution

In this section, we simply use C(βt, at) and at(yt|xt, xt−1) to represent the MDP cost and

action pair of both PDRP-IDC and PDRP-ADC, respectively. Integration of the solution

into the instantaneous and average distortion constrained cases is straightforward.

A2C-DRL is explained in Section 2.2.1 in detail. In this chapter, we have the knowledge

of the state transition probabilities and the cost for every state-action pair without the

need for interacting with the environment. We use A2C-DRL as a computational tool

to numerically evaluate the optimal PDRP for our continuous state and action space

MDP. To integrate RL framework into our problem, we create an artiҥcial environment

which inputs the user’s current action, at(yt|xt, xt−1), samples an observation yt, and

calculates the next state, βt+1, using Bayesian belief update (4.33). Instantaneous cost

revealed by the environment is calculated by (4.38). The user receives the experience

tuple (βt, at, yt, βt+1, Ct) from the environment, and reҥnes her policy accordingly. An

illustration of the interaction between the artiҥcial environment and the user, which is

represented by the RL agent, is presented in Figure 2.1. The corresponding Bellman
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Figure 4.3: Critic (A) and actor (B) DNN structures.

equation induced by policy qs

V qs(β) + J(qs) = min
a

{

C(β, a) + V qs(β′)
}

, (4.39)

where V qs(β) is the state-value function, β′ is the updated belief state according to

(4.33), a represents action probability distributions, and J(qs) is the cost-to-go function,

i.e., the expected future cost induced by policy qs [67].

We solve the MDP using A2C-DRL as described in 2.2.1. In our implementation, we

represent the actor and critic mechanisms by fully connected feed-forward DNNs with

two hidden layers as illustrated in Figure 4.3. The critic DNN takes the current belief

state β(X) of size |W| as input, where X is the true data sequence vector, and outputs

the value of the belief state for the current action probabilities V ξ
θ (β). The actor DNN

also takes the current belief state β(X) as input, and outputs the parameters used for

determining the action probabilities of the corresponding belief. Hence, the input/output
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Algorithm 1 A2C-DRL algorithm for PDRP

Initialize DNNs with random weights ξ and θ
Initialize environment E
for episode=1, N do

Initialize belief state β0 for t = 0, n do
Sample action at ∼ Dirichlet(a|ξt) according to current policy;
Perform action at and calculate cost Cξt in E;
Sample observation yt and calculate next belief state βt+1 in E;
Set TD target Cξt + γV ξ

θt
(βt+1);

Minimize loss ℓc(θ) = δ2 = (Cξt + γV ξ
θt
(βt+1)− V ξ

θt
(βt))

2;

Update critic θ ← θ + ηc∇θδ2;
Minimize loss ℓa(ξt) = ln(Dirichlet(a|ξt))δt;
Update actor ξ ← ξ − ηa∇ξℓa(ξt);
Update belief state βt+1 ← βt

end

end

sizes of the critic and actor DNNs are |W| × 1 and |W| × |W|, respectively. Here, the

actor DNN output parameters {ξ1, . . . , ξ|W|} are used to generate a Dirichlet distribution,

which represents the action probabilities. The overall A2C-DRL algorithm for online

PDRP is described in Algorithm 1. In the next section, we apply the proposed DRL

solution to a location trace privacy problem.

4.5 Numerical Results

In this section, we consider an application of the theoretical framework we have intro-

duced to the location trace privacy problem. We focus on location trace as an example

of time-series data. In this scenario, the user shares a distorted version of her trajectory

with the SP due to privacy concerns. An example for the user trajectory of length n = 5

in a grid area is illustrated in Figure 4.4. While the user’s location at time t = 0 is

depicted with a grey circle, the true and released user trajectories over the next 5 time

steps are represented by black and grey arrows, respectively.

4.5.1 Numerical Results for Synthetic Data

In this section, we evaluate the PUT of the proposed PDRP-ADC and PDRP-IDC meth-

ods for synthetic user mobility data. We also compare the PDRP-ADC results with the

myopic Markovian location release mechanism proposed in [47]. For the simulation re-

sults we train two fully connected feed-forward DNNs, representing the actor and critic

networks, respectively, by utilizing ADAM optimizer [116]. Both networks contain two
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Figure 4.4: True and released user trajectory example for n = 5.

hidden layers of sizes 3000 with leaky-ReLU activation [117]. We obtain the correspond-

ing PUT by averaging the total information leakage for the speciҥed distortion constraint

over a time horizon of n = 300.

4.5.1.1 PDRP-IDC Results

We ҥrst consider a simple 4 × 4 grid-world, where |W| = 16 as in Figure 4.4. The cells

are numbered such that the ҥrst and the last rows of the grid-world are represented

by {1, 2, 3, 4} and {13, 14, 15, 16}, respectively. The user’s trajectory forms a ҥrst-order

Markov chain with a transition probability matrix Qx of size |W| × |W|, whose index

Qx(i, j), i, j ∈ {1, . . . , |W|}, represents the transition probability qx(xt = i|xt−1 = j)

from the state j to i. The user can start its movement at any square with equal prob-

ability, i.e., px1 = 1
16 . Our goal is to obtain the PUT under instantaneous distortion

constraints D̂ ∈ {1, . . . , 4} with Manhattan distance on the distortion measure between

the true position and the reported one.

In Figure 4.5, PUT curves are obtained for transition probability matrices Q0
x, Q

1
x and

Q2
x, each corresponding to a different temporal correlation level. In all the cases, the user

can move from any square to any other square in the grid at each step, i.e., Qmx (i, j) > 0,

∀m, i, j. While all the transition probabilities are equal to 1
|W| for Q0

x, the probability of

the user moving to a nearby square is greater than taking a larger step to a more distant

one for Q1
x and Q2

x. Moreover, Q1
x represents a more uniform trajectory, where the agent

moves to equidistant cells with equal probability, while with Q2
x the agent is more likely

to follow a certain path, i.e., the random trajectory generated by Q2
x has lower entropy.

The transition probabilities for Q1
x are given by:

q1x(xt|xt+1) =
rd(xt,xt+1)/d(xt, xt+1)

∑

xt+1∈W
rd(xt,xt+1)/d(xt, xt+1)

, (4.40)
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Figure 4.5: Average information leakage as a function of the allowed instantaneous
distortion under Manhattan distance as the distortion measure.

where d(xt, xt+1) is the Manhattan distance between positions xt and xt+1; rd(xt,xt+1) is

a scalar which determines the probability of the user moving from one square to any of

the equidistant squares in the next step. Figure 4.5 is obtained by setting r0 = 1 and

ri = 7− i, i = 1, . . . , 6.

For Q2
x, we set

q2x(xt|xt+1) =
u(xt, xt+1)/d(xt, xt+1)

∑

xt+1∈W
u(xt, xt+1)/d(xt, xt+1)

, (4.41)

where, for xt ∈ {1, 2, . . . , 15}, we have

u(xt, xt+1)=























r1, for mod(xt, 4) ̸= 0, xt+1 = xt + 1,

r1, for mod(xt, 4) = 0, xt+1 = xt + 4,

r0, otherwise,

where mod(.) is the modulo operator which ҥnds the remainder after division of xt by

4, and u(16, xt+1) = r0 for xt+1 ∈ {1, . . . , 15}, and u(16, 16) = r1. As a result, temporal

correlations in the location history increase in the order Q0
x, Q

1
x, Q

2
x.

We train our DNNs for a time horizon of n = 300 in each episode, and over 5000 Monte

Carlo roll-outs. Figure 4.5 shows that, information leakage increase in the order Q2
x,

Q1
x, Q

0
x. As the temporal correlations between the locations on a trace increases, the

proposed PDRP-IDC leaks less information since it takes the entire released location

history into account.
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Figure 4.6: Average information leakage as a function of the allowed average distortion
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4.5.1.2 PDRP-ADC Results

Next, we consider the same scenario as before, but evaluate the PUT under an average

distortion constraint. We evaluate the performance of PDRP-ADC and compare the

results with the myopic Markovian location release mechanism proposed in [47], where

an upper bound on the PUT is given by a myopic policy as follows:

n
∑

t=1

min
q(yt|xt,xt−1,yt−1):
E
q [d(xt,yt)]≤D̄

Iq(Xt, Xt−1;Yt|Yt−1). (4.42)

Exploiting the fact that (4.42) is similar to the rate-distortion function, Blahut-Arimoto

algorithm is used in [47] to minimize the conditional MI at each time step. Finite-horizon

solution of the objective function (4.42) is obtained by applying alternating minimiza-

tion sequentially. In our simulations, we obtained the average information leakage and

distortion for this approach by normalizing for n = 300.

In Figure 4.6, PUT curves of the proposed PDRP-ADC and the myopic location release

mechanism are obtained for the same environment deҥned in Section 4.5.1.1. The same

transition matrices are used, i.e., Q0
x, Q

1
x and Q2

x represent increasing temporal corre-

lations in the user’s trajectory. The Lagrangian multiplier λ ∈ [0, 20] denotes the user’s

choice for the operating point on the PUT curve. Distortion is again measured by the

Manhattan distance. Similarly to Section 4.5.1.1, we train our DNNs for n = 300 in

each episode, and over 5000 Monte Carlo roll-outs. Figure 4.6 shows that, for Q2
x the

proposed PDRP-ADC obtained through deep RL leaks much less information than the

myopic location release mechanism for the same distortion level, indicating the beneҥts

of considering all the history when taking actions at each time instant. The gain is less
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Figure 4.7: Convergence of PDRP-ADC for λ = 1, D̄ = 0.8 and Q2

x.

Table 4.2: The Transition Probability Matrix Qx of Toy Example for PDRP-ADC,
when |W| = 6.

xt−1

xt 1 2 3 4 5 6

1 0.11 0.64 0.05 0.11 0.05 0.04

2 0.1 0.1 0.6 0.05 0.1 0.05

3 0.05 0.11 0.11 0.04 0.05 0.64

4 0.11 0.05 0.04 0.11 0.64 0.05

5 0.05 0.1 0.05 0.1 0.1 0.6

6 0.04 0.05 0.11 0.05 0.11 0.64

for Q1
x, since there is less temporal correlations in the location history compared to Q2

x;

and hence, there is less to gain from considering all the history when taking actions.

Finally, for Q0
x the proposed scheme and the myopic policy perform the same, since the

user movement with uniform distribution does not have temporal memory; and therefore,

taking the history into account does not help.

Figure 4.7 shows the convergence behaviour of the A2C-DRL algorithm when evaluating

PDRP-ADC’s objective function (4.31) for Q2
x, λ = 1, D̄ = 0.8. Various realizations

of the convergence curve lie in the light blue area, and the dark blue curve represents

the average value of these realizations. We observe that the convergence typically occurs

after about 2500 iterations. On the other hand, we remark that the optimal policy

for a stationary environment can be obtained in an offline manner using the available

dataset; therefore the convergence time and the number of iterations has no impact on

the real-time application of this solution in practice.
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Table 4.3: Best Action Probabilities at(yt|xt, xt−1) for Qx in Table 4.2, β = [ 1
6
, . . . , 1

6
]

and λ = 3.

xt, xt−1

yt 1 2 3 4 5 6

(1,1) 0.19 0.06 0.22 0.18 0.23 0.12

(1,2) 0.21 0.19 0.28 0.09 0.06 0.17

(1,3) 0.19 0.13 0.18 0.19 0.28 0.03

(1,4) 0.3 0.24 0.17 0.07 0.07 0.15

(1,5) 0.03 0.05 0.51 0.01 0.25 0.15

(1,6) 0.22 0.14 0.13 0.16 0.21 0.14
...

...
...

...
...

...
...

(6,1) 0.03 0.07 0.21 0.21 0.32 0.16

(6,2) 0.18 0.13 0.35 0.1 0.16 0.08

(6,3) 0.21 0.08 0.18 0.12 0.13 0.28

(6,4) 0.18 0.05 0.19 0.36 0.14 0.08

(6,5) 0.31 0.14 0.3 0.07 0.16 0.02

(6,6) 0.09 0.29 0.21 0.16 0.01 0.24

We next consider a toy example for PDRP-ADC to visualize the location release strategy

for a better understanding. We consider a 2× 3 grid-world, where the user’s trajectory

forms a ҥrst-order Markov chain with the transition probability matrix Qx, given in

Table 4.2. We assume that the user can start its movement at any square with equal

probability, i.e., px1 = 1
6 . The Lagrange multiplier is chosen as λ = 3, and the distortion

constraint is D̄ = 0.6. After training the actor and critic DNNs, we obtain the best

action probabilities that minimize the objective function CADC in (4.38). Given the

user’s pattern in Table 4.2, β = [16 , . . . ,
1
6 ] and λ = 3, the action distribution matrix

induced by PDRP-ADC is obtained as in Table 4.3. It is clear from the table that Yt is

not released according to a deterministic pattern.

4.5.2 Numerical Results for GeoLife Dataset

Next, we present the simulation results on the GeoLife dataset [109,110], which contains

182 user’s GPS trajectories collected by Microsoft Research Asia. GeoLife trajectories

are recorded densely, e.g., every 1 ∼ 5 seconds or every 5 ∼ 10 meters per point [110].

In our experiments, we focus on the high-density areas which represent the important

stops for the users. Hence, we use a density-based data mining algorithm, namely DB-

SCAN (density-based spatial clustering of applications with noise) [118] to cluster the

raw GPS data into the important stops of the user trajectory. We obtain a 16-cluster

representation of the user-016’s data, i.e., W = 16, by applying DBSCAN algorithm to

the 51 trajectories of user-016 provided in GeoLife dataset. For the implementation of
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Table 4.4: Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-IDC.

Instantaneous Distortion Constraint: 15 km 5 km 3 km

PDRP-IDC

Avg. Info. Leakage 0.18 0.39 0.53

Cross-entropy Loss
m=1 1.05 0.66 0.52

m=5 0.46 0.40 0.35

our MDP approach in the clustered dataset, center-points of the clusters represent user

locations Xt ∈ W , and the trajectories through the clusters represent user’s state tran-

sitions. We use Euclidean distance between the true and released user cluster centers as

the distortion measure.

Assuming that the user mobility forms a ҥrst-order Markov chain, we generate a tran-

sition probability matrix Q016
x from the user-016’s trajectories. That is, we assume the

user location Xt at time t depends only on the previous location Xt−1, and we ҥnd the

empirical probabilities of transitions between locations. After the generation of Q016
x ,

implementation of PDRP-IDC, PDRP-ADC or the myopic policy is the same as in the

synthetic data case. To obtain the optimal policies, we train two fully connected feed-

forward DNNs, representing the actor and critic networks, respectively, by using ADAM

optimizer. Both networks contain two hidden layers each with 3000 nodes. While all the

hidden layers have ReLU activation, the output layers of the actor and critic networks

have tanh and Softmax activations, respectively. We obtain the PUT curves by averag-

ing the total information leakage for the corresponding distortion constraint over a time

horizon of n = 600 for 1000 Monte Carlo roll-outs.

Note that the MI computed based on the ҥrst-order Markov assumption, used by our

approach to obtain the PDRP, may not correspond to the real information leakage. Since

we do not know the underlying "true" statistics of the data, we examine the effectiveness

of the proposed algorithms using an adversary which tries to predict the user’s current

true location from past released locations in an online manner. The predictor consists of

an LSTM recurrent neural network layer with 200 nodes and a dropout of 0.5, which is

followed by a fully connected hidden layer of 200 nodes with ReLu activation, and a fully

connected output layer with Softmax activation. We train the predictor on the released

distorted locations with the goal of minimizing the categorical cross-entropy between the

estimated and true current locations by utilizing ADAM optimizer.

In Table 4.4, we show the adversary’s cross-entropy loss for predicting user-016’s true

locations from their distorted versions released by PDRP-IDC at various PUT points.

Here, m is the LSTM based adversary’s look-back memory. For both m = 1 and m

= 5, Table 4.4 shows that the cross-entropy loss decreases as the average information

leakage increases. In Table 4.4, there is a decrease in the adversarial loss for m = 5
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Table 4.5: Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-ADC
and Myopic Policy.

Average Distortion Constraint: 9 km 5.7 km 1.7 km

PDRP-ADC

Avg. Info. Leakage 0.11 0.20 0.35

Cross-entropy Loss
m=1 1.30 1.25 0.90

m=5 0.78 0.73 0.67

Myopic PDRP

Avg. Info. Leakage 0.27 0.33 0.50

Cross-entropy Loss
m=1 1.10 0.99 0.82

m=5 0.52 0.48 0.45

compared to m = 1, which means that the ҥrst-order Markov assumption may not be

valid for the data as the adversary beneҥts from considering information further in the

past. To understand the beneҥt of releasing distorted data better, we also obtained the

cross-entropy loss of the adversary when it predicts the current location by observing

the past true locations. When the privacy is not preserved, the adversary’s cross-entropy

loss is 0.36 for m = 1 and 0.28 for m = 5, which is much lower than the privacy preserved

case as expected.

In Table 4.5, we show the adversary’s prediction performance against PDRP-ADC and

the myopic policy at various PUT points. For the same average distortion constraints,

the adversary has higher cross-entropy loss of predicting true locations when they are

distorted by PDRP-ADC rather than the myopic policy for both m = 1 and m = 5.

Hence, considering the temporal correlations in the trajectory preserves PDRP-ADC’s

advantage over the myopic policy even when the adversary has a less strict Markov

assumption on the true location distribution than both policies.

To understand the true and released location trajectories better, we provide a toy ex-

ample in which we apply PDRP-ADC to previously clustered user-016 trajectories for

W = 16, λ = 1 and D̄ = 5km. An example for the true trajectory of the user is

shown in Figure 4.8A, where the numbered circles are the cluster center-points with the

corresponding cluster numbers in blue, black numbers represent how many steps the

user takes in that cluster, the black arrows show the direction of the movement and the

movement starts from the red circled cluster 9. For instance, Figure 4.8A represents

the true trajectory {9, 9, 9, 9, 9, 9, 9, 13, 13, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, . . . }. The distorted

version of the trajectory in Figure 4.8A is depicted in Figure 4.8B, where the move-

ment starts from the red circled cluster 11 and the red arrows show the direction of

movement. The released trajectory can be deduced from the map in Figure 4.8B as

{11, 11, 10, 9, 10, 11, 11, 12, 12, 12, 12, 2, 8, 8, 8, 8, 8, 8, 6, . . . }. These ҥgures show that the

released locations by PDRP-ADC follow a different path from the true locations for

privacy concerns, while the distortion constraint is satisҥed.
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(A)

(B)

Figure 4.8: True (A) and the distorted (B) trajectory of user-016 by PDRP-ADC for
W = 16, λ = 1 and D̄ = 5km.

4.6 Conclusions

In this chapter, we have studied the PUT of time-series data using MI as a privacy

measure. Having identiҥed some properties of the optimal policy, we proposed infor-

mation theoretically optimal online PDRPs under instantaneous and average distortion

constraints, which represent utility constraints, and solved the PUT problem as an MDP.

Due to continuous state and action spaces, it is challenging to characterize or even numer-

ically compute the optimal policy. We overcome this difficulty by employing advantage

actor-critic deep RL as a computational tool. Then, we applied the theoretical approach

which we introduced for time-series data privacy into the location trace privacy problem.

Utilizing DNNs, we numerically evaluated the PUT curve of the proposed PDRPs under
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both instantaneous and average distortion constraints for both synthetic data and Geo-

Life GPS trajectory dataset. We compared the results with the myopic location release

policy introduced recently in [47], and observed the effect of considering temporal correla-

tions on information leakage-distortion performance. We also examined the effectiveness

of our Markov assumption by testing the proposed policies using an LSTM-based predic-

tor network which represents the adversary with adjustable memory. According to the

simulation results, we have seen that the proposed data release policies provide signiҥcant

privacy advantage, especially when the user trajectory has higher temporal correlations.

Even though higher privacy leakage was observed for larger adversary memory, proposed

policies outperformed myopic policy.



Chapter 5

Active Privacy Against Inference

In this chapter, we consider a scenario in which a user releases her data containing per-

sonal information in return of a service from an honest-but-curious SP. In the previous

chapters, we focused on the privacy leakage between the user data and its modiҥed ver-

sion. Here, instead, we model user’s personal information as a time-series containing

two correlated latent r.v.’s, one of them, called the secret variable, is to be kept private,

while the other, called the useful variable, is to be disclosed in return of utility. We

consider active sequential data release, where at each time step the user chooses from

among a ҥnite set of release mechanisms, each revealing some information about the

user’s personal information, i.e., the true values of the r.v.’s, albeit with different statis-

tics. This differs from the scenarios in the previous chapters where the measurements

were either physically modiҥed or obfuscated with noise. In this chapter, the user’s goal

is to manage data release in an online fashion such that maximum amount of information

is revealed about the latent useful variable, while the conҥdence for the sensitive variable

is kept below a predeҥned level. For privacy measure, we consider both the probability

of correctly detecting the true value of the secret and the MI between the secret and the

released data. We formulate both problems as POMDPs, and numerically solve them

by advantage A2C-DRL. We evaluate the PUT of the proposed policies on both the

synthetic data and smoking activity dataset [119], and show their validity by testing the

activity detection accuracy of the SP modeled by an LSTM neural network.

