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Abstract

Data privacy has attracted increasing attention in the past decade due to the emerging
technologies that require our data to provide utility. Service providers (SPs) encourage
users to share their personal data in return for a better user experience. However, users’
raw data usually contains implicit sensitive information that can be inferred by a third

party. This raises great concern about users’ privacy.

In this dissertation, we develop novel techniques to achieve a better privacy-utility trade-
off (PUT) in various applications. We first consider smart meter (SM) privacy and employ
physical resources to minimize the information leakage to the SP through SM readings.
We measure privacy using information-theoretic metrics and find private data release
policies (PDRPs) by formulating the problem as a Markov decision process (MDP).
We also propose noise injection techniques for time-series data privacy. We characterize
optimal PDRPs measuring privacy via mutual information (MI) and utility loss via added
distortion. Reformulating the problem as an MDP, we solve it using deep reinforcement
learning (DRL) for real location trace data. We also consider a scenario for hiding an
underlying “sensitive” variable and revealing a “useful” variable for utility by periodically
selecting from among sensors to share the measurements with an SP. We formulate
this as an optimal stopping problem and solve using DRL. We then consider privacy-
aware communication over a wiretap channel. We maximize the information delivered
to the legitimate receiver, while minimizing the information leakage from the sensitive
attribute to the eavesdropper. We propose using a variational-autoencoder (VAE) and
validate our approach with colored and annotated MNIST dataset. Finally, we consider
defenses against active adversaries in the context of security-critical applications. We
propose an adversarial example (AE) generation method exploiting the data distribution.
We perform adversarial training using the proposed AEs and evaluate the performance

against real-world adversarial attacks.



Acknowledgements

First of all, I would like to sincerely thank my supervisors, Prof. Deniz Giindiiz and
Prof. Pier Luigi Dragotti, for their invaluable academic guidance, immense knowledge,
encouragement and continuous support, without which this work would not have been
possible. I am grateful to them for providing me with such an excellent environment to
grow as a research scientist, and passing their passion and motivation for research on to
me, which has definitely affected my decisions for my research career and will continue to
affect my future life. I would also like to thank my examiners, Dr. Hamed Haddadi and
Prof. Tobias Oechtering, for their thorough reading of this thesis, and the interesting and
enjoyable discussions we had during the viva examination, which incented me to widen
my research perspective. I would like to acknowledge the financial support provided by
the Republic of Turkey, Ministry of National Education for funding my Ph.D. studies,
and for enabling me to study with great researchers at one of the most distinguished

universities.

I must also thank my manager Barig Cogkun and mentor Sergiil Aydoére for their endless
support during and after my internship at AWS. It has been a real privilege for me to

share their tremendous scientific knowledge and brilliant insights.

I am very thankful to my dearest friends Roy, Zaid and Rui, who shared with me the
ups and downs of Ph.D., as well as coffee breaks, dinners, and our lockdown hangouts
in the past two years. I appreciate every single moment that we share together. I have
to thank all the people of the Information Processing and Communications Lab and
some precious friends: Alma, Mohammad, Hakan, Burak, Kate, David, Giulio, Morteza,
Mihajlo, Murat, Yasin, Kiarash, Waleed, Szymon, Sam, Emre, Can, Mikolaj, Yuxuan,
Mahdi, Nitish, Ezgi, for the warm and friendly atmosphere they created, and lovely
experiences we shared throughout the past years. I would also like to thank Mohammad

Malekzadeh for his valuable comments and our discussions on this thesis.

Son olarak, beni her konuda destekleyen, her zorlukta yanimda olan aileme tegekkiir
etmek istiyorum. Gegtigimiz dort yil i¢inde ailemizin yasadigl zorluklarin arasinda her
zaman bana ayiracak vaktiniz, sabriniz ve sevginiz oldu. Hayatimda tanidigim en giiclii
kadinlar olan annem Nege Erdemir, ablalarim Mira¢ Tamer ve Kivang Cakici, higbir
zorlukta pes etmeyerek, kendime ve yapabileceklerime olan inancimi koriikleyerek il-

ham kaynagim oldugunuz i¢in size tesekkiir ederim. Babam Ridvan Erdemir, doktora

3



siiresince benden hicbir destegini esirgemedigin i¢in tesekkiir ederim. Ayrica agabeylerim
Nail Cakici ve Bora Tamer, karsilagtigim bircok zorlukta ablalarimla beraber yanimda
oldugunuz i¢in size de tesekkiir etmek istiyorum. Doktoray: bagsarili bir sekilde ge¢irmemde
sizlerin bu siireci benim i¢in ne kadar kolaylagtirdiginiz su gotiirmez bir gercektir. Ve son
olarak yegenlerim Elif Deniz Cakici ve Balkan Tamer, mutluluk ve gelecege dair umut
kaynagim oldugunuz i¢in sizlere de tegekkiir etmek istiyorum. Sevgili ailem, ayr1 ayr1 her
birinizin destegi sayesinde bugiin hayatta bulunmaktan gurur duydugum bir yerdeyim

ve tim bu firsatlar1 bana sagladiginiz icin sizlere sonsuz tegekkiir ederim.



©

Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents
are licensed under a Creative Commons Attribution-Non Commercial 4.0 International

Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or format.
You may also create and distribute modified versions of the work. This is on the condition
that: you credit the author and do not use it, or any derivative works, for a commercial

purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others by
naming the licence and linking to the licence text. Where a work has been adapted, you

should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.



Declaration of Originality

I, Ecenaz Erdemir, declare that this thesis titled, ‘Privacy and Security in Cyber-Physical

Systems’ and the work presented in it are my own. I confirm that:

m This work was done wholly or mainly while in candidature for a research degree at
Imperial College of Science, Technology and Medicine.

m Where I have consulted the published work of others, this is always clearly attributed.

m Where [ have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

m | have acknowledged all main sources of help.

Signed: Ecenaz Erdemir

Date: 3 February 2022




Contents

Abstract

Acknowledgements

Copyright

Statement of Originality
Contents

List of Figures

List of Tables

Abbreviations

1 Introduction
1.1 Motivation . . . . . . . . . ..
1.2 Objectives . . . . . . . . o
1.2.1 Contributions . . . . . . . . . ...
1.3 Outline and Related Publications . . . . . . . . ... . ... .. ......

2 Preliminaries

2.1 Privacy Measures . . . . . . . . ...
2.1.1 Differential Privacy (DP) . . . ... .. ... ... .. ... ..
2.1.2  Pufferfish Privacy . . . . . . .. ... ... ...
2.1.3  Information-Theoretic Privacy (ITP) . . . .. ... ... ... ...
2.1.3.1 Applications of ITP . . . . . . ... ... ... ... ...

2.1.4 Error Probability . . . . . . .. ... ..

2.2 MDP Formulation . . . .. . ... ...
2.2.1 Advantage Actor-Critic DRL . . . . . ... ... ... ... ....

2.3 Adversarial Robustness . . . . . . . ... o
2.3.1 Fast Gradient Sign Method (FGSM) . . .. ... ... ... ... ..
2.3.2  Projected Gradient Descent (PGD) . . . . ... ... ... ... ..

3 Smart Meter Privacy
3.1 Introduction . . . . . . . . . . . e

10

12

14

16
16
18
19
21

25
25
26
26
26
28
29
30
31
33
33
34

35



Contents 8
3.1.1 Privacy and Security Concerns . . . . . . .. ... .. .. ..... 36

3.2 SM Privacy Techniques . . . . . . . .. . .. ... 37
3.2.1 Data Manipulation . . . . . ... ... ... 0oL 37
3.2.2 Demand Shaping . . . . . . . . .. .. ... 38

3.3 Information Theoretic SM Privacy . . . . .. ... ... ... ... .... 39
3.3.1 SM privacy with data perturbation . . . . . . ... .. .. ... .. 40
3.3.2  SM privacy with demand shaping . . . . . .. .. ... ... .... 41
3.3.2.1 SM privacy witha RES . . . . ... ... ... .. ..., 42

3.3.2.2 SMyprivacy withanRB . . . .. ... ... ... ... .. 44

3.3.2.2.1  Single letter expression for i.i.d. demand . . . . . 47

3.3.2.2.2  Privacy-Cost Trade-Off . . . . . ... ... ... 47

3.3.2.3 SM privacy with a RESandan RB . . . ... ... ... 48

3.3.2.3.1 Renewable Energy Known by the UP . . . . .. 49

3.3.2.3.2  Special Renewable Energy Generation Process 50

3.4 Conclusions . . . . . . .. e 54
4 Time-Series Data Privacy 56
4.1 Introduction . . . . . . .. Lo 56
4.2 System Model . . . . . . . . 58
4.2.1 Privacy and Utility Measures . . . . . . . ... ... .. ... ... 59

4.3 PUT for Time-Series Data Sharing . . . . .. ... ... ... ... .... 60
4.3.1 Simplified PDRPs . . .. ... ..o 61
4.3.1.1  m' Order Markov Chain . . . ... ............ 64

4.3.2  Online PDRP with an Instantaneous Distortion Constraint . 64
4.3.3  Online PDRP with an Average Distortion Constraint . . . . . . . . 65

4.4 MDP Formulation . . . . . ... . ... 66
4.4.1 A2C-DRL Solution . . . . ... .. .. ... 68

4.5 Numerical Results . . . . .. ... . oo 70
4.5.1 Numerical Results for Synthetic Data . . . . .. ... ... .. .. 70
4.5.1.1 PDRP-IDC Results . . .. .. .. ... ... ... .... 71

4.5.1.2 PDRP-ADCResults . . . . ... ... ... ... ..... 73

4.5.2 Numerical Results for GeoLife Dataset . . . . . . . ... ... ... 75

4.6 Conclusions . . . . . . .. L 78
5 Active Privacy Against Inference 80
5.1 Imntroduction . . . . . . . . .. 80
5.2 Active Private Data Sharing . . . . . . .. ... ... ... ... ... .. 83
5.2.1 POMDP Formulation . . ... .. .. ... ... .. ........ 85
522 Mlas Utility . . . .. ... . 86

5.3 Active Quickest Private Data Sharing . . . . ... ... ... .. ..... 87
5.3.1 POMDP Formulation . . ... ... ... ... ... ........ 88
5.3.2 MI as Privacy Constraint . . . . . .. ... ... ... .. ..... 92
5.3.3  Estimating MI . . . . .. ... o 95

5.4 Numerical Results . . . . . . . ... 96
5.4.1 Active Private Data Sharing: Synthetic Data Use-Case . . . . . . . 97
5.4.2  Active Quickest Private Data Sharing: Synthetic Data Use-Case . 98
5.4.3 Active Quickest Private Data Sharing: Activity Data Use-Case . . 100



Contents 9

5.4.3.1 Numerical Results for Belief-PDRP, 7 . . . . . . .. .. 100

5.4.3.2  Numerical Results for MI-PDRP, 7wpsr . . . . . . . . . L. 102

5.5 Conclusions . . . . . . . . . . . e 104

6 Privacy Aware Communication Over a Wiretap Channel 106
6.1 Introduction . . . . . . . . . ... 106
6.2 System Model . . . . . . . .. 108
6.2.1 Parallel-Channel Scenario . . . . . . ... ... .. ... ...... 111

6.3 Numerical Results . . . . . . . . ... ... ... 112
6.3.1 Single Channel . . . . ... .. ... oo 112

6.3.2 Parallel Channels . . . . . . . . . . .. ... .. ... ... 113

6.4 Conclusions . . . . . . . . . . . e 114

7 Adversarial Robustness for Security Applications 115
7.1 Introduction . . . . . . . . . ... 116
7.2 Non-uniform Adversarial Perturbations . . . . . . . . .. ... ... .... 118
7.2.1 Mahalanobis Distance (MD) . . . . . .. .. ... ... ... 119

7.2.2 Weighted Norm . . . . . .. .. .. . oo 120

7.3 Experimental Results . . . . . . .. ... o 121
7.3.1 Malware Use-case . . . . . . . . . . . . . 122

7.3.2 Credit Risk Use-case . . . . . . . . ... .. .. .. .. ....... 127

7.3.3 Spam Detection Use-case . . . . . . ... ... .. ... ...... 128

7.3.4 Performance Against Uniform Attacks . . .. ... ... ... ... 130

7.3.5 Quality of Perturbation Sets . . . . . . ... ... ..., 131

7.4  Certified Robustness with Non-uniform Perturbations. . . . . .. ... .. 132
7.4.1 LP Formulation . . . . . . ... .. ... ... . ... ... ... 132

7.4.2 Randomized Smoothing . . . . .. ... ... Lo 135

7.5 Conclusions . . . . . . . . . . . 136

8 Conclusions 138
A Proofs for Chapter 7 158
A.1 Proof of Theorem 7.2 . . . . . . . . . . . . . . . .. 158
A.2 Proof of Theorem 7.3 . . . . . . . . . . . . . . ... 158

A.3 Proof of Theorem 7.4 . . . . . . . . . 162



List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

5.1
5.2

9.3

5.4

9.5

5.6

RL for a known model. . . . . . . . ... oo 32
Electricity consumption profile of a household for 24 hour period [1]. . . . 36
SM privacy enabling techniques. . . . . . . . . . ... ... ... 37
Ilustration of the SM system model with RB and RES. . . . ... .. .. 42
Illustration of the RB state of charge under the special energy generation

process assumption in [2]. . . . ... Lo 51
Renewable energy generation instances and privacy-cost rate for the cor-

responding intervals. . . . .. ... Lo 52
Privacy-cost trade-off of the lower bound, TP, BCP and infinite-horizon

MDP w.r.t. Pg for v=0.5 and Px=0.5. . . . .. ... ... ... ..... 53
Markov chain example for the true data generation. . . . . . . . . ... .. 59
Markov chain induced by the simplified PDRP. . . . . .. .. .. ... .. 64
Critic (A) and actor (B) DNN structures. . . . . ... ... ........ 69
True and released user trajectory example forn =5. . . . .. ... .. .. 71
Average information leakage as a function of the allowed instantaneous

distortion under Manhattan distance as the distortion measure. . . . . . . 72
Average information leakage as a function of the allowed average distortion

under Manhattan distance as the distortion measure. . . . . . . . .. . .. 73
Convergence of PDRP-ADC for A\=1, D =08 and Q2. . . ... ... .. 74
True (A) and the distorted (B) trajectory of user-016 by PDRP-ADC for

W=16, A=1and D=5km. . . . .. .. .. ... ... ... ..., 78
System model for active PUT against the SP. . . . . ... .. .. ... .. 83
Activity recognition with wearable loT devices does not only infer physical

exercise but also sensitive daily habits. . . . . . . .. .. ... 000 L. 96

The confidence on U and MI utility w.r.t the maximum allowed confidence
level on S for the proposed policies. . . . . . . . . ... ... ... ... 97
Belief-PDRP’s, 7, (A) stopping time 7 and S(u), and (B) SP’s accuracy
for the secret and the useful information with respect to Lp, and MI-
PDRP’s, masr, (C) stopping time 7 and S(u), and (D) SP’s accuracy for
the secret and the useful information with respect to Lps7. . . . . . . . .. 99
(A) A2C-DRL process for belief-PDRP, 75, (B) stopping time 7 and B(u),
and (C) SP’s accuracy for the secret and the useful information with re-
spect to Lp. . . . . . . e e 101

(A) A2C-DRL process for MI-PDRP, 7,7, (B) stopping time 7 and B(u)
and (C) SP’s accuracy for the secret and the useful information with re-
spect to Lpsr. « « v o o o e e 103



List of Figures 11

6.1
6.2

6.3

6.4

7.1

7.2

7.3

Communication system with wiretap channel. . . . . . .. ... ... ... 109
PUT curve of our privacy-aware JSCC mechanism for eg = 0.1 and eg =
{0.2,0.3F. o 111
Original images and their reconstructions by Bob and Eve from top to
bottom, respectively, for e = 0.1, eg=03. . . . . . .. .. ... ... .. 113

Original images and reconstructions by Bob, Eve, Bob’s individual chan-
nels (Chl-4), and Eve’s channels (Chl-4), respectively, from top to bot-
tom, for A\=10.. . . . . . .. 114

Classification boundaries from adversarial training with uniform pertur-
bation limits for (A) [|d]j2 < 0.5, (B) ||d]]2 < 0.8 and non-uniform pertur-
bation limits for (C) |0,| < 0.5 and |d,| < 0.8. The figures are obtained
by modifying [3]. . . . . ... 116
Defense success rate of fo-PGD AT against the problem-space attacks,
where all non-uniform perturbation defense approaches outperform the
uniform approach for all use-cases. . . . . . ... ... ... ... ... .. 124
UMAP visualization of benign, malicious and adversarial samples gen-
erated by (A) Uniform-§ and (B) NU-0-MDtarget, and (C) the density
histogram of their 5TE;:105 =20 —2log~y.. . . . ... 132



List of Tables

4.1
4.2

4.3

4.4
4.5

5.1

5.2
5.3

6.1

7.1

7.2

7.3

7.4

7.5

Notation Summary . . . . . . . .. ... 58
The Transition Probability Matrix @), of Toy Example for PDRP-ADC,
when [W|=6. . .. ... . 74
Best Action Probabilities a;(y¢|xt, 24—1) for Q, in Table 4.2, 8 = [é, ce %]
and A=3. . . . 75

Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-IDC. 76
Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-
ADC and Myopic Policy. . . . . . .. ... 7

Stopping time 7 of each policy’s data release for the threshold values
Ls={0.65,0.8,0.9,0.95 . . . . .. ... 98
Selected Activities and Smartwatch Sensors from Smoking Activity Dataset.100
Adversary Accuracy for all Activities Under Belief-privacy and MI-privacy
Policies. . . . . . . . e 104

Information leakage and Eve’s classification accuracy for the sensitive r.v.
T and individual sensitive attributes at each channel for A=10 . . . . . . 113

Malware Use-case: Average number of successful evasions on standard
training, uniform and non-uniform fo-PGD adversarial trainings by the
adversarial example sets out of 1000 samples for approximately equal ||J]|2.
Defense success rates shown in Table 7.2 and Figure 7.2A are calculated
by averaging the success rate over these individual attacks results. . . . . 125
Malware Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform ¢o-PGD adversar-
ial trainings with EMBER dataset for approximately equal [|d]|2. Non-
uniform perturbation defense approaches outperform the uniform pertur-
bation for all cases against adversarial attacks. . . . ... ... ... ... 126
Clean accuracy (Ac.), AUC score and defense success rate (D.S.R.) against
EvadeML for standard training, Uniform-§ and NU-6-MDt. . . . . . . .. 127
Credit Risk Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform f»-PGD adversarial
trainings with German Credit dataset for approximately equal ||d]|2. Non-
uniform perturbation defense approaches outperform the uniform pertur-
bation for all cases against adversarial attacks. . . . ... ... ... ... 128
Spam Detection Use-case: Clean accuracy and defense success rate of
standard training, uniform and non-uniform ¢5-PGD adversarial trainings
with Twitter Spam dataset for approximately equal [|d]]2. . . . . . . . .. 129

12



List of Tables

13

7.6

7.7

7.8

7.9

Clean accuracy (Cl. Ac.) and defense success rates of NU-6-MDt and
Uniform-6 against FGSM, Carlini-Wagner (CW), JSMA and Deep Fool
attacks for Spam Detection Use-case. . . . . . . . . .. .. ... ... ...
Defense success rates of Uniform-6, NU-0-MDt and MDt-Combo against
PGD attacks for Spam Detection Use-case. Both non-uniform defenses
outperform the uniform approach while NU-0-MDt also outperforms MDt-
Combo for all cases. . . . . . . . . . .
Average certification margin and number of successful certified samples
out of 1000 spammers for NU-6-MDt and Uniform-d for Spam Detection
USe-Case. . . . . v v v v e e e
Percentage of successfully certified samples for NU-§-MDt and Uniform-
0 with various certification approaches with randomized smoothing for
Spam Detection use-case. . . . . . . . . . ...



Abbreviations

AE
A2C
AT
6%
DNN
DP
DRL
DyP
LSTM
MDP
MI
ITP
IoT
POMDP
PUT
RB
RES
SG
SM
SP
UP

Adversarial Example
Advantage Actor-Critic
Adversarial Training
Computer Vision

Deep Neural Networks
Differential Privacy

Deep Reinforcement Learning
Dynamic Programming

Long short-term memory
Markov Decision Process
Mutual Information
Information-theoretic Privacy
Internet of Things

Partially Observable Markov Decision Process
Privacy-utility Trade-off
Rechargeable Battery
Renewable Energy Source
Smart Grid

Smart Meter

Service Provider

Utility Provider

14



To my family.

15



Chapter 1

Introduction

1.1 Motivation

Data sharing has become a common practice in the past decade due to the emerging
technologies that utilize personal data to provide better services. In particular, the
recent advances in Internet of things (IoT) devices have increased the variety of services
they provide, such as health and activity monitoring, financial analysis, weather analysis,
location-based services, smart speakers and smart metering. Moreover, the integration of
some [oT devices with social networks has encouraged the users to share their personal
data in return of wtility that provides them with a better user experience on these social
platforms. While the users can receive hotel, restaurant and product recommendations
from Facebook, Twitter or YouTube when they share their location information, they can
also benefit from the personalized dietary tips as a result of sharing their Fitbit activity.
However, in most of these applications, data collected by IoT devices contain sensitive
personal information about the users. The concerning fact is that as soon as the user’s
raw data is sent to the service provider’s cloud, the sensitive information can be inferred,
misused or leaked through security vulnerabilities even if the service provider (SP), or
utility provider (UP) in energy consumption context, and/or the communication link are

trusted third parties. This causes the violation of the user’s privacy.

Account balances, biomedical measurements, location trace, smart assistant search his-
tory, metadata of uploaded pictures and smart meter readings are typical examples of
data which carry sensitive personal information. For instance, a malicious third party
can derive an individual’s frequently visited destinations, financial situation or social
relationships using the shared location information [4]. The information containing the
camera model and the location where a picture is taken is embedded in its metadata.

This information is preserved even when the pictures are inserted in another document,

16



Introduction 17

e.g., Microsoft office documents, and anyone receiving that document does not only see
the picture but also finds out where and when it was taken, and which camera was used.
Sharing a picture on social media or an item on online marketing platforms can unwit-
tingly disclose the user’s home address [5]. Using non-intrusive load monitoring tech-
niques on smart meter data, an eavesdropper can deduce the user’s presence at home,
disabilities and even political views due to the TV channel the user is watching [6]. Be-
sides all, the most sensitive private information, such as patient history, chronic diseases,
disabilities, psychological state and daily habits can be revealed by health monitoring
systems [7,8]. Therefore, privacy is an important concern when using IoT services, and
there is a growing demand from consumers to keep their personal information private
against malicious attackers or untrusted service providers, while preserving the utility

obtained from these IoT services.

The need for better data privacy was recently put high on the global cybersecurity agenda
by the EU General Data Protection Regulation (GDPR) that took effect on May 25, 2018
[9]. Thanks to the emerging privacy legislation worldwide, such as California Consumer
Privacy Act (CCPA), Personal Information Protection and Electronic Documents Act
(PIPEDA), companies increasingly recognize that data privacy is mission critical and an
essential expenditure. Therefore, there has been a surge of interest in privacy measures

and privacy preserving techniques in the literature [10-17].

Besides differential privacy (DP) which is the most widely adopted one [10], various al-
ternative privacy metrics can be used including mutual information (MI) [13-15], total
variation distance [18], maximal leakage [19,20], and guessing leakage [21]. DP assumes a
worst-case adversary and requires large amount of noise injection to the data to preserve
privacy. Since the applied noise is limited to have a certain form, e.g., Gaussian, rather
than an arbitrary distribution optimized by an objective function, DP faces loss of util-
ity as the data size increases. In addition to DP, total variation distance and maximal
leakage also focus on the privacy of a single data point. On the other hand, information
theoretic measures focus on preserving the privacy in an average sense against an adver-
sary who is interested in the statistics of the sensitive information, and these measures
provide guaranteed bounds on the information leakage which can also be characterized
for large size or time-dependent data. Unlike the measures preserving single data privacy,
MI privacy allows arbitrary noise distributions on the sensitive data, which provides a
better privacy-utility trade-off (PUT). Moreover, information theoretic guarantees enable
privacy by design, which describes data protection at the design phase of any system,
since information theoretic measures do not require making assumptions on a potential
adversary’s capabilities. However, there is still a need for advanced methods to cover the

shortcomings of different methods.
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Most privacy preserving techniques require solving difficult optimization problems for
the best PUT. However, it is usually intractable to solve these problems using tradi-
tional statistical methods. With the emerging technology and computational power that
enables artificial intelligence (AI)-powered tools, such as machine learning (ML) or deep
neural networks (DNN), data privacy and private data sharing are carried to a more prac-
tical level. For instance, large organizations such as the U.S. Census Bureau, Google,
Facebook, Uber, Amazon, and Microsoft leverage Al-powered DP techniques to protect
their user’s sensitive data against potential privacy attacks [22]. A study published in
2019 by Gartner predicts that 40% of the privacy compliance technology will utilize Al
in edge and IoT environments by 2023 [23]. Although there is an increasing demand for
ML-based privacy protection, there is a lack of ML-based information theoretic privacy

(ITP) works in the literature.

Besides privacy-preserving applications, DNNs are commonly used in a wide-variety of
security-critical applications such as self-driving cars, spam detection, malware detection
and medical diagnosis [24]. Apart from all their benefits, robustness and trustworthiness
of neural network models are critical for these applications. In addition to the context
of a passive adversary in privacy applications, i.e., the SP which tries to infer sensitive
information about the user, there are also active adversaries which try to evade detection
in DNN-based security-critical applications. DNNs have been shown to be vulnerable
and can be deliberately fooled, evaded or misled by adversarial examples (AEs), which
are perturbed inputs designed by real-world adversaries [25-27]. To mitigate this prob-
lem, a line of research has focused on adversarial robustness of DNNs as well as the
certification of these methods [24,28-33]. While any ML model can be vulnerable to
attacks, e.g., RL agents [34, 35|, most defenses in the literature focus on the evasion of
classifiers. Moreover, defense mechanisms in the literature mainly consider computer
vision (CV) domain applications; however, other domains, such as malware, finance, and
social networks, show different characteristics, and the robustness techniques proposed
for CV are not effective in these domains. Therefore, there is a need for exploration of

adversarial robustness techniques out of the CV domain.

1.2 Objectives

This dissertation analyzes private data sharing techniques that protect a user’s privacy
in the presence of a third party, which tries to infer the user’s sensitive information from
the released data. This untrusted third party might be an honest-but-curious legitimate
receiver of the released data, e.g., the SP/UP. The goal of the data sharing mechanism is

to protect the privacy of the sensitive information by reporting a modified version of the
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user’s data to the SP, while preserving the utility received from the service as much as
possible. We focus on a relatively under-explored area by utilizing information theoretic
metrics for privacy and/or utility, compared to widely explored DP. The advantages that
information theoretic PUT offer include guaranteed information theoretic bounds under
statistical assumptions on the data, capability of hiding underlying sensitive informa-
tion, capability of revealing different levels of sensitive information to different users and
enabling the usage of prior information and time dependency. Besides the information
content of the user data, physical characteristics of the communication channels between

the user and third parties are also exploited.

We utilize various tools for numerically solving these PUT problems, specifically dynamic
programming (DyP), deep reinforcement learning (DRL) and generative networks. DyP
and DRL enable tractable solutions for online private data sharing due to their sequential
nature. Similarly, the end-to-end structure of generative networks, e.g., autoencoders,
is an effective representation of communication systems, and enables learning encoding
and decoding simultaneously. Although DNNs are highly effective tools in solving op-
timization problems, they have vulnerabilities against adversarial manipulations. For
instance, in decision making, adversarially perturbed input samples can cause evasion of
the DNN model. This vulnerability is highly risky for security-critical applications, such
as malware, fraud or bot detection. This dissertation analyzes the robustness of neural
networks against such adversarial perturbations in security applications, and provides

empirical defenses and their provable certification.

1.2.1 Contributions

Firstly, we establish theoretical guarantees on the privacy and utility level achieved by
our proposed data sharing mechanisms, regardless of the computational capability of the
attacker, by using information-theoretic tools. We specifically consider MI privacy and
its SM, location and activity monitoring privacy applications. Secondly, we reformu-
late the time-series data sharing problem as a Markov decision process (MDP) to take
the temporal correlations into account, and solve it numerically by powerful optimiza-
tion tools, such as DyP for SM and DRL for location and activity monitoring privacy
applications. Considering temporal correlations is of significant importance, as current
privacy-preserving techniques often ignore the prior information and time dependencies
due to computational complexity, whereas integration of DNNs reinforces optimal MDP
solutions. Furthermore, we provide an understanding of privacy-aware communications
between the user and the SP, which is the legitimate receiver, in the presence of imperfect
communication channels. Exploiting the physical characteristics of the SP’s channel over

an eavesdropper’s, we allow communication with privacy guarantees. Deep learning in
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wireless communications and physical layer security has only recently become popular,
and hence there is a need in the literature for exploration of real-world limitations in
privacy-aware communications. Despite all its benefits, finally, we also investigate the
vulnerabilities of DNNs in security critical applications. In addition to passive adversaries
that we consider, we also provide defenses against active adversaries which target these
vulnerabilities. We provide empirical and provable guarantees for robustness against

malicious adversaries in various domains.
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1.3 Outline and Related Publications

In this dissertation, we first present preliminary materials for privacy measures, infor-
mation theoretic metrics and MDPs in Chapter 2. Then, an overview of the SM privacy
problem and privacy enabling techniques using physical resources are presented in Chap-
ter 3, followed by time-series data obfuscation and data release mechanism selection
techniques for PUT using DRL in Chapters 4 and 5, respectively. In Chapter 6, private
data sharing is investigated over a wiretap channel scenario using generative networks,
while Chapter 7 is dedicated to robustness of neural networks in security critical ap-
plications. In the following sections, we briefly present the content, results and the

corresponding publications of each chapter.
Chapter 3

In Chapter 3, we present an overview of SM privacy-preserving techniques. While the
SM data is modified before being reported to the UP in data manipulation, demand
shaping requires direct manipulation of the real energy consumption by exploiting phys-
ical resources, such as a renewable energy source (RES) or a rechargeable battery (RB).
Privacy-preserving techniques that we present in this chapter contain a data manipula-
tion and three different demand shaping techniques that consider SM with a RES and
an RB, SM with only an RB and SM with only a RES. Information theoretic measures
are used to quantify SM privacy. Optimal energy management strategies and bounds
which are obtained using control theory, specifically MDPs, and rate distortion theory
are analyzed. The content of this chapter has been published as a book chapter and a

conference paper in:

e Ecenaz Erdemir, Deniz Giindiiz, and Pier Luigi Dragotti, “Smart Meter Privacy,” in
Privacy in Dynamical Systems, F. Farokhi (editor), Ed. Singapore: Springer, 2020,
pp. 19-41,

e Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, “Privacy-cost trade-off
in a smart meter system with a renewable energy source and a rechargeable bat-
tery,” IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Brighton, UK, May 2019.