5.1 Introduction

In this chapter, we consider the PUT for time-series data sharing using active learning.

We take into account the causal relations in time-series data for the privacy of the entire

sequence. Among the limited number of works that consider temporal correlations in the

80
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literature, most existing works focus on the privacy of the time-series data itself rather

than hiding latent sensitive attributes [45ҫ48,111,120]. For instance, in the SM privacy

scenario in Chapter 3 or location sharing in Chapter 4, sensitive information is the time-

series data itself and the utility loss can be measured by data distortion, whereas in other

applications, the user might be interested in hiding an underlying sensitive hypothesis.

For instance, the user’s presence at home or favorite TV channel can be inferred from SM

readings, while her sensitive daily habits can be revealed to the SP through the sensors

of a wearable device.

Inference privacy protects the user’s data from an adversary’s attempt to deduce sensi-

tive information from an underlying distribution [15, 21, 62, 121ҫ124]. These techniques

perform well against inference attacks, in which the adversary targets detecting the user’s

underlying private information with high conҥdence [48]. PUT between correlated sen-

sitive and useful r.v.’s has also been studied under the privacy funnel framework [121],

which is closely related to the information bottleneck concept introduced in [125]. In

privacy funnel approaches [15, 21, 62, 121ҫ123], the goal is to conceal the sensitive in-

formation from SP’s inference while gaining enough utility from the useful information,

where both the utility and the privacy leakage are measured by MI. However, [15,121ҫ123]

consider independent data without temporal correlations, hence, these approaches are

not suitable for temporally correlated time-series data.

In this chapter, we assume that a user wants to share the ҡusefulә part of her data with

the SP. However, the SP might also try to deduce user’s ҡsecret" information from the

shared time-series data (e.g., location, heartbeat, temperature or energy consumption).

We model the user’s secret and useful data as correlated discrete r.v.’s. The user’s goal

is to prevent the secret from being accurately detected by the SP while revealing the

useful data accurately for utility.

Differently from the existing works [13,14,18,19,21,121,123], which typically consider a

time-independent data release problem, we consider a discrete time system, and assume

that the user can actively choose from among a ҥnite number of data release mechanisms

(DRMs) at each time. While each measurement reveals some information about user’s

latent states, we assume that each DRM has different measurement characteristics, i.e.,

conditional probability distributions. User’s objective is to choose a DRM at each time in

an online fashion to reveal the value of the useful r.v. for maximum utility while keeping

the leakage of the sensitive information below a prescribed value. Our proposed privacy

measures are based on the SP’s conҥdence in the secret and the MI between the secret

r.v. and the observations. These measures are similar to those proposed in [16], [124],

and [126]. However, [16] considers the PUT of a binary secret r.v. in an asymptotic

regime, while [126] considers binary as well as M-ary r.v.’s for an offline scenario using
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semi-deҥnite programming, which has high computational complexity when ҥne-grained

data is considered. [124] takes the data release history into account for M-ary r.v.’s,

however, it does not consider the time aspect in the PUT objective.

In this chapter, we introduce sequential private data release policies (PDRP’s) for two

different problems: Problem A in Section 5.2 aims to maximize the SP’s conҥdence in

the true value of the useful r.v. and stops data sharing right before the conҥdence in

secret r.v. is exceeded, and Problem B in Section 5.3 aims to minimize the SP’s error

probability on the useful r.v. as quick as possible subject to a constraint on the SP’s

conҥdence in the true secret. Besides conҥdence-based utility, we also consider MI-

based utility for Problem A. In Problem B, on the other hand, we investigate MI-based

privacy in addition to conҥdence-based privacy. Note that MI-based privacy, which

keeps the total MI between the secret r.v. and the shared data below a certain level,

does not necessarily prevent the detection of the true secret value; instead, it limits the

information leakage in an average sense. While conҥdence-based privacy is strong against

worst case adversaries, MI-based privacy is useful when average-case adversaries try to

infer the sensitive data. We validate this in our simulation results.

We consider data release policies which take the entire release history into account, and

recast both Problems A and B as POMDPs. POMDPs can be represented as continuous

state belief-MDPs; however, ҥnding optimal policies for continuous state and action

spaces is a PSPACE-hard problem [115]. Therefore, after identifying the structure of the

optimal policy, we use A2C-DRL to evaluate our continuous state and action probability

space MDP numerically. Besides assuming known distributions for MI calculation with

synthetic data, we also use variational representations for MI estimation through neural

networks [127] with real data. Finally, we examine the performances of the proposed

policies in human activity privacy scenario, in which we use both synthetic data and

smartwatch sensor readings from smoking activity dataset [119]. We compare the privacy

levels achieved by the proposed policies using an SP that predicts the true values for

useful data and secret from the shared observation history. The SP is represented by a

long short-term memory (LSTM) neural network.

Our contributions are summarized as follows:

• We propose two active learning frameworks in which one takes only PUT, i.e., Problem

A, and the other takes both PUT and the stopping time into account, i.e., Problem

B, in online sharing of time-series data.

• We propose PDRP’s that consider conҥdence and MI-based utility for optimal PUT

against an SP performing sequential Bayesian inference for Problem A.
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Figure 5.1: System model for active PUT against the SP.

• We propose PDRP’s based on privacy measured by the error probability of the SP on

the secret, and MI between the secret and the released data history against average-

case adversaries for Problem B.

• We recast the active time-series data release problems for PUT as POMDPs, and

evaluate the proposed PDRP’s numerically using A2C-DRL.

The remainder of the chapter is organized as follows. We present the problem formula-

tions in Sections 5.2 and 5.3 for Problem A and Problem B, respectively. Synthetic and

real data evaluations for human activity privacy are presented in Section 5.4. Finally,

we conclude this chapter in Section 5.5.

5.2 Active Private Data Sharing

We consider a user that wants to share her data with the SP in return of utility. The

data reveals information about two underlying latent variables; a secret variable and a

non-sensitive useful variable. The user’s goal is to maximize the SP’s conҥdence for the

non-sensitive useful information to gain utility, while keeping his conҥdence in the secret

variable below a predeҥned level.

Let S = {0, 1, . . . , N − 1} and U = {0, 1, . . . ,M − 1} be the ҥnite sets of the hypotheses

represented by the r.v.’s S ∈ S for the secret and U ∈ U for the non-sensitive useful

information, respectively. Consider a ҥnite set A of different data release mechanisms

(DRMs) available to the user, each modeled with a different statistical relation with the

underlying hypotheses. For example, in the case of a user sharing activity data, e.g.,

Fitbit records, set A may correspond to different types of sensor measurements the user

may share. Useful information the user wants to share may be the exercise type, while

the sensitive information can be various daily habits. Similarly, in the case of smart

meter readings, the useful information might be ON/OFF state of home appliances for

smart power scheduling whereas the sensitive information might be the types of TV
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channels the user watches. We assume that the data revealed at time t, Zt, is generated

by an independent realization of a conditional probability distribution that depends on

the true hypotheses and the chosen DRM At ∈ A, denoted by q(Zt|At, S, U). Figure 5.1

shows an illustration of the system model with three DRMs.

The user’s goal is to disclose U through the released data Zt, as long as the SP’s

conҥdence in S is below a certain threshold. We assume that the observation statis-

tics q(Zt|At, S, U) and the employed DRM At are known both by the user and the

SP. To maximally confuse the SP, the user selects action At with a probability distri-

bution π(At|Zt−1, At−1) conditioned on the SP’s observation history up to that time,

{Zt−1, At−1}. If the user has the knowledge of the true hypotheses, she can select the

actions depending on both the observation history and the true hypotheses. However,

our assumption is that the true hypotheses are unknown to all the parties involved.

The optimal strategy for the SP is to employ classical sequential HT, i.e., he observes

the data samples released by the user and updates its belief on the true hypotheses

accordingly. Here, we quantify the conҥdence of SP as his belief on hypotheses S and U

after observing {Zt−1, At−1}, which is shown by

βt(s, u) = P (S = s, U = u|Zt−1 = zt−1, At−1 = at−1), (5.1)

where s, u, zt and at are the realizations of S, U , Zt, and At, respectively. The SP’s belief

on the secret is βt(s) =
∑

u∈U βt(s, u). We assume that the SP becomes more conҥdent

about a hypothesis being correct as the belief on the corresponding hypothesis becomes

larger than the belief on the others. This is motivated by a worst-case adversary model

which is interested in the value of the true hypothesis.

Let τ be the time that we believe the SP reaches the prescribed conҥdence threshold

on the secret. The user stops releasing data at this point. The main objective of this

section is to obtain a policy π, which generates the best action probabilities, such that

the SP’s belief on the true U at time τ is maximized. Therefore, our goal is to solve the

Problem A:

maximize
A0,A1,...,Aτ−1

βτ (u) (5.2)

subject to βt(s) ≤ Ls, ∀t ≤ τ, ∀s ∈ S (5.3)

where Ls is a predetermined scalar of the user’s choice. Note that PUT will be obtained

by considering a range of Ls values.
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5.2.1 POMDP Formulation

The above PUT can be recast as a POMDP with partially observable static states {S,U},
actions At, and observations Zt. POMDPs can be reformulated as belief-MDPs and

solved using classical MDP solution methods. Hence, we deҥne the state of the belief-

MDP as the SP’s belief on hypotheses {S,U} after observing {Zt−1, At−1}, i.e., βt(s, u).

After deҥning the states as the belief, the user’s action probabilities become conditioned

on the belief distribution, i.e., π(At = at|βt), while the observation probabilities are the

same as before.

The user stops sharing data when the SP’s belief on any secret s ∈ S exceeds a threshold.

Therefore, the problem is an episodic MDP, which ends when a ҥnal state is reached. We

deҥne a new state space X = P (S,U) ∪ {F} of size N ×M , where P (S,U) is the belief

space, and F is a recurrent ҥnal state reached when the SP’s conҥdence on S surpasses

the prescribed maximum value. After a single observation {zt, at}, the SP updates its

belief by Bayes’ rule as follows:

ϕπ(βt, zt, at) =
q(zt|at, s, u)βt(s, u)

∑

ŝ,û

q(zt|at, ŝ, û)βt(ŝ, û)
, (5.4)

where ϕπ(βt, zt, at) represents the next belief state βt+1(s, u), and it can also be denoted

by ϕπ(β, z, a) in time-independent notation. Hence, the state transitions of the belief-

MDP are governed by the observation probabilities of different actions, q(zt|at, s, u). If

βt(s) ≥ Ls holds for any secret s ∈ S, we transition to the ҥnal state F . The overall

strategy for belief update is represented by the Bayes’ operator as follows:

ϕπ(x, z, a) =























ϕπ(β, z, a), if x = β(s, u) for β(s) < Ls

F, if x = β(s, u) for β(s) ≥ Ls
F, if x = F.

We deҥne an instantaneous reward function for the current state, which induces policy

π when maximized:

rB(x) =























0, if x = β(s, u) for β(s) < Ls

max
u

β(u), if x = β(s, u) for β(s) ≥ Ls

0, if x = F.

Due to the belief-based utility, we call this approach belief-reward policy. According to

her strategy, the user checks if the SP’s belief on any secret exceeds a threshold Ls, if
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not, she believes that the SP updates his belief as in (5.4) in the next time step. If the

threshold is reached, the user stops data sharing, updates the state x = β(s, u) to the

ҥnal state x = F and the episode ends.

We assume that the SP follows the optimal sequential HT strategy. Since the user has

access to all the information that the SP has, it can perfectly track his beliefs. Hence, the

user decides her own policy facilitating the SP’s strategy, episodic behavior and belief.

Accordingly, reward function rB(x) is deҥned such that the user receives no reward until

the SP’s belief on the secret reaches the prescribed threshold, at which point she receives

a reward measured by the SP’s current belief on the true useful hypothesis, and the

episode ends by reaching the ҥnal state.

The corresponding Bellman equation induced by the optimal policy π can be written

as [65],

Vπ(β) = max
π(a|β)∈P (A)

{

r(β, π(a|β)) + Ez,aVπ(ϕπ(β, z, a))
}

,

where Vπ(β) is the state-value function, and P (A) is the action probability space. The

objective is to ҥnd a policy π that optimizes the reward function. Since, ҥnding optimal

policies for continuous state and action MDPs is PSPACE-hard as mentioned before, we

will use A2C-DRL as a computational tool to numerically solve the continuous state and

action space MDP.

5.2.2 MI as Utility

In this section, we consider a scenario where the SP is more interested in the statistics

of the public information rather than its true value. Accordingly, we consider MI as a

utility measure; that is, the user wants to maximize the MI between the useful hypothesis

and the observations by the time the SP reaches the prescribed conҥdence level on the

secret. MI is commonly used both as a privacy and a utility measure in the literature

[120,121,128]

The MI between U and (ZT , AT ) over time T is given by

I(U ;ZT , AT ) =

T
∑

t=1

I(U ;Zt, At|Zt−1, At−1). (5.5)
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The MI between the useful hypothesis and the observations at time t can be written in

terms of the belief, action and observation probabilities as follows:

I(U ;Zt, At|β) =−
∑

s,u,zt,at

q(zt|at, s, u)π(at|β)β(s, u)

× log

∑

ŝ

q(zt|at, ŝ, u)π(at|β)β(ŝ, u)

β(u)
∑

s̄,ū
q(zt|at, s̄, ū)π(at|β)β(s̄, ū)

. (5.6)

Accordingly, the information reward gained in the current time step after taking action

at, and releasing the corresponding observation zt is deҥned as

rMI(x) =











I(u; zt, at|β), if x = β(s, u) for β(s) ≤ Ls
0, if x = F.

SP’s belief is updated by ϕπ(x, z, a) as before. This policy maximizes the leakage not

only for the true hypothesis for u but all possible hypotheses for U . For example, a

policy may disclose a lot of information even if the SP is confused between two out of

many hypotheses, as he learns that the true state is none of the other possibilities.

Numerical evaluation of this section is presented in Section 5.4. In the next section, we

introduce another scenario in which the user aims for quickest stopping while optimizing

the PUT.

5.3 Active Quickest Private Data Sharing

In this section we consider the same setting as Section 5.2 as shown in Figure 5.1. On

the other hand, the user’s goal is to release her data such that the intended SP can

detect the non-sensitive information with minimum error as quickly as possible, while

keeping his conҥdence in the secret part below a predeҥned level. In other words, the

user wants to disclose the true value of the r.v. U through the released data Zt, while

keeping the SP’s conҥdence in S below a certain threshold. Let τ be the time that the

SP is conҥdent enough about the true useful variable and makes a declaration. This

is also the time at which the user stops releasing data, since U is already disclosed to

the SP. The objective of the problem is to ҥnd a sequence of actions {A0, . . . , Aτ−1}, a

stochastic stopping time τ and a declaration rule d : Aτ−1 ×Zτ−1 → U that collectively
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solve the following optimization, Problem B:

minimize
A0, . . . , Aτ−1, d

E[τ ] + λPerr(u)

subject to Ct(s) < LB,∀t ≤ τ, ∀s ∈ S
(5.7)

where Perr(u) = P (d(Aτ−1, Zτ−1) ̸= u) is the error probability of making wrong decla-

ration for the true value u ∈ U ; Ct(s) is the SP’s instantaneous conҥdence in the true

sensitive value s ∈ S, which is quantiҥed by the SP’s belief on s given the observation

history, i.e., P (S = s|Aτ−1, Zτ−1); LB is a scalar of user’s choice; B will later represent

the name of the policy, e.g., (B)elief privacy-data release policy; and the expectation is

taken over the action and observation distributions as well as the initial distributions of

the r.v.’s. The main difference between the Problem A in Section 5.2 and Problem B is

the declaration rule d. While the stopping action in Problem A is directly determined

by whether the privacy constraint is violated or not, declaration rule d determines the

stopping time according to the optimization in Problem B.

For our theoretical results, we assume that the observation statistics q(Zt|At, S, U) and

the employed DRM At are known by both the user and the SP. Later, we will also

consider real datasets with unknown data distributions in our simulations. To maximally

confuse the SP, the user selects action At with a probability distribution π(At|Zt−1, At−1)

conditioned on the SP’s observation history up to that time, {Zt−1, At−1}. In this work,

we assume that the true values s and u are unknown to all the parties involved.

5.3.1 POMDP Formulation

The above PUT can be recast as a POMDP with partially observable static states

{S,U} ∈ S × U , actions At ∈ A ∪ {d}, and noisy observations Zt ∈ Z, and solved

using classical MDP solution methods. We will follow this approach, and introduce SP’s

belief to determine the state variable in three steps. Firstly, we deҥne the belief of the

SP on S and U after he observes {Zt−1, At−1} by βt(s, u) as in (5.4) for belief space

P(B) := {βt ∈ [0, 1]M×N :
∑

s∈S,u∈U βt(s, u) = 1}, where the marginal beliefs are rep-

resented by βt(u) :=
∑

s∈S βt(s, u) and βt(s) :=
∑

u∈U βt(s, u), respectively. The SP’s

conҥdence that S = s at time t is represented by Ct(s) := βt(s). The user’s action

probabilities become conditioned on the belief distribution, i.e., π(At = at|βt), while the

observation probabilities are the same as before. Secondly, we introduce a new state

FB := {βt(s) ≥ LB :
∑

s∈S βt(s) = 1} for FB ⊆ P(B), called the forbidden-state, which

represents the condition where the constraint in (5.7) is violated. FB is ideally an in-

ҥnite cost state; however, in practice, we assume it has a large-cost. As the third step

of deҥning the state space, we include a terminal state to fully characterize the state in
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which the user stops sharing her data with the SP. We assume that after the user takes

the stopping action, the system goes to a terminal state, denoted by F , and remains

there forever. This makes the problem an episodic MDP. Consequently, the state space

becomes X = P(B) ∪ {F}.

We always refer the time independent expression of belief, i.e., β, as the current belief

state. The optimal expected total cost of our problem is deҥned as follows:

Definition 5.1. For all β ∈ P(B), let the optimal value function V ∗(β) represent the

optimal expected cost of problem (5.7), given the initial belief β. That is,

V ∗(β) := min{E[τ ] + λPerr(u)}, (5.8)

where the minimization is with respect to τ , action and observation sequences, and the

declaration rule d.

Optimal expected total cost for active PUT against an SP can be obtained by evaluating

V ∗ at the initial belief. This can be done by solving a DyP problem. After a single

observation {zt, at}, the SP updates its belief by Bayes’ rule as in (5.4). We deҥne a

Markov operator T
a for action a, such that for any measurable function V : P(B)→ R,

(TaV )(β) :=

∫

V (Φ(β, z, a))
∑

s,u

q(z|a, s, u)β(s, u)dz. (5.9)

For any state β ∈ P(B), the user’s data release action a under the optimal policy results

in an expected total cost of 1+(TaV ∗)(β), where time spent by the user for data release

is represented by cost 1, and (TaV ∗)(β) is the expected future value of V ∗. On the other

hand, the user’s stopping decision d results in error probability of the declaration of true

useful value u with penalty λ, i.e., λPerr(u) := λ(1− β(u)). Solution for the optimal V ∗

is formalized by the following theorem.

Theorem 5.2. [129] The optimal V ∗ for β ∈ P(B) satisfies the fixed point equation:

V ∗(β) = min{1 + min
a∈A

(TaV ∗)(β),min
u∈U

λ(1− β(u))}. (5.10)

Definition 5.3. Let a Markov stationary policy π be a stochastic kernel from the state

space to the action space, including the stopping action which determines the stopping

time τ , i.e., Π := P(B) → A ∪ {d}. That is, the probability of choosing DRM a under

policy π at state β is denoted by π(a|β).

Following from Corollary 9.12.1 in [129], DyP equation (5.10) characterizes the optimal

deterministic stationary policy π∗ for β ∈ P(B). The intuition behind Theorem 5.2
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is that the user’s data release action a∗ = argmina∈A T
a(V ∗)(β) is the least costly

action with cost 1+mina∈A T
a(V ∗)(β), unless choosing the stopping action d and letting

the SP make a decision for u is less costly, i.e., λ(1 − β(u)). We also ensure that

for any two hypotheses u, u′ ∈ U , u ̸= u′, there exists an action a ∈ A, such that

D(q(z|a, s, u)||q(z|a, s, u′)) > 0, ∀s ∈ S, where D(·||·) denotes the Kullback-Leibler (KL)

divergence. That is, hypotheses u and u′ are distinguishable all the time, such that (5.7)

has a meaningful solution.

Theorem 5.4. Suppose there exists a parameter CT > 0, e.g., time cost, and a functional

V : P(B)→ R+ such that for all belief states β ∈ P(B),

V (β) ≤ min{CT +min
a∈A

(TaV ∗)(β),min
u∈U

λCT (1− β(u))}. (5.11)

Then V ∗(β) ≥ 1
CT
V (β) for all β ∈ P(B).

Proof. For the proof of Theorem 5.4, we include a termination state in our state space.