Chapter 4

In Chapter 4, we consider a user that measures time-series data generated by an IoT
device, e.g., GPS readings, and periodically reports a modified version of her true data
to an untrusted SP to gain utility. Unlike the demand shaping techniques in Chapter 3,
here the measurements are obfuscated with noise up to a certain level for PUT before

sharing with the SP. We use the mutual information between the true and distorted data
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sequences as a measure of privacy loss, and measure the utility by a distortion metric
between the true and distorted samples. For the PUT, we introduce an online private
data release policy (PDRP) that minimizes the mutual information while keeping the
distortion below a certain threshold. We consider data release policies which take the
entire release history into account, and show its information theoretic optimality. We
recast the information theoretic time-series data PUT problem as an MDP and evaluate
the optimal PDRP numerically using advantage actor-critic deep reinforcement learning
(A2C-DRL). We apply our PDRP on the location trace privacy scenario, and evaluate
its performance using both synthetic and real trajectory datasets. The content of this

chapter has been published as a conference paper and a journal paper in:

e FEcenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, ‘“Privacy-aware location
sharing with deep reinforcement learning,” IEEE Workshop on Information Forensics
and Security (WIFS), Delft, Netherlands, Dec. 2019,

e FEcenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, “Privacy-aware time-series
data sharing with deep reinforcement learning,” in IEFEFE Transactions on Information
Forensics and Security, vol. 16, pp. 389-401, 2021.

Chapter 5

In Chapter 5, we consider an active learning scenario for PUT against an honest-but-
curious SP. Unlike in the previous scenarios, in this setting, the IoT measurements contain
two correlated underlying information, namely the useful variable, to be disclosed for
utility, and the secret variable, to be kept private. We assume that a user wants to
share these measurements with the SP by periodically choosing a different data release
mechanism with different statistics at each time instance, and stop data release before
the SP is confident about the true value of the secret. The user’s goal is to determine the
best selection mechanism to prevent the secret from being accurately detected by the SP
while revealing the useful data accurately for utility. While the first scenario presented in
this chapter focuses only on the PUT, the latter one takes the time aspect into account
and targets the quickest detection. Both active learning problems are reformulated as
an MDP, and numerically solved by utilizing DRL for both for synthetic and real data
in human activity privacy scenario. The results in this chapter have been published as
a conference paper which has also received the third place in the ICICS-CAIDA Best
Poster Prize competition in the 2021 North American School of Information Theory

(NASIT), and also submitted for a journal publication in:

e Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, “Active privacy-utility trade-
off against a hypothesis testing adversary,” IEFE International Conference on Acous-
tics,Speech and Signal Processing (ICASSP), June 2021,
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e Fcenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, “Active privacy-utility trade-

I

off against inference in time-series data sharing,” submitted.

Chapter 6

In Chapter 6, we take into account the physical characteristics of the communication
channel between the user and the SP for the first time. Similarly to the previous sce-
narios, the user wants to reliably transfer her data which contains a latent sensitive
information, i.e., the secret, to the SP. However, in this setting, the communication is
performed over noisy channels and a passive eavesdropper wants to infer the secret over
his channel. For example, the user data may be an image or a video while the secret may
be the presence of a particular object or an activity within the scene. In this wiretap
channel scenario, we assume binary symmetric channels (BSCs) from the user to both
the SP and the eavesdropper. We optimize the trade-off between the reconstruction dis-
tortion of the data by the SP and the privacy leakage of the secret to the eavesdropper,
which is measured by the MI between the secret and the noisy user data observed by the
eavesdropper. Moreover, we propose a data-driven approach using variational autoen-
coder (VAE)-based joint source channel coding (JSCC), and show through simulations
with the colored MNIST dataset that our approach provides high reconstruction quality
at the receiver while confusing the eavesdropper about the secret, which consists of the
color and thickness of the digits. Finally, we consider a parallel-channel scenario, and
show that our approach arranges the information transmission such that the channels
with higher noise levels at the eavesdropper carry the sensitive information, while the
non-sensitive information is transmitted over more vulnerable channels. The results of

this chapter have been submitted for publication in:

e Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Giindiiz, “Privacy-aware communi-
cation over a wiretap channel with generative networks”, against a hypothesis testing
adversary,” IEEFE International Conference on Acoustics,Speech and Signal Processing
(ICASSP), May 2022.

Chapter 7

Complementary to passive adversaries that we have mention in the previous chapter, in
Chapter 7, we consider the trustworthiness of DNNs in the presence of active adversaries
in security critical applications. Neural network robustness against potential adversaries
is significant, since DNN models have been shown to be vulnerable against small modifi-
cations in the samples and can be fooled. Adversarial robustness has widely been studied
in the literature to mitigate these weaknesses of DNNs both empirically and provably.

Prior work, which mostly contains CV domain applications, mainly focus on crafting AEs
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with small uniform norm-bounded perturbations across features to maintain the require-
ment of imperceptibility [24,28-33]. However, uniform perturbations do not result in
realistic AEs in domains such as malware, finance, and social networks. For these types
of applications, features typically have some semantically meaningful dependencies. The
key idea of the proposed approach in this chapter is to enable non-uniform perturbations
that can adequately represent these feature dependencies during adversarial training.
We propose using characteristics of the empirical data distribution, both on correlations
between the features and the importance of the features themselves. Using experimen-
tal datasets for malware classification, credit risk prediction, and spam detection, we
show that our approach is more robust to real-world attacks. Finally, we present robust-
ness certification utilizing non-uniform perturbation bounds, and show that non-uniform
bounds achieve better certification. This chapter contains work done during the remote

internship with Amazon Web Services, New York City, US, and published in:

e Ecenaz Erdemir and Jeffrey Bickford and Luca Melis and Sergiil Aydore, “Adversar-
ial Robustness with Non-uniform Perturbations”, Thirty-Fifth Conference on Neural
Information Processing Systems (NeurIPS), Dec. 2021

Chapter 8

Finally, in Chapter 8, we conclude our research on privacy and security in cyber-physical
systems, and discuss potential future directions, as well as open questions and challenges

that need to be addressed.



Chapter 2

Preliminaries

In this chapter, fundamental measures and methods which are used throughout the
dissertation are introduced, and a brief literature review about each topic is provided.
We first introduce the most commonly used privacy measures and mention seminal works
that utilize these measures. We give a detailed background specifically for I'TP, since it
is the main focus of the proposed approaches in Chapters 3, 4, 5 and 6. Moreover, we
explain MDPs which have extensively been used throughout Chapters 4 and 5, as we
reformulate our time-series data release problems as MDPs. A2C-DRL algorithm will
be introduced as a tool for solving MDPs numerically, and used to find approximations
for optimal policies of private data release in the following chapters. Finally, we give
a brief introduction to adversarial attacks and neural network robustness to provide a

background for Chapter 7.

2.1 Privacy Measures

Data privacy has been widely studied in the literature [10,12-17,36-49|, and numer-
ous privacy measures have been introduced, including differential privacy [10,12], k-
anonymity [38,40], mutual information (MI) [13-15], total variation distance [18], max-
imal leakage [19,20], and guessing leakage [21]. Previous work has mostly focused on
protecting the privacy of a single data point, e.g., an individual’s identity among mul-
tiple user’s, or the current measurement in a sequence [40-42,45, 46|, whereas only few
works have investigated sequential data privacy, such as electrocardiogram (ECG), body
temperature, physical activity, location, weather forecast, account balance and SM read-

ings [50,51].

25
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2.1.1 Differential Privacy (DP)

DP, which was first introduced for querying databases, has emerged as a widely adopted
privacy measure [10]. DP provides guarantee that the changes in one record of the input
database do not significantly affect the query output changes in the database. Since this
guarantee is required for all adjacent inputs uniformly, DP requires high level of noise

and it is considered as a worst-case measure. The formal definition of DP is as follows:

Definition 2.1. [10] For a positive real number € and a randomized algorithm A, the
algorithm A is said to provide e-differential privacy if, for all datasets Dy and Dy that

differ on a single element, and all subsets S of range A,

Pr(A(Dy) € 8) < e - Pr(A(Ds) € S) (2.1)

where the probability is over the random algorithm.

In a scenario where a data sequence or multi-dimensional data of a single user is to be
kept private instead of the identity of an individual among multiple users, DP suffers
from high utility loss due to the noise injection for every data point. This is because DP
is meant to ensure the privacy of a single data point in time. In [52], it is stated that DP
and k-anonymity [38,40], which also guarantees a sensitive data to be indistinguishable
from at least k& — 1 other data points, are not appropriate measures for sequential data

privacy since temporal correlations are not taken into account.

2.1.2 Pufferfish Privacy

As an intermediate framework between DP, which assumes complete independence, and
group-DP which assumes complete correlation, pufferfish privacy considers low average
temporal correlations in time-series data [53]. In [53], continuous aggregate location
sharing is considered in a pufferfish privacy framework under temporal correlations mod-
eled as a Markov chain. This approach takes into account a certain number of steps
forward and backward, while minimizing the DP loss of the current location. Hence,
the accumulating privacy loss of DP mechanism is limited to a level determined by the

number of forward and backward steps.

2.1.3 Information-Theoretic Privacy (ITP)

ITP usually refers to MI privacy since MI is a measure of information flow which suits

well for quantifying privacy.
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In information theory, entropy is a measure of the uncertainty of a random variable (r.v.).
Let X be a discrete r.v. with probability mass function p(z) = Pr{X = z} over alphabet
X. The entropy of X is denoted by

H(X)=-_ p(x)logp(x). (2:2)
TEX
The MI between two r.v.’s X and Y is the relative entropy between the joint probability

mass function, p(z,y), and the product of their marginal probability mass functions,

p(z)p(y), and is given by

G = 3 ple)los m (2.3)
X,Y
:Ep(x,y) log ng()()p(y)’) (24)

MI can also be written as the reduction in the uncertainty of X due to the knowledge of
Y,ie, I(X;Y)=H(X)— H(X|Y), where H(X|Y) is the conditional entropy.

ITP can often be related with information theoretic secrecy which dates back to 1949
when perfect secrecy was first introduced by Shannon [54]|. Both can be considered under
an umbrella term information security which emerged from communication applications.
Certain levels of information leakage exist in all data sharing and communications ap-
plications, which poses a privacy risk through unwanted inferences. Quantifying this

leakage using information theoretic measures is the first step towards I'TP.

While secrecy focuses on negligible or zero information leakage, privacy relaxes this con-
dition in return of the PUT. ITP offers guaranteed information theoretic bounds with
statistical assumptions on the data, capability of hiding underlying sensitive informa-
tion, capability of revealing different levels of sensitive information to different users and
enabling the usage of prior information and time dependency. On the other hand, while
DP tries to hide the true value of a sensitive information which targets the worst-case
adversaries, I'TP covers a wide range of privacy measures that can hide the information
in an average sense, e.g., MI [55], f-divergences [56], average total variation distance [18],

and maximal leakage [19,20].

It is proved in [54] that there exists an encoding scheme such that an adversary having
full access to the communication channel between a transmitter and a receiver has no
information about the transmitted message. The perfect secrecy system is impractical
since it requires a key of the same size as the message to fully hide the message from the
adversary while the receiver can correctly decode the message using the key. [57], and

later [58], proposed the wiretap channel which eliminated the need for a key by exploiting
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the uncertainties of the physical medium such as channel noise and fading fluctuations.
However, practicality of [57] comes at the cost of zero information leakage, i.e., Wyner’s
weak secrecy tolerates a small amount of information leakage rate and achieves perfect

secrecy asymptotically.

One of the biggest advantage of ITP over DP and pufferfish privacy is that it enables the
usage of prior information and temporal correlations, which allows arbitrary stochastic
transformations of data samples rather than being limited to addition of noise of a specific
form. This due to the fact that the MI between two time-series data sequences can be

written, by the chain rule, as

n

I(X™Y™) =) I(X™ Yy, (2.5)

t=1

where X" = {X1,X5..., X} and Y™ = {¥1,Y5...,Y,} are two sequences of r.v.’s.
As a result of introducing the memory in (2.5), the analysis becomes computationally
complex as the horizon increases as the MI involves an increasing number of r.v.’s. In the
literature, single-letter expressions for the information leakage in time-series data privacy
problems have been obtained considering independent and identically distributed (i.i.d.)
or Markov relation between the r.v.’s. Single letter expressions guarantee that, no matter
how long the problem horizon is, the minimal leakage can be written as a function of the

joint distribution of the involved r.v.’s single realization.

2.1.3.1 Applications of ITP

Techniques that would allow controllable amount of information leakage have attracted
a growing interest over the past decades. One of the earliest works using source coding
for ITP of a sensitive variable that is correlated with the source data is studied in [59], in
which a PUT is proposed by associating it with Shannon’s rate-distortion theory. Given
the publicly revealed encoding of the source, equivocation rate of the sensitive variable
is used as a privacy measure. Similarly, in [55], PUT is proposed as a rate-distortion
optimization problem, in which privacy leakage is measured by the MI between the source

and the legitimate receiver’s reconstruction.

An early work on MI privacy proposed in [60] provides foundations for measurement of
the effectiveness of privacy-preserving data mining algorithms. Being the first MI privacy
paper for privacy-preserving data collection and data mining, [60] proposes perturbing
the data and reconstructing the distributions at an aggregate level. The performed

expectation maximization algorithm is proved to converge to the maximum likelihood
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estimate of the original distribution based on the perturbed data. Privacy is measured

by the MI between the original and the perturbed records.

As an example of time-series data privacy, in [50], an SM system is considered assuming
Markovian energy demands. Privacy is measured by the MI between the demand-side
measurements and the SM readings, and achieved by filtering the energy demand with the
help of a rechargeable battery. ITP problem is formulated as an MDP, and the minimum
leakage is obtained numerically through DyP, while a single-letter expression is obtained
for an i.i.d. demand. This approach is extended to the scenario with a renewable energy
source in [36]. In [61], PUT is examined with a rechargeable battery. Due to Markovian
demand and price processes, the problem is formulated as a partially observable MDP

with belief-dependent rewards (p-POMDP), and solved by DyP for infinite-horizon.

In [62], PUT of time-series data is considered in both online and offline settings. A user
continuously releases data samples which are correlated with its private information,
and in return obtains utility from an SP. The proposed schemes are cast as convex opti-
mization problems and solved under hidden Markov model assumption. The simulation
results are provided for binary time-series data for a finite time horizon. However, the
dimensions of the optimization problems in both schemes grow exponentially with time
and the number of sample states. Therefore, in a setting when fine-grained sensor data
is considered for a long time horizon, computational complexity of the proposed schemes

is very high.

2.1.4 Error Probability

Privacy metrics based on the SP’s error probability focus on concealing the true realiza-
tion of the sensitive information. In [16], the goal is to increase the fidelity of the shared
data quantified through an additive distortion measure, while guaranteeing privacy in
an online manner. Privacy leakage is measured by the error probability of the SP in

estimating the true value of the underlying variables.

In [63], a r.v. containing latent sensitive variable S € S and non-sensitive variable U € U
is considered to go through a sensor, and a third party can infer these variables from
the noisy sensor measurement Z. The objective is to design an estimator for the non-
sensitive r.v. which minimizes a loss function while the information leakage about the
sensitive variable is kept below a certain level. The conditional discrete entropy is used
as the privacy metric, since the error probability of estimating the sensitive r.v. after

observing the noisy measurements can be lower bounded in terms of this privacy metric
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using Fano’s inequality [64], i.e.,

2.2 MDP Formulation

Throughout the dissertation, we consider privacy-preserving scenarios in which the data
of interest is time-series measurements. It is usually intractable to solve these opti-
mization problems while taking the data release history and temporal correlations into
account. Therefore, we reformulate them as sequential decision making problems by ex-
ploiting the Markov property of the time-series data, and solve by using classical MDP
solution methods. Next, we will briefly define MDPs and provide a specific RL solution.

Consider a sequential decision making problem under uncertainty. At each time instance,
an external decision maker (agent, controller, etc.) observes the state of the system and
takes an action accordingly. As a result of the action taken at a particular state, a reward
is received by the decision maker. The goal of such a problem is to find the decision rules
that specify the best actions to take at each system state, such that the maximum total

reward is accrued by the decision maker under the system constraints [65].

Markov property is based on the idea that the future is independent of the past given
the present. Since considering the effect of entire time horizon in a decision problem
is computationally complex, these problems are modeled for Markovian state space.
Hence, MDPs are discrete time stochastic control processes which are used to model
sequential decision problems with uncertainty. MDPs take into account both the short-
term outcomes of current decisions and the possible future gain. An MDP is formally
defined as a 4-tuple < S, A, T, R >, which represent the state space S, action space A,
transition probabilities reflecting the system dynamics T, and reward (or, inversely, cost)

R of taking a certain action at a certain state [66]. The state is Markov if
P(St+1|St) = P(St+1[St, St—15- -+, 51), (2.7)

where S; € §. For deterministic policies, transition probabilities are the mappings from

each state-action pair to the next state,

T SxA—S, (2.8)
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whereas for stochastic policies, each state-action pair is mapped to a probability distri-

bution over the next states,

T:Sx A— P(S). (2.9)

The goal of an MDP is to obtain a set of decision rules, so called policy, that performs
optimally with respect to a certain performance criterion. A policy g is a function speci-
fying the action that the decision maker takes in a particular state, i.e., ¢: S — A. The
objective functions of MDPs map infinite or finite sequences of rewards (or costs) to a
single real number. MDPs can have objectives, such as discounted, expected-total or aver-
age costs (rewards) to minimize (maximize) over a specified duration, i.e., finite-horizon
setting, or an indefinite time, i.e., infinite-horizon setting [65]. To solve MDPs optimally,
Bellman optimality equations are used. Value function of the decision problem in state
s is denoted by Vg(s) which represents the expected reward/cost obtained following the
policy q in state s. Bellman optimality equation for a Markov reward process is denoted
by

Vq(s) = max {r(s,q(s)) + Z T(s,q(s), s’)Vq(s’)}, (2.10)
q(s)eA
s'eS
where the maximization is over all the possible actions induced by the policy g for each
state s. The optimal value can be achieved by maximizing/minimizing the right hand side
of (2.10) using dynamic programming, which is an optimization method used to avoid

redundant calculations in recursive problems with an additive objective function [67].

A POMDP is a generalization of an MDP when the decision maker does not have com-
plete information about the system state. Instead, she can maintain a belief which is
a conditional probability distribution over the possible states given the past observa-
tions from the environment. POMDPs can be modeled as belief MDPs by inducing a
continuous belief state. In the literature, there are various approaches to solve belief
MDPs using finite-state MDP solution methods, e.g. value iteration, policy iteration
and gradient-based methods. These are based on the discretization of continuous belief

states to obtain a finite state MDP [68].

2.2.1 Advantage Actor-Critic DRL

DRL is a combination of DNNs and RL training methods based on rewarding desired
actions and/or punishing unwanted ones. It is a very broad topic that has received
significant attention in recent years [69]. In this section, we will briefly mention RL and
introduce a specific algorithm A2C-DRL.
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FIGURE 2.1: RL for a known model.

In RL, an agent discovers the best action to take in a particular state by receiving instan-
taneous rewards/costs from the environment [69]. RL methods can be divided into three
groups: value-based, policy-based, and actor-critic [70]. Actor-critic methods combine
the advantages of value-based (critic-only) and policy-based (actor-only) methods, such
as low variance and continuous action producing capability. The actor represents the
policy structure, while the critic estimates the value function [69]. In our settings that
will be presented in the following chapters, we parameterize the value function by the
parameter vector § € © as Vp(3), and the stochastic policy by £ € Z as g¢. The differ-
ence between the right and the left hand side of (2.10) is called temporal difference (TD)
error, which represents the error between the critic’s estimate and the target differing
by one-step in time [71]. The TD error for the experience tuple (B¢, at, yi, Be+1,Ct) is

estimated as

0 = Ce(Bryar) + Vo, (Bis1) — Vo, (Br)s (2.11)

where Ci(Bt, ar) + Vo, (Br+1) is called the TD target, and « is a discount factor that we
choose very close to 1 to approximate the Bellman equation in (2.10) for our infinite-
horizon average cost MDP. To implement RL in the infinite-horizon problem, we take
sample averages over independent and finite data sequences, which are generated by

experience tuples at each time ¢ via Monte-Carlo roll-outs.

Instead of using value functions in actor and critic updates, we use advantage function
to reduce the variance in policy gradient methods. The advantage can be approximated

by TD error. Hence, the critic is updated by gradient descent as:
9t+1 == 9t + ﬁngEc(et), (212)

where £.(6;) = 67 is the critic loss and 7{ is the learning rate of the critic at time ¢. The

actor is updated similarly as,

Gir1 =& — 1 Vela(&r), (2.13)
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where £,(&) = In(qs(ye|Be, & ))or is the actor loss and nf* is the actor’s learning rate. This

method is called advantage actor-critic RL.

2.3 Adversarial Robustness

There is a large variety of adversarial attacks that target ML systems, such as evasion,
poisoning and exploratory attacks [72]. The most common attack type in the litera-
ture is the evasion attack, which adjust malicious samples in testing time for evading
classification. On the other hand, poisoning attacks contaminate a percentage of the
training data with carefully crafted malicious samples to either reduce the classification
accuracy or create a backdoor to exploit during test time. Unlike the previous two meth-
ods, exploratory attacks try to gain as much knowledge about the learning algorithm as
possible instead of modifying the training or testing data. In this section, we will focus

specifically on evasion attacks and adversarial examples (AEs) crafted by them.

AEs are intentionally crafted samples by attackers that aim to cause ML models to
make mistakes. Although any ML model can be fooled, e.g., RL agents [34, 35], most
adversarial attacks in the literature focus on the evasion of classifiers. The adversary’s
objective is to maximize the error or loss function of the classifier by adding perturbations
to the samples to cause misclassification. Given a dataset {x;, y;}*; with input z; € R?
and classes y; € )V, we can formalize the AE generation as a solution to the following
optimization:

x; :a?i—kar?rzlin{\\éﬂp s folx +90) # uit, (2.14)
15

where 27 is the AE, fp : R — ) is DNN function, and A is the set of possible adversarial
perturbations around the original samples. Various solutions to (2.14) in the literature
are called adversarial attacks. Some of the most common state-of-the-art adversarial
attacks, such as fast gradient sign method (FGSM) [73]| and projected gradient descent
(PGD) [24], perturb training samples under a norm-ball constraint to maximize the loss

of the network.

2.3.1 Fast Gradient Sign Method (FGSM)
A solution to the optimization (2.14) is proposed in [73|, and AEs are crafted as follows:
x; = x; + €* sign(Vy, L fo(xi), yi) (2.15)

where £(.) is the loss, e.g. cross-entropy, V, is the gradient of the model with respect to

x;, and € is the parameter which determine the size of the perturbation. That is, (2.15)
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crafts AEs that are within an fo, norm-ball of radius € around the original sample and
maximize £(-). Other variations of FGSM appear in the literature as targeted-FGSM and
Basic Iterative Method (BIM), where the former maximizes the probability of a specific
target class in AE generation and the latter is a straightforward extension of FGSM to

iteratively finding the optimal AEs [74].

2.3.2 Projected Gradient Descent (PGD)

In Chapter 7, we propose defenses which take PGD [24] as the base AE generation
method and build on top of it. PGD is a state-of-the-art perturbation method for AE
generation. It is a well-studied extension of FGSM to £, norm and iterative optimization,

and can be formalized as
x; = P(x; + a* Vi, l(fo(xi),yi)) (2.16)

where the operation is applied at each time-step with step size «, P is the projection
function that applies the norm-ball constraint ||0]|, < e. A more detailed explanation for
PGD is provided in Chapter 7.

Adversarial training (AT) is one of the most effective empirical defenses against these
adversarial attacks [24,73,74|. The goal of the AT is to minimize the loss of the DNN when
perturbed samples are used during training. This way, the model becomes robust to real-
world adversarial attacks. Though these empirical defenses do not provide theoretically
provable guarantees, they have been shown to be robust against the strongest known
attacks [73]. AT can formally be represented as a min-max optimization minimizing the
DNN loss which is maximized by adversarial perturbations . Given {x;,y;}7; as before,

the objective of AT is denoted by
i —1 5” E(y‘( -+5) ) 2.17
Hbmnilgleax o(; s Yi)- ( )

The adversary’s objective is the inner maximization term in (2.17), and the perturbed
samples found as a solution to the norm-constrained inner maximization are the AEs,

which is exemplified in Sections 2.3.1 and 2.3.2.

Empirical defenses are effective against many real-world attacks, however, their robust-
ness is not certifiable. The goal of certification, on the other hand, is to report whether
an AE exists within an £, norm centered at a given sample with a fixed radius. Certified
defense approaches introduce theoretical robustness guarantees against norm-bounded
perturbations [31, 32,75, 76].



Chapter 3

Smart Meter Privacy

3.1 Introduction

An electrical grid is a network that distributes electricity to consumers. The foundations

9" century as a centralized uni-

of the current electrical grid were laid out in the late 1
directional transmission and distribution system. However, the current grid has reached

its capacity and is not fit to manage the growing energy demand [77].

Developing technology has led to an increasing number of electronic appliances, electrical
vehicles and integration of renewable energy sources. In order to handle load imbalance,
inefficient usage of energy, and blackouts with domino effect a new energy grid is currently
being introduced. Smart grid (SG) is an energy grid which controls energy generation,
distribution, transmission and consumption using advanced communication and sensing
technologies. SGs are developed to increase the efficiency of energy infrastructure, reli-
ability against attacks, flexibility with bidirectional energy flows and the load balancing
against variations [78]. For instance, thanks to SG’s ability to support customer energy
generation, farms that produce electricity using methane generators, consumers with

solar panels or wind turbines can sell excess generated energy back to the UP.

One of the main enablers of SGs are the SMs, computerized replacement of the tradi-
tional analog electrical meters attached to the exterior of households [79]. Unlike tradi-
tional electrical meters, which measure only the total consumption, SMs can monitor fine
grained electricity usage of a household and report it to the UP. This provides efficient
use of energy resources since the SM owners can track and control their consumption
almost real-time. SM data can also be used for time-of-usage pricing, which can reduce
peak electricity demands by controlling customer behavior. Moreover, SMs also facili-
tate detecting energy theft, trading user-generated energy to increase grid efficiency, and

mitigating effects of load variations [78|.

35
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FIGURE 3.1: Electricity consumption profile of a household for 24 hour period [1].

3.1.1 Privacy and Security Concerns

SM measurements contain detailed information related to the real-time state of the cus-
tomers. The UP or a third party can deduce power signatures of specific home appliances
by using non-intrusive load monitoring (NILM) techniques [80]. NILM systems identify
appliances by using a series of changes in their power draw. For instance, appliances
such as kitchen ovens, tumble dryers and dishwashers go through a number of states,
where heaters and fans are turned on and off in various combinations. Such appliances
are modelled as finite state machines. On the other hand, when on, a light bulb draws

power continuously.

In Figure 3.1, an example of the 24 hour period of SM measurements for a household
is illustrated. Specific appliances with distinguishable power signatures are highlighted
with different colors. As in Figure 3.1, the high resolution consumption data reveals
details about private activities of the user. This real-time data might enable a malicious
eavesdropper to learn user’s presence at home, illnesses, disabilities and even political
views due to the TV channel the user is watching [81]. SM privacy becomes even more
critical when we consider businesses, since their power consumption might reveal the
state of their business to competitors. The controversy about SM roll-out plans due to
privacy concerns have attracted public and political attention across the world. In 2009,
a court in Netherlands decided that mandatory installation of SMs would be a violation
to the customer’s right to privacy, and would be in breach of the European Convention
of Human Rights [82]. In 2018, in the case of Naperville Smart Meter Awareness v.
City of Naperville, a court in the United States has agreed that the Fourth Amendment
protects user’s energy consumption data collected by SMs. That is, user’s expectation for

SMs data privacy is reasonable and the government’s access to this private information



Smart Meter Privacy 37

Smart Meter
Privacy-Preserving Techniques

Smart Meter Data Manipulation

User Demand Shaping
e Data Obfuscation .
e Data Aggregation : gﬁ zitﬁ gs
e Data Anonymization .
e Sampling Modification * SMwith RES and RB

FIGURE 3.2: SM privacy enabling techniques.

constitutes a search [83]. SM privacy concerns can be a major roadblock on the path of

achieving worldwide SM usage.

3.2 SM Privacy Techniques

Various SM privacy enabling techniques have been proposed in the literature [51,84-94],
which can be categorized as into two groups (see Figure 3.2): those based on SM data
manipulation and those based on demand shaping. While the techniques in the former
group focus on modifying SM measurements [84, 85|, there in the latter group directly
manipulate user’s energy consumption exploiting physical resources, such as a RB [86-90]
or a RES [51,91-94]. Representative works for each group are briefly explained in the

following sections.

3.2.1 Data Manipulation

Data manipulation techniques modify SM measurements before sending them to the UP.
There are many different approaches to SM data manipulation in the literature, such as

data obfuscation, data aggregation, data anonymization and down-sampling.

SM data obfuscation can be performed by corrupting the SM measurements with additive
noise. A cooperative state estimation technique is proposed in [85] to preserve privacy
by obfuscating the power consumption measurement. As the amount of noise added
increases, information leaked to the UP decreases. However, such a modification makes
SM measurements less relevant to the UP for prediction and control purposes, which
contradicts the purpose of installing SMs. In [95], a general theoretical framework is
proposed for both utility and privacy requirements of data release mechanisms using

information theoretic tools. In this context, SM measurements are perturbed before being



Smart Meter Privacy 38

reported to the UP. The goal is to minimize the information leakage rate between the
perturbed data and the private data of user’s choice while keeping the distortion between
the real and perturbed meter measurements below a certain level. For a stationary
Gaussian Markov model of the electricity load, the optimal utility-privacy trade-off is

characterized in [96] using the framework proposed in [95].