We assume that after the user takes the stopping action for data release, the system goes

to a recursive termination state, denoted by F , and remains there forever. Hence, the

new state space is X = P(B)∪ {F}. Let instantaneous cost of taking action a ∈ A∪ {d}

cπB (x, a) =







































1, if x = β ∈ P(B) \ {FB}, a ∈ A

min
u∈U

(1− β(u))λ, if x = β ∈ P(B) \ {FB}, a = d

CB, if x = β = FB, a ∈ A

0, if x = F.

(5.12)

The constraint on the adversary’s conҥdence in s is enforced with an instantaneous cost

CB for state FB, which is ideally inҥnity but can be applied as a very large scalar in

practice. Assuming that the system follows the optimal policy, transition to FB with

a very large cost CB would not be chosen by the minimization problem. The overall

strategy for belief update is represented by the Bayes’ operator as follows:

ΦπB (x, z, a) =























ΦπB (β, z, a), if x = β ∈ P(B), a ∈ A

F, if x = β ∈ P(B), a = d

F, if x = F.

(5.13)
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Using the instantaneous cost and state update, the condition V (β) ≤ min{CT +

min
a∈A

(TaV ∗)(β),min
u∈U

λCT (1− β(u))} is rewritten as

V (F ) = 0,

V (x) ≤ min
a∈A∪{d}

{Tcc(x, a) + E[V (Φ(x, z, a))]}, ∀x ∈ P(B),

as well as the state sequence at times t = 0, 1, 2, . . . is denoted by

X0 = x,

Xn = Φ(Xn−1, Z,A(n)), ∀n, n > 0.

When the condition is written in terms of the state sequence of duration N for the

optimal policy π∗, we obtain

V (x) ≤ CTEπ∗ [

N−1
∑

n=0

c(Xn, An)] + Eπ∗ [V (XN )]. (5.14)

Taking the limit as N →∞, we get

V (x) ≤ CTEπ∗ [

∞
∑

n=0

c(Xn, An)] + lim
N→∞

Eπ∗ [V (XN )] (5.15)

= CTV
∗(x) + lim

N→∞
Eπ∗ [XN ] (5.16)

= CTV
∗(x) + lim

N→∞
Eπ∗

[

V (F )1{XN=F} + V (FB)1{XN=FB}

+ V (XN )1{XN ̸=F,XN ̸=FB}

]

= CTV
∗(x) + lim

N→∞
Eπ∗

[

V (XN )1{XN ̸=F} + V (FB)1{XN=FB}

]

≤ CTV ∗(x) + λ lim
N→∞

(

Pπ∗ [XN ̸= F ] + Pπ∗ [XN = FB]
)

(5.17)

= CTV
∗(x), (5.18)

where (5.15) holds due to the monotone convergence theorem; (5.16) follows from the

deҥnition of V ∗; (5.17) is due to the fact that for any β ∈ P(B), V (β) ≤ min
u∈U

λ(1−β(u)) ≤
λ; and (5.18) holds since λ ≥ V ∗(x) ≥ Eπ∗ [τ ] =

∑∞
n=0 Pπ∗(τ > n) =

∑∞
n=0 Pπ∗(Xn ̸= F ),

and the probability of the system following the optimal policy π∗ to transition to highest-

cost state FB at N is zero, i.e, lim
N→∞

Pπ∗ [XN = FB] = 0.

Theorem 5.4 provides a lower bound for a ҥxed-point expression of V ∗. However, it is

difficult to calculate the real value of V ∗ and solve DyP equation with continuous belief

space. Hence, we solve (5.7) using an RL approach to obtain a good approximation. Due

to the belief-based privacy constraint, we call our policy belief-privacy data release policy
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(belief-PDRP), πB. In our RL approach, the optimal policy π∗B is induced as a result

of the minimization of the instantaneous cost cπB (x, a) that we introduced in (5.12) for

current state x and action a ∈ A ∪ {d}. The constraint on the SP’s conҥdence in s

is enforced with a large instantaneous cost CB for state FB, which is ideally inҥnite.

Assuming that the system follows the optimal policy, data release actions resulting in a

transition to FB with a large-cost CB would not be selected by the minimization problem,

as shown in the proof of the Theorem 5.4. The overall strategy for belief update becomes

(5.13). Since the user has access to all the information that the SP has, it can perfectly

track his beliefs. Hence, the user decides her own policy facilitating the SP’s detection

strategy, episodic behavior and belief.

According to her strategy, the user checks whether the selected optimal action is the

stopping action d. If so, she receives a cost determined by the current error probability

of u with penalty λ, then transitions to the terminal state and ends the episode. If

not, she checks whether the SP’s belief on any secret exceeds LB. If the user is in the

forbidden-state she receives a large-cost CB; otherwise, either she receives a time cost 1

or terminal state cost 0 depending on her state. If the terminal state has not already

been reached and stopping action has not been taken at the moment, the user updates

the SP’s belief as in (5.4); otherwise she updates the state to the ҥnal state x = F . Using

the condition (5.11) in Theorem 5.4, we write a lower bound for the Bellman equation

induced by the optimal policy π∗B as [65],

V (x) = min
a∈A∪{d}

{cπB (x, a) + E[V (ΦπB (x, z, a))]}, ∀x ∈ P(B). (5.19)

The objective is to ҥnd a policy π∗B that optimizes the cost function. Since the proposed

POMDP has a continuous state space and action probabilities, as mentioned earlier, ҥnd-

ing optimal policies is PSPACE-hard. Hence, we use A2C-DRL to numerically solve the

continuous state and action space MDP in Section 5.4.3. In addition to the conҥdence-

based privacy, we also consider an MI privacy policy in Section 5.3.2.

5.3.2 MI as Privacy Constraint

In this section, we consider a scenario, in which the user is interested in hiding the

sensitive information in an average sense, rather than hiding its true value. For instance,

the SP might be confused about the true secret, however, he might still have an idea

about which secret values are unlikely. More concretely, consider a secret r.v. with

alphabet size of three, e.g., U = {1, 2, 3}. From the perspective of conҥdence, the

belief of β(U = 1) = 1/2, β(U = 2) = 1/4, β(U = 3) = 1/4 would be the same as

β(U = 1) = 1/2, β(U = 2) = 1/2, β(U = 3) = 0. While the latter clearly has additional
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information about the secret resulting in reduced uncertainty. We tackle this issue by

measuring the privacy by the MI between the secret variable S and the observation

history {Zt, At} for t ≤ τ . According to her policy, the user wants to minimize the error

on useful information as quickly as possible while keeping the total MI between the secret

and the observations below a prescribed level, i.e., ∀Z ∈ Z and ∀A ∈ A,

minimize
A0, . . . , Aτ−1, d

E[τ ] + λPerr(u)

subject to I(S;Zt, At) < LMI ,∀t ≤ τ, ∀S ∈ S
(5.20)

where LMI is a scalar of the user’s choice.

MI is commonly used both as a privacy and a utility measure in the literature [120,121,

128]. As opposed to Section 5.2.2, here, it is used as a privacy measure to control PUT

between the useful variable and the secret. Due to the MI-based privacy constraint in

(5.20), we call this policy MI-privacy data release policy (MI-PDRP), πMI . MI between

S and (ZT , AT ) over time T is given by

I(S;ZT , AT ) =

T
∑

t=1

I(S;Zt, At|Zt−1, At−1). (5.21)

Theorem 5.5. The instantaneous MI cost between the secret and the observations in-

duced by policy πMI at time t can be written as:

IπMI (S;Zt, At|β) =−
∑

s,u,zt,at

q(zt|at, s, u)π(at|β)β(s, u)

× log

∑

ũ
q(zt|at, s, ũ)π(at|β)β(s, ũ)

β(s)
∑

s̄,ū
q(zt|at, s̄, ū)π(at|β)β(s̄, ū)

. (5.22)

Proof. Consider a POMDP with the belief state X = P(B) ∪ {F}. At time t, a decision

maker observes Zt−1, At−1 and chooses an action At ∈ A ∪ {d} as follows:

At = ft(Z
t−1, At−1), (5.23)

where f = (f1, f2, . . . ) is called the policy. Based on the conditional probability

π(At|At−1, Zt−1) of taking this action, Zt ∈ Z is observed and revealed by the sen-

sor distribution q(Zt|At, S, U), and the state evolves to the next belief state. At each

step, the system incurs a per-step cost

c(s, u, zt, at;f) := log
P f (Zt = zt, At = at|S = s, Zt−1 = zt−1, At−1 = at−1)

P f (Zt = zt, At = at|Zt−1 = zt−1, At−1 = at−1)
. (5.24)
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The objective is to ҥnd a policy f = (f1, . . . , fT ) that minimizes the total cost given by

1
T E

f
[ T
∑

t=1
c(S,U, Zt, At;f)

]

, where the expectation is taken with respect to the distribu-

tions induced by the policy f .

Let f = (f1, . . . , fT ) be ft(z
t−1, at−1) = π(·|zt−1, at−1). Then the following holds:

IπMI (S;Zt, At|Zt−1,At−1) =
∑

s,u,zt,at

P πMI (S,U, Zt, At)

× log
P πMI (Zt = zt, At = at|S = s, Zt−1 = zt−1, At−1 = at−1)

P πMI (Zt = zt, At = at|Zt−1 = zt−1, At−1 = at−1)

= E
f

[

T
∑

t=1

c(S,U, Zt, At;f)

]

(5.25)

The probability distribution on (S,U, ZT , AT ) induced by the decision policy f is given

by

P f (S = s, U = u, ZT = zT , AT = aT ) = P (s, u)q(z1|a1, s, u)π(a1)

×
T
∏

t=2

[

q(zt|at, s, u)π(at|zt−1, at−1)
]

, (5.26)

where π(·|zt−1, at−1) = f(zt−1, at−1). Under the transformations described

above, P f and P πMI are identical probability distributions. As a result,

E
f

[

T
∑

t=1
c(S,U, Zt, At;f)

]

= IπMI (S;Zt, At|Zt−1, At−1). Hence, Theorem 5.5 holds.

Similarly to the previous section, we deҥne the state in three stages, i.e., the belief, the

forbidden-MI-state as FMI := {βt(s) : IπMI (S;Zt, At) ≥ LMI , ∀t ≤ τ} for FMI ⊆ P(B),
where the constraint in (5.20) is violated, and the ҥnal state F in which the episode

terminates.

We deҥne an instantaneous cost function, cπMI (x, a), for current state x ∈ X = P(B) ∪
{F} and action a ∈ A∪{d}, which induces the optimal MI-PDRP π∗MI when minimized:

cπMI (x, a) =







































1, if x = β ∈ P(B) \ {FMI}, a ∈ A

min
u∈U

(1− β(u))λ, if x = β ∈ P(B) \ {FMI}, a = d

CMI , if x = β = FMI , a ∈ A

0, if x = F.

(5.27)

The constraint on the total MI leakage from S is enforced with a large-cost CMI for

state FMI . Assuming that the system follows the optimal MI-PDRP π∗MI , FMI would
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not be visited at all. The overall strategy for belief update is represented by the Bayes’

operator as follows:

ΦπMI (x, z, a) =























































ΦπMI (β, z, a), if x = β ∈ P(B), a ∈ A

F, if x = β ∈ P(B), a = d

FMI , if x = β(s, u) ∈ P(B),
t
∑

i=1
Iπ(S;Zi, Ai|βi) ≥ LMI

F, if x = F.

(5.28)

Theorem 5.4 holds for (5.20) when we replace {cπB ,ΦπB , FB} with {cπMI ,ΦπMI , FMI},
and provides a lower bound for the value function V ∗ for all β ∈ P(B). Hence, to ҥnd the

policy π∗MI , we solve the Bellman equation (5.19) using RL for cπB and ΦπB . This policy

minimizes the SP’s error on the true value of u in the quickest way while constraining

the MI leakage from not only true secret s but all possible values for S.

5.3.3 Estimating MI

Exact computation of MI is possible when the data distribution is known. However, in

most practical scenarios, the user’s data distribution is not known or it is inaccurate.

Hence, we approximate I(S;ZT , AT ) via a variational representation which is inspired by

Barber-Agakov MI estimation for single letter MI [127]. Since (5.21) is history-dependent,

we modify this variational bound to a history dependent expression as follows:

I(S;Zt, At|Zt−1, At−1)

= H(S|Zt−1, At−1)−H(S|Zt, At) (5.29)

= H(S|Zt−1, At−1) + D(P (S|Zt, At)||Q(S|Zt, At)) + E[logQ(S|Zt, At)] (5.30)

= H(S|Zt−1, At−1) + max
Q(S|Zt,At)

E[logQ(S|Zt, At)] (5.31)

where (5.29) follows from the deҥnition of MI, (5.30) holds for any distribution

Q(S|Zt, At) over S given the values in Zt ×At, which represents what the belief would

be after observing (At, Zt), and (5.31) follows from the fact that maximum is attained

when Q(S|Zt, At) = P (S|Zt, At).

Given (Zt−1, At−1) = (zt−1, at−1), we can rewrite the variational representation for the

MI conditioned on the neural estimation of the current belief β̂(S) = Q(S|Zt−1, At−1)
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Figure 5.2: Activity recognition with wearable IoT devices does not only infer physical
exercise but also sensitive daily habits.

as

I(S;Zt, At|β̂) = H(β̂(S)) + max
Q(S|Zt,At,β̂)

E[logQ(S|Zt, At, β̂)], (5.32)

where H(β̂(S)) = − ∑

s∈S

β̂(s) log β̂(s), and the expectation is with respect to (S,Zt, At) ∼

β̂(S), π(At|β̂), q(Zt|At, S, U). Since the current belief realization is known to both the

user and the SP, H(β̂(S)) is a constant. Numerical estimation of the MI via neural

networks is explained in Section 5.4.3.2.

5.4 Numerical Results

In this section, we present our results for both synthetic data and human activity privacy

use-cases for Sections 5.2 and 5.3. In the synthetic data case we assume that all the

distributions of the DRM are known by both the user and the SP, while in the latter,

these distributions are learnt from a real dataset. In human activity privacy use-case, we

focus on the sensors in wearable devices as an example of DRMs, and their measurements

as time-series data. In this scenario, the user shares sensor readings of her wearable device

with the SP, while performing physical activities, with the goal of tracking the type and

duration of her activities. However, as in Figure 5.2, not only useful activities, such as

exercise type, but also sensitive activities, such as smoking, drinking or eating habits,

can be inferred from these readings, which the user may not want to share with the SP as

the SP can exploit such information for commercial beneҥt at the detriment of the user.

Hence, the user shares a single sensor reading from among multiple sensors at a time

such that the useful activity is revealed to the SP while his conҥdence in the sensitive

activity is kept hidden at a pre-deҥned level.

The POMDP formulation in Sections 5.2.1 and 5.3.1 enable us to numerically approxi-

mate the proposed policies using RL. We use A2C-DRL as described in Section 2.2.1 for

the numerical evaluation of our problems.
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Figure 5.3: The confidence on U and MI utility w.r.t the maximum allowed confidence
level on S for the proposed policies.

5.4.1 Active Private Data Sharing: Synthetic Data Use-Case

In this section, the results of Section 5.2 are presented for synthetically generated prob-

ability densities and N = 3, M = 3, |A| = 3 and |Z| = 21, and uniformly distributed

S and U . The ҥnal state is reached when the SP’s belief on any s ∈ S exceeds the

threshold Ls for Ls ∈ {0.65, 0.8, 0.9, 0.95}. Observation probabilities are selected such

that each action distinguishes a different pair of hypotheses well for both S and U . For

example, we created a matrix with each row representing the conditional distribution

of z for different (a, s, u) realizations. For sensor a = 0, we used N (0, σj) for (s, u) =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}, N (1, σj) for (s, u) = (2, 0), N (2, σj) for (s, u) =

(2, 1), and N (3, σj) for (s, u) = (2, 2), and we normalized through the columns represent-

ing z. Here, σj ’s are chosen randomly from the interval [0.5, 1.5] for each (a, s, u) with

index j={1, .., N×M×|A|}. This sensor discloses s=2 case more than the other secrets.

Moreover, a=1 and a=2 reveal more information for s=1 and s=0 cases, respectively.

In this model, there is no perfect sensor which reveals only the useful hypothesis while

giving no information about the secret. As a benchmark, we also consider a random

policy taking the actions independently of the SP’s observations and belief. We choose

two random policies with action probabilities πR1(a)=[0.3, 0.6, 0.1] and πR2(a)=[13 ,
1
3 ,

1
3 ].

When the belief on the secret exceeds the threshold, episode ends as before.

In Figure 5.3, we show the SP’s conҥdence about U at the decision time on the left

axis and MI between U and observations on the right axis as a function of the allowed

conҥdence level on S. While blue lines and red markers are scaled by the left and right

axes, respectively, same markers in both colors represent the same particular policy.
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Table 5.1: Stopping time τ of each policy’s data release for the threshold values
Ls = {0.65, 0.8, 0.9, 0.95}.

Policies: τ(Ls = 0.65) τ(Ls = 0.8) τ(Ls = 0.9) τ(Ls = 0.95)

πB 105± 18 250± 46 470± 65 780± 120

πMI 95± 15 180± 38 420± 60 485± 92

πR1 4.2± 0.8 5.5± 1 8.2± 1.3 9± 2

πR2 3.1± 0.5 4.5± 0.6 6± 1.3 8± 1.4

We represent the belief-reward and MI utility policies by, πβ and πI , respectively. We

observe that through the proposed active release mechanism, the useful information can

be shared with high conҥdence while keeping the SP relatively confused about the secret.

We conclude from the results that maximizing MI provides more information about the

set of hypothesis U than maximizing βτ (U); however, it does not directly reveal the

true hypothesis as much as πβ reveals. However, πI still performs relatively close to the

belief-reward policy πβ for βτ (U) at higher Ls. Although the random policy provides

simplicity for action selection, it has no control on the UP’s conҥdence on the useful

hypothesis. Hence, πR1 and πR2 perform poorly for both βτ (U) and MI as expected

since they do not use the observations to determine the best actions.

Note that we have not explicitly considered τ as part of our optimization. In theory, we

allow unlimited time steps as long as the conҥdence bound on the secret is not violated.

On the other hand, since the conҥdence level on S monotonically increases with time,

the user stops revealing data after a ҥnite number of steps. In Table 5.1, we observed

that τ follows an increasing trend as the constraint on the secret is relaxed. For πMI ,

we observed shorter decision times, which means that MI-maximizing actions also reveal

more about the secret. For πR1 and πR2, on the other hand, we observed much shorter

decision times. Random policies end up choosing actions that leak signiҥcant amount of

information about the secret without providing much utility.

5.4.2 Active Quickest Private Data Sharing: Synthetic Data Use-Case

This section presents the synthetic data scenario of the policies proposed in Section 5.3.

This scenario represents the situations where the probability distributions of DRMs and

belief update rules are known by both the user and the SP, while only the actions are

learned by the privacy mechanism.

We create a dataset for |A ∪ {d}|=4, |S|=3, |U|=3, |Z|=50 and uniformly distributed

S and U , and LB ∈ {0.6, 0.7, 0.8, 0.9, 0.99}. Observation probabilities are selected such

that each action distinguishes a different pair of hypotheses well for both S and U . For

example, we created a matrix with each row representing the conditional distribution
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(A) (B)

(C) (D)

Figure 5.4: Belief-PDRP’s, πB , (A) stopping time τ and β(u), and (B) SP’s accuracy
for the secret and the useful information with respect to LB , and MI-PDRP’s, πMI ,
(C) stopping time τ and β(u), and (D) SP’s accuracy for the secret and the useful

information with respect to LMI .

of z for different (a, s, u) realizations. For sensor a = 0, we used N (0, σj) for (s, u) =

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}, N (1, σj) for (s, u) = (2, 0), N (2, σj) for (s, u) =

(2, 1), and N (3, σj) for (s, u) = (2, 2), and we normalized through the columns represent-

ing z. Here, σj ’s are chosen randomly from the interval [0.5, 1.5] for each (a, s, u) with

index j={1, .., N×M×|A|}. This sensor discloses s=2 case more than the other secrets.

Moreover, a=1 and a=2 reveal more information for s=1 and s=0 cases, respectively.

Figure 5.4A shows the average stopping time τ and the maximum belief on u, β(u),

with respect to LB for the belief-PDRP, πB. As the constraint on β(s) is relaxed, the

stopping time increases as well as the maximum β(u). In Figure 5.4B, on the other

hand, we present the prediction accuracy of the true-useful activity u from the belief

calculation. Red lines in Figure 5.4B represent accuracy on u, and blue lines show the

accuracy on s. The gap between the accuracy shows the effectiveness of the proposed

policy πB in minimizing the SP’s error probability of u in the quickest way while keeping

his conҥdence in s below the threshold for the synthetic data.

Figure 5.4C shows the average stopping time τ and the maximum conҥdence in u, β̂(u),
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Table 5.2: Selected Activities and Smartwatch Sensors from Smoking Activity
Dataset.