Data aggregation, on the other hand, proposes sending aggregated SM readings, instead
of individual readings, to the UP. In [84], data aggregation is used in combination with
homomorphic encryption and secret sharing techniques. The UP has access only to
encrypted SM readings and the total consumption. Moreover, the users send their ran-
dom shares to the UP after encrypting with each others public keys and aggregating.
Hence, the UP does not have access to individual consumption information. However,

encryption methods increase the computational complexity substantially [97].

Data anonymization approach [98], instead, considers utilizing pseudonyms rather than
the real identities of consumers such that information gleaned from the SM cannot be

easily associated with an identified person.

In [99], two data manipulation techniques are combined, namely down-sampling and noise
addition. The SM data is first down-sampled by summing up n consecutive samples, then
noise is added to the down-sampled data. Similarly to [85], perturbation of SM readings

can cause undesired data loss.

3.2.2 Demand Shaping

Manipulating SM readings reduces the relevance of the reported values for grid manage-
ment and load prediction, limiting the benefits of SMs. Moreover, the grid operator can
place sensors outside a household or a business, and obtain the real consumption data,
since they own and control the infrastructure. Therefore, data manipulation cannot pro-
vide strict privacy against UPs. Demand shaping tackles these issues by manipulating
the real energy consumption. Unlike in data manipulation, UP receives accurate mea-
surements of the energy taken from the grid. However, these measurements do not belong
to the actual energy consumption of the household; and therefore, only provide very lim-
ited information about user behavior. Instead, the energy demand of the appliances are
supplied either by alternative energy sources, such as renewable energy sources, or from
rechargeable energy storage devices. Hence, the instantaneous energy demand of an ap-
pliance is supplied only partially by the power grid, if at all, and the rest can be provided
by the RB or RES. This effectively filters the real energy consumption time series, and

creates a new time series for the energy received from the grid, which has only limited
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correlation with the original time series, and consequently reduces the information leak-
age to the UP. Note that, in the extreme cases of unlimited RES or RB capacity, the two
time series can be made completely independent, leading to zero information leakage,
i.e., perfect privacy [100]. The objective of the SM privacy demand shaping problem is
to determine the optimal energy management strategy between the grid, RB, RES and
the appliances, under given physical limitations, such as RB capacity, RES generation

rate, peak power constraints, etc. which provide the maximum privacy.

In [50], information theoretic privacy in an SM system with an RB is formulated as an
MDP. Markovian energy demand is considered, and the minimum leakage is obtained
numerically through DyP, while a single-letter expression is obtained for an i.i.d demand.
This approach is extended to the scenario with a RES in [51], which considers both cases
where the energy generation process is private and known to the UP. When the energy
generation process is known by the UP, it is numerically shown in [2] that the infinite-
horizon MDP performance can be achieved by a low complexity algorithm under the

assumption of a special energy generation process.

Privacy-cost trade-off is examined in an SM system with an RB in [90]. Due to Marko-
vian demand and price processes, the problem is formulated as a POMDP with belief-
dependent rewards. Bellman equation for stationary strategies is provided. However,
due to the non-linear and belief-dependent reward, the Bellman equation corresponds to
a continuous state, continuous action, continuous reward MDP. Obtaining optimal poli-
cies using continuous action Bellman equation is computationally complex. Therefore,
the authors provided upper and lower bounds, and presented numerical results using

classical rate-distortion theory in [90].

Information theoretic SM privacy with RB and RES is studied in [91] with average
and peak power constraints on RES. While closed-form expressions are obtained for the
scenarios with zero and infinite capacity RB, low complexity energy management policies
are proposed for finite capacity. For a zero-capacity RB, rate-distortion theory is used
to obtain a single letter expression under the assumption of i.i.d. demand process. The
SM privacy problem in the existence of an alternative energy source, e.g. RES, is also
studied in [92] exploiting rate-distortion theory, and numerical results are obtained by

Blahut Arimoto algorithm. This approach is extended to multiple-user scenario in [101].

3.3 Information Theoretic SM Privacy

In this section, SM privacy problem is examined from information theory perspective. SM

privacy enabling techniques with data manipulation and demand shaping are presented
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in detail in Sections 3.3.1 and 3.3.2, respectively.

3.3.1 SM privacy with data perturbation

Privacy aware data release mechanism was studied in [95] for the first time, in which a
theoretical framework of privacy-utility trade-off for data manipulation is proposed. This
framework was later applied to SMs in [96]. In SM systems, load measurements are com-
plex valued including real and reactive components. The empirical load measurements
are shown to be approximately Gaussian in [102]; hence the continuous valued discrete-
time SM data can be modeled as a sequence {Y;} of rv.’s Y, e Yt ={...,—-1,0,1,...},

generated by a stationary continuous Gaussian source with memory.

SM data sequence {Y;} contains private information {X;} of the data collector’s choice,
such as the energy consumption of a particular home appliance. This private information
X; € X is correlated with and can be inferred from Y;. Formally, the encoding function
on SM side is a mapping from the meter reading sequence Y" = (Y1,Y>,...,Y},,), where

Y: € R, to an index Z,, € Z,, = {1,2,..., Zymaz} given by
Fenc:ynﬁzna (31)

where each index is a quantized sequence. The decoder at the UP side computes a

distorted output sequence yn = (Yl, Yg, el }A/n), Y; € R, using the decoding function,
Fiee: Z = Y™ (3.2)

To obtain a certain level of privacy in the SM problem, the encoding function Fgy,. is
chosen such that the private information X; cannot be inferred from the distorted output
Y;. However, the distortion level must be kept limited such that the UP can still achieve
utility from the distorted SM readings. The utility is measured by the mean-square error
(MSE) distortion function,

n

> E[(vi-¥)*, (3.3)

t=1

1
D, =—
n
" g") = Py")p(§"ly"). Pri-
vacy leakage is measured by the mutual information rate between the SM measurements

where the expectation in is over the joint distribution p(y

received by the UP {¥;} and the private information sequence {X;},

L, = lI(X"; Y™, (3.4)

n
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For a coding scheme given by (3.1) and (3.2) which satisfies (3.3) and (3.4), the SM
utility-privacy trade-off region is a set of all (D, L) pairs, where D and L are the limit
values of D,, and L,, as n — oo, respectively. However, this utility-privacy trade-off region
does not bound the number of encoded sequences. The rate-distortion-leakage (RDL)
trade-off region is the set of all (R, D, L) triplets for which there exists a sequence of

coding schemes with (3.1), (3.2), each with a bounded number of encoded sequences
Zmaw < 2" T, (3.5)

where € > 0, R,, = (1og Zpnaz)/n and D,, < D + € while we have R = lim,, o Ry,. Under
the constraints (3.3) and (3.4), SM utility-privacy trade-off can be quantified by the RDL

trade-off region, where the rate-distortion and minimal leakage functions are denoted by

1 .
R(D,L) = lim inf Iy PM), (3.6)
n=r00 p(y™,a™)p(§" |y™) M
1 .
A(D) = lim inf —I(X™Y"). (3.7)

n—00 p(y™,z)p(§"|y™) N

Rate-distortion function for Gaussian sources is well known |64 and can be obtained from
the covariance matrix which is obtained by transforming the correlated source sequence
into its eigen-space where the MSE function and the mutual information leakage are
invariant. For example, the optimal encoding strategy for independent Gaussian r.v.’s

can be obtained using the reverse water-filling algorithm [96].

3.3.2 SM privacy with demand shaping

In this section, SM privacy problem is examined in the presence of a renewable energy
source and a rechargeable battery, which allow the user to physically manipulate its con-
sumption [51,91,93]. A discrete time model of the SM system is illustrated in Figure 3.3,
in which the energy demand of the user and energy requested from the grid at time slot ¢
are denoted by X; € X and Y; € ), respectively, where (|X|, |YV| < co). The RB state of
charge at the beginning of time slot ¢ is denoted by B; € B :={0,..., B;,}, in which the
initial state By is distributed with probability pp,. The battery charging and discharging
process is assumed ideal without any losses (see [88,103] for a model with energy losses).
E, € £:=10,..., E,} units of energy are generated by the RES at the beginning of each
time slot ¢, and these can be used by the appliances only through the RB. The E; process
is assumed to be independent of X;, and as the most general case, the realizations of E}
are not known by the UP. X; and F; are assumed to be first-order time-homogeneous
Markov chains with transition probabilities gx and ¢g, and initial state distributions px,

and pp, for their initial states X; and Ej, respectively. Time-homogeneity and Markov
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chain assumptions imply that the transition probabilities between two time instances
depend only on the difference between those times, and the stochastic process is memo-
ryless given the previous time, respectively. The E,; process is assumed to be independent
of X;. These assumptions are realistic in stationary environments, and stationarity can

be approximated by choosing appropriate time-horizons for the process.

The appliances’ energy demand is always satisfied by assuming E; + By + Y; > X, Vt.
In addition, intentional energy waste to provide privacy, or selling energy to the grid are

not allowed.

3.3.2.1 SM privacy with a RES

First, we consider the special case where the RB capacity of the SM system illustrated in
Figure 3.3 is zero, i.e., By, = 0. Here the energy from the grid or RES cannot be stored
in an RB to provide additional privacy. Since the UP cannot access the amount of energy
generated by the RES at a particular time instant, users can achieve a certain level of
privacy depending on the amount of energy they can receive from the RES. Assume that
the RES is limited in terms of the average and peak power it can provide. Therefore, the
objective of the SM privacy problem with RES is to obtain the optimal policy providing
the best privacy under the average and peak power constraints of the RES. Information
leakage rate to be minimized can be written as the mutual information rate between the

user demand and the grid energy, i.e.,

1
Iy = TI(XT; YT, (3.8)

The maximum power which can be received from the RES in a time slot ¢ is denoted by

]5, and must satisfy 0 < Xy — Y; < p. Moreover, the average power, Pr, that the RES
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can provide over a finite horizon T is defined by,

T

Pr = e[ 30 -, (39)
where the expectation is taken over the joint probability distribution of the user demand
and the grid power. Under these constraints, the asymptotic performance limit of the n-
letter problem becomes an infinite dimensional optimization problem. On the other hand,
using single-letter r.v.’s allows achieving the optimal solution solving a finite-dimensional
optimization problem. A single letter expression for the minimum information leakage
rate can be obtained under the assumption of i.i.d. demand, and it can be characterized

by the privacy-power function defined as,

I(P,P)= inf I(X;Y 3.10

(P, P) = inf I(X;Y), (3.10)

where F = {Pyx : y € Y,E[(X —Y)] < P,0 < X =Y < P}. Here, the energy
constraints are not affected by the past, since there is no battery, and thus no memory
in the system. The optimal energy management policy minimizing (3.10) is stochastic

and memoryless, and depends only on the current demand.

We note that the objective function (3.10) is similar to rate-distortion function R(D)
in information theory, which describes the minimum required compression rate R, in
bits per sample, for an i.i.d. source sequence X' with distribution px such that the
receiver can reconstruct the source sequence achieving a particular expected distortion
level D [64]. Average distortion between sequences X7 and X7 is denoted by D =
+ Z?:l d(x¢, %), where d(x,%) and X represent the distortion measure used, and the
reconstruction alphabet, respectively. The information rate-distortion function RY) (D)

for a source X with distortion measure d(z, %) is defined by Shannon as [64],

RD(D)= min I(X;X), (3.11)

p(z|2)eF
where F = {P(z|&) : > (@) P(@)P(2]z)d(x,2) < D}. The analogy between the
privacy-power function (3.10) and the rate-distortion function (3.11) can be made as-

suming the distortion measure:

d(z,y) = r—y, if0<z—y<P, (3.12)
7 Dz, otherwise,

where D4, < 00 is a very large scalar. Hence, this enables us to use tools from rate-
distortion theory to examine SM privacy problems with RES [91,92,101]. However, there

are two major differences between the rate-distortion and SM privacy problems, namely
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i) grid energy Y7 is the direct output of the "encoder", which is represented by the
EMU in the SM problem, rather than the reconstruction of the decoder, and ii) unlike
the lossy encoder, EMU determines the output load Y; instantaneously after receiving
the demand. Since the mutual information is a convex function of the distribution Py x,
the privacy-power function can be written as a constrained convex optimization problem

and solved numerically using the Blahut Arimoto algorithm [64].

3.3.2.2 SM privacy with an RB

Here, we consider another special case where the SM system illustrated in Figure 3.3 has
an RB, and no RES, i.e., E; = 0 for all t. The energy demand of the user is supplied by
the grid energy through the RB, and charging of the RB can only be performed by the
energy grid. This scenario is studied in [50] and [90], where both recast the problem as
an MDP.

The battery state of charge is updated by,
By = By + Y — Xy, (3.13)

where Y; is chosen such that By < By,.

The amount of energy requested from the grid is determined by a randomized bat-
tery charging policy ¢ = {¢:}2,, where ¢; is a conditional probability distribution
q:(Y;| X!, B!, Y*~1) which randomly decides on the amount of energy received from the
grid at time ¢ given the histories of demand X*:={Xj,..., X;}, battery charge B! and
grid energy Y*1 ie.,

g X x BEx YU 5. (3.14)

The goal of the SM privacy problem is to find an energy management policy, {q;}5°,
which provides the best privacy.

Privacy of an energy management policy over a time period T can be measured by the
information leakage rate, which is defined as the average mutual information between

the demand side load (XT', BT), and SM readings Y7
1
Ly(T) := TI(XT, BT y™T). (3.15)

The RB state of charge, i.e., BT, is included in the privacy measure, since a potential
adversary having access to B” can deduce the SM measurements due to the deterministic

relationship between Xy, Y}, By and Byy; in (3.13). In [50], it is proved that there is no



Smart Meter Privacy 45

loss of optimality in considering policies of the form q;(Y;|X;, By, Y*~1); that is, it is
sufficient to consider only the current demand and battery state. Hence, (3.15) can be

rewritten in an additive form

T
Z (X, B VYt 1), (3.16)

*ﬂ \

Markovity of optimal actions and the additive objective function of information leak-
age rate enable this problem to be cast as a stochastic control problem, which can be

formulated as an MDP.

SM privacy problem in the existence of RB can be cast as an average cost, infinite-
horizon MDP with state S;={X¢, By} € S. However, the leakage at time ¢ depends on
Y= which leads to a growing state space in time. Therefore, the problem is formulated
as a belief MDP and belief state [;(s;) is defined as the causal posterior probability
distribution over the state space of (X¢, By) given Y~ 1:

Be(st) = PI(Sy = s |V = ¢t ). (3.17)

The control actions chosen by randomized policies are the conditional probabilities of
energy received from the grid given the state and belief, denoted by a;(y:|s;) = P4(Y; =
yt|St=s¢, Bt), where a; € A [50]. As a result of the action taken at time ¢, belief is

updated for the next time interval as follows:

Sop(sed1, st yelyth)

B(st1) = p(sirly’) = = 3.18a
( t+1) ( t-‘rl‘y) p(yt‘yt_l) ( )
S p(sely)p(else, v Hp(st41 |y, st)
== 3.18b
> p(selyt=Y)p(yelse, yt=1)p(set1lye, st) ( )
St,St+1
sp)as(yels Tpiqlw
SZtB( t) t(ytl t)QX( t+1| t) 1bt+1{bt+yt _xt}
= X : (3.18¢)
Y. B(st)a(yelst)ax (wertlze) Lo b +ye — 24}
St,St+1

where (3.18b) follows from the Bayes rule and the Markov chain Y=! — (S, ;) — Sii1;
and (3.18c) from the definitions of 3 and a;. Given Y?~!, per-step leakage of taking action
at(ye|st) due to policy q is,

at(yt]st)

W. (3.19)

lt(sta at, yt7 q) = lOg

Taking the expectation of the per-step leakage over a finite-horizon T,

%Eq[ZZzl li(s¢, a8, y1)], results in an objective function equivalent to the original
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formulation in (3.16). Given belief and action probabilities, average information leakage

at time ¢ is formulated as,

Eqlli(st,ar, ") = I(Si; Vi |Y'™H =y 1)

_ 1 at(yt\st) )
Stegy:tey Br(st)at(yt|st) log §§S Be(8¢)at(yt)8¢)

= I(S4; Yi|Bt, at). (3.20)

SM privacy problem which is cast as an average cost belief-MDP can be solved by DyP.
While an exact DyP solution cannot be achieved due to the continuous belief state,
approximate numerical solutions can be obtained by using belief quantization methods
[68]. To formulate the corresponding Bellman equation, which is a necessary condition

for the optimality of DyP [104], Bellman operator T is written as,

[Ta0](B) = U(s,q(B), B) + > Bls)alyls)v(é(B,y,a)), (3.21)

seS,yey

where v is the value function and the updated belief state is represented by Biy1 =
&(Bt, yt, ar). Implementation of DyP for the finite-horizon and infinite-horizon settings

is as follows:

Finite horizon DyP

e For v,41(f) =0and t € {n,...,1}, value functions, v;, are recursively defined [65]:
ve(6) = min[Tove11)(6). (3.22)

Optimal leakage rate is given by v1(51)/n, where p1(s) = px,pB, -
e The optimal policy minimizing the right hand side of (3.22) is denoted by q* =
(G, qt):

ar (Ye|se, B) = ar(yelse). (3.23)
Infinite horizon DyP

e For \ constant [65], the value function v is time-homogeneous and defined iteratively:

A+ v(B) = min[T,v](B). (3.24)

acA

Optimal leakage rate is given by A.
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e Time-homogeneous optimal policy, q* = (¢*,q¢*,...),

q* (yelse, B) = alyese). (3.25)

3.3.2.2.1 Single letter expression for i.i.d. demand Under the assumption that
X, is 1.i.d. with probability distribution py, it is possible to achieve the optimal policy
by solving a cost function in a single letter form. Consider an auxiliary state variable
W, = By — X, where w € {b—x : b € B,z € X}. Then, the single letter minimum

information leakage rate is given by [50],

J*=min I(B—-X;X)=min{H(B—-X)—- H(B)}, (3.26)
0ePs 0ePn

where r.v.’s X and B are independent; 6 is the probability distribution over B given

t—1
)

(It_l)'

the past observations and actions, i.e., 6 := p(by ; and actions a; are the
conditional probabilities of grid load given the current demand, battery charge and the
belief. Contrary to the Markovian demand case, here belief states are on W;. Since the
objective function (3.26) is convex over 6, the optimal policy can be obtained by Blahut-
Arimoto algorithm [64]. The resulting grid load is i.i.d., and the optimal charging policy

is memoryless and time-invariant.

3.3.2.2.2 Privacy-Cost Trade-Off In practice, in addition to privacy, energy cost
is an important concern. Indeed, home energy storage devices are mainly installed to
reduce energy consumption by storing energy during off-peak price periods [105,106]. It
is possible to maximize privacy by constantly purchasing high amount of energy from
the grid and wasting the extra energy. However, this is against the purpose of SM from

both the user and the UP point of view.

The same as minimizing the mutual information to maximize the achievable privacy, the
conditional entropy of the demand process given the observations of UP can also be used
as a privacy measure to maximize. In [90], the authors take both privacy and cost into

account and recast the problem as an MDP. The privacy is formulated as,
1
,P<q) = TH(XT‘YT7PT)7 (327)

where PT = (Py,...,Pr) is the price of the energy purchased from the grid for ¢ =
{1,...,T}. Unlike privacy, energy cost has an additive formulation and can be easily

incorporated into the MDP formulation. Following policy q, the average cost savings per
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time slot are defined by,

T
1
C(q) = T;c(Xt,BtH,Yt,Pt), (3.28)

where ¢(Xy, Biy1,Y:, Pr) = (Xy —Y;) Py, VBi41 € B. The objective of the SM privacy-cost
trade-off problem with RB is considered as the weighted sum of privacy, P, and average
cost savings per time slot, C. That is, the weighted reward function to be maximized is
given by R(q,\) = AP(q) + (1 — \)C(q), where X € [0,1] denotes user’s choice regarding
the balance between privacy and cost. If A = 0, only the cost savings are maximized,
whereas if A = 1, only the privacy is maximized. The problem in [90] is reformulated
as a belief MDP. A Bellman equation which corresponds to a continuous state, contin-
uous action, continuous reward MDP is written for stationary policies. However, due
to the high computational complexity, only the privacy of cost-optimal, deterministic
and greedy policies are studied in [90]. Optimal privacy-cost trade-off bounds are also

obtained using rate distortion theory.

3.3.2.3 SM privacy with a RES and an RB

In this section, we consider a more general case in which the SM system is equipped with
a finite capacity RB and a RES with non-zero energy generation (see Figure 3.3) [2,51].
While the RB provides demand shifting, the RES supplies alternative energy to mask
the energy consumption of the appliances. However, the memory introduced by the RB
and the additional randomness due to the energy generation process of the RES, the

SM privacy problem becomes more complicated than the previous cases with only RB
or RES.

Here, the battery state of charge is updated by,
Bt—‘rl = min(Et + Bt — Xt, Bm) + Yt, \V/t, (329)

where Y} is chosen such that By+1 < B,,. When the realizations of the energy generation
process E; are not known by the UP, information leakage rate of the SM system with
RB and RES is defined by

1
Ly(T) := TI(XT,BT,ET;YT). (3.30)

Randomized battery charging policies in the existence of an RB and a RES are defined
such that ¢; : X' x & x Bt x Y!=1 — ). Similarly to Section 3.3.2.2, there is no loss
of optimality in considering battery charging policies of the form q;(Y;| Xy, By, By, Yi71).
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Therefore, (3.30) can be rewritten in an additive form

T
> I(Xy, By, E VYT, (3.31)
t=1

Lq(T) = %

Employing Markovian actions and additive objective function, SM privacy problem with
RB and RES can be cast as an average cost MDP with states S; = {Xy, B, E1} € S. As
before, the history dependence of the information leakage due to RB causes a growing
state space in time. Hence, the problem is formulated as a belief MDP and belief state
Bi(st) is defined as the causal posterior probability distribution over the state space of
(X¢, By, Ey) given Y*~1. As a result of the action as(y|s¢) € A taken at time ¢, belief is

updated for the next time interval as follows:

B(st+1) =
> B(st)ai(yelst)ap(ertiler)ax (er1|xe) Ly, {min(e, + by — 24, By) + i}

St

> B(st)ar(yelst)ae(er1le) ax (Tir1|we) 1y, {min(es + by — ¢, Bim) +ye}

St,St+1

(3.32)

The derivation of the intermediate steps can be performed following (3.18) with the cor-
responding modifications. Given Y!~! = ¢!~ the average information leakage in (3.31)
can be written in terms of belief and actions by averaging the per-step leakage in (3.19)
over the belief and action probabilities, when S; = { Xy, By, E;}. With the integration of
renewable energy generation, the resulting objective (3.20) can be minimized by following
the DyP steps (3.22)-(3.25).

3.3.2.3.1 Renewable Energy Known by the UP Here, we consider a special case
of the SM privacy problem with an RB and a RES, in which the UP knows the realizations
of E;. In this scenario, energy management policies of the form q;(Y;| Xy, By, Et, Y1)
are taken into account, and the information leakage rate induced by policy q is denoted
by,

T
1 1
Lg(T) = TI(XT, BT, YyT|ET) = - > I(Xy, B E VYL EY. (3.33)
t=1

Similarly to the F; unknown case, the problem can be reformulated as a belief MDP. The

belief state is defined as the conditional probability on the system state S; := (X¢, By),

t—1 t—l)

given the observation history (Y!=1 E=1) ie., B(s:) := p(s¢|y'~',e™1). As a result of
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the action a;(y¢|se, er) = PUY; = ye| St=s¢, Er = ey, Bt), belief is updated as follows,

B(st+1) =

> B(st)at(yelst, er)qr(etle—1)ax (we+1]|2e) 1o, {minles + by — 24, By) + Yt}

St
- , 3.34
S~ Blso)anilon, e0)ap(edler)ax @emlo0) oy (minler + b — 20, By g}’ Y

StySt+1

where the intermediate steps can be derived from the Bayes rule, Markovity of F;, and
the Markov chain (Y1, E'=1) — (S;,Y;, ;) — Siy1. Unlike the E; unknown scenario,
energy generation process is not included in belief since the UP has the exact information
about Ej; realizations. Given (Y!~!, E'~1) per-step information leakage of taking action

at(yt|st, er) incurred by policy q is,

ar(ye|se, er)qr(edle—1)
Pa(y;, er|yt=1et=1)

lt(stvetvatuyt;q) = IOg (335)
Taking average leakage over a finite-horizon T, %Eq [Zthl li(s, e, ag, yt)], is equal to the
original formulation in (3.33). Given belief and action probabilities, average information

leakage at time ¢ is denoted by:

Eq[lt(st)et7atayt)] = I(St;Eta}/HYt_l = yt_laEt_l = et_l)

at(yt|5t7€t)QE(€t\€t—1)
= Bi(st)a st,eq)qe(erler—1) lo - —
Stgs t( t) t(yt‘ t t) ( t’ t ) g Z /Bt(st)at(ytyst,et)qE(et|et—1)

et€Ey€Y §1€S

= 1(St; Ev, V1| B, qE, ar). (3.36)

The problem is recast as a belief MDP, and the Bellman equation to be used in DyP is

modified with the integration of observed energy generation process,

[T.0)(B) = U(s,4(8), B,qp) + Y B(s)a(yls, e)qu(ele)v((B,y,a¢€)),  (3.37)

seS
ecEye)y

where é is the energy generated in the previous step and the updated belief state is
represented by Bir1 = &(Bt, yt, ar, €;). Finite-horizon and infinite-horizon MDP steps
can be followed from (3.22)-(3.25).

3.3.2.3.2 Special Renewable Energy Generation Process Here, we propose low
complexity policies and numerical solutions for SM privacy-cost trade-off in the existence
of both RES and RB by exploiting a special energy arrival process that fully recharges the
battery at random time instances, i.e, E; € {0, B;,}. The realizations of the renewable
energy generation process Fy is assumed to be known by the UP. Due to the special

energy arrival process, the problem is an episodic MDP, which resets to an initial state
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FIGURE 3.4: Illustration of the RB state of charge under the special energy generation
process assumption in [2].

of full RB at every renewable energy instant. Between two consecutive energy arrivals,
energy transitions occur only between the grid, the battery and the home appliances.
An example for the RB state of charge for B, = 5 under the special energy generation
process assumption is given in Figure 3.4. Red bars express the fully charged battery state
at time instances t = 0,5,8,12, when the renewable energy is generated. Between two
consecutive energy arrivals, the RB state of charge is represented by grey bars. Hence,
for each time period between two RES charging instants, the system can be modeled as
an SM with only an RB and no RES. Accordingly, a finite-horizon privacy-cost trade-
off problem is formulated for an SM system with an initially full RB, which is used
to propose a low-complexity policy as well as a lower bound for the original problem.
Between two RES charging instants, battery update is performed according to (3.13)
and the finite-horizon average information leakage is formulated as in (3.16). Energy
cost has an additive formulation and can be incorporated into the MDP formulation.
Price process of the energy purchased from the grid at time ¢ is defined as P;. Following

policy q, the average energy cost per time slot is defined by,

T
1
Cq(T) = > YP. (3.38)
t=1

Due to the growing space of observations of the UP, belief states are defined and the
problem is recast as a belief-MDP. The weighted objective function is given by Ug(\, T') =
ALg(T) + (1 = X)Cq(T'), where X € [0, 1] denotes user’s choice regarding the privacy-cost
balance, is represented in terms of belief states and actions, and minimized over the
action space. The optimal policy for each episode is obtained by applying finite-horizon

DyP via the Bellman operator given in (3.21).
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FIGURE 3.5: Renewable energy generation instances and privacy-cost rate for the
corresponding intervals.

Threshold Policy (TP)

According to the low complexity proposed in [2], after each RB recharge instance, the
optimal policy obtained for a fixed finite-horizon n is employed. The optimal policy
for horizon n is followed until either the battery is recharged again, in which case the
algorithm restarts with the same policy, or the time horizon n is reached. If the RB is not
recharged at time (n+1), it is assumed that all the energy demand is directly supplied by
the grid, resulting in full information leakage. The intuition behind this scheme follows
from the law of large numbers, which suggests that, with high probability, the RB will
be charged after n = P—IE time slots, where Pg is the energy generation probability at
any t. We consider policies with a fixed time horizon of n = PLE, as well as those with

an optimized time horizon.
Battery Conditioned Policy (BCP)

We propose another low-complexity policy which depends only on the current input load.
In BCP, when there is no demand, we allow the RB to be recharged by the grid with a
probability P, for each battery state B;=i, for i={0,..., Bmaz}. On the other hand,
when there is energy demand, the RB is discharged with a probability Pp, for each
battery state. As before, intentional energy waste is not allowed. When there is demand
in the case of an empty RB, it is entirely supplied from the grid. We choose (Pc,, Pp,)

values that minimize (3.16) by an exhaustive grid search on [0, 1]%.
Lower Bound

Next, we provide a lower bound on the privacy-cost trade-off by assuming that the user
non-causally knows the times at which the RES recharges the RB. In Figure 3.5, these
time instances are represented by consecutive arrows. The weighted sum of finite-horizon
leakage rate and average energy cost, minimized over policy g, is denoted by U* (v, T})
in Figure 3.5. Given i.i.d. Pg, the probability that the RB is recharged after T} time

slots is given by

f(Ty; Pg) = Pp(1 — Pg)™. (3.39)
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FIGURE 3.6: Privacy-cost trade-off of the lower bound, TP, BCP and infinite-horizon
MDP w.r.t. Pg for v=0.5 and Px=0.5.

If the RB recharge instances are known in advance, the problem reduces to the finite-

horizon MDP for each inter-arrival period.