Sensors: A Activities: (S,U)

Accelerometer 0 Sitting (0,0)

Gyroscope 1 Standing (0,1)

Magnetometer 2 Walking (0,2)

Linear-accelerometer 3 Sitting while smoking (1,0)

Standing while smoking (1,1)

Walking while smoking (1,2)

Sitting while drinking (2,0)

Standing while drinking (2,1)

with respect to LMI for the MI-PDRP, πMI . As before, when the constraint on MI

is relaxed, the stopping time increases as well as the maximum β̂(u). In Figure 5.4D,

red lines represent accuracy on u, and blue lines show the accuracy on s. Although

πMI shows similar results with πB, πB is more effective in hiding the true realization

of S. This is because MI-PDRP provides PUT by constraining the statistics of all the

realizations of S rather than only the true realization.

5.4.3 Active Quickest Private Data Sharing: Activity Data Use-Case

In this section, we present the numerical evaluation for the policies proposed in Section

5.3 using real time-series measurements. In human activity privacy scenario, we use

smoking activity dataset [119] which contains more than 40 hours of sensor measurements

for activities, such as smoking while walking, drinking while standing, sitting etc. We

use measurements from four selected sensors of a smartwatch, i.e., |A ∪ {d}| = 5. Table

5.2 shows these sensors and sensitive-useful activity pairs from the dataset. We learn the

probability distributions together with the actions from the real-world measurements.

5.4.3.1 Numerical Results for Belief-PDRP, πB

In this section, we evaluate the PUT of the proposed optimal policy πB for smoking

activity dataset. We model the SP by a long short-term memory (LSTM) recurrent

neural network with parameters ϕ, which predicts the true useful variable u and secret s.

The LSTM-based predictor has 2 layers with 128 nodes and 2 look-backs, and inputs the

past observations {zt−1, at−1}. The output is a probability distribution representing the

belief vector β̂ϕ(S,U) obtained by minimizing a cross-entropy loss between β̂ϕ(S,U) and

true values of {S,U}. This is equivalent to maximizing the log-likelihood of β̂ϕ(S,U),
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Figure 5.5: (A) A2C-DRL process for belief-PDRP, πB , (B) stopping time τ and

β̂(u), and (C) SP’s accuracy for the secret and the useful information with respect to
LB .

i.e.,

H(β, β̂) = −
∑

s,u

β(s, u) log(β̂(s, u)) = −Es,u[log(β̂(s, u))]

To train the LSTM SP beforehand, we split the training data into 3 portions. One is for

pre-training the LSTM SP, which will be used during A2C-DRL, one is for online A2C-

DRL training, and the last portion is to train an SP, i.e., LSTM predictor, for testing the

performance of PUT with A2C-DRL. Let πR be a random policy with uniform action

probabilities. We create observation pairs {Zt, At} for LSTM training by randomly

sampling actions At from πR, and obtaining time-series Zt from the corresponding portion

of the dataset. We also used CT = 0.5 for the time cost.

Figure 5.5A shows A2C-DRL process in which LSTM is used as an online state predictor

from the past observations. The user checks if the termination action, i.e., at−1 = d,

has been taken, then she accordingly terminates the process. Otherwise she predicts the

current belief with the LSTM network, and selects an action at via the actor. The actor-

critic network updates its parameters with the state value V (β) and action probability
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π(at|β) accordingly. Sensor measurement zt is observed as per the selected action, and

the observation pair zt, at is shared with the SP.

Figure 5.5B shows the average stopping time τ and the predicted maximum belief on u,

β̂(u), with respect to LB for the belief-PDRP, πB. As the constraint on β̂(s) is relaxed,

the stopping time increases as well as the maximum β̂(u). In Figure 5.5C, on the other

hand, no-PUT and PUT cases are compared in terms of prediction accuracy of the SP

on true-useful activity u and the secret s, where accuracy of the SP for the randomly

generated At and corresponding Zt represents no-PUT case, while its accuracy for the

A2C-DRL generated actions At and Zt represents the PUT case. Red lines in Figure

represent accuracy on u, and blue lines show the accuracy on s. The ѕat lines show the

no-PUT case which does not depend on LB, and the curved lines represent the PUT case.

While the gap between the accuracy of u and s is very low for random policy (no-PUT

case), it is very large for πB (PUT case). This shows the effectiveness of the proposed

policy πB in minimizing the SP’s error probability of u in the quickest way while keeping

his conҥdence in s below the threshold. On the other hand, generating random actions

from a random policy does not yield a sophisticated strategy to reveal u and hide s. The

largest gap, i.e., the best performance of πB, occurs at LB = 0.65 for πB.

5.4.3.2 Numerical Results for MI-PDRP, πMI

In this section, we model the SP using two components; one is an LSTM-based belief

predictor with 2 layers of 128 nodes and 2 look-backs, and the other one is a feed-forward

neural network (FFNN)-based observation generator with 3 layers of 256 nodes, where

the output determines the mean µ and standard deviation σ of a Gaussian distribution.

As before, we use CT = 0.5 for the time cost.

As in Section 5.4.3.1, we train the LSTM network with parameters ϕ by minimizing a

cross-entropy loss between the observations {Zt−1, At−1} and {S,U}, which is equivalent

to maximizing the log-likelihood of β̂ϕ(S,U). As a result, KL divergence between the real

belief distribution β and the predicted distribution β̂ϕ goes to zero when the log-likelihood

is maximized [127]. In addition, we estimate q(Zt|At, S, U), which is represented by a

Gaussian distribution,

q̂(Zt|At, S, U) = N (Zt|(µ,Σ)) = fψ(At, S, U), (5.33)

where (µ, σ) are determined by an FFNN fψ by maximizing its log-likelihood. During

A2C-DRL, we sample observations Zt and At to calculate the variational bound for MI us-

ing the pre-trained FFNN and LSTM networks which satisfy the maximization in (5.32).

We approximate the MI by sampling k observations {zit, ait}ki ∼ q̂(zt|at, ŝ, û), πMI(at|β̂),
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Figure 5.6: (A) A2C-DRL process for MI-PDRP, πMI , (B) stopping time τ and β̂(u)
and (C) SP’s accuracy for the secret and the useful information with respect to LMI .

and using the predictions for the next k belief states {Q(s|zit, ait, β̂)}ki as follows:

Î(S;Zt, At|ϕ, ψ) = H(β̂ϕ) +
1

n

n
∑

j=1

[1

k

k
∑

i=1

log[Qψ((ŝ
j |zit, ait, β̂ϕ))]

]

, (5.34)

where ŝj is a realization of s sampled from the predicted belief vector β̂ϕ(s). Figure 5.6A

illustrates A2C-DRL process with belief and MI calculation using pre-trained LSTM and

FFNN. The user checks if the termination action, i.e., at−1 = d, has been taken. If so,

she accordingly terminates the process. Otherwise, she predicts the current belief from

the previous observations using the LSTM network, and takes action at. The actor-

critic network updates its parameters with the state value V (β) and action probability

π(at|β) accordingly. Sensor measurement is observed as per the selected action, and the

observation pair zt, at is shared with the SP. Î(Ŝ|At, Zt|βt) is calculated by the SP using

previous action at−1 and (ŝ, û) according to (5.34).

Figure 5.6B shows the average stopping time τ and the maximum conҥdence in u, β̂(u),

with respect to LMI for the MI-PDRP, πMI . As the constraint on MI is relaxed, the

stopping time increases as well as the maximum β̂(u). In Figure 5.6C, activity prediction

accuracy of the SP for observations (Zt, At) generated by random policy πR and πMI



Active Privacy Against Inference 104

Table 5.3

Adversary Accuracy for all Activities Under Belief-privacy and MI-privacy Policies.

Policy Constraint τ/β̂(U) Acc. U Acc. U=0 / U=1 / U=2 Acc. S Acc. S=0 / S=1 / S=2

πB

0.5 3.12 / %43 %44.4 %60.67 / %53.44 / %5.65 %41.2 %24.58 / %23.6 / %4.58

0.65 5.6 / %74 %77.4 %78.9 / %69.15 / %88.21 %46.2 %55.32 / %48.05 / %5.15

0.8 7.15 / %77 %78.4 %85.07 / %61.99 / %92.52 %54.3 %68.77 / %48.95 / %34.5

0.95 8.64 / %81 %85.3 %91.58 / %71.23 / %96.3 %65.3 %79.48 / %73.07 / %42.8

πMI

0.5 3 / %38 %37.5 %47.01 / %51.1 / %0 %36.4 %46.53 / %52.01 / %0.74

0.75 4.34 / %40 %42.7 %63.29 / %49.17 / %0 %38.3 %47.26 / %53.74 / %1.2

1 6.25 / %62 %65 %87.26 / %55.35 / %46.7 %56.5 %47.48 / %57.42 / %13.83

1.25 6.7 / %88 %87.1 %94 / %80.8 / %80.86 %68.6 %89.55 / %65.63 / %28.74

1.5 7.06 / %91 %91.2 %97.62 / %84 / %92.16 %79 %93.02 / %72.22 / %34.67

1.75 7.8 / %93 %93.7 %98.42 / %88.8 / %96.25 %80.8 %96.9 / %96.38 / %87.3

2 8.5 / %94 %95.7 %99.45 / %96.19 / %97.78 %81.9 %98,3 / %98.12 / %92.64

are compared. Red lines in Figure 5.6C represent accuracy on u, and blue lines show

the accuracy on s. Similarly to Section 5.4.3.1, the gap between the accuracy of u and

s is very low for random policy, while it is large for πMI . This shows that the proposed

policy πMI minimizes the SP’s error probability of u in a speedy manner while keeping

the information leakage from s below the threshold. Although πMI shows similar results

with πB, πB is more effective in hiding the true realization of S. This is because MI-

PDRP provides PUT by constraining the statistics of all the realizations of S rather than

only the true realization. The largest gap in Figure 5.6C, i.e., the best performance of

πMI , occurs at LMI = 1.2 for πMI .

In Table 5.3, there is detailed breakdown of performance of πB and πMI policies, where

"Acc." represents accuracy. Individual accuracy for U and S show that all activities are

revealed as the constraint is relaxed. On the other hand, U = 2 and S = 2 are almost

completely hidden for low constraint level, but they are revealed faster then the other

hypotheses. Moreover, πB and πMI policies reveal or hide different activities better due

to the different characteristics of the activities. We also see the same results that Figures

5.5 and 5.6 show, i.e., πB outperforms πMI in minimizing the error probability of U in a

speedy manner while keeping the secret below the pre-deҥned level.

5.5 Conclusions

We studied the PUT in time-series data release to an SP. In our model, the goal is to

reveal the true value of a latent utility variable, while keeping the secret variable private

from the SP. In a sense, the SP is the legitimate receiver for the utility variable, while

acting as the adversary for the sensitive variable. In particular, we measured the utility by

the conҥdence of the SP in the latent useful information. For privacy, we considered both

the conҥdence of the SP on the sensitive information and the MI between the sensitive

variable and the revealed measurements. We proposed active sequential data release
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policies to minimize the error probability on the true useful variable in a speedy manner,

while constraining the conҥdence of the SP or the MI leakage for the secret variable.

We provided a POMDP formulation of the problem, and used A2C-DRL for numerical

evaluations. Utilizing DNNs, we numerically evaluated the PUT curve of the proposed

policies for smoking activity dataset, where useful and sensitive activities are revealed

to the adversary through smartwatch sensors selected by the user. We examined the

effectiveness of the optimal belief-PDRP and MI-PDRP using an LSTM-based adversary

network. According to the numerical results, we have seen that the proposed data release

policies provide signiҥcant privacy advantage compared to random sensor selection. We

have also seen that constraining the MI does not necessarily hide the true value of the

secret at the same level as the belief-PDRP. However, this approach may be more useful

when the objective is not necessarily to hide the true value of the secret, but limit the

knowledge of the SP in an average sense. We have also shown that decision time gets

longer when the constraint on the secret is relaxed.



Chapter 6

Privacy Aware Communication Over

a Wiretap Channel

In this chapter, we study privacy-aware communication over a wiretap channel using

end-to-end learning. Differently from the previous chapters, here, the noisy channel

characteristics are exploited for privacy preserving. For instance, Alice wants to transmit

a source signal to Bob over a binary symmetric channel, while passive eavesdropper Eve

tries to infer some sensitive attribute of Alice’s source based on its overheard signal. Since

we usually do not have access to true distributions, we propose a data-driven approach

using VAE-based JSCC. We show through simulations with the colored MNIST dataset

that our approach provides high reconstruction quality at the receiver while confusing

the eavesdropper about the latent sensitive attribute, which consists of the color and

thickness of the digits. Finally, we consider a parallel-channel scenario, and show that

our approach arranges the information transmission such that the channels with higher

noise levels at the eavesdropper carry the sensitive information, while the non-sensitive

information is transmitted over more vulnerable channels.

6.1 Introduction

As mentioned in the previous chapters, secrecy and privacy in data communication and

data sharing systems have been studied extensively in the literature [13ҫ15, 18, 54, 57,

120, 121, 124, 128, 130, 131]. Although deep learning applications of data transmission

have also been well investigated, deep learning in wireless communications and physical

layer security has only recently become popular [132, 133]. The similarity between the

communication systems and end-to-end learning motivates the use of autoencoder based

neural network architectures, which simultaneously learn encoding and decoding [133,

106
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134]. Recently, it has been shown that end-to-end approaches can also be utilized for

physical layer secrecy [135ҫ138]. In a wiretap channel setting, these techniques exploit

the physical characteristics of the legitimate receiver’s channel over the eavesdropper’s,

and allow communication with secrecy guarantees.

In this chapter, we consider a wiretap channel scenario in which Alice wants to deliver

its source, Sm, to Bob over a noisy communication channel, while a passive eavesdropper

Eve tries to infer a latent sensitive information T about Sm. For example, Sm may be an

image or a video captured by Alice, while T may be the presence of a particular object or

an activity within the scene. We assume BSCs from Alice to both Bob and Eve. The aim

is to optimize the trade-off between the reconstruction distortion of source Sm at Bob

and the privacy leakage of T to Eve, which is measured by the MI between the sensitive

information and the noisy codewords observed by Eve. Note that, the wiretap channel

model considered here is normally studied in the context of secure communications.

Indeed, when T = Sm, our problem becomes a special case of the one studied in [139].

We, instead, call this privacy-aware communications since secrecy typically focuses on

making the information leakage negligible, while privacy tolerates some leakage in return

of utility [140]. Hence, we propose a PUT for communication over the wiretap channel

by balancing the information leakage to Eve and the distortion at the legitimate receiver,

i.e., Bob. We highlight that in the special case of identical channels to Bob and Eve, our

problem also reduces to the well-known privacy funnel [121] with a noisy communication

channel. In that scenario, Bob and Eve merge into a single receiver, to which we want

to send Sm with the highest ҥdelity while hiding T . Therefore, our problem generalizes

both the wiretap channel and the privacy funnel problems. Additionally, unlike in [139]

and [121], we follow a data-driven approach by using an encoder-decoder pair, represented

by a VAE network and a classiҥer which represents Eve.

Similar data-driven wiretap channel approaches have recently been proposed for Gaussian

channels in [135ҫ138]. However, [135, 137, 138] focus on channel coding, and [137, 138]

enforce coding structure to the encoder, while we carry out end-to-end joint learning

corresponding to a JSCC approach. In addition, unlike these works, we are interested in

hiding an underlying sensitive information that is correlated with, but different from the

original signal. The same problem is considered in [136] for an additive white Gaussian

channel using a generative adversarial network (GAN), which minimizes the distortion of

the reconstructed signal at the legitimate receiver while characterizing the privacy with a

constraint on the likelihood of the sensitive information. On the other hand, we propose

a PUT for a BSC wiretap channel using a VAE-based neural network architecture.

VAEs provide several advantages in this framework compared to standard autoencoders

[134]. They embed the input to a distribution rather than a point, and a random channel
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input is sampled from the latent distribution rather than being generated by the encoder

directly. Hence, VAEs are more aligned with the stochastic encoding approach employed

in information theoretic derivation of the wiretap channel capacity [57, 139]. Addition-

ally, VAEs provide signiҥcant control over how to model the latent distribution, since

the encoder is designed as a generative network. This is difficult to achieve within the

autoencoder framework, and also allows a tractable calculation of the variational approx-

imations of our cost function based on MI. Last but not least, it is challenging to optimize

autoencoders for communication over discrete channels due to their non-differentiability,

whereas sampling discrete codewords from a latent distribution is possible for VAEs.

We apply our approach to privacy-aware image transmission and show that while the

receiver can reconstruct high quality images, the eavesdropper is confused about the

sensitive information. We also consider a parallel-channel case in which Bob and Eve

might experience different noise levels over each channel. We show that our end-to-

end approach judiciously adjusts its transmission to exploit the more secure channels to

transmit the sensitive information.

6.2 System Model

We consider a communication scenario in which a user wants to reliably transmit data

from one point to another over a noisy communication channel, while a passive eaves-

dropper tries to infer a latent sensitive information through its noisy observation of the

transmitted signal. Figure 6.1 illustrates the communication problem via a simple exam-

ple. Alice wants to reveal her data Sm ∈ S, e.g., images of the applicants for a certain

job position, to Bob over a noisy channel. Eve eavesdrops through her own channel

and receives a noisy version of the transmitted signal by Alice. Eve’s goal is to extract

Alice’s sensitive information T ∈ T , e.g., ethic or socioeconomic background of the ap-

plicants, which is correlated with Sm but not explicitly observed by any of the involved

parties. Alice’s goal, on the other hand, is to encode the source such that it can be

reconstructed by Bob with high ҥdelity, while the sensitive information T cannot be

accurately detected by Eve. The source is encoded into codewords Xn ∈ {x1, . . . , xn},
where Xi ∈ X = {0, 1}, by a stochastic encoding function fenc(S

m) = Xn represented

by a conditional distribution P (Xn|Sm). Although the source Sm and the sensitive in-

formation T are correlated, encoding function depends only on Sm and not on T since

the realizations of T are not available to any of the parties at the inference time. In

other words, Alice is aware that Eve is interested in the sensitive information T , how-

ever, she cannot utilize T in encoding due to the lack of labels. This setting favors the

eavesdropper, and hence presents a more difficult problem.
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Figure 6.1: Communication system with wiretap channel.

We consider a BSC characterized by the joint conditional distribution P (Y n
B , Y

n
E |Xn),

YB,i, YE,i ∈ X . The noisy codeword received by Bob is decoded as fdec(Y
n
B ) = Ŝm, and

Eve receives its own noisy observation Y n
E .

We model the joint distribution of T, Sm, Xn, Y n
B , Ŝ

m, i.e., the r.v.’s for the sensitive

information, source signal, transmitted codeword, noisy codeword received by Bob, and

his reconstruction, respectively, using the following graphical model T − Sm → Xn →
Y n
B → Ŝm as:

P (T, Sm, Xn, Y n
B , Ŝ

m) = P (T, Sm)P (Xn|Sm)P (Y n
B , Y

n
E |Xn)P (Ŝm|Y n

B ). (6.1)

The two BSCs independently ѕip each bit in the transmitted codeword with crossover

probabilities ϵB and ϵE at Bob’s and Eve’s channels, respectively. Hence, the joint

probability of the channel can be decomposed as follows:

P (Y n
B |Xn) =

n
∏

i=1

ϵ
xi⊕yB,i

B (1− ϵB)xi⊕yB,i⊕1, (6.2)

P (Y n
E |Xn) =

n
∏

i=1

ϵ
xi⊕yE,i

E (1− ϵE)xi⊕yE,i⊕1, (6.3)

where ⊕ represents the exclusive OR operation, and xi, yB,i and yE,i are the ith bits of

Xn, Y n
E and Y n

B , respectively.

We formulate the optimization problem as

minimize
fenc,fdec

E[d(Sm, Ŝm)]− I(Sm;Y n
B ) + λI(T ;Y n

E )

subject to T, Sm → Xn → Y n
B → Ŝm, (6.4)
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where λ is the tuning parameter for the privacy level. Here, in addition to the recon-

struction distortion between Sm and Ŝm, measured by d(·, ·), we also maximize the MI

between the user’s data Sm and the noisy codewords observed by Bob, i.e., I(Sm;Y n
B )

for improved utility. While minimizing the distortion E[d(Sm, Ŝm)] improves pixel-wise

data reconstruction quality, we have observed in our simulations that maximizing the

MI between the source signal and Bob’s channel output enhances the information ѕow

and helps with capturing the high level features at the receiver side.

Exact calculation of the MI is difficult when the data distribution is not known. Hence, we

approximate I(Sm;Y n
B ) and I(T ;Y n

E ) via their variational representations [127]. Due to

the intractability of the true posteriors P (Sm|Y n
B ) and P (T |Y n

E ), we use their amortized

variational approximations fenc(Y
n
B ) = P (Ŝm|Y n

B ) and feve(Y
n
E ) = P (T̂ |Y n

E ), respec-

tively. Here, we assume that the eavesdropper tries to predict the sensitive information

T as feve(Y
n
E ) = T̂ . We can write I(Sm;Y n

B ) as follows:

I(Sm;Y n
B ) = H(Sm)−H(Sm|Y n

B ) (6.5)

= H(Sm)+KL(P (Sm|Y n
B )||fdec(Y n

B )) + E[log fdec(Y
n
B )] (6.6)

≥ H(Sm)+max
fdec

E[log fdec(Y
n
B )], (6.7)

where KL(·∥·) denotes the KL divergence, H(Sm) is constant, (6.5) follows from the def-

inition of MI, (6.6) holds for any distribution fdec(Y
n
B ) over Sm given the values in Y n

B .