Once the optimal performance is evaluated for all T} > 0, the lower bound can be derived

by taking their average using the probability mass function in (3.39):
o
Fy(Pg) =Y [(T; Pe)U* (7, Ty, (3.40)
k=1

where the coefficient f(Ty; Pg) approaches zero as T — oo, while U* (v, T},) approaches
the infinite-horizon privacy-cost trade-off. For the numerical solution of the infinite-
sum indicated in (3.40), we perform the summation for finite k={1,..., K} such that
Sre k41 {f(Tk: Pe)U*(7,Ti)} < €. To obtain the minimum K satisfying this inequality,
we first consider the worst case information leakage rate and average energy cost, where

all the demand is supplied by the grid, Y; = X;, and denote the lower bound by

K [e'e)
F(P) < S FTa P)U* (T + S (T Pe)Uu(3), (3.41)
k=1 k=K+1

where Uy, () := [YH(X) + (1 — v)E[X]] represents the worst case privacy-cost trade-off,
in which H(X) and E[X] are the entropy and expected value of the demand, respectively.
Hence, we choose the minimum K value that satisfies Y2 1 f(Tk; Pe)Uw(y) = (1 —
Pp)'% U, () < e. We can find a finite Tk satisfying this inequality for any e > 0.

A simple binary example

We consider a simple scenario with (X,))={0,1}, £={0,2} and B={0,1,2}. We em-

phasize that obtaining numerical results for larger alphabets is challenging as the belief
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grows with the state space, and so does the computational complexity, also due to the
quantization of the belief. For simplicity, demand and energy generation processes are
assumed to be i.i.d. with Bernoulli Px=0.5 and Pg € [0, 1], respectively. Extensions to
Markovian F; process is straightforward for TP and BCP; however, the MDP formula-
tion requires including F; in the state, and updating the belief accordingly. We consider

a privacy-cost trade-off weight of y=0.5.

The weighted total privacy leakage and energy cost for TP, BCP and infinite-horizon
MDP are depicted in Figure 3.6, together with the lower bound. The average weighted
cost decreases with P, since the demand can be mostly supplied by the RES, decreasing
both the cost and leakage. The lower bound is obtained from (3.40) evaluated over a
sufficiently long T'. While the lower bound is not tight in general, it also shows us the
value of predicting the energy generation instances for optimizing the privacy and cost.
Two plots of TP are obtained corresponding to different horizons. For the first TP plot,
the finite-horizon is set to be n:é. Since TP leads to full information leakage when
energy arrives later than the set horizon, this approach has a higher privacy-cost trade-off
compared to the infinite-horizon DyP solution of the original problem. For the second
TP plot, for each Pg value, the best horizon value is selected by searching over the
set n = [1 : 15]. We observed that, the optimal fixed horizon is typically longer than
%E, which reduces the probability of full leakage. Interestingly, the performance of TP
with optimized yet fixed horizon follows that of the infinite-horizon MDP solution very
closely. We remark here that the curve obtained for the infinite-horizon MDP solution is
an approximation as well, due to the quantization of the belief. Finally, we observe that
the performance of the BCP scheme can outperform that of fixed horizon TP policy for

high Pg values.

3.4 Conclusions

SMs are end user interfaces that monitor the energy consumption of users. SMs pro-
vide accurate, high frequency consumption data to the UPs, and they are being widely
deployed around the world. The adoption of SM s has created a multi-billion dollar
business. However, private information about user’s personal lives can be inferred from
detailed SM readings by the UP, which has led to significant consumer outrage, creating
a serious roadblock in front of the widespread deployment of SMs. Therefore, enabling
privacy-aware SM technology has an undeniable importance both for consumers and for

other stakeholders in this multi-billion dollar industry.

In this chapter, SM privacy-preserving techniques have been discussed. They are classi-

fied into two: data manipulation methods which modify SM measurements and, demand



Smart Meter Privacy 55

shaping methods which manipulate the energy received from the grid physically. The
second group of methods, which use physical resources, such as RB and RES, have been
examined in detail as they provide privacy without compromising the role of SM in
providing timely and accurate energy consumption information. Unlike SM data manip-
ulation, demand shaping methods report accurate and real consumption measurements
to the UP, which maintains the benefits of the SG concept. We have mainly focused on
information theoretic privacy measures, in particular the mutual information between the
real energy consumption and the energy received from the grid, which is also what the
SMs report to the UP. Other measures have also been considered in the literature, see for
example [107,108]. Rate-distortion theory and MDPs have been used as mathematical

tools to study the fundamental information theoretic privacy measures.

Although there are a vast number of solutions which have been proposed in the lit-
erature, SM privacy problem still has many challenges to be addressed. Among the
various privacy metrics defined, there is still lack of a privacy measure which is generic,
device-independent and well suited to various privacy-preserving methods. Information
theoretic privacy metrics provide solutions independent of the attacker behavior, such as
the particular detection technology employed by the attacker; however, they depend on
an underlying statistical model governing the various processes involved. The assumed
statistical models may not be valid in practice, or more involved models might be needed,
under which clean optimal solutions may not be possible, requiring computationally lim-
ited sub-optimal solution that can provide reasonable privacy guarantees. Moreover, the
cost of privacy-preserving techniques and installation of RB or RES is still considerably
high compared to cost savings due to SM usage. However, this cost may reduce as renew-
able energy becomes more widespread making RES and RBs more commonly available

to households.



Chapter 4

Time-Series Data Privacy

In this chapter, we study PUT in time-series data sharing. In the previous chapter, we
mainly focused on demand shaping techniques which preserve the privacy by physically
modifying the data to be shared. Here, we focus on PUT by obfuscating the data with
noise before sending it to the SP. Existing approaches to PUT with data obfuscation
mainly focus on a single data point; however, temporal correlations in time-series data
introduce new challenges. Methods that preserve the privacy for the current time may
leak significant amount of information at the trace level as the adversary can exploit
temporal correlations in a trace. In this chapter, a distorted version of a user’s true
data sequence is shared with the SP, and the privacy leakage is measured by the MI
between the user’s true data sequence and its shared version. Both the instantaneous
and average distortion between the two sequences, under a given distortion measure, are
considered as the utility loss metric. To tackle the history-dependent MI minimization,
we reformulate the problem as an MDP, and solve it using A2C-DRL. The performance
of the proposed solution in location trace privacy are evaluated on both synthetic and
real GPS trajectory datasets. For the latter, the validity of the proposed solution is
shown by testing the privacy of the released location trajectory against an adversary

network.

4.1 Introduction

In this chapter, we study the fundamental PUT when sharing sensitive time-series data.
We consider the scenario in which the user measures time-series data (e.g., location,
heartbeat, temperature or energy consumption) generated by a first-order Markov pro-
cess through an IoT device, and periodically reports a distorted version of her true data

to an untrusted SP to gain utility. We assume that the true data becomes available

56
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to the user in an online manner. We use the MI between the true and distorted data
sequences as a measure of privacy loss, and measure the utility of the reported data by
a specific distortion metric between the true and distorted samples. For the PUT, we
introduce an online private data release policy (PDRP) that minimizes the MI while
keeping the distortion below a certain threshold. We consider both instantaneous and
average distortion constraints. We consider data release policies which take the entire
released data history into account, and show its information theoretic optimality. To
tackle the complexity, we exploit the Markovity of the user’s true data sequence, and
recast the problem as an MDP. After identifying the structure of the optimal policy, we
use A2C-DRL framework as a tool to evaluate our continuous state and action space
MDP numerically. To the best of our knowledge, this is the first time DRL tools are

used to optimize information theoretic time-series data privacy.

The performances of the proposed PDRPs are examined in two specific scenarios: In the
first scenario, synthetic location traces are generated considering a user moving in a grid-
world with a known Markov mobility pattern. In the second scenario, we use GPS traces
of a user from GeoLife dataset [109,110|. For the average distortion constrained case, the
proposed PDRP is compared with a myopic location data release mechanism [47]. While
the privacy leakage of the considered PDRPs can be evaluated for the synthetic dataset,
this cannot be done for the GeoLife trace since we do not know the true statistics of this
dataset. Instead, we compare the privacy achieved by the proposed and myopic policies
using an adversary which predicts the current location of the user from the past released
locations. The adversary is represented by a long short-term memory (LSTM) predictor.
The performances of the proposed policies are tested under various adversary memory

sizes.

This chapter contains our previous work on PUT for location sharing [111], and its
extension to generic time-series data sharing. Our contributions are summarized as

follows:

e We propose a simplified PDRP by exploiting the Markov property of the user’s true
data sequences. Then, we prove the information theoretic optimality of the simplified
strategy.

e We recast the information theoretic time-series data PUT problem as an MDP and
evaluate the optimal PDRP numerically using A2C-DRL.

e We apply the obtained information-theoretically optimal PDRP on the location trace
privacy problem, and evaluate its performance under instantaneous and average dis-

tortion constraints using both synthetic and GeoLife [109] trajectory datasets.

The remainder of this chapter is organized as follows. We present the problem statement

in Section 4.2 where we also introduce the privacy and utility metrics used in this chapter.
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TABLE 4.1: Notation Summary

Notation Definition

W Time-series data set
n Time-series data length
X, Y, Random variables representing the user’s true
and distorted data at time ¢
Dy Probability distribution of the true data at ¢t = 1
qz(.].)  Markov transition of user data
Q. Markov transition matrix of transition probabilities
q(.].) Conditional probability distribution, (policy)
On Probability space of history dependent policies
Qs, Q" Probability space of simplified policies under first-order
and m-th order Markov assumptions

In Section 4.3, we introduce simplified data release mechanisms for the time-series data
PUT problem. In Section 4.4, we reformulate the problem as an MDP and propose a
numerical evaluation approach utilizing advantage actor-critic deep RL. In Section 4.5,
we apply the proposed solution to the location trace privacy problem, and compare the
performance of the proposed location release strategy with a myopic policy numerically.

Finally, we conclude our work in Section 4.6.

4.2 System Model

We consider a time-series {X¢}¢>1, taking values from a finite discrete set WW. The user
shares {X;} with an SP to gain utility through some online service. We assume that the
user’s true data sequence {X;}+>1 follows a first-order time-homogeneous Markov chain
with transition probabilities ¢, (x¢11|z¢), and initial probability distribution p,,. While
the first-order Markov structure assumed for the true data may seem restrictive, we will
show that our solution techniques generalize to higher-order Markov chains, albeit with
increased complexity in the numerical solutions. In the literature, Markov structure is a
common assumption for time-series data, and it is proved to be a reasonable assumption
for location trajectories [112], smart meter readings [113] and financial data [114] due to

the history dependent behavior of these time-series.

Instead of sharing its true data at time ¢, the user shares a distorted version of her current
data, denoted by Y; € W. The released data at time ¢, Y;, does not depend on future
data samples; i.e., for any 1 <t <n, ¥; — (X', Y1) — (X}",,Y;%,) form a Markov
chain, where we have denoted the sequence (X;41,...,X,) by X/, and the sequence
(X1,...,X) by Xt. The notations which have been used throughout the chapter are
listed in Table 4.1.
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FIGURE 4.1: Markov chain example for the true data generation.

For a better understanding of the user’s private time-series data generation process, a
simple Markov chain with state space W = {wy, w2, w3} and state transition probabilities
pi; for (4, j) € {1,2,3} are presented in Figure 4.1. The sensitive data X; takes the values
{wy,we, w3} according to the state transition probabilities. The user becomes aware of
X, in an online manner and releases a distorted version Y; € {wy,ws, w3}, following her

privacy-preserving strategy.

4.2.1 Privacy and Utility Measures

Drawing from Section 2.1, we quantify the privacy by the information leaked to the
untrusted SP measured by the MI between the true and released data sequences. Ac-
cordingly, the information leakage of the user’s release strategy for a time period n is
given by
n n
I(X™Y™) =) I(X™ YY) =) I(X5v v, (4.1)
t=1 t=1
where the first equality follows from the chain rule of MI, while the second from the
Markov chain Y — (X, Y1) — +1- Even though a malicious third party can obtain
the statistics of the user’s data release strategy over an infinite time horizon, i.e., n — oo,
he cannot infer the realizations of the private information due to the privacy measure
based on uncertainty. Since information theoretic metrics are independent of the attack’s

behavior and computational capabilities, they are preferable as privacy measures.

In the time-series data privacy problem, we want to minimize the information leakage
to the SP. However, as we apply more distortion to the true data sequence for privacy,
the more utility is lost due to increased deviation from the original sequence. That

is, releasing distorted data reduces the utility received from the SP, and the distortion
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applied by the user should be limited to a certain level. Therefore, our main purpose
is to characterize the trade-off between the privacy and utility. The distortion between
the true data sample X; and the released version Y; is measured by a distortion measure
d(X4,Y:) specified based on the underlying application (e.g., Manhattan distance or
Euclidean distance), where d(X¢,Y;) < 00, VX, Y € W.

Our main goal is to minimize the information leakage rate to the SP while satisfying
the distortion constraint for utility. Throughout this chapter, we consider two different
constraints on the distortion introduced by PDRP, namely an instantaneous distortion
constraint and an average distortion constraint. The infinite-horizon optimization prob-

lem can be written as:

1 n
lim min = 19Xt v, |yt! 1
Byl 2T (42

d(Xe,Ye)<DYp,

under the instantaneous distortion constraint D, and as

1 n
lim min - 19Xt v |yt i3
n—o0 qt(ytlxt,ytfl): n tzl ( t‘ ) ( )
E[L 3 d(x. )] <D
t=1

under the average distortion constraint D, where x; and y; represent the realizations of X;
and Y, ¢ = {q:(ye|ot, y' 1)}, is a conditional probability distribution which represents
the user’s randomized data release policy at time ¢t. The randomness stems from both the
Markov process generating the true data sequence, and the random release mechanism
¢t (y¢|xt, »'~1). The MI induced by policy g;(y¢|x!,4*~1) € q is calculated using the joint
distribution

n
PIX™ =2 V" =y") = pryqs(l2n) [ [ [ (@il )a(wela’, o)) (44)

=2
In the next section, we characterize the structure of the optimal data release policy, and
using this structure we recast the problem as an MDP, and finally evaluate the optimal

trade-off numerically using A2C-DRL.

4.3 PUT for Time-Series Data Sharing

In this section, we analyze the optimal PUT achievable by a privacy-aware time-
series data release mechanism under the notion of MI minimization with both instan-
taneous and average distortion constraints. Moreover, we propose simplified PDRPs

that still preserve optimality. By the definition of MI, the objectives (4.2) and (4.3)
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depend on the entire history of X and Y. Therefore, the user must follow a history-
dependent PDRP ¢} (y;|x!, '), where the feasible set Qp consists of policies that sat-
isfy >, cw @t (gl y' ")

complexity of the minimization problem increases exponentially with the length of the

= 1. As a result of strong history dependence, computational

data sequence. To tackle this problem, we introduce a class of simplified policies, and

prove that they do not cause any loss of optimality in the PUT.

4.3.1 Simplified PDRPs

In this section we introduce a set of policies Qg C Qg of the form ¢ (y¢|xs, 71, y* 1),
which samples the distorted data only by considering the true data in the last two time
instances and the entire released data history. Hence, the joint distribution (4.4) induced

by q, € Qs, where q, = {g; (ye|zt, 71—1,y" ")}, can be written as

n

Pa(X" =" Y™ = y") = pay¢§ (na]a1) [ | [ge (@il wi1)gf (elar, w1,y 1)) (45)
t=2

Next, we show that considering PDRPs in set Qg is without loss of optimality.

Theorem 4.1. In both minimization problems (4.2) and (4.3), there is no loss of opti-
mality in restricting the PDRPs to the set of policies q, € Qg. Furthermore, information

leakage induced by any q, € Qg can be written as:

n
I9(X™ Y™ =Y T% (X, Xe 3 Vi[Y') (4.6)
t=1
n s t—1
T, Te—1,
= Z qu (mta wt*l’ yt) log qt (:?;’q t( l‘& tl—ly) ) ) (47)
t=1 ytewt s\Ytly
Tt,Tt—1€EW

and the average distortion induced by any q, € Qg can be written as:

Eqs [

SRS

zn:d(Xt,YZ)] = ;zn:Eqs[d(Xt,Yi)] (4.8)
t=1 t=1

:%Z Z PYs (xy, y)d (e, ye), (4.9)

t=1 y,xt €W

where the first equation comes from the linearity of expectation.

The proof of Theorem 4.1 relies on the following lemmas and will be presented later.
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Lemma 4.2. For any q € Qp,
n
I9X™Y™) 2> T9(Xy, X3 YY) (4.10)
t=1

with equality if and only if q € Qg.

Proof: For any q € Qg,

n
I9(X™Y™) =Y TIX5v[v (4.11)
t=1
n
> TUXy, X VYT, (4.12)
t=1

where (4.11) follows from (4.1), and (4.12) from the fact that MI cannot be negative. ®

Lemma 4.3. For any q;, € Qp, there exists a policy q, € Qg such that

n n
D I (Xy, X VYT =) T (X, Xy YY), (4.13)
t=1 t=1

for both cases where q; and q, satisfy an instantaneous distortion constraint
A n —
d(X,Y:) < D, and average distortion constraints En {%Zld(Xt,Yt) < D and
t=

n —
Ed: |1 Z%d(Xt’ Y:)| < D, respectively.
t=

Proof: For any q;, € Qp, we choose the policy q, € Qg such that

s (ye|ze, 21, yt_l):P;/IﬁXthil’yt—l(yt|xta Tt—-1, yt_l)a (4.14)
and we show that P)(?Z,thl,Yt = P)%i,Xt,l,Yt‘ Then, 19 (X, Xy 1; YY)

I9s(Xy, Xy—1; Y;|[Y'™1) holds, which proves the statement in Lemma 4.3. The proof of

3 qy — qs
the equality PXt,Xt_l,Yt = PXt,Xt_l,Yt

which is derived by induction as follows,

: qy — qs
requires the proof of PXt7Xz_1,Yt_1 = PXt,Xt—l,Yt_l

PIn(zpyy,wp,y') = Z Qo (wer1|2) gl (Yel oo, w1,y ) PO (g, 21,9
Ti—1EW

= > qe(@ale)g Welre, me1, v ) PY (g, 20,y
T 1EW

= P (2441, 21, y'), (4.15)

where (4.14) holds, and P;’; (x) = pgy(z) = P)q{l' (x) is used for the initialization of the

induction.
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Having shown that the equality P;’;Xt_hyt_l = P;i;Xt—I;Yt_l and (4.14) hold, the proof
of P;ZL,Xt—l,Yt = P)%i,Xz_hYt is straightforward:

P (zy,2-1,y") = qzl(yt‘@“tyﬂft—laZ/til)th(eTtht—hytil)
= q; (yelze, me—1, y' 1) P (v, 21,9 1)

= qu(xtaxtflayt)' (416)

Following (4.16), the equality 19 (X, Xy_1; V| Y1) = I9:(X;, X;_1; Y;|[Y'~1) holds, and
the integration of the instantaneous distortion constraint into the additive MI is straight-

forward and does not affect the optimality, and hence, (4.13) holds.

Furthermore, we show that there is no loss of optimality in including the average distor-
tion constraint into the MI optimization when the policy is chosen according to (4.14),

as follows:

E[d(X, V) = 3 PU (e 21, y))d(e, yi) (4.17)

ytew?,
T, 1EW

= E qu (.’Et,wt_l,yt)d(.’lft,yt), (418)
ytewt,
Tt,xt—1EW

- Z Pis (xtvyt)d(xtayt)7 (419>
Yyt,2t EW

= E%[d(Xy,Y?)] (4.20)

where (4.17) follows from the history independence of d( X, Y7), (4.18) follows from (4.16),
and (4.19) from history-independence of d(xy,y;). Following the linearity of expectation,

the average distortion constraint can be written in an additive form, and hence, (4.13)
holds. ]

Proof of Theorem 4.1: Following Lemmas 4.2 and 4.3, for any q;, € Qp, there exists a
g, € Qg such that

[9(X™Y™) > [95(X™ Y™). (4.21)

Hence, there is no loss of optimality in using the time-series data release policies of the
form ¢ (yi, |4, 24—1,%' 1), and information leakage and the average distortion constraint

reduce to (4.7) and (4.9), respectively. [
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FI1GURE 4.2: Markov chain induced by the simplified PDRP.

4.3.1.1 m'" Order Markov Chain

Although the proof of Theorem 4.1 assumes that the true data sequence is a first-
order Markov chain, it is possible to generalize it to higher-order Markov chains, i.e.,
4o (X3 XT1) = qu (X3 XI7)) for order m. Let Q¥ C @y denote the set of policies q’

qg(yt‘xifmv ytil) = P;def_m’ytfl (yt’xifﬂm ytil)' (422)
Then the following theorem holds.

Theorem 4.4. If the true data sequence {X;} is a Markov chain of order m, then there
is no loss of optimally in using a PDRP from the set Q'§. Moreover, information leakage
induced by @' € QF can be written as:

n

19X Y™ =Y I19(X] VYT, (4.23)
t=1

and the average distortion induced by any q' € Q& can be written as:

kY {;;d(x’“yt } Z Z th7yt d(xe, ). (4.24)

t=1 yr,xt EW

Then the simplified PDRP followed by the user is illustrated by the Markov chain in
Figure 4.2, where Y denotes the released data history, i.e., {Y1,...,Y;}. That is, the
user samples the distorted data, Y;, at time t following g¢; (v¢|z¢, 2:—1,y*~') by considering

the current and previous true data, (X¢, X;_1), and the released data history, Y*=1.

4.3.2 Online PDRP with an Instantaneous Distortion Constraint

As we have stated earlier, we are assuming that the utility gained by the user by sharing
its private data diminishes as the distortion between the true data sequence and the
released version increases, under the specified distortion measure. Therefore, the utility

requirements of the user imposes distortion constraints on the PDPR. Here, we assume



Time-Series Data Privacy 65

that the user would like to guarantee a minimum utility level at each time instant,
which, in turn, imposes an instantaneous constraint on the distortion between the true

data sample X; and the released version Y; at each time instance, i.e., d(Xy,Y;) < 15, Vt.

t—l)

Accordingly, given (X¢, Xy 1,Y'™ ) = (x4, 2¢_1,y'!), the set of feasible simplified

PDRPs satisfying an instantaneous distortion constraint is qﬁ € Qé, and the set of

the released data samples induced by q! is given by
Y (@t y' ) = {yr € W d(ar,m) < D} (4.25)

Furthermore, we require qg to satisfy

> gt (yelai_y,y ™) =1 (4.26)
yeeYah(xt | yt-1)

The objective of the PUT for online PDRP with an instantaneous distortion constraints

(PDRP-IDC) can be rewritten as

n
ST (X, X YY), (4.27)
t=1

. 1
min —
i (yelay_yyt=1) T

4.3.3 Online PDRP with an Average Distortion Constraint

Alternatively, the user may want to limit only the average distortion applied to the true-
data sequence. That is, the utility loss averaged over the time horizon n is denoted
by D(X™Y™) = Eq?[% >op, d(Xt,Y:)]. The feasible set of simplified PDRPs with an
average distortion constraint is qf € Qé, and the feasible set of the released Y; induced

by g2 is given by
YO (et Y = {yt e W: D(a",y") < D}, (4.28)

where the constraint follows from the linearity of expectation, ie., D(X™Y"™) =
%Z?:l E9- [d(X¢,Y?)], and the expectation is taken over the joint probabilities of x;
and y;. Similarly to (4.25), g2 is required to satisfy

> oMyl ) = 1. (4.29)

A
Y€V (xh_ yt—1)
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Hence, the objective of the problem for online PDRP with an average distortion con-
straint (PDRP-ADC) can be written as:

1 n
min  — Y I (Xy, Xy VYD), (4.30)
n
t=1

g (yelzi_q,yt~1)

Minimization of the MI subject to a distortion constraint can be converted into an
unconstrained minimization problem using Lagrange multipliers. Since the distortion
constraint induced by the simplified PDRP is memoryless, we can integrate it into the
additive MI objective easily. Hence, the unconstrained minimization problem for time-
series data release PUT can be rewritten as

1 o _

Juig tz_; [19:(Xy, X 1; ViV ™) + MET:[d(X4, V7)) = D)], (4.31)
where A is the Lagrangian multiplier, and determines the operating point on the trade-off
curve, i.e., it represents where the gradients of the MI and the distortion constraint point
in the same direction. When A = 0, the user releases data samples which only minimize
the information leakage. On the other hand, as A — oo, the released data minimizes only
distortion constraint rather than information leakage, which results in full information

leakage.

In the following section, we present the MDP formulation of the problem for both PDRPs

and the evaluation method utilized by advantage actor-critic RL.

4.4 MDP Formulation

Markovity of the user’s true data sequence and the additive objective functions in both
(4.27) and (4.31) allow us to represent the problem as an MDP with state X;. However,
the information leakage at time t depends on Y*~!, resulting in a growing state space
in time. Therefore, for a given policy g, and any realization y*~! of Y~! we define a

belief state 3; € Px as a probability distribution over the state space:

Bt(xt,l) = qu (Xt,1 = ZEt,1|Yt_1 = yt_l). (432)

This represents the SP’s belief on the true data sample at the beginning of time instance
t, i.e., after receiving the distorted-data ;1. The actions are defined as probability
distributions with which the user samples the released value Y; at time ¢ and determined

by the randomized PDRPs. The user’s action induced by a policy g, can be denoted
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by ai(yi|ze, zi—1) = P9 (Y = ye| Xy = x4, Xy—1, Bt). At each time ¢, the SP updates its

belief on the true data sample 8;11(z), after observing its distorted version y; by

Bry1(we) = plze,yely'™) _ Y e,y Pl w1, vy )
plly™") e Pz, pely )
e P@dre) @ (el -1,y p(zealy' Y
B Za;tyxt,lP($t|ﬂft71)Qf(yt’$t7xtflaytfl)l)(iﬂt71|yt71)
th_l Gz (Tt T1-1)a(ye|ze, T1—1) Be(we-1)

N th,mpl Qx(xt"%'t—l)a(yt’wt, wt_l)ﬂt(mt_l) : (4.33)

We define the per-step information leakage of the user due to taking the action

ai(y¢|xe, xp—1) at time t as,

at(yt|$t, iUt—1)

Pa-(yly 1) (4.34)

lt(xta Tt—1, ¢, yta qs) = 10g

The expectation of n-step sum of (4.34) over the joint probability P%(X;, X; 1,Y?) is
equal to the MI expression in the original problem (4.6). Therefore, given the belief and

action probabilities, average information leakage at time ¢ can be formulated as,

B[l (w1, at,y")] = Z Bi(we—1)ar(ye|re, Te-1) G (@e|2-1)
Tt,Te—1,YtEW
% log _ at(yt|$tjﬂft—1) _
E ﬁt(l‘tfl)at(ytut?xtfl)qgc(l'tutfl)
Tt L1 EW
= E(ﬁt, at). (435)

We can recast the PDRP-IDC problem in (4.27) as a continuous state and action space
MDP. The actions satisfying the instantaneous distortion constraint are denoted by
aiPC(y;|ws, v¢—1) and induced by the simplified PDRP ¢f(y;|zt ;,4'~'). The solution
of the MDP for PDRP-IDC problem relies on minimizing the objective

CIDC (/8t7 Q%DC) = E(Bta CL%DC% (436)

where L£(B,alPC) is the average information leakage obtained by taking the actions

aiPC (y¢|xs, 24_1), at each time step t.

We remark that the representation of average distortion in terms of belief and action

probabilities is straightforward due to its additive form. Similarly to (4.35), average
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distortion for PDRP-ADC at time ¢ can be written as,

E[d(zt, yt)] = Z Be(we—1)at(Yelze, Te-1) gz (e|Te-1)d(21, Yt)
T, Ty -1,y EW

= D(ﬁt,at), (437)

where there is no restriction on how the actions are chosen, i.e., y; € W. Hence, we can
recast the PDRP-ADC problem in (4.31) as a continuous state and action space MDP

with a per-step cost function given by

CADC(,Bt, at) = [,(,Bt, at) + )\(D(,Bt, at) — D) (438)

Finding optimal policies for continuous state and action space MDPs is a PSPACE-hard
problem [115]. In practice, they can be solved by various finite-state MDP evaluation
methods, e.g., value iteration, policy iteration and gradient-based methods. These are
based on the discretization of the continuous belief states to obtain a finite state MDP
[68]. While finer discretization of the belief reduces the loss from the optimal solution,
it causes an increase in the dimension of the state space; hence, in the complexity of
the problem. To overcome the complexity limitation, we will employ a deep learning
based method as a tool to numerically solve our continuous state and action space MDP

problem.

4.4.1 A2C-DRL Solution

In this section, we simply use C(5;, a;) and a;(y¢|x¢, x4—1) to represent the MDP cost and
action pair of both PDRP-IDC and PDRP-ADC, respectively. Integration of the solution

into the instantaneous and average distortion constrained cases is straightforward.

A2C-DRL is explained in Section 2.2.1 in detail. In this chapter, we have the knowledge
of the state transition probabilities and the cost for every state-action pair without the
need for interacting with the environment. We use A2C-DRL as a computational tool
to numerically evaluate the optimal PDRP for our continuous state and action space
MDP. To integrate RL framework into our problem, we create an artificial environment
which inputs the user’s current action, a;(y:|x¢, z;—1), samples an observation y;, and
calculates the next state, B¢11, using Bayesian belief update (4.33). Instantaneous cost
revealed by the environment is calculated by (4.38). The user receives the experience
tuple (B, at, yt, Br+1,Ct) from the environment, and refines her policy accordingly. An
illustration of the interaction between the artificial environment and the user, which is

represented by the RL agent, is presented in Figure 2.1. The corresponding Bellman
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FIGURE 4.3: Critic (A) and actor (B) DNN structures.

narameters

equation induced by policy q,

V(8) + J(q,) = min {C(8,0) + V() |, (4.39)

where V9 () is the state-value function, ' is the updated belief state according to
(4.33), a represents action probability distributions, and J(q,) is the cost-to-go function,
i.e., the expected future cost induced by policy g, [67].

We solve the MDP using A2C-DRL as described in 2.2.1. In our implementation, we
represent the actor and critic mechanisms by fully connected feed-forward DNNs with
two hidden layers as illustrated in Figure 4.3. The critic DNN takes the current belief
state B(X) of size [W| as input, where X is the true data sequence vector, and outputs
the value of the belief state for the current action probabilities V; (8). The actor DNN
also takes the current belief state 5(X) as input, and outputs the parameters used for

determining the action probabilities of the corresponding belief. Hence, the input/output
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Algorithm 1 A2C-DRL algorithm for PDRP

Initialize DNNs with random weights & and 6

Initialize environment F

for episode=1, N do

Initialize belief state 8y for ¢ = 0,n do

Sample action a; ~ Dirichlet(al&;) according to current policy;
Perform action a; and calculate cost C¢, in K}

Sample observation y; and calculate next belief state i1 in F;
Set TD target Ce, + VV9€ (Bet1);

Minimize loss £c(6) = 6% = (Ce, + 7V (Ber1) — Vi, (Be)%:
Update critic 6 < 0 + n°Vy6?;

Minimize loss ¢, (&) = In(Dirichlet(al&))dy;

Update actor & <= § — n*Vely(&);

Update belief state Siy1 + B¢

end

end

sizes of the critic and actor DNNs are WW| x 1 and |W| x |[W)|, respectively. Here, the
actor DNN output parameters {£!, ..., ¢ |W|} are used to generate a Dirichlet distribution,
which represents the action probabilities. The overall A2C-DRL algorithm for online
PDRP is described in Algorithm 1. In the next section, we apply the proposed DRL

solution to a location trace privacy problem.

4.5 Numerical Results

In this section, we consider an application of the theoretical framework we have intro-
duced to the location trace privacy problem. We focus on location trace as an example
of time-series data. In this scenario, the user shares a distorted version of her trajectory
with the SP due to privacy concerns. An example for the user trajectory of length n =5
in a grid area is illustrated in Figure 4.4. While the user’s location at time ¢ = 0 is
depicted with a grey circle, the true and released user trajectories over the next 5 time

steps are represented by black and grey arrows, respectively.

4.5.1 Numerical Results for Synthetic Data

In this section, we evaluate the PUT of the proposed PDRP-ADC and PDRP-IDC meth-
ods for synthetic user mobility data. We also compare the PDRP-ADC results with the
myopic Markovian location release mechanism proposed in [47]. For the simulation re-
sults we train two fully connected feed-forward DNNs, representing the actor and critic

networks, respectively, by utilizing ADAM optimizer [116]. Both networks contain two
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FIGURE 4.4: True and released user trajectory example for n = 5.

hidden layers of sizes 3000 with leaky-ReLU activation [117]. We obtain the correspond-
ing PUT by averaging the total information leakage for the specified distortion constraint

over a time horizon of n = 300.

4.5.1.1 PDRP-IDC Results

We first consider a simple 4 x 4 grid-world, where |W| = 16 as in Figure 4.4. The cells
are numbered such that the first and the last rows of the grid-world are represented
by {1,2,3,4} and {13, 14, 15,16}, respectively. The user’s trajectory forms a first-order

Markov chain with a transition probability matrix Q, of size |W| x |W|, whose index

Qx(3,7), i, € {1,...,|W|}, represents the transition probability ¢,(z; = i|zi—1 = j)
from the state j to ¢. The user can start its movement at any square with equal prob-
ability, i.e., py, = %. Our goal is to obtain the PUT under instantaneous distortion
constraints D € {1,...,4} with Manhattan distance on the distortion measure between

the true position and the reported one.

In Figure 4.5, PUT curves are obtained for transition probability matrices g, leg and

2 each corresponding to a different temporal correlation level. In all the cases, the user
can move from any square to any other square in the grid at each step, i.e., Q7'(i,7) > 0,
Vm,,j. While all the transition probabilities are equal to ﬁ for Qg, the probability of
the user moving to a nearby square is greater than taking a larger step to a more distant
one for QL and Q2. Moreover, QL represents a more uniform trajectory, where the agent
moves to equidistant cells with equal probability, while with Q2 the agent is more likely
to follow a certain path, i.e., the random trajectory generated by ch has lower entropy.

The transition probabilities for Q; are given by:

Td(xt7$t+l)/d($t7 mt-i—l)

Te41EW Td(wt,$t+1)/d(xta !Tt—f—l) 7

@ (i) = D (4.40)



Time-Series Data Privacy 72

2.00

S N N PDRP-IDC, Q2
1.75 - --=- PDRP-IDC, Q}
’ —— PDRP-IDC Q2

1507~

1.25 4

1.00 A

0.75 A

0.50 A

Average information leakage

0.25 A1

0.00 A

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Instantaneous distortion constraint, D

FIGURE 4.5: Average information leakage as a function of the allowed instantaneous
distortion under Manhattan distance as the distortion measure.

where d(z¢, 7¢11) is the Manhattan distance between positions z; and 415 Tz, ,.1) 1
a scalar which determines the probability of the user moving from one square to any of
the equidistant squares in the next step. Figure 4.5 is obtained by setting ro = 1 and

rp=7—1t1t=1,...,6.
2
For Q3, we set

u(y, v11)/d(2e, Tey1)
Ti+1EW u($t> $t+1)/d(xta $t+1) ’

G (wi|ze) = D (4.41)

where, for z; € {1,2,...,15}, we have

r1, for mod(zy,4) # 0, zp41 =z + 1,
u(wy, T411)=9 ry, for mod(z,4) =0, xp41 = x¢ + 4,

rg, otherwise,

where mod(.) is the modulo operator which finds the remainder after division of z; by
4, and u(16, x441) = ro for x441 € {1,...,15}, and u(16,16) = r1. As a result, temporal

correlations in the location history increase in the order Qg, Q:}:, Q:%.

We train our DNNs for a time horizon of n = 300 in each episode, and over 5000 Monte
Carlo roll-outs. Figure 4.5 shows that, information leakage increase in the order Qi,
Q}B, Qg As the temporal correlations between the locations on a trace increases, the
proposed PDRP-IDC leaks less information since it takes the entire released location

history into account.
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FIGURE 4.6: Average information leakage as a function of the allowed average distortion
under Manhattan distance as the distortion measure.

4.5.1.2 PDRP-ADC Results

Next, we consider the same scenario as before, but evaluate the PUT under an average
distortion constraint. We evaluate the performance of PDRP-ADC and compare the
results with the myopic Markovian location release mechanism proposed in [47], where
an upper bound on the PUT is given by a myopic policy as follows:

n
min TN X, Xe—1;: Y4 Yio1). (4.42)
=7 Aelzewe—1,ye—1):
T EYd(wt,y)]<D
Exploiting the fact that (4.42) is similar to the rate-distortion function, Blahut-Arimoto
algorithm is used in [47] to minimize the conditional MI at each time step. Finite-horizon
solution of the objective function (4.42) is obtained by applying alternating minimiza-

tion sequentially. In our simulations, we obtained the average information leakage and

distortion for this approach by normalizing for n = 300.

In Figure 4.6, PUT curves of the proposed PDRP-ADC and the myopic location release
mechanism are obtained for the same environment defined in Section 4.5.1.1. The same
transition matrices are used, i.e., Q%, QL and Q2 represent increasing temporal corre-
lations in the user’s trajectory. The Lagrangian multiplier A € [0,20] denotes the user’s
choice for the operating point on the PUT curve. Distortion is again measured by the
Manhattan distance. Similarly to Section 4.5.1.1, we train our DNNs for n = 300 in
each episode, and over 5000 Monte Carlo roll-outs. Figure 4.6 shows that, for Q2 the
proposed PDRP-ADC obtained through deep RL leaks much less information than the
myopic location release mechanism for the same distortion level, indicating the benefits

of considering all the history when taking actions at each time instant. The gain is less
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FIGURE 4.7: Convergence of PDRP-ADC for A = 1, D = 0.8 and Qi

TABLE 4.2: The Transition Probability Matrix @, of Toy Example for PDRP-ADC,

when |[W| = 6.
Tt 9 3 4 5 6
Tt—1
1 0.11 064 005 0.11 0.05 0.04
9 01 01 06 005 01 005
3 0.05 011 011 0.04 0.05 0.64
4 0.11 0.05 0.04 0.11 064 0.05
5 005 01 005 01 01 06
6 0.04 005 011 0.05 0.11 0.64

for Qi, since there is less temporal correlations in the location history compared to 9253
and hence, there is less to gain from considering all the history when taking actions.
Finally, for Qg the proposed scheme and the myopic policy perform the same, since the
user movement with uniform distribution does not have temporal memory; and therefore,

taking the history into account does not help.

Figure 4.7 shows the convergence behaviour of the A2C-DRL algorithm when evaluating
PDRP-ADC’s objective function (4.31) for @2, A = 1, D = 0.8. Various realizations
of the convergence curve lie in the light blue area, and the dark blue curve represents
the average value of these realizations. We observe that the convergence typically occurs
after about 2500 iterations. On the other hand, we remark that the optimal policy
for a stationary environment can be obtained in an offline manner using the available
dataset; therefore the convergence time and the number of iterations has no impact on

the real-time application of this solution in practice.
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TABLE 4.3: Best Action Probabilities a(y¢|z:, x¢—1) for Q, in Table 4.2, 8 = [%, cee é]
and \ = 3.

) 0.19 0.06 0.22 0.18 0.23 0.12
) 0.21 0.19 0.28 0.09 0.06 0.17
) 0.19 0.13 0.18 0.19 0.28 0.03
) 0.3 024 0.17 0.07 0.07 0.15
) 0.03 0.05 0.51 0.01 0.25 0.15
) 0.22 0.14 0.13 016 0.21 0.14

0.03 0.07v 0.21 021 032 0.16

(6,1)

(6,2) 0.18 0.13 035 0.1 0.16 0.08
(6,3) 021 0.08 0.8 0.2 0.13 0.28
(6,4) 0.18 0.05 0.19 0.36 0.14 0.08
(6,5) 031 014 03 007 016 0.02
(6,6) 0.09 029 021 0.16 001 0.24

We next consider a toy example for PDRP-ADC to visualize the location release strategy
for a better understanding. We consider a 2 x 3 grid-world, where the user’s trajectory
forms a first-order Markov chain with the transition probability matrix Q,, given in
Table 4.2. We assume that the user can start its movement at any square with equal
probability, i.e., py, = %. The Lagrange multiplier is chosen as A = 3, and the distortion
constraint is D = 0.6. After training the actor and critic DNNs, we obtain the best

action probabilities that minimize the objective function Capc in (4.38). Given the

1 1
6°°""° 6

induced by PDRP-ADC is obtained as in Table 4.3. It is clear from the table that Y; is

not released according to a deterministic pattern.

user’s pattern in Table 4.2, 8 = | ] and A = 3, the action distribution matrix

4.5.2 Numerical Results for GeoLife Dataset

Next, we present the simulation results on the GeoLife dataset [109,110], which contains
182 user’s GPS trajectories collected by Microsoft Research Asia. GeolLife trajectories
are recorded densely, e.g., every 1 ~ 5 seconds or every 5 ~ 10 meters per point [110].
In our experiments, we focus on the high-density areas which represent the important
stops for the users. Hence, we use a density-based data mining algorithm, namely DB-
SCAN (density-based spatial clustering of applications with noise) [118| to cluster the
raw GPS data into the important stops of the user trajectory. We obtain a 16-cluster
representation of the user-016’s data, i.e., W = 16, by applying DBSCAN algorithm to

the 51 trajectories of user-016 provided in GeoLife dataset. For the implementation of
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TABLE 4.4: Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-IDC.

Instantaneous Distortion Constraint: ‘ 15 km ‘ 5 km ‘ 3 km ‘
| Avg. Info. Leakage 0.18 ]0.39 |0.53
PDRP-IDC m=1 | 1.05 0.66 | 0.52

Cross-entropy L
ross-entropy Loss m—5 | 0.46 0.40 | 0.35

our MDP approach in the clustered dataset, center-points of the clusters represent user
locations X; € W, and the trajectories through the clusters represent user’s state tran-
sitions. We use Euclidean distance between the true and released user cluster centers as

the distortion measure.

Assuming that the user mobility forms a first-order Markov chain, we generate a tran-
sition probability matrix 5—2216 from the user-016’s trajectories. That is, we assume the
user location X; at time ¢ depends only on the previous location X;_;, and we find the
empirical probabilities of transitions between locations. After the generation of ng,
implementation of PDRP-IDC, PDRP-ADC or the myopic policy is the same as in the
synthetic data case. To obtain the optimal policies, we train two fully connected feed-
forward DNNSs, representing the actor and critic networks, respectively, by using ADAM
optimizer. Both networks contain two hidden layers each with 3000 nodes. While all the
hidden layers have ReLU activation, the output layers of the actor and critic networks
have tanh and Softmax activations, respectively. We obtain the PUT curves by averag-
ing the total information leakage for the corresponding distortion constraint over a time

horizon of n = 600 for 1000 Monte Carlo roll-outs.

Note that the MI computed based on the first-order Markov assumption, used by our
approach to obtain the PDRP, may not correspond to the real information leakage. Since
we do not know the underlying "true" statistics of the data, we examine the effectiveness
of the proposed algorithms using an adversary which tries to predict the user’s current
true location from past released locations in an online manner. The predictor consists of
an LSTM recurrent neural network layer with 200 nodes and a dropout of 0.5, which is
followed by a fully connected hidden layer of 200 nodes with ReL.u activation, and a fully
connected output layer with Softmax activation. We train the predictor on the released
distorted locations with the goal of minimizing the categorical cross-entropy between the

estimated and true current locations by utilizing ADAM optimizer.

In Table 4.4, we show the adversary’s cross-entropy loss for predicting user-016’s true
locations from their distorted versions released by PDRP-IDC at various PUT points.
Here, m is the LSTM based adversary’s look-back memory. For both m = 1 and m
= 5, Table 4.4 shows that the cross-entropy loss decreases as the average information

leakage increases. In Table 4.4, there is a decrease in the adversarial loss for m = 5
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TABLE 4.5: Cross-entropy Loss of the Predictor for Certain PUT Levels of PDRP-ADC
and Myopic Policy.

Average Distortion Constraint: ‘ 9 km ‘ 5.7 km ‘ 1.7 km ‘
Avg. Info. Leakage 0.11 | 0.20 0.35
PDRP-ADC m=1 | 1.30 | 1.25 0.90
Cross-entropy Loss
m=>5 | 0.78 | 0.73 0.67
Avg. Info. Leakage 0.27 | 0.33 0.50

Myopic PDRP 1.10 | 0.99 | 0.2

1
=51 0.52 | 048 0.45

Cross-entropy Loss -
m

compared to m = 1, which means that the first-order Markov assumption may not be
valid for the data as the adversary benefits from considering information further in the
past. To understand the benefit of releasing distorted data better, we also obtained the
cross-entropy loss of the adversary when it predicts the current location by observing
the past true locations. When the privacy is not preserved, the adversary’s cross-entropy
loss is 0.36 for m = 1 and 0.28 for m = 5, which is much lower than the privacy preserved

case as expected.

In Table 4.5, we show the adversary’s prediction performance against PDRP-ADC and
the myopic policy at various PUT points. For the same average distortion constraints,
the adversary has higher cross-entropy loss of predicting true locations when they are
distorted by PDRP-ADC rather than the myopic policy for both m = 1 and m = 5.
Hence, considering the temporal correlations in the trajectory preserves PDRP-ADC’s
advantage over the myopic policy even when the adversary has a less strict Markov

assumption on the true location distribution than both policies.

To understand the true and released location trajectories better, we provide a toy ex-
ample in which we apply PDRP-ADC to previously clustered user-016 trajectories for
W =16, A = 1 and D = 5km. An example for the true trajectory of the user is
shown in Figure 4.8A, where the numbered circles are the cluster center-points with the
corresponding cluster numbers in blue, black numbers represent how many steps the
user takes in that cluster, the black arrows show the direction of the movement and the
movement starts from the red circled cluster 9. For instance, Figure 4.8A represents
the true trajectory {9,9,9,9,9,9,9,13,13,13,0,0,0,0,0,14,0,0,0,...}. The distorted
version of the trajectory in Figure 4.8A is depicted in Figure 4.8B, where the move-
ment starts from the red circled cluster 11 and the red arrows show the direction of
movement. The released trajectory can be deduced from the map in Figure 4.8B as
{11,11,10,9,10,11,11,12,12,12,12,2, 8,8, 8,8,8,8,6, ... }. These figures show that the
released locations by PDRP-ADC follow a different path from the true locations for

privacy concerns, while the distortion constraint is satisfied.
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FIGURE 4.8: True (A) and the distorted (B) trajectory of user-016 by PDRP-ADC for
W =16, A =1 and D = 5km.

4.6 Conclusions

In this chapter, we have studied the PUT of time-series data using MI as a privacy
measure. Having identified some properties of the optimal policy, we proposed infor-
mation theoretically optimal online PDRPs under instantaneous and average distortion
constraints, which represent utility constraints, and solved the PUT problem as an MDP.
Due to continuous state and action spaces, it is challenging to characterize or even numer-
ically compute the optimal policy. We overcome this difficulty by employing advantage
actor-critic deep RL as a computational tool. Then, we applied the theoretical approach

which we introduced for time-series data privacy into the location trace privacy problem.

Utilizing DNNs, we numerically evaluated the PUT curve of the proposed PDRPs under



Time-Series Data Privacy 79

both instantaneous and average distortion constraints for both synthetic data and Geo-
Life GPS trajectory dataset. We compared the results with the myopic location release
policy introduced recently in [47], and observed the effect of considering temporal correla-
tions on information leakage-distortion performance. We also examined the effectiveness
of our Markov assumption by testing the proposed policies using an LSTM-based predic-
tor network which represents the adversary with adjustable memory. According to the
simulation results, we have seen that the proposed data release policies provide significant
privacy advantage, especially when the user trajectory has higher temporal correlations.
Even though higher privacy leakage was observed for larger adversary memory, proposed

policies outperformed myopic policy.



Chapter 5

Active Privacy Against Inference

In this chapter, we consider a scenario in which a user releases her data containing per-
sonal information in return of a service from an honest-but-curious SP. In the previous
chapters, we focused on the privacy leakage between the user data and its modified ver-
sion. Here, instead, we model user’s personal information as a time-series containing
two correlated latent r.v.’s, one of them, called the secret variable, is to be kept private,
while the other, called the useful variable, is to be disclosed in return of utility. We
consider active sequential data release, where at each time step the user chooses from
among a finite set of release mechanisms, each revealing some information about the
user’s personal information, i.e., the true values of the r.v.’s, albeit with different statis-
tics. This differs from the scenarios in the previous chapters where the measurements
were either physically modified or obfuscated with noise. In this chapter, the user’s goal
is to manage data release in an online fashion such that maximum amount of information
is revealed about the latent useful variable, while the confidence for the sensitive variable
is kept below a predefined level. For privacy measure, we consider both the probability
of correctly detecting the true value of the secret and the MI between the secret and the
released data. We formulate both problems as POMDPs, and numerically solve them
by advantage A2C-DRL. We evaluate the PUT of the proposed policies on both the
synthetic data and smoking activity dataset [119], and show their validity by testing the
activity detection accuracy of the SP modeled by an LSTM neural network.

5.1 Introduction

In this chapter, we consider the PUT for time-series data sharing using active learning.
We take into account the causal relations in time-series data for the privacy of the entire

sequence. Among the limited number of works that consider temporal correlations in the

80
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literature, most existing works focus on the privacy of the time-series data itself rather
than hiding latent sensitive attributes [45-48,111,120]. For instance, in the SM privacy
scenario in Chapter 3 or location sharing in Chapter 4, sensitive information is the time-
series data itself and the utility loss can be measured by data distortion, whereas in other
applications, the user might be interested in hiding an underlying sensitive hypothesis.
For instance, the user’s presence at home or favorite TV channel can be inferred from SM
readings, while her sensitive daily habits can be revealed to the SP through the sensors

of a wearable device.

Inference privacy protects the user’s data from an adversary’s attempt to deduce sensi-
tive information from an underlying distribution [15,21,62,121-124|. These techniques
perform well against inference attacks, in which the adversary targets detecting the user’s
underlying private information with high confidence [48]. PUT between correlated sen-
sitive and useful r.v.’s has also been studied under the privacy funnel framework [121],
which is closely related to the information bottleneck concept introduced in [125]. In
privacy funnel approaches [15, 21,62, 121-123], the goal is to conceal the sensitive in-
formation from SP’s inference while gaining enough utility from the useful information,
where both the utility and the privacy leakage are measured by MI. However, [15,121-123]
consider independent data without temporal correlations, hence, these approaches are

not suitable for temporally correlated time-series data.

In this chapter, we assume that a user wants to share the “useful” part of her data with
the SP. However, the SP might also try to deduce user’s “secret" information from the
shared time-series data (e.g., location, heartbeat, temperature or energy consumption).
We model the user’s secret and useful data as correlated discrete r.v.’s. The user’s goal
is to prevent the secret from being accurately detected by the SP while revealing the

useful data accurately for utility.

Differently from the existing works [13,14,18,19,21,121,123|, which typically consider a
time-independent data release problem, we consider a discrete time system, and assume
that the user can actively choose from among a finite number of data release mechanisms
(DRMs) at each time. While each measurement reveals some information about user’s
latent states, we assume that each DRM has different measurement characteristics, i.e.,
conditional probability distributions. User’s objective is to choose a DRM at each time in
an online fashion to reveal the value of the useful r.v. for maximum utility while keeping
the leakage of the sensitive information below a prescribed value. Our proposed privacy
measures are based on the SP’s confidence in the secret and the MI between the secret
r.v. and the observations. These measures are similar to those proposed in [16], [124],
and [126]. However, [16] considers the PUT of a binary secret r.v. in an asymptotic

regime, while [126] considers binary as well as M-ary r.v.’s for an offline scenario using
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semi-definite programming, which has high computational complexity when fine-grained
data is considered. [124] takes the data release history into account for M-ary r.v.’s,

however, it does not consider the time aspect in the PUT objective.

In this chapter, we introduce sequential private data release policies (PDRP’s) for two
different problems: Problem A in Section 5.2 aims to maximize the SP’s confidence in
the true value of the useful r.v. and stops data sharing right before the confidence in
secret r.v. is exceeded, and Problem B in Section 5.3 aims to minimize the SP’s error
probability on the useful r.v. as quick as possible subject to a constraint on the SP’s
confidence in the true secret. Besides confidence-based utility, we also consider MI-
based utility for Problem A. In Problem B, on the other hand, we investigate MI-based
privacy in addition to confidence-based privacy. Note that MI-based privacy, which
keeps the total MI between the secret r.v. and the shared data below a certain level,
does not necessarily prevent the detection of the true secret value; instead, it limits the
information leakage in an average sense. While confidence-based privacy is strong against
worst case adversaries, MI-based privacy is useful when average-case adversaries try to

infer the sensitive data. We validate this in our simulation results.

We consider data release policies which take the entire release history into account, and
recast both Problems A and B as POMDPs. POMDPs can be represented as continuous
state belief-MDPs; however, finding optimal policies for continuous state and action
spaces is a PSPACE-hard problem [115]. Therefore, after identifying the structure of the
optimal policy, we use A2C-DRL to evaluate our continuous state and action probability
space MDP numerically. Besides assuming known distributions for MI calculation with
synthetic data, we also use variational representations for MI estimation through neural
networks [127| with real data. Finally, we examine the performances of the proposed
policies in human activity privacy scenario, in which we use both synthetic data and
smartwatch sensor readings from smoking activity dataset [119]. We compare the privacy
levels achieved by the proposed policies using an SP that predicts the true values for
useful data and secret from the shared observation history. The SP is represented by a

long short-term memory (LSTM) neural network.

Our contributions are summarized as follows:

e We propose two active learning frameworks in which one takes only PUT, i.e., Problem
A, and the other takes both PUT and the stopping time into account, i.e., Problem
B, in online sharing of time-series data.

e We propose PDRP’s that consider confidence and MI-based utility for optimal PUT

against an SP performing sequential Bayesian inference for Problem A.
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FIGURE 5.1: System model for active PUT against the SP.

e We propose PDRP’s based on privacy measured by the error probability of the SP on
the secret, and MI between the secret and the released data history against average-
case adversaries for Problem B.

e We recast the active time-series data release problems for PUT as POMDPs, and
evaluate the proposed PDRP’s numerically using A2C-DRL.

The remainder of the chapter is organized as follows. We present the problem formula-
tions in Sections 5.2 and 5.3 for Problem A and Problem B, respectively. Synthetic and
real data evaluations for human activity privacy are presented in Section 5.4. Finally,

we conclude this chapter in Section 5.5.

5.2 Active Private Data Sharing

We consider a user that wants to share her data with the SP in return of utility. The
data reveals information about two underlying latent variables; a secret variable and a
non-sensitive useful variable. The user’s goal is to maximize the SP’s confidence for the
non-sensitive useful information to gain utility, while keeping his confidence in the secret

variable below a predefined level.

Let S ={0,1,...,N—1} and U = {0,1,..., M — 1} be the finite sets of the hypotheses
represented by the r.v.’s S € S for the secret and U € U for the non-sensitive useful
information, respectively. Consider a finite set A of different data release mechanisms
(DRMs) available to the user, each modeled with a different statistical relation with the
underlying hypotheses. For example, in the case of a user sharing activity data, e.g.,
Fitbit records, set A may correspond to different types of sensor measurements the user
may share. Useful information the user wants to share may be the exercise type, while
the sensitive information can be various daily habits. Similarly, in the case of smart
meter readings, the useful information might be ON/OFF state of home appliances for

smart power scheduling whereas the sensitive information might be the types of TV
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channels the user watches. We assume that the data revealed at time ¢, Z;, is generated
by an independent realization of a conditional probability distribution that depends on
the true hypotheses and the chosen DRM A; € A, denoted by ¢(Z;| A¢, S,U). Figure 5.1

shows an illustration of the system model with three DRMs.

The user’s goal is to disclose U through the released data Z;, as long as the SP’s
confidence in S is below a certain threshold. We assume that the observation statis-
tics q(Z|A¢, S,U) and the employed DRM A; are known both by the user and the
SP. To maximally confuse the SP, the user selects action A; with a probability distri-
bution 7(A¢|Z!~1, A*=1) conditioned on the SP’s observation history up to that time,
{71, A*=1}. If the user has the knowledge of the true hypotheses, she can select the
actions depending on both the observation history and the true hypotheses. However,

our assumption is that the true hypotheses are unknown to all the parties involved.

The optimal strategy for the SP is to employ classical sequential HT, i.e., he observes
the data samples released by the user and updates its belief on the true hypotheses
accordingly. Here, we quantify the confidence of SP as his belief on hypotheses S and U
after observing {Z'=!, A'=11 which is shown by

Bi(s,u) = P(S = s,U =u|Z71 =271 A7 = gt 1), (5.1)

where s, u, z; and a; are the realizations of S, U, Z;, and Ay, respectively. The SP’s belief
on the secret is 3;(s) = >_, s Be(s,u). We assume that the SP becomes more confident
about a hypothesis being correct as the belief on the corresponding hypothesis becomes
larger than the belief on the others. This is motivated by a worst-case adversary model

which is interested in the value of the true hypothesis.

Let 7 be the time that we believe the SP reaches the prescribed confidence threshold
on the secret. The user stops releasing data at this point. The main objective of this
section is to obtain a policy 7, which generates the best action probabilities, such that

the SP’s belief on the true U at time 7 is maximized. Therefore, our goal is to solve the
Problem A:

jnaximize Br(u) (5.2)
subject to Bi(s) < Lg,Vt < 1,Vs €S (5.3)

where L is a predetermined scalar of the user’s choice. Note that PUT will be obtained

by considering a range of Ly values.
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5.2.1 POMDP Formulation

The above PUT can be recast as a POMDP with partially observable static states {S, U},
actions A;, and observations Z;. POMDPs can be reformulated as belief-MDPs and
solved using classical MDP solution methods. Hence, we define the state of the belief-
MDP as the SP’s belief on hypotheses {S, U} after observing {Z!=1, A1} ie., Bi(s,u).
After defining the states as the belief, the user’s action probabilities become conditioned
on the belief distribution, i.e., m7(A; = a¢|8;), while the observation probabilities are the

same as before.

The user stops sharing data when the SP’s belief on any secret s € S exceeds a threshold.
Therefore, the problem is an episodic MDP, which ends when a final state is reached. We
define a new state space X = P(S,U) U {F'} of size N x M, where P(S,U) is the belief
space, and F' is a recurrent final state reached when the SP’s confidence on § surpasses
the prescribed maximum value. After a single observation {z;,a;}, the SP updates its
belief by Bayes’ rule as follows:

q(zt|as, s, u)By(s, u)

O™ (Be, 2, ar) = > Cedlar, 5, 0005, ) (5.4)

where ¢™ (¢, ¢, ar) represents the next belief state 8y11(s, u), and it can also be denoted
by ¢™(8, z,a) in time-independent notation. Hence, the state transitions of the belief-
MDP are governed by the observation probabilities of different actions, q(z|as, s, u). If
Bt(s) > L holds for any secret s € S, we transition to the final state F'. The overall

strategy for belief update is represented by the Bayes’ operator as follows:

¢™(B,z,a), if x = B(s,u) for B(s) < Ly
¢™(z,z,a) = | F, if x = B(s,u) for B(s) > Ls
F, if v = F.

We define an instantaneous reward function for the current state, which induces policy

7+ when maximized:
0, if x = B(s,u) for B(s) < Ls
rp(r) = { max f(u), if x = B(s,u) for B(s) > Ly

0, ifx =F.

Due to the belief-based utility, we call this approach belief-reward policy. According to
her strategy, the user checks if the SP’s belief on any secret exceeds a threshold L, if
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not, she believes that the SP updates his belief as in (5.4) in the next time step. If the
threshold is reached, the user stops data sharing, updates the state x = [3(s,u) to the
final state x = F' and the episode ends.

We assume that the SP follows the optimal sequential HT strategy. Since the user has
access to all the information that the SP has, it can perfectly track his beliefs. Hence, the
user decides her own policy facilitating the SP’s strategy, episodic behavior and belief.
Accordingly, reward function rp(x) is defined such that the user receives no reward until
the SP’s belief on the secret reaches the prescribed threshold, at which point she receives
a reward measured by the SP’s current belief on the true useful hypothesis, and the

episode ends by reaching the final state.