Finally, (6.7) follows from the fact that maximum is attained when the decoder is opti-

mum, i.e., fdec(Y
n
B ) = P (Sm|Y n

B ). Likewise, the information leakage to the eavesdropper

becomes

I(T ;Y n
E ) = H(T )−H(T |Y n

E ) (6.8)

= H(T )+KL(P (T |Y n
E )||feve(Y n

E )) + E[log feve(Y
n
E )] (6.9)

≥ H(T )+max
feve

E[log feve(Y
n
E )], (6.10)

where H(T ) is a constant term, (6.8), (6.9) and (6.10) follow similarly to (6.5), (6.6) and

(6.7), respectively. Here, (6.7) is attained when the decoder is optimum since we max-

imize I(Sm;Y n
B ) in our objective. However, (6.10) is not attained even if the classiҥer

representing the eavesdropper is optimum, because we minimize I(T ;Y n
E ) in the objec-

tive. This is due to intractability of representing I(T ;Y n
E ) with an upper-bound [141].

On the other hand, our numerical results indicate that although we do not optimize

exact bounds for MI terms, in practice our model still learns an effective PUT.
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Figure 6.2: PUT curve of our privacy-aware JSCC mechanism for ϵB = 0.1 and
ϵE = {0.2, 0.3}.

6.2.1 Parallel-Channel Scenario

In this section, we assume the codewords are transmitted over parallel channels with

different noise levels, e.g., due to OFDM. Our setting represents the scenario in which

the transmitter divides the total available bandwidth into non-overlapping bands carrying

separate portions of the data. Each of the parallel bands face a different noise level for

both the receiver and the eavesdropper, i.e., (ϵBi
, ϵEi

). For instance, in a three-channel

scenario with equal bandwidths n/3, crossover probabilities ϵB = {ϵB1
, ϵB2

, ϵB3
} and

ϵE = {ϵE1
, ϵE2

, ϵE3
}, channel probabilities can be written as

P (Y n
B |Xn) =

n
3
∏

i=1

ϵ
xi⊕yB,i

B1
(1− ϵB1

)xi⊕yB,i⊕1

2n
3
∏

j=n
3
+1

ϵ
xj⊕yB,j

B2
(1− ϵB2

)xj⊕yB,j⊕1

×
n
∏

k= 2n
3
+1

ϵ
xk⊕yB,k

B3
(1− ϵB3

)xk⊕yB,k⊕1 (6.11)

for the receiver, and as follows for the eavesdropper:

P (Y n
E |Xn) =

n
3
∏

i=1

ϵ
xi⊕yE,i

E1
(1− ϵE1

)xi⊕yE,i⊕1

2n
3
∏

j=n
3
+1

ϵ
xj⊕yE,j

E2
(1− ϵE2

)xj⊕yE,j⊕1

×
n
∏

k= 2n
3
+1

ϵ
xk⊕yE,k

E3
(1− ϵE3

)xk⊕yE,k⊕1. (6.12)

We solve (6.4) using the channel probabilities (6.11) and (6.12). We want our solution for

(6.4) to control the transmission through the channels such that the sensitive information
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T is transmitted over the channels in which Eve experiences high noise, while the rest

of the source is transmitted over the channels Bob experiences low noise, independent

of Eve’s channel. We numerically verify that the proposed VAE-based encoder indeed

satisҥes these expectations.

6.3 Numerical Results

We consider the wiretap channel in Figure 6.1, where the encoder and decoder at Alice

and Bob are represented by a VAE, while Eve employs a classiҥer. For the encoder-

decoder pair, we employed the network structure ҡNECSTә proposed in [142]. We de-

signed our privacy aware JSCC network by incorporating our classiҥer based eaves-

dropper in NECST. We used colored MNIST handwritten digits as Sm for m = 32× 32

pixels, and color and thickness of the digits as the sensitive information T ∈ T = {(R, 0),
(R, 1), (R, 2), (G, 0), (G, 1), (G, 2), (B, 0), (B, 1), (B, 2)}, where R, G and B denote red,

green and blue colors, while 0, 1 and 2 represent thin, medium and thick digits, respec-

tively. We set the total channel bandwidth to n=200 bits.

6.3.1 Single Channel

We ҥrst consider a single channel scenario. In Figure 6.2, information leakage I(T ;Y n
E )

and Eve’s classiҥcation accuracy are shown with respect to ℓ2 distortion per image.

Dashed and straight lines represent the cases with ϵE = 0.2 and ϵE = 0.3, respectively,

while we have ϵB = 0.1 for both cases. Data points are taken at λ = {0, 5, 10, 20}.
Figure 6.2 shows that the information leakage about the sensitive information decreases

as the image distortion increases, which is expected due to the PUT. Moreover, noisier

eavesdropper channel leaks less information at the same level of distortion. Similar trend

can be seen for Eve’s accuracy. In Figure 6.2, we also observe that a MI gap as small as

0.06 corresponds to 20% accuracy gap between ϵE = 0.2 and ϵE = 0.3 cases.

For illustration purposes, we trained an additional decoder on the noisy bits received

by Eve (Y n
E ) with the same structure as Bob’s decoder. Figure 6.3 depicts the original

images, reconstructed images by Bob and Eve, respectively, from top to bottom. We can

see that in the absence of privacy (λ = 0), both Bob and Eve can reconstruct the images

rather accurately, while, thanks to the employed JSCC approach, Bob’s better channel

allows it to have better ҥdelity. On the other hand, when privacy is imposed (λ = 20),

we can see that Eve cannot recover neither the colour nor the thickness information. On

the other hand, we can see that this information is available to Bob; and hence, it has

been successfully hidden from Eve while being available in the transmitted signal.
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(A) λ = 0

(B) λ = 20

Figure 6.3: Original images and their reconstructions by Bob and Eve from top to
bottom, respectively, for ϵB = 0.1, ϵE = 0.3.

Table 6.1: Information leakage and Eve’s classification accuracy for the sensitive r.v.
T̂ and individual sensitive attributes at each channel for λ = 10

Channels Ch1 Ch2 Ch3 Ch4

I(T ;Y n
E ) 1.0836 1.5703 0.0689 0.6411

Accuracy, T 13.65% 31.85% 16.15% 19.6%

Accuracy, Color 34.5% 62.35% 41.2% 45.25%

Accuracy, Thickness 35.75% 48.65% 38.05% 38.55%

6.3.2 Parallel Channels

Next, we consider a parallel-channel scenario, where the signal is transmitted over mul-

tiple channels with different noise levels. We use 4 parallel channels each with a band-

width of n/4 = 50 bits. Error probability pairs for Bob’s and Eve’s channels are set as

(ϵB, ϵE) = {Ch1 : (0.1, 0.1),Ch2 : (0.001, 0.2),Ch3 : (0.2, 0.001),Ch4 : (0.001, 0.001)}.
Table 6.1 shows the information leakage, Eve’s classiҥcation accuracy on T , and sepa-

rately on the sensitive attributes color and thickness for each channel. Accuracy, Color

and Accuracy, Thickness are calculated as the success of the classiҥcations for only the

color and only the thickness, respectively. Our privacy-aware generative network obtains

the PUT by minimizing the information leakage of the sensitive attributes and the dis-

tortion. This leads to smaller information leakage at the best quality channel of Eve,

i.e., Ch2, and larger at the worst one, i.e., Ch3. Eve’s classiҥcation accuracy of T , and

individual color and thickness attributes, are the highest for Ch2 and lowest for Ch1.

We observed that Ch1 accuracy is low because the classiҥer is confused between blue

and green, as well as the medium and thick, but still has high accuracy for red and thin

attributes. On the other hand, Ch3 has low accuracy for all the attributes. This leads

to the difference between the leakage and accuracy results for Ch1 and Ch3.
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Figure 6.4: Original images and reconstructions by Bob, Eve, Bob’s individual chan-
nels (Ch1-4), and Eve’s channels (Ch1-4), respectively, from top to bottom, for λ = 10.

In Figure 6.4, we show the original and reconstructed images by Bob, Eve, Ch1 to Ch4

of Bob, and Ch1 to Ch4 of Eve, respectively, from top to bottom. First three rows show

similar results with the single channel case, i.e., Eve is confused about the color and

thickness of the digits, while Bob can reconstruct at high quality. Moreover, Ch1 and

Ch3 do not have meaningful reconstructions for either Bob or Eve. This is because Eve

faces less noise in these channels, which might lead to larger leakage. Hence, our network

minimizes the information ѕow through these channels. Ch2, on the other hand, carries

more information than Ch4 since it can better hide the sensitive attributes from Eve

while maximizing the information transmission for Bob.

6.4 Conclusions

We proposed a VAE-based privacy-aware communication scheme over a wireless wiretap

channel. In our simulation results, we showed that our end-to-end learning approach

provides minimally distorted source transmission with maximum channel capacity while

minimizing the information leakage about sensitive information to an eavesdropper. We

also showed that our approach balances the information ѕow in a parallel-channel scenario

such that the PUT is obtained according to the receiver’s and eavesdropper’s channel

noises.



Chapter 7

Adversarial Robustness for Security

Applications

In this chapter, we consider the robustness of DNNs in security-critical applications,

such as cyber-security, ҥnance and social networks. We move our focus from the pas-

sive adversary, e.g., the SP/UP or the eavesdropper, to an active adversary which tries

to deliberately fool a neural network. Besides their effectiveness in privacy-security

related applications, DNN’s vulnerability to adversarial examples (AEs) has recently

been an emerging topic in the literature. However, most work mainly focus on com-

puter vision (CV) domain, while security related domains still remain under-explored.

This chapter is based on the idea that despite being sufficient for CV domain, craft-

ing AEs using uniform perturbations do not result in realistic AEs in domains such as

malware, ҥnance, and social networks. For these types of applications, features typi-

cally have some semantically meaningful dependencies. The key idea of our proposed

approach is to enable non-uniform perturbations that can adequately represent these

feature dependencies during adversarial training. We propose using characteristics of

the empirical data distribution, both on correlations between the features and the im-

portance of the features themselves. Using experimental datasets for malware classiҥ-

cation, credit risk prediction, and spam detection, we show that the proposed approach

is more robust to real-world attacks. Finally, we present robustness certiҥcation uti-

lizing non-uniform perturbation bounds, and show that non-uniform bounds achieve

better certiҥcation. Our code is available at https://github.com/amazon-research/

adversarial-robustness-with-nonuniform-perturbations
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(A) (B) (C)

Figure 7.1: Classification boundaries from adversarial training with uniform pertur-
bation limits for (A) ∥δ∥2 ≤ 0.5, (B) ∥δ∥2 ≤ 0.8 and non-uniform perturbation limits

for (C) |δx| ≤ 0.5 and |δy| ≤ 0.8. The figures are obtained by modifying [3].

7.1 Introduction

In this chapter, we mainly focus on realistic AE generation against real-world attacks

in under-explored domains, such as malware, ҥnance and social networks. In the well

studied CV domain, the adversary’s goal is to generate perturbed images that cause mis-

classiҥcations by a DNN. It is often assumed that limiting a uniform norm-ball constraint

results in perturbations that are imperceptible to the human eye. However in other ap-

plications such as fraud detection [143], spam detection [144], credit card default predic-

tion [145, 146] and malware detection [147ҫ149], norm-bounded uniform perturbations

may result in unrealistic transformations. Perturbed samples must comply with certain

constraints related to the domain, hence preventing us from borrowing these assumptions

from CV. These constraints can be on semantically meaningful feature dependencies, ex-

pert knowledge of possible attacks, and immutable features [148, 150]. This chapter

proposes a methodology to generate non-uniform perturbations that takes into account

the characteristics of the empirical data distribution.

AT is a state-of-the-art approach for empirical defenses as mentioned in Section 2.3.

Most approaches for optimizing δ perturbations usually assume that all the input fea-

tures require equal levels of robustness, however, this might not be the case for many

applications as mentioned earlier. Consider the 2D toy example of binary classiҥcation

in Figure 7.1. Figure 7.1 illustrates adversarially robust decision boundaries with red
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and blue regions, and l2-norm perturbation limits around the data points with black

circles. While Figure 7.1A shows that adversarially trained model with input constraint

∥δ∥2 ≤ 0.5 gains complete robustness against input perturbations, in Figure 7.1B there is

loss of clean performance due to overlapping regions of increased allowed perturbations.

Although the constraint ∥δ∥2 ≤ 0.5 might provide sufficient robustness in x-axis, there

are still uncovered regions in y-axis in Figure 7.1A. On the other hand, when we ҥt the

allowable perturbations to y-axis by choosing a larger perturbation ∥δ∥2 ≤ 0.8, x-axis

suffers from unnecessary overlaps. This can be solved by customizing the perturbation

constraint such that the perturbation radius in x-axis follows |δx| ≤ 0.5 and the radius in

y-axis follows |δy| ≤ 0.8, which results in an ellipsoid perturbation region in 2D as shown

in Figure 7.1C. This toy example highlights the advantage of a non-uniform constraint

across both axes.

Uniformly perturbing all pixels in an image is often imperceptible to the human eye, but

uniform perturbations are wholly inappropriate in many tabular datasets, where positive

and negative correlations are strong, consistent, and meaningful. For example, in the

German dataset used in Section 7.3.2, we ҥnd the largest positive correlation (0.62)

between the amount of credit and the payment duration, while the largest negative

correlation (-0.31) is between the checking account status and the credit risk score. Both

relationships are intuitive, and both would be broken by applying uniform perturbations.

The intuition behind the need for non-uniform constraints is apparent across many in-

dustrial applications. A common cybersecurity application is malware detection, which

identiҥes if an executable ҥle is benign or malicious. Unlike images, diverse and seman-

tically meaningful features are extracted from the executable ҥle and are passed to a

machine learning model. To maintain the functionality of an executable ҥle during an

adversarial attack, certain features may be immutable and perturbations may result in

an unrealistic scenario. For example in the Android malware space, application permis-

sions, such as permission to access a phone’s location service, are required for malicious

functionality and cannot be perturbed [147]. In a ҥnance scenario where customer credit

card applications are evaluated by machine learning models, a possible set of features

include age, gender, income, savings, education level, number of dependents, etc. In this

type of dataset there are clear dependencies between features, for example the number

of dependents has a meaningful correlation with age. When detecting spammers within

social networks, features are extracted from accounts and may include the length of the

username, length of user description, number of following and followers as well as the

ratio between them, percentage of bidirectional friends, etc. Similar to the previous ҥ-

nance example, there is a meaningful correlation between features such as the percentage

of bidirectional friends and the ratio of followers.
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In all of these scenarios, non-uniform perturbations can be used to maintain these cor-

relations and semantically meaningful dependencies resulting in more realistic AEs. In

this chapter, we propose adversarial training with these more realistic perturbations to

increase the robustness against real-world adversarial attacks. Speciҥcally, our contribu-

tions are:

• Instead of considering an allowed perturbation region where all the features are treated

uniformly, i.e., ∥δ∥p ≤ ϵ, we consider a transformed input perturbation constraint, i.e.,

∥Ωδ∥p ≤ ϵ where Ω is a transformation matrix, which takes the available information

into account, such as feature importance, feature correlations and/or domain knowl-

edge. Hence, the transformation in the norm ball constraint results in non-uniform

input perturbations over the features

• For various applications such as malware detection, credit risk prediction and spam

detection, we show that robustness using non-uniform perturbations outperforms the

commonly-used uniform approach

• To provide provable guarantees for non-uniform robustness, we modify two known

certiҥcation methods, linear programming and randomized smoothing, to account for

non-uniform perturbation constraints.

7.2 Non-uniform Adversarial Perturbations

In adversarial training, the worst case loss for an allowed perturbation region is minimized

over parameters of a function representing a DNN. The objective of the adversary can

be written as the inner maximization of adversarial training:

maximize
δ∈∆ϵ,p

ℓ(fθ(x+ δ), y), (7.1)

where x ∈ X and y ∈ Y are dataset inputs and labels, ∆ϵ,p = {δ : ∥δ∥p ≤ ϵ} is an ℓp

ball of radius ϵ which deҥnes the feasible perturbation region. Standard PGD follows

steepest descent which iteratively updates δ in the gradient direction to increase the loss:

δt+1 = δt + α
∇δℓ(fθ(x+ δt), y)

∥∇δℓ(fθ(x+ δt), y)∥p
(7.2)

at iteration t, and then it projects δ to the closest point onto the ℓp ball:

P∆ϵ,p(δ) := argmin
δ′∈∆ϵ,p

∥δ − δ′∥22 = ϵ
δ

max{ϵ, ∥δ∥p} (7.3)

where the distance between δ and δ′ is the Euclidean distance, and the projection cor-

responds to normalizing δ to have a maximum ℓp norm which is equal to ϵ. Now, we
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introduce an adversarial constraint set that non-uniformly limits adversarial variations

in different, potentially correlated dimensions, by

∆̃ϵ,p = {δ : ∥Ωδ∥p ≤ ϵ} (7.4)

where Ω ∈ R
d×d. In our approach, δ is updated by equation (7.2) similar to the standard

PGD, however, it is projected back to a non-uniform norm ball satisfying ∥Ωδ∥p ≤ ϵ.

The corresponding projection operator will then be:

P∆̃ϵ,p
(Ωδ) =











ϵ δ
∥Ωδ∥p

if ∥Ωδ∥p > ϵ

δ otherwise.
(7.5)

The choice of Ω depends on how we model the expert knowledge or feature relationships.

The following are our choices for the non-uniform perturbation sets.

7.2.1 Mahalanobis Distance (MD)

Euclidean distance between two points in a multi-dimensional space is a useful metric

when the vectors have isotropic distribution (i.e. radially symmetric). This is because

the Euclidean distance assumes each dimension has same scale (or spread) and are uncor-

related to other dimensions. However, isotropy is usually not the case for real datasets in

which different features might have different scales and can be correlated. Fortunately,

MD accounts for how the features are scaled and correlated to one another [151]. Hence,

it is a more useful metric if the data has non-isotropic distribution.

By formal deҥnition, MD between vectors z, z′ ∈ R
d is denoted by dM (z, z′|M) :=

√

(z − z′)TM(z − z′), where M ∈ R
d×d is a positive semi-deҥnite matrix which can be

decomposed as M = UTU , for U ∈ R
d×d. The dissimilarity between two vectors from a

distribution with covariance Σ can be measured by selecting M = Σ−1. If feature vectors

of a dataset are uncorrelated and have unit variances, their covariance matrix is Σ = I,

which reduces their MD to Euclidean distance.

We are interested in the distance between the original and the perturbed sample. Since

we assume all perturbations are additive, as common practice, the distance term we

consider is
√
δTMδ. For a generalized MD in ℓp norm, selecting Ω = UT corresponds

to the perturbation set ∆̃ϵ,p = {δ : ∥UT δ∥p ≤ ϵ} which generates AEs with feature

correlations similar to the original dataset.

Robustness of an adversarially trained model is directly related to how realistic the

generated AEs are during training. Now, we explore implications of selecting ℓ2 MD to
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deҥne the limits of the perturbation set. To ensure the validity of the AEs, we consider

the notion of consistency of the generated sample with real samples. [146] introduced the

notion of ϵ-inconsistency to quantify how likely an AE is. With slight change in their

notation, we deҥne γ-consistency as follows:

Definition 7.1. For a consistency threshold γ > 0, an AE is γ-consistent if f (x | y) ≥
γ, where x ∈ R

d, and f is a probability density function of a conditional Gaussian

distribution with zero mean and covariance matrix Σy.

Theorem 7.2. If the AEs are generated according to MD constraint, then their γ-

consistency has a direct relation to ϵ such that

0 <
√

2C − 2 log γ ≤ ϵ. (7.6)

where C = − log(2π)d/2|Σy|1/2, d is the dimension of x, and
√

δTΣ−1
y δ ≤ ϵ.

See Appendix A.1 for the proof. Theorem 7.2 implies that there is a direct relationship

between limiting the MD of δ and ensuring consistent samples when the data is Gaussian.

In other words, when the ℓ2 MD of the perturbations gets smaller, AEs become more

consistent.

7.2.2 Weighted Norm

When Ω is a diagonal matrix, inner maximization constraint simply becomes the weighted

norm of δ limited by ϵ, and the weights are denoted by {Ωi,i}di=1. Projection of δ under

the new constraint corresponds to projection onto an ℓp norm ball of radius ϵ
Ωi,i

for ith

feature. These weights can be chosen exploiting domain, attack or model knowledge. For

instance, more important features can be allowed to be perturbed more than the other

features which have less effect on the output score of the classiҥer. This knowledge might

come from Pearson’s correlation coefficients [145] between the features of the training

data and the corresponding labels, or Shapley values [152] for each feature.