The corresponding Bellman equation induced by the optimal policy 7 can be written

as [65],

V7(8) = max  {r(8,7(al8)) +E. V(6" (8,2,0) |,

m(alB)eP(A)

where V™ () is the state-value function, and P(.A) is the action probability space. The
objective is to find a policy 7 that optimizes the reward function. Since, finding optimal
policies for continuous state and action MDPs is PSPACE-hard as mentioned before, we
will use A2C-DRL as a computational tool to numerically solve the continuous state and

action space MDP.

5.2.2 MI as Utility

In this section, we consider a scenario where the SP is more interested in the statistics
of the public information rather than its true value. Accordingly, we consider MI as a
utility measure; that is, the user wants to maximize the MI between the useful hypothesis
and the observations by the time the SP reaches the prescribed confidence level on the
secret. MI is commonly used both as a privacy and a utility measure in the literature
[120,121,128]

The MI between U and (ZT, AT) over time T is given by

T
I(U; 27, AT) =Y T I(U; Zy, Al 2P0, A7), (5.5)
t=1
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The MI between the useful hypothesis and the observations at time ¢ can be written in

terms of the belief, action and observation probabilities as follows:

I(U; Zy, A|B) = — Z q(zt)ag, s,u)m(a|B)B(s, )

S)u7zt 7at

S a(ztlas, 5, u)e(al 8)8(5, 0)
xlog ) > a{axlor, s, (eal B0, 1)

(5.6)

Accordingly, the information reward gained in the current time step after taking action

at, and releasing the corresponding observation z; is defined as

I(’U,;Zt,at’,@), 1fx:,3(s,u) for 6(8) <L,
TM[(QJ> =
0, ifx=F.

SP’s belief is updated by ¢™(z, z,a) as before. This policy maximizes the leakage not
only for the true hypothesis for u but all possible hypotheses for U. For example, a
policy may disclose a lot of information even if the SP is confused between two out of

many hypotheses, as he learns that the true state is none of the other possibilities.

Numerical evaluation of this section is presented in Section 5.4. In the next section, we
introduce another scenario in which the user aims for quickest stopping while optimizing
the PUT.

5.3 Active Quickest Private Data Sharing

In this section we consider the same setting as Section 5.2 as shown in Figure 5.1. On
the other hand, the user’s goal is to release her data such that the intended SP can
detect the non-sensitive information with minimum error as quickly as possible, while
keeping his confidence in the secret part below a predefined level. In other words, the
user wants to disclose the true value of the r.v. U through the released data Z;, while
keeping the SP’s confidence in .S below a certain threshold. Let 7 be the time that the
SP is confident enough about the true useful variable and makes a declaration. This
is also the time at which the user stops releasing data, since U is already disclosed to
the SP. The objective of the problem is to find a sequence of actions {Ay,...,Ar_1}, a

stochastic stopping time 7 and a declaration rule d : A7~! x Z7~! — U that collectively
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solve the following optimization, Problem B:

minimize E[r] + APerr(u)
Ao, ... Arq,d (5.7)
subject to Ci(s) < LpN¥t<T,¥VseS

where P...(u) = P(d(A7',Z7~1) 5 u) is the error probability of making wrong decla-
ration for the true value u € U; Ci(s) is the SP’s instantaneous confidence in the true
sensitive value s € S, which is quantified by the SP’s belief on s given the observation
history, i.e., P(S = s|A™"1, Z7"1); Lp is a scalar of user’s choice; B will later represent
the name of the policy, e.g., (B)elief privacy-data release policy; and the expectation is
taken over the action and observation distributions as well as the initial distributions of
the r.v.’s. The main difference between the Problem A in Section 5.2 and Problem B is
the declaration rule d. While the stopping action in Problem A is directly determined
by whether the privacy constraint is violated or not, declaration rule d determines the

stopping time according to the optimization in Problem B.

For our theoretical results, we assume that the observation statistics ¢(Z;|A¢, S,U) and
the employed DRM A; are known by both the user and the SP. Later, we will also
consider real datasets with unknown data distributions in our simulations. To maximally
confuse the SP, the user selects action A; with a probability distribution (42!t A'~1)
conditioned on the SP’s observation history up to that time, {Z!=!, A*~1}. In this work,

we assume that the true values s and u are unknown to all the parties involved.

5.3.1 POMDP Formulation

The above PUT can be recast as a POMDP with partially observable static states
{S,U} € § xU, actions A; € AU {d}, and noisy observations Z; € Z, and solved
using classical MDP solution methods. We will follow this approach, and introduce SP’s
belief to determine the state variable in three steps. Firstly, we define the belief of the
SP on S and U after he observes {Z!~1 A"} by B;(s,u) as in (5.4) for belief space
P(B) := {B: € [0,1]M*N > sesueu Bi(s;u) = 1}, where the marginal beliefs are rep-
resented by Bi(u) := > s Bi(s,u) and Bi(s) := >, Bi(s,u), respectively. The SP’s
confidence that S = s at time ¢ is represented by Ci(s) := S¢(s). The user’s action
probabilities become conditioned on the belief distribution, i.e., w(A; = a¢|5¢), while the
observation probabilities are the same as before. Secondly, we introduce a new state
Fp = {Bi(s) > Lp : Y s Pi(s) = 1} for Fg C P(B), called the forbidden-state, which
represents the condition where the constraint in (5.7) is violated. Fp is ideally an in-
finite cost state; however, in practice, we assume it has a large-cost. As the third step

of defining the state space, we include a terminal state to fully characterize the state in
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which the user stops sharing her data with the SP. We assume that after the user takes
the stopping action, the system goes to a terminal state, denoted by F', and remains
there forever. This makes the problem an episodic MDP. Consequently, the state space
becomes X = P(B) U {F}.

We always refer the time independent expression of belief, i.e., 8, as the current belief

state. The optimal expected total cost of our problem is defined as follows:

Definition 5.1. For all 5 € P(B), let the optimal value function V*(3) represent the
optimal expected cost of problem (5.7), given the initial belief 5. That is,

V*(B) := min{E[r] + AP, (u)}, (5.8)

where the minimization is with respect to 7, action and observation sequences, and the

declaration rule d.

Optimal expected total cost for active PUT against an SP can be obtained by evaluating
V* at the initial belief. This can be done by solving a DyP problem. After a single
observation {z;,a;}, the SP updates its belief by Bayes’ rule as in (5.4). We define a

Markov operator T for action a, such that for any measurable function V : P(B) — R,

(T*V)(B) := /V(@(B, z,a)) Z q(zla, s,u)B(s,u)dz. (5.9)

5,u
For any state 8 € P(B), the user’s data release action a under the optimal policy results
in an expected total cost of 1+ (T*V*)(3), where time spent by the user for data release
is represented by cost 1, and (T*V*)() is the expected future value of V*. On the other
hand, the user’s stopping decision d results in error probability of the declaration of true
useful value u with penalty A, i.e., APe.(u) :== A(1 — (u)). Solution for the optimal V*

is formalized by the following theorem.

Theorem 5.2. [129] The optimal V* for 5 € P(B) satisfies the fized point equation:

V*(B) = min{1 + min(T*V*)(8), min A(1 — 5(u))}. (5.10)

acA ueU

Definition 5.3. Let a Markov stationary policy m be a stochastic kernel from the state
space to the action space, including the stopping action which determines the stopping
time 7, i.e., II :== P(B) — AU {d}. That is, the probability of choosing DRM a under
policy 7 at state (3 is denoted by m(a|f3).

Following from Corollary 9.12.1 in [129], DyP equation (5.10) characterizes the optimal
deterministic stationary policy 7* for € P(B). The intuition behind Theorem 5.2
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is that the user’s data release action a* = argminge4 T*(V*)(5) is the least costly
action with cost 1+minge 4 T%(V*)(8), unless choosing the stopping action d and letting
the SP make a decision for u is less costly, i.e., A(1 — B(u)). We also ensure that
for any two hypotheses u,u’ € U, u # u/, there exists an action a € A, such that
D(q(z|a, s,u)||q(z|a, s,u’)) > 0,Vs € S, where D(:||) denotes the Kullback-Leibler (KL)
divergence. That is, hypotheses u and u’ are distinguishable all the time, such that (5.7)

has a meaningful solution.

Theorem 5.4. Suppose there exists a parameter C > 0, e.g., time cost, and a functional
V :P(B) — Ry such that for all belief states 5 € P(B),

V(B) < min{Cr + min(TaV*)(ﬁ),gleig} ACT(1 = B(u))}. (5.11)

acA

Then V*(B) > %TV(B) for all g € P(B).

Proof. For the proof of Theorem 5.4, we include a termination state in our state space.
We assume that after the user takes the stopping action for data release, the system goes
to a recursive termination state, denoted by F', and remains there forever. Hence, the

new state space is X = P(B) U {F'}. Let instantaneous cost of taking action a € AU {d}

1, ifx=p0ePB)\{Fp}t,ac A

5 (2.0) — inelzftl(l —Bu))\, ifx=peP(B)\{Fp},a=d (5.12)
CB7 1f$=ﬁ=FB,a€A
0, if xt =F.

The constraint on the adversary’s confidence in s is enforced with an instantaneous cost
Cp for state Fp, which is ideally infinity but can be applied as a very large scalar in
practice. Assuming that the system follows the optimal policy, transition to Fp with
a very large cost Cp would not be chosen by the minimization problem. The overall

strategy for belief update is represented by the Bayes’ operator as follows:

®"5(f3,z,a), ifx=pecP(B),ac A
®"F(x,2,a) = { F, ifz=8ePB),a=d (5.13)

F, if x = F.
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Using the instantaneous cost and state update, the condition V(8) < min{Cr +
min(T*V*)(5), min A\Cr(1 — S(u))} is rewritten as
acA ueU

V(F) =0,
V(z) < min {Tcc(z,a) +E[V(®(z,2,a))]}, Vo € P(B),
ac AU{d}
as well as the state sequence at times t = 0,1,2,... is denoted by

Xo =X,
X, =9(Xp-1,7,A(n)),Vn,n > 0.

When the condition is written in terms of the state sequence of duration N for the

optimal policy 7*, we obtain

N-1
V(2) < CrEae[ Y | e(Xn, An)] + Exe [V (Xn)). (5.14)
n=0
Taking the limit as N — oo, we get
V(2) < CrEee ) e(Xn, Ap)] + lim Ere[V(Xy)] (5.15)
Joyrd N—o00
= CrV*(z) + lim Epn[Xp] (5.16)
N—oo

= CrV*(@) + Jim B [V(F)lpy—ry + V(FB)L(xy=ry)

+ V(XN)l{XN;éF,XN;éFB}}

= CrV* (@) + Jim B [V(X3)Lixyr) + V(FB)L(xy=r)]

< CrV*(e) + A lim_ <IP’7F* Xy # F] + Pr[Xy = FB]) (5.17)

= CrV*(), (5.18)

where (5.15) holds due to the monotone convergence theorem; (5.16) follows from the
definition of V*; (5.17) is due to the fact that for any g € P(B), V(B) < Iunelg{l A1-B(u)) <
A; and (5.18) holds since A > V*(z) > Ep«[7] = > 07 Pes (T > 1) = Y 7 Pee (X, # F),
and the probability of the system following the optimal policy 7* to transition to highest-

cost state Fp at N is zero, i.e, lim P«[Xy = Fp] = 0. O
N—oo

Theorem 5.4 provides a lower bound for a fixed-point expression of V*. However, it is
difficult to calculate the real value of V* and solve DyP equation with continuous belief
space. Hence, we solve (5.7) using an RL approach to obtain a good approximation. Due

to the belief-based privacy constraint, we call our policy belief-privacy data release policy
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(belief-PDRP), wp. In our RL approach, the optimal policy 73 is induced as a result
of the minimization of the instantaneous cost ¢™B(z,a) that we introduced in (5.12) for
current state z and action a € AU {d}. The constraint on the SP’s confidence in s
is enforced with a large instantaneous cost Cp for state Fp, which is ideally infinite.
Assuming that the system follows the optimal policy, data release actions resulting in a
transition to Fp with a large-cost Cp would not be selected by the minimization problem,
as shown in the proof of the Theorem 5.4. The overall strategy for belief update becomes
(5.13). Since the user has access to all the information that the SP has, it can perfectly
track his beliefs. Hence, the user decides her own policy facilitating the SP’s detection

strategy, episodic behavior and belief.

According to her strategy, the user checks whether the selected optimal action is the
stopping action d. If so, she receives a cost determined by the current error probability
of w with penalty A, then transitions to the terminal state and ends the episode. If
not, she checks whether the SP’s belief on any secret exceeds Lp. If the user is in the
forbidden-state she receives a large-cost Cp; otherwise, either she receives a time cost 1
or terminal state cost 0 depending on her state. If the terminal state has not already
been reached and stopping action has not been taken at the moment, the user updates
the SP’s belief as in (5.4); otherwise she updates the state to the final state x = F. Using
the condition (5.11) in Theorem 5.4, we write a lower bound for the Bellman equation

induced by the optimal policy 7}; as [65],

V(x) :aEI,IéllLi_JI%d}{CﬂB (x,a) + E[V(®"B(x, z,a))]},Vz € P(B). (5.19)

The objective is to find a policy 75 that optimizes the cost function. Since the proposed
POMDP has a continuous state space and action probabilities, as mentioned earlier, find-
ing optimal policies is PSPACE-hard. Hence, we use A2C-DRL to numerically solve the
continuous state and action space MDP in Section 5.4.3. In addition to the confidence-

based privacy, we also consider an MI privacy policy in Section 5.3.2.

5.3.2 MI as Privacy Constraint

In this section, we consider a scenario, in which the user is interested in hiding the
sensitive information in an average sense, rather than hiding its true value. For instance,
the SP might be confused about the true secret, however, he might still have an idea
about which secret values are unlikely. More concretely, consider a secret r.v. with
alphabet size of three, e.g., U = {1,2,3}. From the perspective of confidence, the
belief of B(U = 1) = 1/2, f(U = 2) = 1/4, (U = 3) = 1/4 would be the same as
BU =1)=1/2, (U =2) =1/2, B(U = 3) = 0. While the latter clearly has additional
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information about the secret resulting in reduced uncertainty. We tackle this issue by
measuring the privacy by the MI between the secret variable S and the observation
history {Z*, A’} for t < 7. According to her policy, the user wants to minimize the error
on useful information as quickly as possible while keeping the total MI between the secret

and the observations below a prescribed level, i.e., VZ € Z and VA € A,

minimize E[7] + APerp(u)
Ag, ..., Ar1,d (5.20)
subject to I(S; Z' AY) < Ly vt < 1,¥S €S

where Ljs is a scalar of the user’s choice.

MI is commonly used both as a privacy and a utility measure in the literature [120,121,
128]. As opposed to Section 5.2.2, here, it is used as a privacy measure to control PUT
between the useful variable and the secret. Due to the MI-based privacy constraint in
(5.20), we call this policy MI-privacy data release policy (MI-PDRP), 7. MI between
S and (ZT, AT) over time T is given by

T
1(S; 27, AT) = " I(S; Zy, Ay 21 A, (5.21)
t=1

Theorem 5.5. The instantaneous MI cost between the secret and the observations in-

duced by policy mprr at time t can be written as:

I™1(S; Zy, A B) = — Z q(zt|at, s, u)m(a B)B(s, u)
> a(ztlar, s, @)m(ar| B)B(s, i)

<o B(s) 3> q(zt|ar, 5, u)m(a:|B)B(5, ) (5.22)

)

i
<l

Proof. Consider a POMDP with the belief state X = P(B) U {F}. At time ¢, a decision

maker observes Z~1, A*~1 and chooses an action 4; € AU {d} as follows:
A= (21, AT, (5.23)

where f = (f1,f2,...) is called the policy. Based on the conditional probability
(A AT Z1) of taking this action, Z; € Z is observed and revealed by the sen-
sor distribution q(Z¢|As, S,U), and the state evolves to the next belief state. At each

step, the system incurs a per-step cost

PH(Zy = 2, Ay = a4|S = 5, 2171 = 2171 AL = ot 1)
P-f(Zt = ZtaAt = CLt‘Zt_l = Zt_l,At_l = at—l)

c(s,u, 2',a'; ) :=log (5.24)
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The objective is to find a policy f = (fi,..., fr) that minimizes the total cost given by
T

%Ef t; c(S,U, Zt, At; f)} , where the expectation is taken with respect to the distribu-
tions induced by the policy f.

Let f = (f1,...,fr) be fi(z"1,a'™!) = 7(-|z'~1,a’~1). Then the following holds:

JMI (S, Zt,At’thl,Atfl) — Z PWJVII(S’ U, Zt,At)
s,u,zt,at

Pﬂ‘JMI(Zt — ZhAt — at]S — S,Ztil — Zt717At71 — atfl)

1
X 08 Prui1 (Zt = zt7At = at\Zt_l = Zt_l,At_l = at_l)
T
=E| > o(S,U, 2", A" f) (5.25)
t=1

The probability distribution on (S, U, ZT, AT) induced by the decision policy f is given
by

Pf(S =S, U= u, ZT = ZTvAT = aT) = P(Sau)Q(zﬂale?u)ﬂ-(al)

T
X H [Q(zt‘atasau)ﬂ-(at‘ztilvatil)}a (526)

t=2
where 7w(-|z07Yal™l) = f(z'7larh). Under the transformations described
above, P¥f and P™I are identical probability distributions. As a result,

T
B | ST ¢(S,U, Zt, AL f) | = I™1(S; Zy, Ay| Z1~1, A'=1). Hence, Theorem 5.5 holds. [
=1

Similarly to the previous section, we define the state in three stages, i.e., the belief, the
forbidden-MI-state as Fyrp := {Be(s) : I™1(S; Zt, AY) > Ly, Vt < 7} for Fyrr C P(B),
where the constraint in (5.20) is violated, and the final state F' in which the episode

terminates.

We define an instantaneous cost function, ¢™™7(x, a), for current state z € X = P(B) U

{F'} and action a € AU{d}, which induces the optimal MI-PDRP 7},; when minimized:

1, ifl‘:BEP(B)\{FM[},CLE.A
min(1 - B(w)A, ifz =8 € P(B)\ {Farr},a =d
™I (g, aq) = ¢ weU (5.27)
Cur, ife=0=Fyr,ae A
0, if x = F.

The constraint on the total MI leakage from S is enforced with a large-cost Cysy for

state I77. Assuming that the system follows the optimal MI-PDRP 7}, Fa; would
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not be visited at all. The overall strategy for belief update is represented by the Bayes’

operator as follows:

O™I(5, 2z a), ifx=pecP(B),ac A
F ifr=p0e€P(B),a=d
O™ (x, 2z, a) = < Fur, if z = B(s,u) € P(B), (5.28)

t
Y I7(S; Z;, AilBi) > L
i=1

F, if x = F.

Theorem 5.4 holds for (5.20) when we replace {¢"8,®"8, Fp} with {¢™! &™™I Fyr},
and provides a lower bound for the value function V* for all 8 € P(B). Hence, to find the
policy 7}, we solve the Bellman equation (5.19) using RL for ¢™2 and ®™5. This policy
minimizes the SP’s error on the true value of u in the quickest way while constraining

the MI leakage from not only true secret s but all possible values for S.

5.3.3 Estimating MI

Exact computation of MI is possible when the data distribution is known. However, in
most practical scenarios, the user’s data distribution is not known or it is inaccurate.
Hence, we approximate I(S; Z7, AT) via a variational representation which is inspired by
Barber-Agakov MI estimation for single letter MI [127]. Since (5.21) is history-dependent,

we modify this variational bound to a history dependent expression as follows:

1(S:Zy, Ay 2" A

= H(S|Z!71 AN — H(S|Z1, AY) (5.29)
= H(S|Z"71, A1) + D(P(8]2", A)[|Q(S]2", A")) + E[log Q(S|2*, A")]  (5.30)
— t—1 t—1 t t

= H(S|Z71 AT + Q(glzafmla[log Q(S|Zt, AY) (5.31)

where (5.29) follows from the definition of MI, (5.30) holds for any distribution
Q(S|Zt, A?) over S given the values in Z! x A!, which represents what the belief would

be after observing (A, Z¢), and (5.31) follows from the fact that maximum is attained
when Q(S|Z¢, A') = P(S|Zt, A).

Given (Z!71, A1) = (271 a*~1), we can rewrite the variational representation for the
MI conditioned on the neural estimation of the current belief 5(S) = Q(S|Z!~1, A1)
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FI1GURE 5.2: Activity recognition with wearable IoT devices does not only infer physical
exercise but also sensitive daily habits.

()

as

I(S; Zi, AtlB) = H(B(S))+ max  E[logQ(S|Z:, As, B)], (5.32)
Q(S1Z¢,A¢,B)

A~

where H(3(S)) = — 32 B(s)log 3(s), and the expectation is with respect to (S, Z;, A;) ~
seS

B(S), m(A¢|B), ¢(Zi| As, S,U). Since the current belief realization is known to both the

user and the SP, H(/5(S)) is a constant. Numerical estimation of the MI via neural

networks is explained in Section 5.4.3.2.

5.4 Numerical Results

In this section, we present our results for both synthetic data and human activity privacy
use-cases for Sections 5.2 and 5.3. In the synthetic data case we assume that all the
distributions of the DRM are known by both the user and the SP, while in the latter,
these distributions are learnt from a real dataset. In human activity privacy use-case, we
focus on the sensors in wearable devices as an example of DRMs, and their measurements
as time-series data. In this scenario, the user shares sensor readings of her wearable device
with the SP, while performing physical activities, with the goal of tracking the type and
duration of her activities. However, as in Figure 5.2, not only useful activities, such as
exercise type, but also sensitive activities, such as smoking, drinking or eating habits,
can be inferred from these readings, which the user may not want to share with the SP as
the SP can exploit such information for commercial benefit at the detriment of the user.
Hence, the user shares a single sensor reading from among multiple sensors at a time
such that the useful activity is revealed to the SP while his confidence in the sensitive

activity is kept hidden at a pre-defined level.

The POMDP formulation in Sections 5.2.1 and 5.3.1 enable us to numerically approxi-
mate the proposed policies using RL. We use A2C-DRL as described in Section 2.2.1 for

the numerical evaluation of our problems.
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F1GURE 5.3: The confidence on U and MI utility w.r.t the maximum allowed confidence
level on S for the proposed policies.

5.4.1 Active Private Data Sharing: Synthetic Data Use-Case

In this section, the results of Section 5.2 are presented for synthetically generated prob-
ability densities and N = 3, M = 3, |A| = 3 and |Z| = 21, and uniformly distributed
S and U. The final state is reached when the SP’s belief on any s € S exceeds the
threshold Lg for Ly € {0.65,0.8,0.9,0.95}. Observation probabilities are selected such
that each action distinguishes a different pair of hypotheses well for both S and U. For
example, we created a matrix with each row representing the conditional distribution
of z for different (a, s, u) realizations. For sensor a = 0, we used N (0,0;) for (s,u) =
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}, N(1,0/) for (s,u) = (2,0), N(2,0;) for (s,u) =
(2,1), and N (3, 0;) for (s,u) = (2,2), and we normalized through the columns represent-
ing z. Here, 0;’s are chosen randomly from the interval [0.5,1.5] for each (a, s, u) with
index j={1,.., Nx M x|A|}. This sensor discloses s=2 case more than the other secrets.
Moreover, a=1 and a=2 reveal more information for s=1 and s=0 cases, respectively.
In this model, there is no perfect sensor which reveals only the useful hypothesis while
giving no information about the secret. As a benchmark, we also consider a random
policy taking the actions independently of the SP’s observations and belief. We choose

1 1].

two random policies with action probabilities g1 (a)=[0.3,0.6,0.1] and mpo(a)=[3, 3, 3

When the belief on the secret exceeds the threshold, episode ends as before.

In Figure 5.3, we show the SP’s confidence about U at the decision time on the left
axis and MI between U and observations on the right axis as a function of the allowed
confidence level on S. While blue lines and red markers are scaled by the left and right

axes, respectively, same markers in both colors represent the same particular policy.
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TABLE 5.1: Stopping time 7 of each policy’s data release for the threshold values
L, =1{0.65,0.8,0.9,0.95}.

Policies: 7(Ls=0.65) 7(Ls=08) 7(Ls=0.9) 7(Ls=0.95)

TR 105 + 18 250 £ 46 470 £ 65 780 £ 120
TMI 95+ 15 180 £ 38 420 £ 60 485 £ 92
TR1 4.2+0.8 9.0 £1 8.2=+13 9+2
TR 3.1£0.5 4.5+0.6 6+1.3 §+14

We represent the belief-reward and MI utility policies by, mg and 77, respectively. We
observe that through the proposed active release mechanism, the useful information can
be shared with high confidence while keeping the SP relatively confused about the secret.
We conclude from the results that maximizing MI provides more information about the
set of hypothesis U than maximizing 5,(U); however, it does not directly reveal the
true hypothesis as much as mg reveals. However, 7y still performs relatively close to the
belief-reward policy 7g for 5-(U) at higher Ls. Although the random policy provides
simplicity for action selection, it has no control on the UP’s confidence on the useful
hypothesis. Hence, mr; and mwgy perform poorly for both §,(U) and MI as expected

since they do not use the observations to determine the best actions.

Note that we have not explicitly considered 7 as part of our optimization. In theory, we
allow unlimited time steps as long as the confidence bound on the secret is not violated.
On the other hand, since the confidence level on S monotonically increases with time,
the user stops revealing data after a finite number of steps. In Table 5.1, we observed
that 7 follows an increasing trend as the constraint on the secret is relaxed. For mpsp,
we observed shorter decision times, which means that MI-maximizing actions also reveal
more about the secret. For mr; and mgro, on the other hand, we observed much shorter
decision times. Random policies end up choosing actions that leak significant amount of

information about the secret without providing much utility.

5.4.2 Active Quickest Private Data Sharing: Synthetic Data Use-Case

This section presents the synthetic data scenario of the policies proposed in Section 5.3.
This scenario represents the situations where the probability distributions of DRMs and
belief update rules are known by both the user and the SP, while only the actions are

learned by the privacy mechanism.

We create a dataset for |A U {d}|=4, |S|=3, [U|=3, |Z|=50 and uniformly distributed
S and U, and Lp € {0.6,0.7,0.8,0.9,0.99}. Observation probabilities are selected such
that each action distinguishes a different pair of hypotheses well for both S and U. For

example, we created a matrix with each row representing the conditional distribution
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FIGURE 5.4: Belief-PDRP’s, 7, (A) stopping time 7 and 5(u), and (B) SP’s accuracy

for the secret and the useful information with respect to Lp, and MI-PDRP’s; w7,

(C) stopping time 7 and B(u), and (D) SP’s accuracy for the secret and the useful

information with respect to Ljs;.

of z for different (a, s, u) realizations. For sensor a = 0, we used N (0,0;) for (s,u) =
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}, N(1,0j) for (s,u) = (2,0), N(2,0;) for (s,u) =
(2,1), and N (3, 0;) for (s,u) = (2,2), and we normalized through the columns represent-
ing z. Here, o;’s are chosen randomly from the interval [0.5,1.5] for each (a, s,u) with
index j={1,.., NxM x|A|}. This sensor discloses s=2 case more than the other secrets.

Moreover, a=1 and a=2 reveal more information for s=1 and s=0 cases, respectively.

Figure 5.4A shows the average stopping time 7 and the maximum belief on u, B(u),
with respect to Lp for the belief-PDRP, mp. As the constraint on 3(s) is relaxed, the
stopping time increases as well as the maximum fS(u). In Figure 5.4B, on the other
hand, we present the prediction accuracy of the true-useful activity u from the belief
calculation. Red lines in Figure 5.4B represent accuracy on w, and blue lines show the
accuracy on s. The gap between the accuracy shows the effectiveness of the proposed
policy 7 in minimizing the SP’s error probability of u in the quickest way while keeping

his confidence in s below the threshold for the synthetic data.

Figure 5.4C shows the average stopping time 7 and the maximum confidence in w, B (u),
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TABLE 5.2: Selected Activities and Smartwatch Sensors from Smoking Activity

Dataset.
Sensors: A | Activities: (S,U)
Accelerometer 0 | Sitting (0,0)
Gyroscope 1 | Standing 0,1
Magnetometer 2 | Walking ,
Linear-accelerometer 3 | Sitting while smoking ,

Walking while smoking
Sitting while drinking

(
(
(
Standing while smoking  (
(
(
(

Standing while drinking

with respect to Lj;; for the MI-PDRP, ms;. As before, when the constraint on MI
is relaxed, the stopping time increases as well as the maximum B(u) In Figure 5.4D,
red lines represent accuracy on u, and blue lines show the accuracy on s. Although
masr shows similar results with wp, mp is more effective in hiding the true realization
of S. This is because MI-PDRP provides PUT by constraining the statistics of all the

realizations of S rather than only the true realization.

5.4.3 Active Quickest Private Data Sharing: Activity Data Use-Case

In this section, we present the numerical evaluation for the policies proposed in Section
5.3 using real time-series measurements. In human activity privacy scenario, we use
smoking activity dataset [119] which contains more than 40 hours of sensor measurements
for activities, such as smoking while walking, drinking while standing, sitting etc. We
use measurements from four selected sensors of a smartwatch, i.e., |[AU {d}| = 5. Table
5.2 shows these sensors and sensitive-useful activity pairs from the dataset. We learn the

probability distributions together with the actions from the real-world measurements.

5.4.3.1 Numerical Results for Belief-PDRP, 7

In this section, we evaluate the PUT of the proposed optimal policy wp for smoking
activity dataset. We model the SP by a long short-term memory (LSTM) recurrent
neural network with parameters ¢, which predicts the true useful variable v and secret s.
The LSTM-based predictor has 2 layers with 128 nodes and 2 look-backs, and inputs the
past observations {271 a’~!}. The output is a probability distribution representing the
belief vector ,5’¢(S, U) obtained by minimizing a cross-entropy loss between B¢(S, U) and
true values of {S,U}. This is equivalent to maximizing the log-likelihood of @,(S’, U),
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FIGURE 5.5: (A) A2C-DRL process for belief-PDRP, 75, (B) stopping time 7 and

B(u), and (C) SP’s accuracy for the secret and the useful information with respect to
Lp.