Using Pearson’s correlation coefficient of each feature with the corresponding target

variable, i.e., |ρi,y| for ith feature and output y, we let larger perturbation radii for more

correlated features with the output. Due to the inverse relation between Ωi,i and the

radius of the norm ball, for ρ̄i,y = 1
|ρi,y |

we select Ω =
diag({ρ̄i,y}

d
i=1

)

∥{ρ̄i,y}di=1
)∥2

. Similarly, using

Shapley values to represent feature importance, we deҥne s̄i = 1
|si|

, where si is the

Shapley value of feature i. Then, we choose Ω =
diag({s̄i}

d
i=1

)

∥{s̄i}di=1
)∥2

by following the intuition

that more important features should have larger perturbation radii.
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In the malware domain, expert knowledge might help to rule out speciҥc type of attacks

crafted on immutable features due to feasibility constraints. This can be modelled by the

proposed weighted norm constraint as masking the perturbations on immutable features.

Hence, non-uniform perturbation approach enables various transformations on the attack

space for robustness against realistic attacks.

7.3 Experimental Results

Here, we present experimental results to evaluate robustness of DNNs against adversar-

ial attacks for binary classiҥcation problems on three applications: malware detection,

credit risk prediction, and spam detection. We compare PGD with non-uniform per-

turbations during AT with PGD proposed in [24] based on uniform perturbations. For

all applications, we evaluate our defense mechanisms on adversarial attacks proposed by

other works. We use a machine with an Intel Xeon E5-2686 v4 @ 2.3 GHz CPU, and 4

Nvidia Tesla V100 GPUs.

In all applications, we use a fully-connected neural network model composed of 4 densely

connected layers with the ҥrst three using ReLU activations followed by a softmax acti-

vation in the last layer. After each of the ҥrst three layers, we apply 20% Dropout rate

for regularization during training. We use 5 random initialization for malware and 10

for both credit risk and spam detection use-cases to report average results.

For pre-processing, we use standardization as a normalization method, which is a common

practice with many machine learning techniques.Min-max scaling transforms all features

into the same scale while standardization, which is recommended in presence of outliers

[153], only ensures zero mean and unit standard deviation. This approach does not

guarantee same range (min and max) for all features. As a result, it is possible that the

features have different scales even after normalization.

Note that our goal is not to design the best possible neural network but instead compare

the uniform perurbations [24] with various non-uniform perturbations during AT for a

given DNN.

Adversarial training (AT): We perform AT in all use-cases by applying ℓ2-norm PGD

for uniform perturbation sets, i.e., ∆ϵ1,2 = {δ : ∥δ∥2 ≤ ϵ1}, and non-uniform perturbation

sets, i.e., ∆̃ϵ2,2 = {δ : ∥Ωδ∥2 ≤ ϵ2}. Since potential adversaries are not interested

in fooling the classiҥers with negative class (target class) samples, δ perturbations are

only applied to the positive classes during AT as commonly used especially in malware

detection [148]. Positive classes are the malicious class in malware detection, bad class

in credit risk prediction, and spammer class in spam detection. Moreover, for the sake
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of clean accuracy within the positive class, adversarial perturbations are applied to 90%

of the positive samples during training. Such hybrid approach where a weighted clean

adversarial loss are optimized at once is common in literature [154].

To model the expert knowledge with diagonal Ω, we use Pearson’s correlation coefficient,

Shapley values, and masking to allow perturbation only in mutable features. To compute

Shapley values, we use SHAP [155] which utilizes a deep learning explainer. We also

consider AT under the MD constraint, and select Ω=UT such that UTU=Σ−1
y considering

two cases; Σy is the covariance matrix of the entire training data, i.e., y={0, 1}, and Σy

is only for the negative (target) class y=0. We call the models after AT with non-

uniform perturbations according to their Ω selection, e.g., NU-δ-Pearson for Pearson’s

coefficients, NU-δ-SHAP for Shapley values, NU-δ-Mask for masking, NU-δ-MD for MD

using full covariance matrix and NU-δ-MDtarget for MD using the covariance for only

y=0. The choice Ω=I corresponds to AT with uniform perturbation constraint, which

we call Uniform-δ.

7.3.1 Malware Use-case

First, we consider a binary classiҥcation problem for malware detection using the EM-

BER dataset [156]. EMBER is a feature-based public dataset which is considered a

benchmark for Windows malware detection. It contains 2381 features extracted from

Windows PE ҥles: 600K labeled training samples and 200K test samples. The EMBER

dataset consists of two types of features:

1. Parsed features are extracted after parsing the portable executable (PE) ҥle.

Parsed features include 5 different groups:

• General file information: virtual size of the ҥle; number of imported/exported

functions and symbols; whether the ҥle has a debug section, thread local storage,

resources, relocations, or a signature.

• Header information: timestamp in the header; target machine; list of image and

DLL characteristics; target subsystem; ҥle magic; image, system and subsystem

versions; code, headers and commit sizes (hashing trick).

• Imported functions : functions extracted from the import address table (hashing

trick)

• Exported functions : list of exported functions (hashing trick).

• Section information: name, size, entropy, virtual size, and a list of strings rep-

resenting section characteristics (hashing trick).

2. Format-agnostic features do not require parsing the PE ҥle structure and in-

clude:
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• Byte histogram: counts of each byte value within the ҥle (256 integer values).

• Byte-entropy histogram: quantized and normalized of the joint distribution

p(H,X) of entropy H and byte value X (256 bins).

• String information: number of strings and their average length; a histogram of

the printable characters within those strings; entropy of characters across all

printable strings.

Given a malware sample, an adversary’s goal is to make the DNN conclude that a mali-

cious sample is benign. We also consider PDF malware detection. We use the extracted

features of the PDF malware classiҥcation dataset and its attacked samples provided

in [157]. The repository contains 110841 samples with 135 features that are extracted

by PDFrate-R [158].

Attacks used for evaluation: In the malware domain, test-time evasion attacks can

be classiҥed as feature-space and problem-space attacks. While the former crafts AEs by

modifying the features extracted from binary ҥles, the latter directly modiҥes malware

binaries making sure of the validity and inconspicuousness of the modiҥed object. We

evaluate the robustness of our model against evasion attacks which are crafted in problem-

space, i.e., on PE ҥles. For Windows malware, we incorporate the most successful attacks

[159] from the machine learning static evasion competition [160]. Since the EMBER

dataset only contains the extracted features of a ҥle, a subset of malware binaries used for

AE generation are obtained from VirusTotal [161] using the SHA-256 hash as identiҥer.

Below is a detailed explanation about the winner attacks [159] of malware competition

[160].

Greedy Attack: Bytes in a range 256 are added iteratively to the malware binaries

to make sure the prediction score for a known model lowers and none of the packing,

functionality, or anti-tampering checks are affected. Byte addition is stopped when the

prediction score gets lower than a threshold value or the ҥle size exceeds 5MB. We

generate 1000 adversarial examples from the malicious binaries of EMBER test set for

each target model, such as standard trained neural network, adversarially trained model

with ℓ2-PGD for ϵ = 5 and LGBM model which were provided as benchmark together

with EMBER dataset [156]; and we call these adversarial example sets GNN, GAdv and

GLGBM, respectively.

Constant Padding Attack: A new section is created in the binary ҥle and ҥlled with

a constant value of size 10000. This attack is applied to 2000 binaries from EMBER

malicious test set for constants ҡ169ә and ҡ0ә, and we call these adversarial example sets

C1 Pad. and C2 Pad., respectively.
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0.0 0.2 0.4 0.6 0.8 1.0
Average || ||2

62

64

66

68

70

De
fe

ns
e 

Su
cc

es
s R

at
e,

 %

Uniform 
Non-uniform  Pearson
Non-uniform  SHAP
Non-uniform  MD
Non-uniform  MDtarget

(B) Credit Risk Use-

case

0.2 0.4 0.6 0.8 1.0
Average || ||2

40

50

60

70

80

90

De
fe

ns
e 

Su
cc

es
s R

at
e,

 %

Uniform 
Non-uniform  Pearson
Non-uniform  SHAP
Non-uniform  MD
Non-uniform  MDtarget

(C) Spam Detection
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Figure 7.2: Defense success rate of ℓ2-PGD AT against the problem-space attacks,
where all non-uniform perturbation defense approaches outperform the uniform ap-

proach for all use-cases.

String Padding Attack: Strings of size 10000 from a benign ҥle, such as Microsoft’s

End User License Agreement (EULA), are added to a new section created in the malware

binary. We generate 2000 adversarial examples, which we call set Str. Pad., by string

padding EMBER malicious test set.

We observe that these problem-space attacks, which add various bytes to a ҥle without

modifying the core functionality, affect only the feature groups ҡByte Histogramә, ҡByte

Entropy Histogramә and ҡSection Informationә. Experts aware of these byte padding

attacks understand which features can be manipulated by an attacker. In addition to

the previous AT methods, we represent this best case expert knowledge by Ω = Imask,

which is an identity matrix with non-zero diagonal elements only for ҡByte Histogramә,

ҡByte Entropy Histogramә and ҡSection Informationә features. That is, the model is

trained using PGD perturbations applied only to these features, and we call it NU-δ-

Mask. Our masking approach for the immutable features is similar to the conserved

features in [162].

For PDF malware classiҥcation, we use a problem space attack called EvadeML [163]. It

allows adding, removing and swapping objects, hence it is a stronger attack than most

other problem space attacks in the literature, which typically only allow addition to

preserve the malicious functionality.

Numeric results: To make a fair comparison between uniform and non-uniform ap-

proaches, ϵ for each method is selected such that their average distortion budgets, i.e.,

∥δ∥2, are approximately equal. For Windows malware classiҥcation, we test the detec-

tion success of adversarially trained models with 9000 AE sets generated by the problem-

space attacks described previously. Figure 7.2A illustrates the average defense success

rate against various problem-space attacks and shows that non-uniform perturbation ap-

proaches outperform the uniform perturbation in all cases. Moreover, NU-δ-MDtarget

performs closest to the best case expert knowledge NU-δ-Mask for all cases except when
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Table 7.1: Malware Use-case: Average number of successful evasions on standard
training, uniform and non-uniform ℓ2-PGD adversarial trainings by the adversarial
example sets out of 1000 samples for approximately equal ∥δ∥2. Defense success rates
shown in Table 7.2 and Figure 7.2A are calculated by averaging the success rate over

these individual attacks results.

Model ||δ||2 GNN GLGBM GAdv C1 Pad. C2 Pad. Str. Pad.

Std. Training - 832 217 337 168 35 123

Uniform-δ 0.1 472.6 105 249.6 66.3 37.6 114.9

NU-δ-Mask 0.1 408.5 89.2 241.7 46.2 35.2 74.5

NU-δ-SHAP 0.1 392.8 86.8 206.8 64.9 39 104.7

NU-δ-Pearson 0.1 417.6 92.8 221.4 45.1 38.2 74.5

NU-δ-MD 0.1 413 101 216 56 38.7 81.8

NU-δ-MDtarget 0.1 391.6 84.2 234.6 52.2 38.7 79

Uniform-δ 1 447.2 111.8 273.8 50.1 38.5 83.4

NU-δ-Mask 1 299.4 88.2 223.4 58.3 40 91

NU-δ-SHAP 1 359.7 82.2 244.5 53.8 33.6 81.7

NU-δ-Pearson 1 304 96.2 265 60.5 38.8 99.2

NU-δ-MD 1 373.2 89.5 244 54.7 37 81.8

NU-δ-MDtarget 1 360.8 103.4 246.6 45.1 36.7 72.4

Uniform-δ 6.7 231.5 129 333 37.7 38 58.7

NU-δ-Mask 6.7 104.4 68.4 153.4 43.4 47.3 70.8

NU-δ-SHAP 6.7 170 113 302.5 32.7 41.2 39.7

NU-δ-Pearson 6.7 213 78 304 38 38 48.6

NU-δ-MD 6.7 234 91 314 27.7 31 34.2

NU-δ-MDtarget 6.7 196 61 301 37.5 33.5 36.5

Uniform-δ 11 177 77.6 278 37.8 41.3 44.6

NU-δ-Mask 11 94.4 45.2 160.8 30.8 43.7 50.5

NU-δ-SHAP 11 178 62 296 32 40 35

NU-δ-Pearson 11 142 75.7 273 31.6 40.7 42.8

NU-δ-MD 11 195 46 247 40 32.5 43

NU-δ-MDtarget 11 122.7 44 251.7 34 41 48

Uniform-δ 18 152.2 57.3 234 42.7 51.6 52.3

NU-δ-Mask 18 44.5 20.2 116.5 27.1 48.2 47.2

NU-δ-SHAP 18 159.4 48.6 207.2 53.1 59.6 61.3

NU-δ-Pearson 18 154.2 49 220.4 42.6 61.7 47.2

NU-δ-MD 18 144.2 49.2 204.6 53 54 63.8

NU-δ-MDtarget 18 132.4 52.4 215 50.6 53.4 53.2

Uniform-δ 25 233.2 58 228 59.3 51 68.4

NU-δ-Mask 25 25 14.8 108 21.8 48.9 34.8

NU-δ-SHAP 25 193.8 53.4 226.2 44.7 56.9 58.7

NU-δ-Pearson 25 158.2 59.5 191.2 67.6 65.6 75.8

NU-δ-MD 25 199.7 54 248.5 58.6 59.5 59.7

NU-δ-MDtarget 25 210 55 225.6 57.7 56.4 60.5

∥δ∥2 = 25. The advantage of selecting Σ from benign samples versus selecting from the

entire dataset is that the direction of perturbations are led towards the target class, i.e.

benign samples, for NU-δ-MDtarget. We also do not observe a signiҥcant performance

difference between NU-δ-Pearson and NU-δ-SHAP, while NU-δ-MD only differs from

the two for ∥δ∥2 = 25. We refer to Table 7.1 for detailed attack performances and to

Table 7.2 for defense S.R. results with clean accuracy.
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Table 7.2: Malware Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform ℓ2-PGD adversarial trainings
with EMBER dataset for approximately equal ∥δ∥2. Non-uniform perturbation de-
fense approaches outperform the uniform perturbation for all cases against adversarial

attacks.

Model ∥δ∥2 Clean Ac., % Defense S.R., %

Std. Training - 96.6 73

Uniform-δ 0.1 96.2 82.7± 0.88

NU-δ-Mask 0.1 96.2 85.3± 0.25

NU-δ-SHAP 0.1 96.2 85.2± 0.39

NU-δ-Pearson 0.1 96.1 85.3± 0.94

NU-δ-MD 0.1 96.3 85± 0.99

NU-δ-MDtarget 0.1 96.2 85.4± 0.80

Uniform-δ 1 96.1 83.3± 0.41

NU-δ-Mask 1 96.1 86.7± 0.68

NU-δ-SHAP 1 96.3 85.5± 0.61

NU-δ-Pearson 1 96.2 85.7± 0.45

NU-δ-MD 1 96.3 85.4± 0.67

NU-δ-MDtarget 1 96.3 85.9± 0.19

Uniform-δ 6.7 95.8 86.3± 0.15

NU-δ-Mask 6.7 95.7 92± 0.07

NU-δ-SHAP 6.7 95.8 88.3± 0.33

NU-δ-Pearson 6.7 95.9 88.2± 0.30

NU-δ-MD 6.7 96 87.7± 0.32

NU-δ-MDtarget 6.7 95.8 89± 0.18

Uniform-δ 11 95.6 89.3± 0.54

NU-δ-Mask 11 95.8 92.9± 0.57

NU-δ-SHAP 11 96 90.3± 0.36

NU-δ-Pearson 11 95.8 90± 0.36

NU-δ-MD 11 95.9 89.9± 0.25

NU-δ-MDtarget 11 95.7 90.9± 0.29

Uniform-δ 18 95.5 90.17± 0.71

NU-δ-Mask 18 95.8 94.8± 0.51

NU-δ-SHAP 18 95.3 90.45± 0.30

NU-δ-Pearson 18 95.3 90.46± 0.25

NU-δ-MD 18 95.4 90.54± 0.46

NU-δ-MDtarget 18 95.4 90.7± 0.51

Uniform-δ 25 95.6 88.4± 0.39

NU-δ-Mask 25 95.7 95.8± 0.21

NU-δ-SHAP 25 95.5 89.5± 0.27

NU-δ-Pearson 25 94.9 89.7± 0.40

NU-δ-MD 25 95.2 88.6± 0.26

NU-δ-MDtarget 25 95.2 89± 0.57

Table 7.1 shows the average number of adversarial examples out of 1000 which suc-

cessfully evade the corresponding models. While NU-δ-Mask and NU-δ-MDtarget have

better performance against Greedy attacks for most of the time, i.e., sets GNN, GLGBM

and GAdv, NU-δ-Pearson, NU-δ-SHAP and NU-δ-MD have better accuracy against

padding attacks, i.e, sets C1 Pad., C2 Pad. and Str. Pad.

For PDF malware classiҥcation, we compare NU-δ-MDt with Uniform-δ against
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Table 7.3: Clean accuracy (Ac.), AUC score and defense success rate (D.S.R.) against
EvadeML for standard training, Uniform-δ and NU-δ-MDt.

Model ||δ||2 Clean Ac. AUC score D.S.R.

Std. training - 99.52% 0.99912 11.1%

Uniform-δ 1 97.64% 0.99826 87.4%

NU-δ-MDt 1 97.83% 0.99835 92.9%

EvadeML. We observe the best performances at ||δ||2 = 1 for both methods. Table 7.3

depicts the clean accuracy (Ac.), AUC score and defense success rate (D.S.R.) against

EvadeML for standard training, Uniform-δ and NU-δ-MDt. Although NU-δ-MDt is a

feature space defense, the results show that it is highly effective against problem space

attacks, and it outperforms Uniform-δ. Since our approach does not assume any attack

knowledge, it is more generalizable than the problem space defenses.

7.3.2 Credit Risk Use-case

Our second use-case is a credit risk detection problem where the DNN’s goal is to make

decisions on loan applications for bank customers. For this scenario, we use the well-

known German Credit dataset [164], which contains classes ҡgoodә and ҡbadә, as well

as applicant features such as age, employment status, income, savings, etc. It has 20

features and 1000 samples with 300 in the ҡbadә class. Similar to [145], we treat discrete

features as continuous and drop non-ordinal categorical features.

Attacks used for evaluation: The goal of an adversary in this situation is to make

DNN models conclude that they are approved for a loan when they actually may not be

eligible. Since modiҥcations to tabular data can be detected by an expert eye, attackers

try to fool classiҥers with imperceptible attacks. We use German Credit dataset imple-

mentation of LowProFool [145] which considers attack imperceptibility and represents

expert knowledge using feature correlations. We apply the attack on the ҡbadә class of

the test set and generate 155 AEs. After dropping the non-ordinal categorical features,

we treat the remaining 12 features as continuous values.

Numeric results: Similar to the malware use-case, ϵ for each method is selected

such that their average ∥δ∥2 are approximately equal. In Figure 7.2B, we report defense

success rate of PGD with uniform and non-uniform perturbations in detecting 155 AEs

generated by LowProFool. The ҥgure shows that for every given ∥δ∥2, non-uniform per-

turbations outperform uniform perturbations in PGD. Although LowProFool represents

feature importance by Pearson correlation coefficients between features and the output

score, surprisingly NU-δ-Pearson is the best approach among the other non-uniform

approaches for only δ = {0.7, 1}. We refer to Table 7.4 for clean accuracy results.
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Table 7.4: Credit Risk Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform ℓ2-PGD adversarial trainings
with German Credit dataset for approximately equal ∥δ∥2. Non-uniform perturbation
defense approaches outperform the uniform perturbation for all cases against adversarial

attacks.

Model ∥δ∥2 Clean Ac., % Defense S.R., %

Std. Training - 69.7 60

Uniform-δ 0.01 69 61.3± 0.40

NU-δ-SHAP 0.01 68.3 61.3± 0.35

NU-δ-Pearson 0.01 68.3 61.9± 0.37

NU-δ-MD 0.01 69.6 61.6± 0.32

NU-δ-MDtarget 0.01 69.7 61.9± 0.30

Uniform-δ 0.1 67.7 63.4± 0.31

NU-δ-SHAP 0.1 67.1 64.5± 0.20

NU-δ-Pearson 0.1 66.8 64.3± 0.56

NU-δ-MD 0.1 66.7 64.2± 0.32

NU-δ-MDtarget 0.1 66.7 64.5± 0.41

Uniform-δ 0.3 66.7 66.4± 0.22

NU-δ-SHAP 0.3 65.8 67.6± 0.30

NU-δ-Pearson 0.3 66 68± 0.21

NU-δ-MD 0.3 66.5 67.1± 0.64

NU-δ-MDtarget 0.3 66.3 69± 0.32

Uniform-δ 0.5 66.2 68± 0.32

NU-δ-SHAP 0.5 66.5 69.7± 0.37

NU-δ-Pearson 0.5 65.9 69.4± 0.27

NU-δ-MD 0.5 66.3 69.2± 0.35

NU-δ-MDtarget 0.5 66 69.8± 0.13

Uniform-δ 0.7 66.1 69.6± 0.20

NU-δ-SHAP 0.7 65.8 71.1± 0.57

NU-δ-Pearson 0.7 65.6 71± 0.37

NU-δ-MD 0.7 66.4 70.5± 0.30

NU-δ-MDtarget 0.7 65.6 70.3± 0.30

Uniform-δ 1 65.3 70.6± 0.44

NU-δ-SHAP 1 64.5 71.3± 0.32

NU-δ-Pearson 1 64.3 71.3± 0.32

NU-δ-MD 1 64.9 71± 0.37

NU-δ-MDtarget 1 65 71± 0.21

7.3.3 Spam Detection Use-case

Finally, we evaluate robustness within the context of detecting spam within social net-

works. We use a dataset from Twitter, where data from legitimate users and spammers is

harvested from social honeypots over seven months [165]. This dataset contains proҥle in-

formation and posts of both spammers and legitimate users. After pre-processing [166],

we extract 31 numeric features with 14 being integers and the rest being continuous.

Some examples of these features are the number of following and followers as well as

the ratio between them, percentage of bidirectional friends, number of posted messages

per day, etc. We treat all features as continuous values in our experiments. Moreover,

we extract 41,354 samples where the training set has 17,744 ҡbad" and 15,339 ҡgood"
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Table 7.5: Spam Detection Use-case: Clean accuracy and defense success rate of
standard training, uniform and non-uniform ℓ2-PGD adversarial trainings with Twitter

Spam dataset for approximately equal ∥δ∥2.

Model ∥δ∥2 Clean Ac., % Defense S.R., %

Std. Training - 94.6 17.5

Uniform-δ 0.1 91.1 34.4± 0.16

NU-δ-SHAP 0.1 93.9 35.3± 0.32

NU-δ-Pearson 0.1 94 36± 0.50.

NU-δ-MD 0.1 93.9 36.7± 0.48

NU-δ-MDtarget 0.1 93.9 38.3± 0.50

Uniform-δ 0.3 92.6 58.3± 0.66

NU-δ-SHAP 0.3 91.9 66.5± 0.86

NU-δ-Pearson 0.3 91.8 65± 0.21

NU-δ-MD 0.3 91.9 69.4± 0.25

NU-δ-MDtarget 0.3 92 67.9± 0.25

Uniform-δ 0.5 91.3 82.8± 0.46

NU-δ-SHAP 0.5 90.9 86.1± 0.14

NU-δ-Pearson 0.5 91.2 87.3± 0.20

NU-δ-MD 0.5 91.1 85.3± 0.30

NU-δ-MDtarget 0.5 91.2 86.8± 0.28

Uniform-δ 0.7 91.1 89.6± 0.48

NU-δ-SHAP 0.7 90.5 90.5± 0.19

NU-δ-Pearson 0.7 90.6 90.7± 0.11

NU-δ-MD 0.7 90.5 89.8± 0.35

NU-δ-MDtarget 0.7 90.5 89.1± 0.18

Uniform-δ 1 90.5 87.3± 0.62

NU-δ-SHAP 1 89.8 91.4± 0.62

NU-δ-Pearson 1 89.9 92± 0.53

NU-δ-MD 1 89.7 93.3± 0.30

NU-δ-MDtarget 1 89.8 92.5± 0.64

samples, and the testing set has 3885 ҡbad" and 4386 ҡgood" samples. The adversary’s

goal is to make the DNN predict that a tweet was posted by a legitimate user when it

was written by a spammer.

Attacks used for evaluation: We incorporate the evasion attack [167] from [144] for

our Twitter spam detector. The attack strategy is based on minimizing the malicious-

ness score of an AE which is measured by a local interpretation model LASSO, while

satisfying ℓ2 norm constraint on perturbations. We generate the AEs by constraining the

perturbations to 0.5 × distavgpos−neg, where distavgpos−neg is deҥned by [144] as the average

distance between the spammer samples and the closest non-spammers to these samples.

We split the Twitter dataset with ratio 25% for training and testing, and generate the

AEs using the spammer class of the entire test set.

Numeric results: Again, we apply perturbations only to the spammer set during

AT and report the results for approximately equal average ∥δ∥2 perturbations. Figure

7.2C illustrates defense success rate in detecting AEs of the proposed approaches against

the model interpretation based attack [144] for Twitter dataset. The ҥgure shows that
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Table 7.6: Clean accuracy (Cl. Ac.) and defense success rates of NU-δ-MDt and
Uniform-δ against FGSM, Carlini-Wagner (CW), JSMA and Deep Fool attacks for

Spam Detection Use-case.

Defenses δ Cl. Ac.,% FGSM ϵ=0.5,% FGSM ϵ=1,% CW,% JSMA,% Deep Fool,%

Uniform-δ
0.1

91.61 24.1± 0.25 20.17± 0.31 38.93± 0.54 41.51± 0.24 39.3± 0.27

NU-δ-MDt 91.93 28.7± 0.17 27.1± 0.21 49.62± 0.33 49.59± 0.18 51.73± 0.31

Uniform-δ
0.3

90.40 25.22± 0.12 21.61± 0.43 45.83± 0.41 46.38± 0.27 47.39± 0.25

NU-δ-MDt 91.31 32.15± 0.34 30.88± 0.36 53.45± 0.22 52.68± 0.13 54.61± 0.19

Uniform-δ
0.5

87.12 27.05± 0.50 23.08± 0.34 50.05± 0.32 49.5± 0.25 49.75± 0.16

NU-δ-MDt 87.78 43.85± 0.62 36.12± 0.20 55.24± 0.38 53.71± 0.41 64.28± 0.55

Uniform-δ
1

86.46 40.20± 0.57 32.98± 0.31 52.77± 0.24 52.94± 0.26 53.22± 0.10

NU-δ-MDt 87.64 81.34± 0.83 79.85± 0.75 61.89± 0.37 72.93± 0.77 88.75± 0.78

Uniform-δ
1.5

85.98 74.40± 0.47 62.36± 0.75 59.71± 0.28 68.95± 0.85 64.5± 0.86

NU-δ-MDt 87.03 94.45± 0.18 91.03± 0.10 72.98± 0.48 86.43± 0.32 98.36± 0.25

non-uniform perturbations outperform uniform case in terms of defense S.R. for all given

∥δ∥2. We refer to Table 7.5 for clean accuracy results.

7.3.4 Performance Against Uniform Attacks

Throughout the experiments, we tested our non-uniform approach against various real-

istic attacks, such as problem space attacks in Section 7.3.1, feature importance-based

attack in Section 7.3.2 and explainability-based attack in Section 7.3.3. So far we em-

phasized that problem space attacks and non-uniformly norm bounded attacks are more

realistic compared to the traditional uniformly norm-bounded attacks which are mostly

considered in image domain. Yet, in this section, we also test our non-uniform approach

against the well-known uniform attacks to investigate the generalizability of our ap-

proach. We use the setting for the spam detection use-case, and compare NU-δ-MDt

with Uniform-δ. We utilize the adversarial robustness toolbox (ART) [168] to craft AEs

by using the default parameters for the AE generators of Carlini-Wagner (CW), JSMA

and DeepFool Methods. We also use FGSM for ϵ = 0.5 and ϵ = 1. Table 7.6 shows

the clean accuracy (Cl. Ac.) and defense S.R.’s of the robust models NU-δ-MDt and

Uniform-δ. We observe in Table 7.6 that the Cl. Ac. decreases as ||δ||2 increases for both

Uniform-δ and NU-δ-MDt but the degradation in non-uniform is less. Defense S.R.’s, on

the other hand, improve for both approaches but NU-δ-MDt signiҥcantly outperforms

Uniform-δ in all cases.

We further investigate the performance of our non-uniform approach against uniformly

norm-bounded attacks for generalizability as in Section 7.3.4. We use the same setting

as in spam detection use-case, and craft AEs using standard PGD attack, i.e., the attack

in Uniform-δ, for ϵ = {0.1, 0.3, 0.5, 0.7}. For a fair comparison between the uniform and

non-uniform approaches, we set approximately equal ||δ||2 for both models in the average
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Table 7.7: Defense success rates of Uniform-δ, NU-δ-MDt and MDt-Combo against
PGD attacks for Spam Detection Use-case. Both non-uniform defenses outperform the

uniform approach while NU-δ-MDt also outperforms MDt-Combo for all cases.

Defenses ||δ||2 Attack ϵ=0.1 Attack ϵ=0.3 Attack ϵ=0.5 Attack ϵ=0.7

Uniform-δ 90.6± 0.18 83.9± 0.34 16.6± 0.47 14.8± 0.65

NU-δ-MDt 92.8± 0.21 88.2± 0.41 34.95± 0.5 21.4± 0.22

MDt-Combo

0.1

91.6± 0.24 86.3± 0.28 24.4± 0.38 19.2± 0.32

Uniform-δ 92.6± 0.14 89.05± 0.24 30.5± 0.42 20.85± 0.58

NU-δ-MDt 93.2± 0.10 90.95± 0.22 61.75± 0.51 46.3± 0.41

MDt-Combo

0.3

93± 0.11 89.24± 0.19 47.88± 0.72 31.5± 0.39

Uniform-δ 92.9± 0.08 91.4± 0.05 88± 0.22 86.5± 0.25

NU-δ-MDt 93.3± 0.05 91.45± 0.06 89.45± 0.17 87.7± 0.12

MDt-Combo

0.5

93.1± 0.10 91.4± 0.11 89.30± 0.14 87.2± 0.18

Uniform-δ 93.2± 0.14 91.9± 0.25 90.18± 0.20 88.38± 0.22

NU-δ-MDt 94.5± 0.11 94.17± 0.42 93.33± 0.15 93.14± 0.31

MDt-Combo

1

94.39± 0.10 92.42± 0.28 91.44± 0.19 91.33± 0.26

Uniform-δ 93.22± 0.16 92.01± 0.27 90.61± 0.24 89.78± 0.15

NU-δ-MDt 94.45± 0.12 94.38± 0.31 93.76± 0.16 93.48± 0.11

MDt-Combo

1.5

94.27± 0.11 93.1± 0.20 92.3± 0.27 91.8± 0.17

sense. In this section, we also consider a non-uniform robust model which enforces the

AT constraint ҥrst on ||Ωδ||2 and then ||δ||2. That is, the non-uniform attack is always

a valid uniform attack in the strict sense. We call this defense Combo due to using the

combination of both projections in (7.3) and (7.5).

Table 7.7 shows the defense success rates of Uniform-δ, NU-δ-MDt and MDt-Combo,

which denotes the Combo approach for Ω selected as the Mahalanobis matrix for the

benign samples, against PGD attacks for Spam Detection Use-case. We observe that

our non-uniform approach outperforms the uniform approach for all cases, hence it is

also effective against the uniformly norm-bounded attacks which makes it generalizable.

Furthermore, Table 7.7 shows that MDt-Combo performs in between Uniform-δ and NU-

δ-MDt. This is due to the fact that the strict constraint on ||δ||2 reduces the effect of

non-uniform projection.

7.3.5 Quality of Perturbation Sets

In this section, we quantitatively and qualitatively analyze how well non-uniform per-

turbations capture realistic attacks using γ-consistency property deҥned in Section 7.2

and lower dimensional space visualization. Our intuition is that a successful attack

evades detection since AEs appear benign to the model. That is, AEs have high like-

lihood according to the distribution of benign samples. Therefore, we measure a per-

turbed sample’s quality by its γ-consistency with the benign set distribution. Deҥni-

tion 7.1 leverages Theorem 7.2, which shows that smaller MD for δ indicates higher

γ-consistency and hence higher quality of the perturbed sample. Moreover, we expect
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(A) Uniform-δ (B) NU-δ-MDtarget (C) Histogram of MD

square, δTΣ−1

y=0δ

Figure 7.3: UMAP visualization of benign, malicious and adversarial samples gener-
ated by (A) Uniform-δ and (B) NU-δ-MDtarget, and (C) the density histogram of their

δTΣ−1

y=0δ = 2C − 2 log γ.

AEs that evade the model and benign samples to be embedded closer to each other in the

lower-dimensional subspace. Figure 7.3 illustrates UMAP visualization [169] of benign,

malicious and adversarial samples for the spam detection use-case. AEs generated by

NU-δ-MDtarget show better alignment with benign distribution, which shows that NU-

δ-MDtarget mimics a more realistic attack. We also show the histogram of MD squares,

i.e. δTΣ−1
y=0δ = 2C − 2 log γ, of 1660 AEs from Uniform-δ and NU-δ-MDtarget in Figure

7.3C, where the average values are 2.1 and 1.28, respectively. Following Theorem 7.2

and Figure 7.3C, δ’s from NU-δ-MDtarget have higher γ, and hence, are more realistic.

7.4 Certified Robustness with Non-uniform Perturbations

In this section, we present methods for certifying robustness with non-uniform pertur-

bations. We consider two well-known methods; linear programming (LP) [32] and ran-

domized smoothing [170].

7.4.1 LP Formulation

We can provably certify the robustness of deep ReLU networks against non-uniform

adversarial perturbations at the input. Our derivation follows an LP formulation of

the adversary’s problem with ReLU relaxations, then the dual problem of the LP and

activation bound calculation. It can be viewed as an extension of [32]. Similar to [32],

we consider a k layer feedforward deep ReLU network with

ẑi+1 =Wizi + bi, zi = max{ẑi, 0}, for i = 1, · · · , k − 1 (7.7)
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We denote Zϵ,Ω(x) := {fθ(x + δ) : ||Ωδ||p ≤ ϵ} as the set of all attainable ҥnal-layer

activations by input perturbation δ. Since this is a non-convex set for multi-layer net-

works which is hard to optimize over, we consider a convex outer bound on Zϵ,Ω(x) and

optimize the worst case loss over this bound to guarantee that no AEs within Zϵ,Ω(x)
can evade the network. As done in [32], we relax the ReLU activations by representing

z = max{0, ẑ} with their upper convex envelopes z ≥ 0, z ≥ ẑ,−uẑ + (u − l)z ≤ −ul,
where l and u are the known lower and upper bounds for the pre-ReLU activations. We

denote the new relaxed set of all attainable ҥnal-layer activations by Z̃ϵ,Ω(x). Assuming

that an adversary targets a speciҥc class to fool the classiҥer, we write the LP as

minimize
ẑk

cT ẑk s.t. ẑk ∈ Z̃ϵ,Ω (7.8)

where c := eytrue − eytarget is the difference between the selection vector of true and the

target class.

A positive valued objective for all classes as a solution to equation (7.8) indicates that

there is no adversarial perturbation within ∆̃ϵ,p which can evade the classiҥer. To be able

to solve equation (7.8) in a tractable way, we consider its dual whose feasible solution

provides a guaranteed lower bound for the LP. It is previously shown by [32] that a

feasible set of the dual problem can be formulated similar to a standard backpropagation

network and solved efficiently. The dual problem of our LP with ReLU relaxation and

non-uniform perturbation constraints is expressed in the following theorem.

Theorem 7.3. The dual of the linear program (7.8) can be written as

maximize
ν̂,ν

−
k−1
∑

i=1

νTi+1bi +
k−1
∑

i=2

∑

j∈Ii

li,j [ν̂i,j ]+ − ν̂T1 x− ϵ||Ω−1ν̂1||q

s.t. νk = −c, ν̂i = (W T
i νi+1), for i = k − 1, . . . , 1

νi,j =























0 j ∈ I−i
ν̂i,j j ∈ I+i
ui,j

ui,j−li,j
[ν̂i,j ]+ − ηi,j [ν̂i,j ]− j ∈ Ii

, for i = k − 1, . . . , 2

(7.9)

where I−i , I+i and Ii represent the activation sets in layer i for l and u are both negative,

both positive and span zero, respectively.

When ηi,j =
ui,j

ui,j−li,j
, Theorem 7.3 shows that the dual problem can be represented

as a linear back propagation network, which provides a tractable solution for a lower

bound of the primal objective. To solve equation (7.9), we need to calculate lower and

upper bounds for each layer incrementally. The proof of the Theorem 7.3 is provided in
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Algorithm 2 Activation Bound Calculation

Input: Network parameters {Wi, bi}, input data x, input constraint matrix Ω and
ball size ϵ, norm type q.
Initialize ν̂1 :=W T

1 , ζ1 := bT1
l2 = xTW T

1 + bT1 − ϵ||Ω−1W T
1 ||q

u2 = xTW T
1 + bT1 + ϵ||Ω−1W T

1 ||q
ν2,I2 := (D2)I2W

T
2

ζ2 = bT2
for i = 2 to k − 1 do

li+1 = xT ν̂1 +
i
∑

j=1

ζj − ϵ||Ω−1ν̂1||q +
i
∑

i=2,i′∈Ii

lj,i′ [−νj,i′ ]+

ui+1 = xT ν̂1 +
i
∑

j=1

ζj + ϵ||Ω−1ν̂1||q −
i
∑

i=2,i′∈Ii

lj,i′ [νj,i′ ]+

νj,Ij
= νj,Ij

(Di)Ii
WT

i

ζj = ζjDiW
T
i

ν̂1 = ν̂1(Di)Ii
WT

i

end for

Output: {li, ui}ki=2

Appendix A.2, and lower and upper bound calculations are explained in the following

parts.

Activation Bounds: The dual objective function provides a bound on any linear func-

tion cT ẑk. Therefore, we can compute the dual objective for c = −I and c = I to obtain

lower and upper bounds. For c = I, value of νi for all activations simultaneously is given

by

ν̂i =W T
i Di+1W

T
i+1 . . . DnW

T
n and νi = Diν̂i, where (Di)jj =























0 j ∈ I−i
1 j ∈ I+i
ui,j

ui,j−li,j
j ∈ Ii

(7.10)

Similar to [32], bounds for νi and ν̂i can be computed for each layer by cumulatively

generating bounds for ẑ2, then ẑ3 and so on. By initializing ν̂1 := W T
1 , ζ1 := bT1 , ҥrst

bounds are l2 := xTW T
1 + bT1 − ϵ||Ω−1W T

1 ||q and u2 := xTW T
1 + bT1 + ϵ||Ω−1W T

1 ||q, where

the norms are taken over the columns. Calculation of the bounds for each layer is given

below in Algorithm 2.

For certiҥcation of robustness within a non-uniform norm ball around a test sample, we

need the objective of the LP to be positive for all classes. Since the solution of the dual

problem is a lower bound on the primal LP, it provides a worst case certiҥcation guaran-

tee against the AEs within the non-uniform norm ball. We provide certiҥcation results

for the robustness of Uniform-δ and NU-δ-MDt (NU-δ-MDtarget) for spam detection

use-case in Table 7.8. We consider both uniform and non-uniform input constraints in
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Table 7.8: Average certification margin and number of successful certified samples
out of 1000 spammers for NU-δ-MDt and Uniform-δ for Spam Detection Use-case.

Model Defense S.R. Cert. Method Margin Cert. Success

Uniform-δ 54.87± 1.1%

Uniform-Cert 1.07 34.72± 0.94%

NU-Cert-SHAP 1.84 72.64± 0.6%

NU-Cert-Pearson 2.04 76.8± 0.71%

NU-Cert-MD 2.40 80.2± 0.56%

NU-Cert-MDt 2.40 80.2± 0.55%

NU-δ-MDt 63.4± 0.74%

Uniform-Cert 1.11 42.95± 0.69%

NU-Cert-SHAP 1.9 74.65± 0.85%

NU-Cert-Pearson 2.06 78.38± 0.76%

NU-Cert-MD 2.41 81.3± 0.68%

NU-Cert-MDt 2.41 81.3± 0.67%

certiҥcation, namely Uniform-Cert for the standard LP approach for certiҥcation with

uniform perturbation constraint [32], and NU-Cert-(.) for the non-uniform constraint.

We implement our non-uniform approach into the LP by modifying [32] with our Ω ma-

trix, and generate various certiҥcation methods by non-uniform Ω, e.g. NU-Cert-SHAP,

NU-Cert-Pearson, NU-Cert-MD and NU-Cert-MDt. Our purpose is not to propose the

tightest certiҥcation bounds but to show that non-uniform constraints result in larger

certiҥcation margins compared to the uniform case.

We compare Uniform-δ and NU-δ-MDt to evaluate certiҥcation results. Dropout layers

are removed from the model for LP solution, and AT is performed for ϵ = 0.3. Certiҥ-

cation is done by solving the LP for ϵ = 0.3 over 1000 spammers. The objective should

be positive for all classes to certify the corresponding sample. The margin between the

objective and zero gives an idea about how tight the bound is [171]. Table 7.8 demon-

strates two main results: (i) the certiҥcation success of NU-δ-MDtarget over Uniform-δ

for each certiҥcation method supports our claim that non-uniform perturbations provide

higher robustness than the uniform approach; and (ii) certiҥcation with non-uniform

constraints provide larger certiҥcation margins and hence tighter bound.

7.4.2 Randomized Smoothing

Robustness certiҥcation via randomized smoothing [170] is an empirical alternative to

the LP. The idea is constructing a ҡsmoothedә classiҥer g from the base classiҥer f . In

the original formulation in [170], g returns the most likely output returned by f given

input x is perturbed by isotropic Gaussian noise. Here, we provide robustness guarantee

in binary case for randomized smoothing framework when non-isotropic Gaussian noise

is used to allow robustness to non-uniform perturbations:

g(x) = argmaxy∈Y P(f(x+ n) = y) where n ∼ N (0,Σ). (7.11)
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Table 7.9: Percentage of successfully certified samples for NU-δ-MDt and Uniform-δ
with various certification approaches with randomized smoothing for Spam Detection

use-case.