H(B,8) = =Y B(s,u)log(B(s,u)) = —Esu[log(5(s,u))]

To train the LSTM SP beforehand, we split the training data into 3 portions. One is for
pre-training the LSTM SP, which will be used during A2C-DRL, one is for online A2C-
DRL training, and the last portion is to train an SP, i.e., LSTM predictor, for testing the
performance of PUT with A2C-DRL. Let mr be a random policy with uniform action
probabilities. We create observation pairs {Z;, A;} for LSTM training by randomly
sampling actions A; from 7w, and obtaining time-series Z; from the corresponding portion

of the dataset. We also used Cr = 0.5 for the time cost.

Figure 5.5A shows A2C-DRL process in which LSTM is used as an online state predictor
from the past observations. The user checks if the termination action, i.e., a;_1 = d,
has been taken, then she accordingly terminates the process. Otherwise she predicts the
current belief with the LSTM network, and selects an action a; via the actor. The actor-

critic network updates its parameters with the state value V(8) and action probability
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m(a¢| ) accordingly. Sensor measurement z; is observed as per the selected action, and

the observation pair z¢, a; is shared with the SP.

Figure 5.5B shows the average stopping time 7 and the predicted maximum belief on u,
B(u), with respect to Lp for the belief-PDRP, mp. As the constraint on B(s) is relaxed,
the stopping time increases as well as the maximum B (u). In Figure 5.5C, on the other
hand, no-PUT and PUT cases are compared in terms of prediction accuracy of the SP
on true-useful activity u and the secret s, where accuracy of the SP for the randomly
generated A; and corresponding Z; represents no-PUT case, while its accuracy for the
A2C-DRL generated actions A; and Z; represents the PUT case. Red lines in Figure
represent accuracy on u, and blue lines show the accuracy on s. The flat lines show the
no-PUT case which does not depend on Lp, and the curved lines represent the PUT case.
While the gap between the accuracy of u and s is very low for random policy (no-PUT
case), it is very large for mp (PUT case). This shows the effectiveness of the proposed
policy mp in minimizing the SP’s error probability of u in the quickest way while keeping
his confidence in s below the threshold. On the other hand, generating random actions
from a random policy does not yield a sophisticated strategy to reveal u and hide s. The

largest gap, i.e., the best performance of wg, occurs at Lg = 0.65 for np.

5.4.3.2 Numerical Results for MI-PDRP, 7,

In this section, we model the SP using two components; one is an LSTM-based belief
predictor with 2 layers of 128 nodes and 2 look-backs, and the other one is a feed-forward
neural network (FFNN)-based observation generator with 3 layers of 256 nodes, where
the output determines the mean p and standard deviation o of a Gaussian distribution.

As before, we use Cr = 0.5 for the time cost.

As in Section 5.4.3.1, we train the LSTM network with parameters ¢ by minimizing a
cross-entropy loss between the observations {Z~!, A*~1} and {S, U}, which is equivalent
to maximizing the log-likelihood of B¢(S ,U). As aresult, KL divergence between the real
belief distribution 5 and the predicted distribution B¢ goes to zero when the log-likelihood
is maximized [127]. In addition, we estimate q(Z¢|As, S,U), which is represented by a

Gaussian distribution,
A2 Ay, S,U) = N(Zi| (1, X)) = fy (A, S, U), (5.33)

where (1, 0) are determined by an FFNN fy, by maximizing its log-likelihood. During
A2C-DRL, we sample observations Z; and A to calculate the variational bound for MI us-
ing the pre-trained FFNN and LSTM networks which satisfy the maximization in (5.32).

We approximate the MI by sampling & observations {2, ai}¥ ~ G(z|as, 8, @), marr(at| ),
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FIGURE 5.6: (A) A2C-DRL process for MI-PDRP, 7, (B) stopping time 7 and ()
and (C) SP’s accuracy for the secret and the useful information with respect to L.

and using the predictions for the next k belief states {Q(s|z!, al, 3)}¥ as follows:

n k
15 21 Adlo, 0) = H(Bo) +~ S [ D 10glQu((81 i, 5] (5.34)
7j=1 i=1

where §/ is a realization of s sampled from the predicted belief vector B¢(s). Figure 5.6A
illustrates A2C-DRL process with belief and MI calculation using pre-trained LSTM and
FFNN. The user checks if the termination action, i.e., a;_1 = d, has been taken. If so,
she accordingly terminates the process. Otherwise, she predicts the current belief from
the previous observations using the LSTM network, and takes action a;. The actor-
critic network updates its parameters with the state value V(8) and action probability
m(a¢|B) accordingly. Sensor measurement is observed as per the selected action, and the
observation pair z, a; is shared with the SP. I(S|Af, Z!|3,) is calculated by the SP using

previous action a;—; and (8,4) according to (5.34).

Figure 5.6B shows the average stopping time 7 and the maximum confidence in w, B (u),
with respect to Lys; for the MI-PDRP, mps;. As the constraint on MI is relaxed, the
stopping time increases as well as the maximum B (u). In Figure 5.6C, activity prediction

accuracy of the SP for observations (Z;, A;) generated by random policy mg and mr
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TABLE 5.3
Adversary Accuracy for all Activities Under Belief-privacy and MI-privacy Policies.

Policy Constraint 7/3(U) Acc. U Acc. U=0 / U=1 / U=2 Acc. S Acc. S=0 / S=1 / S=2
0.5 3.12 / %43 %444 %60.67 / %53.44 ) %5.65  %41.2 %2458 / %23.6 / %4.58
0.65 56/ %74 %774 %789 / %69.15 / %88.21  %A6.2 %55.32 ) %48.05 / %5.15

"B 08 7.5/ %77 %784  %85.07 ) %61.99 / %92.52 %54.3 %68.77 / %48.95 / %34.5
095 864/ %81 %853 %9158 / %71.23 / %96.3 %65.3 %79.48 / %73.07 | %42.8
0.5 3/ %38 %375  %47.01 / %511/ %0 %364 %46.53 / %52.01 / %0.74
075 434/ %40 %427  %63.29 / %49.17 / %0 %38.3  %A7.26 / %53.74 | %1.2
1 6.25 / %62 %65  %S87.26 / %55.35 | %46.7  %56.5 %AT.48 | %57.42 | %13.83
I 125 6.7/ %88 %871 %94 / %80.8 / %80.86  %68.6 %89.55 / %65.63 | %28.74

15 7.06/ %91 %912  %97.62 / %84 / %9216 %79  %93.02 / %72.22 | %34.67
175 7.8 /%93 %937 %9842 / %88.8 / %96.25 %80.8 %96.9 / %96.38 / %87.3
2 85/ %94 %957  %99.45 / %96.19 / %97.78 %819 %98,3 / %98.12 | %92.64

are compared. Red lines in Figure 5.6C represent accuracy on u, and blue lines show
the accuracy on s. Similarly to Section 5.4.3.1, the gap between the accuracy of u and
s is very low for random policy, while it is large for mps;. This shows that the proposed
policy masr minimizes the SP’s error probability of w in a speedy manner while keeping
the information leakage from s below the threshold. Although my;; shows similar results
with 7p, mp is more effective in hiding the true realization of S. This is because MI-
PDRP provides PUT by constraining the statistics of all the realizations of S rather than
only the true realization. The largest gap in Figure 5.6C, i.e., the best performance of

T, occurs at Ly = 1.2 for myyg.

In Table 5.3, there is detailed breakdown of performance of wg and 75 policies, where
"Acc." represents accuracy. Individual accuracy for U and S show that all activities are
revealed as the constraint is relaxed. On the other hand, U = 2 and S = 2 are almost
completely hidden for low constraint level, but they are revealed faster then the other
hypotheses. Moreover, mp and mys; policies reveal or hide different activities better due
to the different characteristics of the activities. We also see the same results that Figures
5.5 and 5.6 show, i.e., mp outperforms 7y in minimizing the error probability of U in a

speedy manner while keeping the secret below the pre-defined level.

5.5 Conclusions

We studied the PUT in time-series data release to an SP. In our model, the goal is to
reveal the true value of a latent utility variable, while keeping the secret variable private
from the SP. In a sense, the SP is the legitimate receiver for the utility variable, while
acting as the adversary for the sensitive variable. In particular, we measured the utility by
the confidence of the SP in the latent useful information. For privacy, we considered both
the confidence of the SP on the sensitive information and the MI between the sensitive

variable and the revealed measurements. We proposed active sequential data release
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policies to minimize the error probability on the true useful variable in a speedy manner,
while constraining the confidence of the SP or the MI leakage for the secret variable.
We provided a POMDP formulation of the problem, and used A2C-DRL for numerical
evaluations. Utilizing DNNs, we numerically evaluated the PUT curve of the proposed
policies for smoking activity dataset, where useful and sensitive activities are revealed
to the adversary through smartwatch sensors selected by the user. We examined the
effectiveness of the optimal belief-PDRP and MI-PDRP using an LSTM-based adversary
network. According to the numerical results, we have seen that the proposed data release
policies provide significant privacy advantage compared to random sensor selection. We
have also seen that constraining the MI does not necessarily hide the true value of the
secret at the same level as the belief-PDRP. However, this approach may be more useful
when the objective is not necessarily to hide the true value of the secret, but limit the
knowledge of the SP in an average sense. We have also shown that decision time gets

longer when the constraint on the secret is relaxed.



Chapter 6

Privacy Aware Communication Over

a Wiretap Channel

In this chapter, we study privacy-aware communication over a wiretap channel using
end-to-end learning. Differently from the previous chapters, here, the noisy channel
characteristics are exploited for privacy preserving. For instance, Alice wants to transmit
a source signal to Bob over a binary symmetric channel, while passive eavesdropper Eve
tries to infer some sensitive attribute of Alice’s source based on its overheard signal. Since
we usually do not have access to true distributions, we propose a data-driven approach
using VAE-based JSCC. We show through simulations with the colored MNIST dataset
that our approach provides high reconstruction quality at the receiver while confusing
the eavesdropper about the latent sensitive attribute, which consists of the color and
thickness of the digits. Finally, we consider a parallel-channel scenario, and show that
our approach arranges the information transmission such that the channels with higher
noise levels at the eavesdropper carry the sensitive information, while the non-sensitive

information is transmitted over more vulnerable channels.

6.1 Introduction

As mentioned in the previous chapters, secrecy and privacy in data communication and
data sharing systems have been studied extensively in the literature [13-15, 18, 54, 57,
120, 121, 124,128,130, 131]. Although deep learning applications of data transmission
have also been well investigated, deep learning in wireless communications and physical
layer security has only recently become popular [132,133]. The similarity between the
communication systems and end-to-end learning motivates the use of autoencoder based

neural network architectures, which simultaneously learn encoding and decoding [133,

106
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134]. Recently, it has been shown that end-to-end approaches can also be utilized for
physical layer secrecy [135-138|. In a wiretap channel setting, these techniques exploit
the physical characteristics of the legitimate receiver’s channel over the eavesdropper’s,

and allow communication with secrecy guarantees.

In this chapter, we consider a wiretap channel scenario in which Alice wants to deliver
its source, ™, to Bob over a noisy communication channel, while a passive eavesdropper
Eve tries to infer a latent sensitive information T" about S™. For example, S™ may be an
image or a video captured by Alice, while T may be the presence of a particular object or
an activity within the scene. We assume BSCs from Alice to both Bob and Eve. The aim
is to optimize the trade-off between the reconstruction distortion of source S™ at Bob
and the privacy leakage of T to Eve, which is measured by the MI between the sensitive
information and the noisy codewords observed by Eve. Note that, the wiretap channel
model considered here is normally studied in the context of secure communications.
Indeed, when 7' = S™, our problem becomes a special case of the one studied in [139].
We, instead, call this privacy-aware communications since secrecy typically focuses on
making the information leakage negligible, while privacy tolerates some leakage in return
of utility [140]. Hence, we propose a PUT for communication over the wiretap channel
by balancing the information leakage to Eve and the distortion at the legitimate receiver,
i.e., Bob. We highlight that in the special case of identical channels to Bob and Eve, our
problem also reduces to the well-known privacy funnel [121] with a noisy communication
channel. In that scenario, Bob and Eve merge into a single receiver, to which we want
to send S™ with the highest fidelity while hiding 7. Therefore, our problem generalizes
both the wiretap channel and the privacy funnel problems. Additionally, unlike in [139]
and [121], we follow a data-driven approach by using an encoder-decoder pair, represented

by a VAE network and a classifier which represents Eve.

Similar data-driven wiretap channel approaches have recently been proposed for Gaussian
channels in [135-138]. However, [135, 137, 138| focus on channel coding, and [137,13§|
enforce coding structure to the encoder, while we carry out end-to-end joint learning
corresponding to a JSCC approach. In addition, unlike these works, we are interested in
hiding an underlying sensitive information that is correlated with, but different from the
original signal. The same problem is considered in [136] for an additive white Gaussian
channel using a generative adversarial network (GAN), which minimizes the distortion of
the reconstructed signal at the legitimate receiver while characterizing the privacy with a
constraint on the likelihood of the sensitive information. On the other hand, we propose

a PUT for a BSC wiretap channel using a VAE-based neural network architecture.

VAESs provide several advantages in this framework compared to standard autoencoders

[134]. They embed the input to a distribution rather than a point, and a random channel
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input is sampled from the latent distribution rather than being generated by the encoder
directly. Hence, VAEs are more aligned with the stochastic encoding approach employed
in information theoretic derivation of the wiretap channel capacity [57,139]. Addition-
ally, VAEs provide significant control over how to model the latent distribution, since
the encoder is designed as a generative network. This is difficult to achieve within the
autoencoder framework, and also allows a tractable calculation of the variational approx-
imations of our cost function based on MI. Last but not least, it is challenging to optimize
autoencoders for communication over discrete channels due to their non-differentiability,

whereas sampling discrete codewords from a latent distribution is possible for VAEs.

We apply our approach to privacy-aware image transmission and show that while the
receiver can reconstruct high quality images, the eavesdropper is confused about the
sensitive information. We also consider a parallel-channel case in which Bob and Eve
might experience different noise levels over each channel. We show that our end-to-
end approach judiciously adjusts its transmission to exploit the more secure channels to

transmit the sensitive information.

6.2 System Model

We consider a communication scenario in which a user wants to reliably transmit data
from one point to another over a noisy communication channel, while a passive eaves-
dropper tries to infer a latent sensitive information through its noisy observation of the
transmitted signal. Figure 6.1 illustrates the communication problem via a simple exam-
ple. Alice wants to reveal her data S™ € S, e.g., images of the applicants for a certain
job position, to Bob over a noisy channel. Eve eavesdrops through her own channel
and receives a noisy version of the transmitted signal by Alice. Eve’s goal is to extract
Alice’s sensitive information T € T, e.g., ethic or socioeconomic background of the ap-
plicants, which is correlated with S™ but not explicitly observed by any of the involved
parties. Alice’s goal, on the other hand, is to encode the source such that it can be
reconstructed by Bob with high fidelity, while the sensitive information 7' cannot be
accurately detected by Eve. The source is encoded into codewords X™ € {z1,...,x,},
where X; € X = {0,1}, by a stochastic encoding function fe,.(S™) = X" represented
by a conditional distribution P(X™|S™). Although the source S™ and the sensitive in-
formation T are correlated, encoding function depends only on S™ and not on T since
the realizations of T are not available to any of the parties at the inference time. In
other words, Alice is aware that Eve is interested in the sensitive information T', how-
ever, she cannot utilize T" in encoding due to the lack of labels. This setting favors the

eavesdropper, and hence presents a more difficult problem.
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FIGURE 6.1: Communication system with wiretap channel.

We consider a BSC characterized by the joint conditional distribution P(Y}%,YZ|X™),
YBi,YE, € X. The noisy codeword received by Bob is decoded as fge.(Yf) = Sm and

Eve receives its own noisy observation Y.

We model the joint distribution of T, Sm,X”,Y]g?S'm, i.e., the r.v.’s for the sensitive
information, source signal, transmitted codeword, noisy codeword received by Bob, and

his reconstruction, respectively, using the following graphical model T' — S™ — X" —

Yg — S™ as:

P(T,S™, X", YE, 8™) = P(T,S™)P(X"|S™)P(YE, Y| X")P(S™|YR). (6.1)

The two BSCs independently flip each bit in the transmitted codeword with crossover
probabilities ep and ep at Bob’s and Eve’s channels, respectively. Hence, the joint
probability of the channel can be decomposed as follows:

n

P(YZ|IX™) H Yz, i EB)ﬂﬁiGayB,i@l7 (6.2)

n

YE ’Xn H i DYE, z B 6E)mi@yE‘i®17 (63)

where @ represents the exclusive OR operation, and z;, yp; and yg; are the ith bits of

X", Yy and Yg, respectively.

We formulate the optimization problem as

minimize E[d(S™, §™)] — I(S™; Y&) + M (T;Y}R)

fen07fdec

subject to T,8™ = X" = Y — 8™, (6.4)
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where A is the tuning parameter for the privacy level. Here, in addition to the recon-
struction distortion between S™ and S™, measured by d(-,-), we also maximize the MI
between the user’s data S™ and the noisy codewords observed by Bob, i.e., I(S™;Y})
for improved utility. While minimizing the distortion E[d(S™, gm)] improves pixel-wise
data reconstruction quality, we have observed in our simulations that maximizing the
MI between the source signal and Bob’s channel output enhances the information flow

and helps with capturing the high level features at the receiver side.

Exact calculation of the MI is difficult when the data distribution is not known. Hence, we
approximate I(S™;Y}[) and I(T'; Y}2) via their variational representations [127]. Due to
the intractability of the true posteriors P(S™|Y}) and P(T'|Y}}), we use their amortized
variational approximations fen.(Yg) = P(S™|YE) and feue(Y2) = P(T|YE), respec-
tively. Here, we assume that the eavesdropper tries to predict the sensitive information
T as fepe(YR) = T. We can write I(S™;Y}) as follows:

I(S™;Yg) = H(S™)—-H(S™|Yg) (6.5)
= H(S")+KL(P(S™"YE)| faec(Y5)) + E[log faec(YE)] (6.6)
> H(S™)+ I}ldng[log faec(Y5)], (6.7)

where KL(-||-) denotes the KL divergence, H(S™) is constant, (6.5) follows from the def-
inition of MI, (6.6) holds for any distribution fge.(Y) over S™ given the values in Y.
Finally, (6.7) follows from the fact that maximum is attained when the decoder is opti-
mum, i.e., fgec(YZ) = P(S™|Y}). Likewise, the information leakage to the eavesdropper

becomes

I(T;Yg) = H(T)-H(T|YE) (6.8)
— H(T)+KL(P(T|YE) | fooe(YE) + Ellog fure VE)]  (6.9)
> H(T)+ maxE[log feue (V)] (6.10)

where H(T) is a constant term, (6.8), (6.9) and (6.10) follow similarly to (6.5), (6.6) and
(6.7), respectively. Here, (6.7) is attained when the decoder is optimum since we max-
imize I(S™;Y}) in our objective. However, (6.10) is not attained even if the classifier
representing the eavesdropper is optimum, because we minimize I(T’;Y}) in the objec-
tive. This is due to intractability of representing I(7'; Yz) with an upper-bound [141].
On the other hand, our numerical results indicate that although we do not optimize

exact bounds for MI terms, in practice our model still learns an effective PUT.
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6.2.1 Parallel-Channel Scenario

In this section, we assume the codewords are transmitted over parallel channels with
different noise levels, e.g., due to OFDM. Our setting represents the scenario in which
the transmitter divides the total available bandwidth into non-overlapping bands carrying
separate portions of the data. Each of the parallel bands face a different noise level for
both the receiver and the eavesdropper, i.e., (ep,,€g,). For instance, in a three-channel
scenario with equal bandwidths n/3, crossover probabilities eg = {€ep,,€B,,€p,} and

er = {€p,, €n,, €m, }, channel probabilities can be written as

2n

n 2n
3 3
P(Y§|Xn) _ Egl@ygﬂ-(l . eBl)in@yB’i@l H ngayB’j(l _ EBQ)wj@yB,j@l
i=1 j=g+1
n
o H 6?3@?;3,1@(1 — ep,)"HOVBRO] (6.11)
k=241

for the receiver, and as follows for the eavesdropper:

n 2n
5 3
P(YE\X") _ GagléByE,i(l . EEl)xieayE,i@l H eg;@yE,j(l _ €E2)wj@yE,jEB1
i=1 j=35+1
n
y H EmE/;®yE,k(1 — e, )THOVEKROT, (6.12)
k=241

We solve (6.4) using the channel probabilities (6.11) and (6.12). We want our solution for

(6.4) to control the transmission through the channels such that the sensitive information
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T is transmitted over the channels in which Eve experiences high noise, while the rest
of the source is transmitted over the channels Bob experiences low noise, independent
of Eve’s channel. We numerically verify that the proposed VAE-based encoder indeed

satisfies these expectations.

6.3 Numerical Results

We consider the wiretap channel in Figure 6.1, where the encoder and decoder at Alice
and Bob are represented by a VAE, while Eve employs a classifier. For the encoder-
decoder pair, we employed the network structure “NECST” proposed in [142]. We de-
signed our privacy aware JSCC network by incorporating our classifier based eaves-
dropper in NECST. We used colored MNIST handwritten digits as S™ for m = 32 x 32
pixels, and color and thickness of the digits as the sensitive information 7' € T = {(R, 0),
(R,1),(R,2),(G,0),(G,1),(G,2),(B,0),(B,1),(B,2)}, where R, G and B denote red,
green and blue colors, while 0, 1 and 2 represent thin, medium and thick digits, respec-

tively. We set the total channel bandwidth to n=200 bits.

6.3.1 Single Channel

We first consider a single channel scenario. In Figure 6.2, information leakage I(T;Y})
and Eve’s classification accuracy are shown with respect to ¢y distortion per image.
Dashed and straight lines represent the cases with eg = 0.2 and e¢g = 0.3, respectively,
while we have eg = 0.1 for both cases. Data points are taken at A = {0,5,10,20}.
Figure 6.2 shows that the information leakage about the sensitive information decreases
as the image distortion increases, which is expected due to the PUT. Moreover, noisier
eavesdropper channel leaks less information at the same level of distortion. Similar trend
can be seen for Eve’s accuracy. In Figure 6.2, we also observe that a MI gap as small as

0.06 corresponds to 20% accuracy gap between eg = 0.2 and eg = 0.3 cases.

For illustration purposes, we trained an additional decoder on the noisy bits received
by Eve (Y7) with the same structure as Bob’s decoder. Figure 6.3 depicts the original
images, reconstructed images by Bob and Eve, respectively, from top to bottom. We can
see that in the absence of privacy (A = 0), both Bob and Eve can reconstruct the images
rather accurately, while, thanks to the employed JSCC approach, Bob’s better channel
allows it to have better fidelity. On the other hand, when privacy is imposed (A = 20),
we can see that Eve cannot recover neither the colour nor the thickness information. On
the other hand, we can see that this information is available to Bob; and hence, it has

been successfully hidden from Eve while being available in the transmitted signal.



Privacy Aware Communication over a Wiretap Channel 113

BN NNaEEEE

L gl Pl Lol el Q0] i) ]
9l ol ol o 2]

(A) A=0

2l gl Pl Lqel el e el
2l el [l el P Pl Lol

) A=20

FIGURE 6.3: Original images and their reconstructions by Bob and Eve from top to
bottom, respectively, for eg = 0.1, eg = 0.3.

TABLE 6.1: Information leakage and Eve’s classification accuracy for the sensitive r.v.
T and individual sensitive attributes at each channel for A = 10

Channels Chl Ch2 Ch3 Ch4

I(T;YF) 1.0836 1.5703 0.0689 0.6411
Accuracy, T 13.65% 31.85% 16.15% 19.6%
Accuracy, Color 34.5% 62.35% 41.2% 45.25%

Accuracy, Thickness 35.75% 48.65% 38.05% 38.55%

6.3.2 Parallel Channels

Next, we consider a parallel-channel scenario, where the signal is transmitted over mul-
tiple channels with different noise levels. We use 4 parallel channels each with a band-
width of n/4 = 50 bits. Error probability pairs for Bob’s and Eve’s channels are set as
(ep,eg) = {Chl : (0.1,0.1),Ch2 : (0.001,0.2),Ch3 : (0.2,0.001),Ch4 : (0.001,0.001)}.
Table 6.1 shows the information leakage, Eve’s classification accuracy on 7', and sepa-
rately on the sensitive attributes color and thickness for each channel. Accuracy, Color
and Accuracy, Thickness are calculated as the success of the classifications for only the
color and only the thickness, respectively. Our privacy-aware generative network obtains
the PUT by minimizing the information leakage of the sensitive attributes and the dis-
tortion. This leads to smaller information leakage at the best quality channel of Eve,
i.e., Ch2, and larger at the worst one, i.e., Ch3. Eve’s classification accuracy of T', and
individual color and thickness attributes, are the highest for Ch2 and lowest for Chl.
We observed that Chl accuracy is low because the classifier is confused between blue
and green, as well as the medium and thick, but still has high accuracy for red and thin
attributes. On the other hand, Ch3 has low accuracy for all the attributes. This leads
to the difference between the leakage and accuracy results for Chl and Ch3.



Privacy Aware Communication over a Wiretap Channel 114

BEGEENERE RN EEEEE

g Lel e e el
C el e e

FIGURE 6.4: Original images and reconstructions by Bob, Eve, Bob’s individual chan-

nels (Chl-4), and Eve’s channels (Chl-4), respectively, from top to bottom, for A = 10.
In Figure 6.4, we show the original and reconstructed images by Bob, Eve, Chl to Ch4
of Bob, and Chl to Ch4 of Eve, respectively, from top to bottom. First three rows show
similar results with the single channel case, i.e., Eve is confused about the color and
thickness of the digits, while Bob can reconstruct at high quality. Moreover, Chl and
Ch3 do not have meaningful reconstructions for either Bob or Eve. This is because Eve
faces less noise in these channels, which might lead to larger leakage. Hence, our network
minimizes the information flow through these channels. Ch2, on the other hand, carries
more information than Ch4 since it can better hide the sensitive attributes from Eve

while maximizing the information transmission for Bob.

6.4 Conclusions

We proposed a VAE-based privacy-aware communication scheme over a wireless wiretap
channel. In our simulation results, we showed that our end-to-end learning approach
provides minimally distorted source transmission with maximum channel capacity while
minimizing the information leakage about sensitive information to an eavesdropper. We
also showed that our approach balances the information flow in a parallel-channel scenario
such that the PUT is obtained according to the receiver’s and eavesdropper’s channel

noises.



Chapter 7

Adversarial Robustness for Security

Applications

In this chapter, we consider the robustness of DNNs in security-critical applications,
such as cyber-security, finance and social networks. We move our focus from the pas-
sive adversary, e.g., the SP/UP or the eavesdropper, to an active adversary which tries
to deliberately fool a neural network. Besides their effectiveness in privacy-security
related applications, DNN’s vulnerability to adversarial examples (AEs) has recently
been an emerging topic in the literature. However, most work mainly focus on com-
puter vision (CV) domain, while security related domains still remain under-explored.
This chapter is based on the idea that despite being sufficient for CV domain, craft-
ing AEs using uniform perturbations do not result in realistic AEs in domains such as
malware, finance, and social networks. For these types of applications, features typi-
cally have some semantically meaningful dependencies. The key idea of our proposed
approach is to enable non-uniform perturbations that can adequately represent these
feature dependencies during adversarial training. We propose using characteristics of
the empirical data distribution, both on correlations between the features and the im-
portance of the features themselves. Using experimental datasets for malware classifi-
cation, credit risk prediction, and spam detection, we show that the proposed approach
is more robust to real-world attacks. Finally, we present robustness certification uti-
lizing non-uniform perturbation bounds, and show that non-uniform bounds achieve
better certification. Our code is available at https://github.com/amazon-research/

adversarial-robustness-with-nonuniform-perturbations
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FI1GURE 7.1: Classification boundaries from adversarial training with uniform pertur-
bation limits for (A) ||d|]2 < 0.5, (B) [|d]]2 < 0.8 and non-uniform perturbation limits
for (C) |9z] < 0.5 and |6,| < 0.8. The figures are obtained by modifying [3].

7.1 Introduction

In this chapter, we mainly focus on realistic AE generation against real-world attacks
in under-explored domains, such as malware, finance and social networks. In the well
studied CV domain, the adversary’s goal is to generate perturbed images that cause mis-
classifications by a DNN. It is often assumed that limiting a uniform norm-ball constraint
results in perturbations that are imperceptible to the human eye. However in other ap-
plications such as fraud detection [143], spam detection [144], credit card default predic-
tion [145, 146] and malware detection [147-149], norm-bounded uniform perturbations
may result in unrealistic transformations. Perturbed samples must comply with certain
constraints related to the domain, hence preventing us from borrowing these assumptions
from CV. These constraints can be on semantically meaningful feature dependencies, ex-
pert knowledge of possible attacks, and immutable features [148,150].  This chapter
proposes a methodology to generate non-uniform perturbations that takes into account

the characteristics of the empirical data distribution.

AT is a state-of-the-art approach for empirical defenses as mentioned in Section 2.3.
Most approaches for optimizing & perturbations usually assume that all the input fea-
tures require equal levels of robustness, however, this might not be the case for many
applications as mentioned earlier. Consider the 2D toy example of binary classification

in Figure 7.1. Figure 7.1 illustrates adversarially robust decision boundaries with red
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and blue regions, and lo-norm perturbation limits around the data points with black
circles. While Figure 7.1A shows that adversarially trained model with input constraint
|0]l2 < 0.5 gains complete robustness against input perturbations, in Figure 7.1B there is
loss of clean performance due to overlapping regions of increased allowed perturbations.
Although the constraint ||§]|2 < 0.5 might provide sufficient robustness in z-axis, there
are still uncovered regions in y-axis in Figure 7.1A. On the other hand, when we fit the
allowable perturbations to y-axis by choosing a larger perturbation ||d]2 < 0.8, z-axis
suffers from unnecessary overlaps. This can be solved by customizing the perturbation
constraint such that the perturbation radius in x-axis follows |J,| < 0.5 and the radius in
y-axis follows |d,| < 0.8, which results in an ellipsoid perturbation region in 2D as shown
in Figure 7.1C. This toy example highlights the advantage of a non-uniform constraint

across both axes.