Model UC NUC-Pearson NUC-SHAP NUC-MD NUC-MDt

Uniform-δ 50.96% 61.11% 64.24% 65.72% 66.45%

NU-δ-MDt 61.8% 67.14% 71.25% 85.34% 90.11%

Adapting notation and Theorem 2 from [170], let pa be the probability of the most

probable class y = a when the base classiҥer f classiҥes N (x,Σ). Then the below

theorem holds.

Theorem 7.4. In binary classification problem, suppose pa ∈ (12 , 1] satisfies P(f(x+n) =

a) ≥ pa. Then g(x + δ) = a for all
√
δTΣ−1δ ≤ Φ−1

r,n(pa) − q50, where r :=
√
δTΣ−1δ,

Φ−1
r,n(pa) is the quantile function of the χ distribution of d degrees of freedom, and q50 is

the 50th quantile.

See Appendix A.3 for the proof. In Theorem 7.4, we show that a smoothed classiҥer g

is robust around x within ℓ2 Mahalanobis distance
√
δTΣ−1δ ≤ Φ−1

r,n(pa) − q50 , where

Φ−1
r,n(pa) is the quantile function for probability pa. The same result holds if we replace

pa with lower bound pa.

We implement our non-uniform approach into randomized smoothing by modifying [172]

with our non-isotropic noise space. Table 7.9 shows certiҥcation S.R. of Uniform-δ and

NU-δ-MDt, when they are certiҥed by standard randomized smoothing with N (0, σI)

(UC), and our non-uniform methods with N (0,Σy) for corresponding Σy. That is, Σy=0

for NUC-MDt, Σy={0,1} NUC-MD, 1
ρ̄2
I for NUC-Pearson and 1

s̄2
I for NUC-SHAP are

used when the average training distortion budget is ∥δ∥2=5 and the average certiҥcation

distortion is ∥δ∥2=2.8. Table 7.9 shows that NU-δ-MDt is certiҥably robust for more

samples than Uniform-δ for all certiҥcation methods. Moreover, certiҥcation with non-

uniform noise, especially with NUC-MDt, provides higher certiҥcation S.R. compared to

uniform noise.

7.5 Conclusions

In this work, we study adversarial robustness against evasion attacks, with a focus on

applications where input features have to comply with certain domain constraints. We

assume Gaussian data distribution in our consistency analysis, as well as precomputed

covariance matrix and Shapley values. Under these assumptions, our results on three

different applications demonstrate that non-uniform perturbation sets in AT improve

adversarial robustness, and non-uniform bounds provide better robustness certiҥcation.
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As an unintended negative social impact, our insights might be used by malicious parties

to generate AEs. However, this work provides the necessary defense mechanisms against

these potential attacks.



Chapter 8

Conclusions

Right to privacy is a fundamental human right, which has been recognized in the Univer-

sal Declaration of Human Rights [173]. Speciҥcally, information privacy is one’s right to

control how personal information is collected, shared, archived or used. With the increas-

ing number of countries enacting their own privacy regulations, such as the General Data

Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), Personal In-

formation Protection and Electronic Documents Act (PIPEDA), service providers’ failure

to follow applicable data privacy may lead to ҥnes, lawsuits, and even prohibition of a

site’s use in certain jurisdictions [9]. Hence, addressing private data sharing problem

is necessary. Especially when we consider the emerging IoT technologies and growing

number of services that ask the users to share their personal data, private data sharing

techniques are the key tools bridging between the service providers’ and users’ demands.

One of the most important changes that has been brought to GDPR in 2018 is the need

for privacy by design. While the privacy by default means that when a service is released

to the public, the strictest privacy settings should apply by default, privacy by design

states that any personal data processing action must contain privacy-preserving at every

step. The techniques proposed in this dissertation target achieving the privacy by design.

In this dissertation, we have exclusively focused on PUT for data sharing using informa-

tion theoretic tools. We investigated various methods for sharing a modiҥed version of

the user data to keep the sensitive information private, such as using RB and RES for

SM data, noise injection, data release mechanism selection and exploiting the physical

characteristic of the communication channel. The main advantage of our approaches is

that the information theoretic metrics provide theoretical guarantees on the achievable

level of privacy and utility. Hence, the proposed approaches are provably effective regard-

less of the computational capability of the attacker. Besides learning the best released

data distributions for privacy applications, we have also proposed a method to generate

138
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realistic adversarial example distributions for trustworthiness of machine learning mod-

els in security-critical applications. This can be considered a complementary topic for

privacy-critical applications that we have presented in the earlier chapters. We proposed

defenses against adversarial attacks for various cyber-security domains, such as malware,

fraud and spam detection, which has not widely been covered in the literature.

In Chapter 3, we have presented an extensive overview for SM privacy enabling tech-

niques containing both data manipulation and demand shaping. We introduced MDP

formulations for information theoretic privacy in SM systems and analyzed their solu-

tions. Besides the existing work, we also proposed PUT for SM with an RB and a RES

under a special energy generation process and solved it by DyP.

In Chapter 4, we have studied a fundamental PUT when a user is sharing sensitive

time-series data with the SP. While Chapter 3 has the main focus on demand shaping

techniques, here, data obfuscation techniques have been proposed and information theo-

retic guarantees are provided for the PUT. We have focused on the information leakage

at the trace level. This is due to the fact that prior works mostly preserve the privacy for

the current time but may still leak signiҥcant amount of information as the adversary can

exploit temporal correlations in a trace. We have measured the time-series privacy by

the MI between the released and the original trajectories. By characterizing the optimal

solution using the Markov property in the time-series, we have proposed a simpliҥed on-

line private data release policy which preserves the optimality. We have reformulated the

online data release problem as an MDP, and numerically evaluated it using A2C-DRL

on both synthetic data and GPS trajectory dataset.

In Chapter 5, we have considered a scenario in which the data release mechanisms are

ҥxed and the user actively chooses from among them to make sure the utility received

from the SP is maximized while his conҥdence about a sensitive latent information is

kept below a threshold. The user stops sharing her data with the SP right before this

threshold is exceeded. We consider two different scenarios and various privacy and utility

measures. In the ҥrst scenario, we assume the user is only concerned about the PUT and

does not consider the stopping time for data release. The proposed policy maximizes the

conҥdence of the SP on the non-sensitive information which is represented by the SP’s

belief on its true value, and stops the data release when the conҥdence on the sensitive

information reaches the threshold. In this scenario, MI between the released data and

the non-sensitive information is also considered as a utility measure and compared with

the belief utility numerically. In the second scenario, the user aims to minimize the SP’s

error probability in non-sensitive information as quickly as possible while keeping his

belief in the true value of the sensitive variable below a threshold. Besides the belief

based privacy constraint, we also consider the MI between the sensitive variable and the
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released data as the privacy measure. We numerically compare the belief and MI-based

privacy constraints that represent the worst-case and the average case privacy policies,

respectively. Similarly to Chapter 4, in our numerical evaluations, we have used MDP

formulation and A2C-DRL solution both scenarios.

In Chapter 6, we have studied a wiretap channel scenario in which the user wants to

share her data with a legitimate receiver over a noisy communication channel, and a

passive eavesdropper tries to infer the user’s sensitive information through his noisy

channel. Similar to previous chapters, we considered privacy-aware data sharing in this

scenario, i.e., a certain level of information leakage about the sensitive information to the

eavesdropper is allowed in return of utility from the receiver. In addition to the private

data sharing techniques presented previously, in this chapter, we have also exploited the

physical characteristics of the noisy channel to preserve privacy. We have evaluated the

performance of sharing image data in a wiretap channel setting represented by a VAE

and a classiҥer.

In Chapter 7, we have investigated the trustworthiness of neural network models for

security-critical applications. So far we had focused on passive adversaries which are cu-

rious about the user’s sensitive information, and breach the privacy. We have proposed

various data modiҥcation techniques, such as demand shaping, noise injection, and etc.

In this chapter, as a complementary work, we have focused on active adversaries which in-

ject noise in the test samples to create adversarial examples that can evade the DNN. We

propose an empirical defense that exploits the input data distribution to generate realis-

tic adversarial examples during training. We have also proposed robustness certiҥcation

methods with non-uniform certiҥcation bounds around the data samples. Robustness of

DNNs against realistic attacks is crucial for certain applications, such as malware, fraud

and spam detection, since these applications are critical for the user’s security. However,

in the literature, most work has focused on CV domain, which has distinct properties

than other domains. Since the defenses commonly used in the literature for CV domain

do not usually provide high robustness for other applications, there is a need for more

studies on generating realistic attacks and effective defenses in other domains than CV.

This chapter has proposed a complete attack-defense-certiҥcation approach especially in

these less explored domains.

Research Challenges

In this dissertation, we have studied several problems related to privacy and security in

cyber-physical systems, e.g., private data sharing and neural network security. However,

there are challenges in addressing certain questions and the literature still lacks solutions

for these problems.
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Firstly, there are various application-dependent privacy measures in the literature. The

lack of a generic privacy measure makes it difficult to compare different privacy-preserving

strategies. Hence, information theoretic measures and tools, such as MI that has been

used throughout the thesis, are more preferable since they provide theoretical guarantees

on the achievable privacy and utility level regardless of the computational capability

of the attacker. However, using information theoretic measures leads us to the next

challenge, i.e., the concerns about the data-driven real-world applications.

In most real-world applications, data distributions are not available to either the user or

the SP. However, computation of correct information theoretic measures relies heavily

on accurate estimation of the underlying distributions. Various variational bounds have

been proposed for estimating the MI using neural networks. Although these bounds are

effective for certain downstream tasks, they are still far from representing the real MI.

Hence, it is crucial to further investigate tools for accurate estimation of MI for privacy

sensitive applications.

Finally, robustness of DNNs against active adversaries must be investigated further in

domains other than CV. For example, every year there is a new wave of cyber-attacks

crafted by attackers using AI and new technologies in malware domain. This makes it

difficult to keep up with new unseen data for traditional malware detectors. On the other

hand, DNN detectors might also fail when the attacks are well-crafted such that they are

imperceptible to a domain expert and modiҥed to evade the detection. Defending the

detection in such domains is not an easy task since the adversarial examples are crafted

on the real malware binaries rather than deferentiable DNN inputs, that we call problem

space attacks. Typical CV domain defenses cannot be easily mapped from feature space

to problem space, therefore, there is a high demand in the literature for realistic defenses

that are robust against problem space attacks.

In conclusion, despite the various works targeting private data sharing with passive ad-

versaries and defenses against active adversaries, the literature still lacks uniҥed solutions

for both private data sharing and adversarial defenses. However, we hope that our work

presented in this dissertation has contributed towards answering some of these questions

and unsolved issues in privacy and security problems, as well as encouraging further

developments in the ҥeld.

Future Directions

ITP has been widely studied in the past decades, however, only recent works have pro-

vided data-driven approaches for real-world applications. For example, similarly to Chap-

ter 3, [174] and [175] propose privacy-cost trade-off for SM systems using ITP and provide

MDP solutions via DyP. Moreover, they extend this approach further to real-data and
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solve an RL problem using Q-learning. While [174] assumes distribution knowledge as

in Chapter 3, [175] uses DNNs to estimate the conditional distribution for a lower bound

on MI privacy. A potential future direction for SM privacy application can be a fully

data-driven ITP approach, which uses tighter lower and upper bounds for accurate MI

estimation. This direction also requires considering stationarity assumption of RL ap-

proaches while learning MI approximation, which is a big challenge.

In Chapter 6, we have proposed an end-to-end learning for privacy over a wiretap channel.

We estimate MI-based terms for both privacy and utility by assuming certain DNN

models for both the legitimate receiver and the eavesdropper, since we do not have

access to the real distributions and it is intractable to estimate the priors. Another

future direction can be considering privacy-aware communications over a wiretap channel

without making an assumption on the receiver or eavesdropper network.

Finally, we have proposed an effective adversarial defense in Chapter 7 using non-uniform

perturbations during adversarial training. The proposed method is generalizable since it

provides robustness against both feature-space and problem-space attacks. A potential

extension of this work can be applying non-uniform perturbations in the problem-space,

e.g., malware space, by taking challenging domain speciҥc constraints into account.
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Appendix A

Proofs for Chapter 7

A.1 Proof of Theorem 7.2

For an AE x that is generated under the Mahalanobis distance constraint, i.e., x ∈ ∆̃ϵ,2,

we can write the following bound:

min
x∈∆̃ϵ,2

log f(x | y) = C − 1

2
δTΣ−1

y δ = log γ (A.1)

where the second equality is a result of γ-consistency assumption. Then, by using the

upper limit of ℓ2 Mahalanobis distance of δ for M = Σ−1
y , we get

√

δTΣ−1
y δ =

√

2C − 2 log γ ≤ ϵ. (A.2)

A.2 Proof of Theorem 7.3

The linear program with non-uniform input perturbation and relaxed ReLU constraints

can be written as

minimize
ẑk

cT ẑk

s.t. ẑi+1 =Wizi + bi, i = 1, . . . , k − 1

||Ω(z1 − x)||p ≤ ϵ
zi,j = 0, i = 2, . . . , k − 1, j ∈ I−i
zi,j = ẑi,j , i = 2, . . . , k − 1, j ∈ I+i
zi,j ≥ 0, zi,j ≥ ẑi,j ,
((ui,j − li,j)zi,j − ui,j ẑi,j) ≤ −ui,jli,j







i=2,...,k−1
j∈Ii

.

(A.3)
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We associate the following Lagrangian variables with each of the constraints except the

ℓp norm constraint in Problem A.3,

ẑi+1 =Wizi + bi ⇒ νi+1

δ = z1 − x⇒ ψ

−zi,j ≤ 0⇒ µi,j

ẑi,j − zi,j ≤ 0⇒ τi,j

((ui,j − li,j)zi,j − ui,j ẑi,j) ≤ −ui,jli,j ⇒ λi,j .

(A.4)

We do not deҥne explicit dual variables for zi,j = 0 and zi,j = ẑi,j since they will be zero

in the optimization. Then, we create the following Lagrangian by grouping up the terms

with zi, ẑi:

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =−
k−1
∑

i=2
j∈Ii

(µi,j + τi,j − λi,j(ui,j − li,j) + (W T
i νi+1)j)zi,j

+
k−1
∑

i=2
j∈Ii

(τi,j − λi,jui,j + νi,j)ẑi,j + (c+ νk)
T ẑk −

k−1
∑

i=1

νTi+1bi

+

k−1
∑

i=2
j∈Ii

λi,jui,jli,j + ψTx+ ψT δ − (W T
1 ν2 + ψ)T z1

subject to ||Ωδ||p ≤ ϵ

(A.5)

Now, we take the minimum of L(.) w.r.t z, ẑ and δ:

inf
z,ẑ,δ

L(z, ẑ, ν, δ, λ, τ, µ, ψ) = −inf
zi,j

k−1
∑

i=2
j∈Ii

(

µi,j + τi,j − λi,j(ui,j − li,j) + (W T
i νi+1)j

)

zi,j

+ inf
ẑ

(

k−1
∑

i=2
j∈Ii

(τi,j − λi,jui,j + νi,j)ẑi,j + (c+ νk)
T ẑk

)

−
k−1
∑

i=1

νTi+1bi

+

k−1
∑

i=2
j∈Ii

λi,jui,jli,j + ψTx+ inf
||Ωδ||p≤ϵ

ψT δ − inf
z1
(W T

1 ν2 + ψ)T z1.

(A.6)

We can represent the term inf
||Ωδ||p≤ϵ

ψT δ independent of δ using the following dual norm

deҥnition.
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Cauchy-Schwarz inequality for dual norm:

We can write the Cauchy-Schwarz inequality as αTβ ≤ ||α||p||β||q, where 1
p +

1
q = 1 and

q norm represents the dual of p norm. Let û = α
||α||p

, the deҥnition of dual norm is

||β||q = sup
||û||p≤1

ûTβ. (A.7)

We can write inf
||Ωδ||p≤ϵ

ψT δ = − sup
||Ωδ||p≤ϵ

(−ψT δ) = − sup
||Ωδ||p≤ϵ

ψT δ. For α = Ωδ
ϵ and β = ϵΩ−1ψ,

we get δTψ ≤ ||Ωδϵ ||p||ϵΩ−1ψ||q which implies − sup
||Ωδ||p≤ϵ

ψT δ = −ϵ||Ω−1ψ||q.

Hence, the minimization of L(.) becomes,

inf
z,ẑ,δ

L(.) =































−
k−1
∑

i=1
νTi+1bi +

k−1
∑

i=2
j∈Ii

λi,jui,jli,j + ψTx− ϵ||Ω−1ψ||q if cond.

−∞ o.w.,

(A.8)

where the conditions are

νk = −c
W T

1 ν2 = −ψ
νi,j = 0, j ∈ I−i
νi,j = (W T

i νi+1)j , j ∈ I+i
((ui,j − li,j)λi,j − µi,j − τi,j) = (W T

i νi+1)j

νi,j = ui,jλi,j − τi,j







i=2,...,k−1
j∈Ii

.

(A.9)

The dual problem can be rearranged and reduced to the standard form

maximize
ν,ψ,λ,τ,µ

−
k−1
∑

i=1

νTi+1bi + ψTx− ϵ||Ω−1ψ||q +
k−1
∑

i=2

λTi (uili) (A.10)

s.t. νk = c (A.11)

W T
1 ν2 = −ψ (A.12)

νi,j = 0, j ∈ I−i (A.13)

νi,j = (W T
i νi+1)j , j ∈ I+i (A.14)

((ui,j − li,j)λi,j − µi,j − τi,j) = (W T
i νi+1)j

νi,j = ui,jλi,j − τi,j







i=2,...,k−1
j∈Ii

(A.15)

λ, τ, µ ≥ 0. (A.16)
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The insight of the dual problem is that it can also be written in the form of a deep

network. Consider the equality constraint (A.15), the dual variable λ corresponds to the

upper bounds in the convex ReLU relaxation, while µ and τ correspond to the lower

bounds z ≥ 0 and z ≥ ẑ, respectively. By the complementary property, these variables

will be zero of ReLU constraint is non-tight, and non-zero if the ReLU constraint is tight.

since the upper and lower bounds cannot be tight simultaneously, either λ or µ+ τ must

be zero. Hence, at the optimal solution to the dual problem,

(ui,j − li,j)λi,j = [(W T
i νi+ 1)j ]+

τi,j + µi,j = [(W T
i νi+ 1)j ]−.

(A.17)

Combining this with the constraint νi,j = ui,jλi,j − τi,j leads to

νi,j =
ui,j

ui,j − li,j
[(W T

i νi+ 1)j ]+ − η[(W T
i νi+ 1)j ]− (A.18)

for j ∈ Ii and 0 ≤ η ≤ 1. This is a leaky ReLU operation with a slope of
ui,j

ui,j−li,j
in the

positive portion and and a negative slope η between 0 and 1. Also note that from (A.12)

−ψ denotes the pre-activation variable for the ҥrst layer. For the sake of simplicity, we

use ν̂i to denote the pre-activation variable for layer i, then the objective of the dual

problem becomes

SDϵ(x, ν) =−
k−1
∑

i=1

νTi+1bi +
k−1
∑

i=2

∑

j∈Ii

ui,jli,j
ui,j − li,j

[ν̂i,j ]+ − ν̂T1 x− ϵ||Ω−1ν̂1||q

=−
k−1
∑

i=1

νTi+1bi +

k−1
∑

i=2

∑

j∈Ii

li,j [ν̂i,j ]+ − ν̂T1 x− ϵ||Ω−1ν̂1||q

(A.19)

Hence, the ҥnal form of the dual problem can be rewritten as a network with objective

SDϵ(x, ν), input −c and activations I as follows:

maximize
ν̂,ν

−
k−1
∑

i=1

νTi+1bi +

k−1
∑

i=2

∑

j∈Ii

li,j [ν̂i,j ]+ − ν̂T1 x− ϵ||Ω−1ν̂1||q

s.t. νk = −c
ν̂i = (W T

i νi+1), i = k − 1, . . . , 1

νi,j =























0 j ∈ I−i
ν̂i,j j ∈ I+i
ui,j

ui,j−li,j
[ν̂i,j ]+ − η[ν̂i,j ]− j ∈ Ii

i = k − 1, . . . , 2

(A.20)
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A.3 Proof of Theorem 7.4

Let X and Y be random variables such that X ∼ N (x,Σ) and Y ∼ N (x+ δ,Σ). Next,

we deҥne the set A :=
{

z | δTΣ−1(z − x) ≤
√
δTΣ−1δΦ−1

r,d(pa)
}

, where r :=
√
δTΣ−1δ

and Φ−1
r,n(pa) is the quantile function of the χ distribution of d degree of freedom

for the probability pa, so that P(X ∈ A) = pa. Consequently, P(Y ∈ A) =

Φr,d

(

Φ−1
r,d(pa)−

√
δTΣ−1δ

)

. To ensure that Y is classiҥed as class A, we need

Φr,d

(

Φ−1
r,d(pa)−

√
δTΣ−1δ

)

≥ 1/2 (A.21)

which can be satisҥed if and only if
√
δTΣ−1δ ≤ Φ−1

r,d(pa)− q50.
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