Uniformly perturbing all pixels in an image is often imperceptible to the human eye, but
uniform perturbations are wholly inappropriate in many tabular datasets, where positive
and negative correlations are strong, consistent, and meaningful. For example, in the
German dataset used in Section 7.3.2, we find the largest positive correlation (0.62)
between the amount of credit and the payment duration, while the largest negative
correlation (-0.31) is between the checking account status and the credit risk score. Both

relationships are intuitive, and both would be broken by applying uniform perturbations.

The intuition behind the need for non-uniform constraints is apparent across many in-
dustrial applications. A common cybersecurity application is malware detection, which
identifies if an executable file is benign or malicious. Unlike images, diverse and seman-
tically meaningful features are extracted from the executable file and are passed to a
machine learning model. To maintain the functionality of an executable file during an
adversarial attack, certain features may be immutable and perturbations may result in
an unrealistic scenario. For example in the Android malware space, application permis-
sions, such as permission to access a phone’s location service, are required for malicious
functionality and cannot be perturbed [147]. In a finance scenario where customer credit
card applications are evaluated by machine learning models, a possible set of features
include age, gender, income, savings, education level, number of dependents, etc. In this
type of dataset there are clear dependencies between features, for example the number
of dependents has a meaningful correlation with age. When detecting spammers within
social networks, features are extracted from accounts and may include the length of the
username, length of user description, number of following and followers as well as the
ratio between them, percentage of bidirectional friends, etc. Similar to the previous fi-
nance example, there is a meaningful correlation between features such as the percentage

of bidirectional friends and the ratio of followers.
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In all of these scenarios, non-uniform perturbations can be used to maintain these cor-
relations and semantically meaningful dependencies resulting in more realistic AEs. In
this chapter, we propose adversarial training with these more realistic perturbations to
increase the robustness against real-world adversarial attacks. Specifically, our contribu-

tions are:

e Instead of considering an allowed perturbation region where all the features are treated
uniformly, i.e., ||0]|, < €, we consider a transformed input perturbation constraint, i.e.,
1€20]|, < € where Q is a transformation matrix, which takes the available information
into account, such as feature importance, feature correlations and/or domain knowl-
edge. Hence, the transformation in the norm ball constraint results in non-uniform
input perturbations over the features

e For various applications such as malware detection, credit risk prediction and spam
detection, we show that robustness using non-uniform perturbations outperforms the
commonly-used uniform approach

e To provide provable guarantees for non-uniform robustness, we modify two known
certification methods, linear programming and randomized smoothing, to account for

non-uniform perturbation constraints.

7.2 Non-uniform Adversarial Perturbations

In adversarial training, the worst case loss for an allowed perturbation region is minimized
over parameters of a function representing a DNN. The objective of the adversary can
be written as the inner maximization of adversarial training:

méaé(iArSIi)ze U fo(z+0),y), (7.1)

where x € X and y € Y are dataset inputs and labels, A, = {0 : ||0]|, < €} is an £,
ball of radius € which defines the feasible perturbation region. Standard PGD follows

steepest descent which iteratively updates ¢ in the gradient direction to increase the loss:

Visl(fo(z +9'),y)

St =5+ a 7.2
sllialz + 5. 0)], 72
at iteration ¢, and then it projects ¢ to the closest point onto the £, ball:
Pa., (8) i= argmin 6 — [ = e—— 2 (73)
o §EA 2 “maz{e [|9],} '

where the distance between § and ¢’ is the Euclidean distance, and the projection cor-

responds to normalizing 0 to have a maximum ¢, norm which is equal to e. Now, we
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introduce an adversarial constraint set that non-uniformly limits adversarial variations

in different, potentially correlated dimensions, by
Nep={5:1198]p < e} (7.4)

where Q € R%*?, In our approach, d is updated by equation (7.2) similar to the standard
PGD, however, it is projected back to a non-uniform norm ball satisfying [|Q6]|, < e.

The corresponding projection operator will then be:

o if ||1Qd]l, >
P, (Q8) = § 1T if 11920y > e (7.5)

1) otherwise.

The choice of €2 depends on how we model the expert knowledge or feature relationships.

The following are our choices for the non-uniform perturbation sets.

7.2.1 Mahalanobis Distance (MD)

Euclidean distance between two points in a multi-dimensional space is a useful metric
when the vectors have isotropic distribution (i.e. radially symmetric). This is because
the Euclidean distance assumes each dimension has same scale (or spread) and are uncor-
related to other dimensions. However, isotropy is usually not the case for real datasets in
which different features might have different scales and can be correlated. Fortunately,
MD accounts for how the features are scaled and correlated to one another [151]. Hence,

it is a more useful metric if the data has non-isotropic distribution.

By formal definition, MD between vectors z,z’ € R? is denoted by dps(z, 2/|M) :=

V(2= 2)TM(z — 2'), where M € R?¥*? is a positive semi-definite matrix which can be
decomposed as M = UTU, for U € R™9. The dissimilarity between two vectors from a
distribution with covariance ¥ can be measured by selecting M = X1, If feature vectors
of a dataset are uncorrelated and have unit variances, their covariance matrix is 3 = I,

which reduces their MD to Euclidean distance.

We are interested in the distance between the original and the perturbed sample. Since
we assume all perturbations are additive, as common practice, the distance term we
consider is V6T M. For a generalized MD in /¢, norm, selecting Q2 = U T corresponds
to the perturbation set A., = {6 : |[UT§||, < €} which generates AEs with feature

correlations similar to the original dataset.

Robustness of an adversarially trained model is directly related to how realistic the

generated AEs are during training. Now, we explore implications of selecting fo MD to



Adversarial Robustness 120

define the limits of the perturbation set. To ensure the validity of the AEs, we consider
the notion of consistency of the generated sample with real samples. [146] introduced the
notion of e-inconsistency to quantify how likely an AE is. With slight change in their

notation, we define ~y-consistency as follows:

Definition 7.1. For a consistency threshold « > 0, an AE is y-consistent if f (x| y) >
v, where z € R? and f is a probability density function of a conditional Gaussian

distribution with zero mean and covariance matrix 3.

Theorem 7.2. If the AFEs are generated according to MD constraint, then their -

consistency has a direct relation to € such that

0<+/2C —2logvy <e. (7.6)

where C' = —log(2m)¥2|%,|1/2, d is the dimension of x, and \/6TS, 16 < e.

See Appendix A.1 for the proof. Theorem 7.2 implies that there is a direct relationship
between limiting the MD of ¢ and ensuring consistent samples when the data is Gaussian.
In other words, when the 5 MD of the perturbations gets smaller, AEs become more

consistent.

7.2.2 Weighted Norm

When 2 is a diagonal matrix, inner maximization constraint simply becomes the weighted

norm of ¢ limited by €, and the weights are denoted by {;,;}%,. Projection of § under

€ h

the new constraint corresponds to projection onto an ¢, norm ball of radius o for 4t
feature. These weights can be chosen exploiting domain, attack or model knowle’dge. For
instance, more important features can be allowed to be perturbed more than the other
features which have less effect on the output score of the classifier. This knowledge might
come from Pearson’s correlation coefficients [145] between the features of the training

data and the corresponding labels, or Shapley values [152] for each feature.

Using Pearson’s correlation coefficient of each feature with the corresponding target
variable, i.e., |p;,| for ith feature and output y, we let larger perturbation radii for more

correlated features with the output. Due to the inverse relation between (2;; and the

R

radius of the norm ball, for p;, = W1| we select 0 = %. Similarly, using
Y Y Ji=1

Shapley values to represent feature importance, we define §; = ﬁ, where s; is the

diag({3:}¢ ;)
{3312
that more important features should have larger perturbation radii.

Shapley value of feature ¢. Then, we choose {2 = by following the intuition
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In the malware domain, expert knowledge might help to rule out specific type of attacks
crafted on immutable features due to feasibility constraints. This can be modelled by the
proposed weighted norm constraint as masking the perturbations on immutable features.
Hence, non-uniform perturbation approach enables various transformations on the attack

space for robustness against realistic attacks.

7.3 Experimental Results

Here, we present experimental results to evaluate robustness of DNNs against adversar-
ial attacks for binary classification problems on three applications: malware detection,
credit risk prediction, and spam detection. We compare PGD with non-uniform per-
turbations during AT with PGD proposed in |24] based on uniform perturbations. For
all applications, we evaluate our defense mechanisms on adversarial attacks proposed by
other works. We use a machine with an Intel Xeon E5-2686 v4 @ 2.3 GHz CPU, and 4
Nvidia Tesla V100 GPUs.

In all applications, we use a fully-connected neural network model composed of 4 densely
connected layers with the first three using ReL U activations followed by a softmaz acti-
vation in the last layer. After each of the first three layers, we apply 20% Dropout rate
for regularization during training. We use 5 random initialization for malware and 10

for both credit risk and spam detection use-cases to report average results.

For pre-processing, we use standardization as a normalization method, which is a common
practice with many machine learning techniques.Min-max scaling transforms all features
into the same scale while standardization, which is recommended in presence of outliers
[153], only ensures zero mean and unit standard deviation. This approach does not
guarantee same range (min and max) for all features. As a result, it is possible that the

features have different scales even after normalization.

Note that our goal is not to design the best possible neural network but instead compare
the uniform perurbations [24| with various non-uniform perturbations during AT for a
given DNN.

Adversarial training (AT): We perform AT in all use-cases by applying ¢o-norm PGD
for uniform perturbation sets, i.e., A¢, 2 = {0 : ||0]|2 < €1}, and non-uniform perturbation
sets, 1.e., Ao = {0 : [|Q0]l2 < e}. Since potential adversaries are not interested
in fooling the classifiers with negative class (target class) samples, § perturbations are
only applied to the positive classes during AT as commonly used especially in malware
detection [148]. Positive classes are the malicious class in malware detection, bad class

in credit risk prediction, and spammer class in spam detection. Moreover, for the sake
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of clean accuracy within the positive class, adversarial perturbations are applied to 90%
of the positive samples during training. Such hybrid approach where a weighted clean

adversarial loss are optimized at once is common in literature [154].

To model the expert knowledge with diagonal 2, we use Pearson’s correlation coefficient,
Shapley values, and masking to allow perturbation only in mutable features. To compute
Shapley values, we use SHAP [155] which utilizes a deep learning explainer. We also
consider AT under the MD constraint, and select Q—U7" such that UTU =X, ! considering
two cases; 3, is the covariance matrix of the entire training data, i.e., y={0,1}, and %,
is only for the negative (target) class y=0. We call the models after AT with non-
uniform perturbations according to their Q) selection, e.g., NU-§-Pearson for Pearson’s
coefficients, NU-§-SHAP for Shapley values, NU-§-Mask for masking, NU-6-MD for MD
using full covariance matrix and NU-§-MDtarget for MD using the covariance for only
y=0. The choice Q=1 corresponds to AT with uniform perturbation constraint, which

we call Uniform-9.

7.3.1 Malware Use-case

First, we consider a binary classification problem for malware detection using the EM-
BER dataset [156]. EMBER is a feature-based public dataset which is considered a
benchmark for Windows malware detection. It contains 2381 features extracted from
Windows PE files: 600K labeled training samples and 200K test samples. The EMBER

dataset consists of two types of features:

1. Parsed features are extracted after parsing the portable executable (PE) file.

Parsed features include 5 different groups:

e General file information: virtual size of the file; number of imported/exported
functions and symbols; whether the file has a debug section, thread local storage,
resources, relocations, or a signature.

e Header information: timestamp in the header; target machine; list of image and
DLL characteristics; target subsystem; file magic; image, system and subsystem
versions; code, headers and commit sizes (hashing trick).

e Imported functions: functions extracted from the import address table (hashing
trick)

e FExported functions: list of exported functions (hashing trick).

e Section information: name, size, entropy, virtual size, and a list of strings rep-

resenting section characteristics (hashing trick).

2. Format-agnostic features do not require parsing the PE file structure and in-

clude:
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e Byte histogram: counts of each byte value within the file (256 integer values).

e Byte-entropy histogram: quantized and normalized of the joint distribution
p(H, X) of entropy H and byte value X (256 bins).

e String information: number of strings and their average length; a histogram of
the printable characters within those strings; entropy of characters across all

printable strings.

Given a malware sample, an adversary’s goal is to make the DNN conclude that a mali-
cious sample is benign. We also consider PDF malware detection. We use the extracted
features of the PDF malware classification dataset and its attacked samples provided
in [157]. The repository contains 110841 samples with 135 features that are extracted
by PDFrate-R [158].

Attacks used for evaluation: In the malware domain, test-time evasion attacks can
be classified as feature-space and problem-space attacks. While the former crafts AEs by
modifying the features extracted from binary files, the latter directly modifies malware
binaries making sure of the validity and inconspicuousness of the modified object. We
evaluate the robustness of our model against evasion attacks which are crafted in problem-
space, i.e., on PE files. For Windows malware, we incorporate the most successful attacks
[159] from the machine learning static evasion competition [160]. Since the EMBER
dataset only contains the extracted features of a file, a subset of malware binaries used for

AE generation are obtained from VirusTotal [161] using the SHA-256 hash as identifier.

Below is a detailed explanation about the winner attacks [159] of malware competition
[160].

Greedy Attack: Bytes in a range 256 are added iteratively to the malware binaries
to make sure the prediction score for a known model lowers and none of the packing,
functionality, or anti-tampering checks are affected. Byte addition is stopped when the
prediction score gets lower than a threshold value or the file size exceeds 5MB. We
generate 1000 adversarial examples from the malicious binaries of EMBER test set for
each target model, such as standard trained neural network, adversarially trained model
with /2-PGD for ¢ = 5 and LGBM model which were provided as benchmark together
with EMBER dataset [156]; and we call these adversarial example sets GNN, GAdv and
GLGBM, respectively.

Constant Padding Attack: A new section is created in the binary file and filled with
a constant value of size 10000. This attack is applied to 2000 binaries from EMBER
malicious test set for constants “169” and “0”, and we call these adversarial example sets
C1 Pad. and C2 Pad., respectively.
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FI1GURE 7.2: Defense success rate of £o-PGD AT against the problem-space attacks,
where all non-uniform perturbation defense approaches outperform the uniform ap-
proach for all use-cases.

String Padding Attack: Strings of size 10000 from a benign file, such as Microsoft’s
End User License Agreement (EULA), are added to a new section created in the malware
binary. We generate 2000 adversarial examples, which we call set Str. Pad., by string

padding EMBER malicious test set.

We observe that these problem-space attacks, which add various bytes to a file without
modifying the core functionality, affect only the feature groups “Byte Histogram”, “Byte
Entropy Histogram” and “Section Information”. Experts aware of these byte padding
attacks understand which features can be manipulated by an attacker. In addition to
the previous AT methods, we represent this best case expert knowledge by Q = I,qsk,
which is an identity matrix with non-zero diagonal elements only for “Byte Histogram”,
“Byte Entropy Histogram” and “Section Information” features. That is, the model is
trained using PGD perturbations applied only to these features, and we call it NU--
Mask. Our masking approach for the immutable features is similar to the conserved
features in [162].

For PDF malware classification, we use a problem space attack called EvadeML [163]. It
allows adding, removing and swapping objects, hence it is a stronger attack than most
other problem space attacks in the literature, which typically only allow addition to

preserve the malicious functionality.

Numeric results: To make a fair comparison between uniform and non-uniform ap-
proaches, € for each method is selected such that their average distortion budgets, i.e.,
|0]|2, are approximately equal. For Windows malware classification, we test the detec-
tion success of adversarially trained models with 9000 AE sets generated by the problem-
space attacks described previously. Figure 7.2A illustrates the average defense success
rate against various problem-space attacks and shows that non-uniform perturbation ap-
proaches outperform the uniform perturbation in all cases. Moreover, NU-§-MDtarget

performs closest to the best case expert knowledge NU-§-Mask for all cases except when
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TABLE 7.1: Malware Use-case: Average number of successful evasions on standard

training, uniform and non-uniform ¢,-PGD adversarial trainings by the adversarial

example sets out of 1000 samples for approximately equal ||0]|2. Defense success rates

shown in Table 7.2 and Figure 7.2A are calculated by averaging the success rate over
these individual attacks results.

Model [16]c GNN GLGBM GAdv C1 Pad. C2 Pad. Str. Pad.
Std. Training - 832 217 337 168 35 123
Uniform-§ 0.1 4726 105 249.6 66.3 37.6 114.9
NU-§-Mask 0.1  408.5 89.2 241.7 46.2 35.2 74.5
NU-0-SHAP 0.1 3928 86.8 206.8 64.9 39 104.7
NU-4-Pearson 0.1 417.6 92.8 221.4 45.1 38.2 74.5
NU-6-MD 0.1 413 101 216 56 38.7 81.8
NU-6-MDtarget 0.1  391.6 84.2 234.6 52.2 38.7 79
Uniform-0 1 447.2 111.8 273.8 50.1 38.5 83.4
NU-4-Mask 1 299.4 88.2 223.4 58.3 40 91
NU-0-SHAP 1 359.7 82.2 244.5 53.8 33.6 81.7
NU-4-Pearson 1 304 96.2 265 60.5 38.8 99.2
NU-0-MD 1 373.2 89.5 244 54.7 37 81.8
NU-§-MDtarget 1 360.8 103.4 246.6 45.1 36.7 72.4
Uniform-§ 6.7 2315 129 333 37.7 38 58.7
NU-4-Mask 6.7 1044 68.4 153.4 43.4 47.3 70.8
NU-0-SHAP 6.7 170 113 302.5 32.7 41.2 39.7
NU-4-Pearson 6.7 213 78 304 38 38 48.6
NU-6-MD 6.7 234 91 314 27.7 31 34.2
NU-6-MDtarget 6.7 196 61 301 37.5 33.5 36.5
Uniform-9 11 177 77.6 278 37.8 41.3 44.6
NU-6-Mask 11 944 45.2 160.8 30.8 43.7 50.5
NU-6-SHAP 11 178 62 296 32 40 35
NU-6-Pearson 11 142 75.7 273 31.6 40.7 42.8
NU-6-MD 11 195 46 247 40 32.5 43
NU-0-MDtarget 11 122.7 44 251.7 34 41 48
Uniform-9 18  152.2 57.3 234 42.7 51.6 52.3
NU-6-Mask 18 44.5 20.2 116.5 27.1 48.2 47.2
NU-6-SHAP 18 1594 48.6 207.2 53.1 59.6 61.3
NU-§-Pearson 18 154.2 49 220.4 42.6 61.7 47.2
NU-6-MD 18 144.2 49.2 204.6 53 54 63.8
NU-0-MDtarget 18 132.4 52.4 215 50.6 53.4 53.2
Uniform-0 25 233.2 58 228 59.3 51 68.4
NU-0-Mask 25 25 14.8 108 21.8 48.9 34.8
NU-6-SHAP 25  193.8 53.4 226.2 44.7 56.9 58.7
NU-0-Pearson 25  158.2 59.5 191.2 67.6 65.6 75.8
NU-6-MD 25 199.7 54 248.5 58.6 59.5 59.7
NU-0-MDtarget 25 210 55 225.6 57.7 56.4 60.5

|0]l2 = 25. The advantage of selecting ¥ from benign samples versus selecting from the
entire dataset is that the direction of perturbations are led towards the target class, i.e.
benign samples, for NU-6-MDtarget. We also do not observe a significant performance
difference between NU-6-Pearson and NU-6-SHAP, while NU-0-MD only differs from
the two for ||d]|2 = 25. We refer to Table 7.1 for detailed attack performances and to

Table 7.2 for defense S.R. results with clean accuracy.
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TABLE 7.2: Malware Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform ¢»-PGD adversarial trainings
with EMBER dataset for approximately equal ||6]]2. Non-uniform perturbation de-
fense approaches outperform the uniform perturbation for all cases against adversarial

attacks.
Model |62 Clean Ac., % Defense S.R., %
Std. Training - 96.6 73
Uniform-9 0.1 96.2 82.7+0.88
NU-§-Mask 0.1 96.2 85.3 +0.25
NU-0-SHAP 0.1 96.2 85.2 +£0.39
NU-4§-Pearson 0.1 96.1 85.3 +0.94
NU-0-MD 0.1 96.3 85+ 0.99
NU-o-MDtarget 0.1 96.2 85.4+0.80
Uniform-9 1 96.1 83.3+0.41
NU-0-Mask 1 96.1 86.7 + 0.68
NU-0-SHAP 1 96.3 85.5 £ 0.61
NU-4-Pearson 1 96.2 85.7 £ 0.45
NU-6-MD 1 96.3 85.4 +£0.67
NU-§-MDtarget 1 96.3 85.9 £0.19
Uniform-¢ 6.7 95.8 86.3 +£0.15
NU-0-Mask 6.7 95.7 92 + 0.07
NU-0-SHAP 6.7 95.8 88.3 +£0.33
NU-4-Pearson 6.7 95.9 88.2+0.30
NU-0-MD 6.7 96 87.7+0.32
NU-6-MDtarget 6.7 95.8 89 £0.18
Uniform-9 11 95.6 89.3 +0.54
NU-s-Mask 11 95.8 92.9 + 0.57
NU-6-SHAP 11 96 90.3 + 0.36
NU-4-Pearson 11 95.8 90 + 0.36
NU-6-MD 11 95.9 89.9 +0.25
NU-0-MDtarget 11 95.7 90.9 £+ 0.29
Uniform-9 18 95.5 90.17 £ 0.71
NU-§-Mask 18 95.8 94.8 + 0.51
NU-6-SHAP 18 95.3 90.45 £+ 0.30
NU-0-Pearson 18 95.3 90.46 £ 0.25
NU-6-MD 18 95.4 90.54 £+ 0.46
NU-0-MDtarget 18 95.4 90.7 £ 0.51
Uniform-9 25 95.6 88.4 +0.39
NU-§-Mask 25 95.7 95.8+0.21
NU-0-SHAP 25 95.5 89.5 £0.27
NU-4-Pearson 25 94.9 89.7+0.40
NU-6-MD 25 95.2 88.6 £ 0.26
NU-0-MDtarget 25 95.2 89 + 0.57

Table 7.1 shows the average number of adversarial examples out of 1000 which suc-
cessfully evade the corresponding models. While NU-§-Mask and NU-§-MDtarget have
better performance against Greedy attacks for most of the time, i.e., sets GNN, GLGBM
and GAdv, NU-6-Pearson, NU-5-SHAP and NU-6-MD have better accuracy against
padding attacks, i.e, sets C1 Pad., C2 Pad. and Str. Pad.

For PDF malware classification, we compare NU-6-MDt with Uniform-§ against
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TABLE 7.3: Clean accuracy (Ac.), AUC score and defense success rate (D.S.R.) against
EvadeML for standard training, Uniform-6 and NU-6-MDt.

Model [|0]|2 Clean Ac. AUC score D.S.R.
Std. training - 99.52% 0.99912  11.1%
Uniform-6 1 97.64% 0.99826 87.4%
NU-6-MDt 1 97.83% 0.99835 92.9%

EvadeML. We observe the best performances at ||d||2 = 1 for both methods. Table 7.3
depicts the clean accuracy (Ac.), AUC score and defense success rate (D.S.R.) against
EvadeML for standard training, Uniform-0 and NU-6-MDt. Although NU-6-MDt is a
feature space defense, the results show that it is highly effective against problem space
attacks, and it outperforms Uniform-d. Since our approach does not assume any attack

knowledge, it is more generalizable than the problem space defenses.

7.3.2 Credit Risk Use-case

Our second use-case is a credit risk detection problem where the DNN’s goal is to make
decisions on loan applications for bank customers. For this scenario, we use the well-
known German Credit dataset [164], which contains classes “good” and “bad”, as well
as applicant features such as age, employment status, income, savings, etc. It has 20
features and 1000 samples with 300 in the “bad” class. Similar to [145], we treat discrete

features as continuous and drop non-ordinal categorical features.

Attacks used for evaluation: The goal of an adversary in this situation is to make
DNN models conclude that they are approved for a loan when they actually may not be
eligible. Since modifications to tabular data can be detected by an expert eye, attackers
try to fool classifiers with imperceptible attacks. We use German Credit dataset imple-
mentation of LowProFool [145] which considers attack imperceptibility and represents
expert knowledge using feature correlations. We apply the attack on the “bad” class of
the test set and generate 155 AEs. After dropping the non-ordinal categorical features,

we treat the remaining 12 features as continuous values.

Numeric results:  Similar to the malware use-case, ¢ for each method is selected
such that their average ||J]|2 are approximately equal. In Figure 7.2B, we report defense
success rate of PGD with uniform and non-uniform perturbations in detecting 155 AEs
generated by LowProFool. The figure shows that for every given ||J||2, non-uniform per-
turbations outperform uniform perturbations in PGD. Although LowProFool represents
feature importance by Pearson correlation coefficients between features and the output
score, surprisingly NU-d-Pearson is the best approach among the other non-uniform

approaches for only § = {0.7,1}. We refer to Table 7.4 for clean accuracy results.
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TABLE 7.4: Credit Risk Use-case: Clean accuracy (Ac.) and defense success rate
(S.R.) of standard training, uniform and non-uniform ¢»-PGD adversarial trainings
with German Credit dataset for approximately equal ||§||2. Non-uniform perturbation
defense approaches outperform the uniform perturbation for all cases against adversarial

attacks.
Model |62 Clean Ac., % Defense S.R., %
Std. Training - 69.7 60
Uniform-¢ 0.01 69 61.3 +0.40
NU-6-SHAP 0.01 68.3 61.3 +0.35
NU-§-Pearson 0.01 68.3 61.9+0.37
NU-6-MD 0.01 69.6 61.6 +0.32
NU-s-MDtarget 0.01 69.7 61.9 +0.30
Uniform-¢ 0.1 67.7 63.4 +£0.31
NU-6-SHAP 0.1 67.1 64.5 +0.20
NU-é-Pearson 0.1 66.8 64.3 + 0.56
NU-6-MD 0.1 66.7 64.2 +0.32
NU-6-MDtarget 0.1 66.7 64.5 £ 041
Uniform-9 0.3 66.7 66.4 +0.22
NU-6-SHAP 0.3 65.8 67.6 +0.30
NU-é-Pearson 0.3 66 68 +0.21
NU-6-MD 0.3 66.5 67.1 +0.64
NU-o-MDtarget 0.3 66.3 69 +0.32
Uniform-¢ 0.5 66.2 68 +0.32
NU-6-SHAP 0.5 66.5 69.7 +0.37
NU-6-Pearson 0.5 65.9 69.4 +0.27
NU-6-MD 0.5 66.3 69.2 +0.35
NU-s-MDtarget 0.5 66 69.8+0.13
Uniform-¢ 0.7 66.1 69.6 + 0.20
NU-/-SHAP 0.7 65.8 71.1+0.57
NU-é-Pearson 0.7 65.6 71+0.37
NU-6-MD 0.7 66.4 70.5 +0.30
NU-0-MDtarget 0.7 65.6 70.3 +0.30
Uniform-¢ 1 65.3 70.6 +0.44
NU--SHAP 1 64.5 71.3 +0.32
NU-/-Pearson 1 64.3 71.3+0.32
NU-6-MD 1 64.9 714+0.37
NU-0-MDtarget 1 65 714+0.21

7.3.3 Spam Detection Use-case

Finally, we evaluate robustness within the context of detecting spam within social net-
works. We use a dataset from Twitter, where data from legitimate users and spammers is
harvested from social honeypots over seven months [165]. This dataset contains profile in-
formation and posts of both spammers and legitimate users. After pre-processing [166],
we extract 31 numeric features with 14 being integers and the rest being continuous.
Some examples of these features are the number of following and followers as well as
the ratio between them, percentage of bidirectional friends, number of posted messages
per day, etc. We treat all features as continuous values in our experiments. Moreover,

we extract 41,354 samples where the training set has 17,744 “bad" and 15,339 “good"
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TABLE 7.5: Spam Detection Use-case: Clean accuracy and defense success rate of
standard training, uniform and non-uniform /5-PGD adversarial trainings with Twitter
Spam dataset for approximately equal ||d]|2.

Model I6]2 Clean Ac., % Defense S.R., %
Std. Training - 94.6 17.5
Uniform-§ 0.1 91.1 34.4+0.16
NU-6-SHAP 0.1 93.9 35.3 £0.32
NU-4§-Pearson 0.1 94 36 £+ 0.50.
NU-6-MD 0.1 93.9 36.7 £ 0.48
NU-6-MDtarget 0.1 93.9 38.3+£0.50
Uniform-§ 0.3 92.6 58.3 + 0.66
NU-0-SHAP 0.3 91.9 66.5 + 0.86
NU-§-Pearson 0.3 91.8 65+ 0.21
NU-6-MD 0.3 91.9 69.4 +0.25
NU-6-MDtarget 0.3 92 67.9 £ 0.25
Uniform-9 0.5 91.3 82.8 £ 0.46
NU-0-SHAP 0.5 90.9 86.1 +£0.14
NU-o-Pearson 0.5 91.2 87.3+0.20
NU-6-MD 0.5 91.1 85.3 +0.30
NU-0-MDtarget 0.5 91.2 86.8 £ 0.28
Uniform-§ 0.7 91.1 89.6 + 0.48
NU-6-SHAP 0.7 90.5 90.5 £ 0.19
NU-4-Pearson 0.7 90.6 90.7 £ 0.11
NU-6-MD 0.7 90.5 89.8 £ 0.35
NU-0-MDtarget 0.7 90.5 89.1 +£0.18
Uniform-§ 1 90.5 87.3 £0.62
NU-0-SHAP 1 89.8 91.4 £ 0.62
NU-0-Pearson 1 89.9 92 +0.53
NU-5-MD 1 89.7 93.3 +0.30
NU-6-MDtarget 1 89.8 92.5 + 0.64

samples, and the testing set has 3885 “bad" and 4386 “good" samples. The adversary’s
goal is to make the DNN predict that a tweet was posted by a legitimate user when it

was written by a spammer.

Attacks used for evaluation: We incorporate the evasion attack [167] from [144] for
our Twitter spam detector. The attack strategy is based on minimizing the malicious-
ness score of an AE which is measured by a local interpretation model LASSO, while
satisfying £ norm constraint on perturbations. We generate the AEs by constraining the
perturbations to 0.5 x dist,,] .., Where dist;,? .. is defined by [144] as the average
distance between the spammer samples and the closest non-spammers to these samples.
We split the Twitter dataset with ratio 25% for training and testing, and generate the

AFEs using the spammer class of the entire test set.

Numeric results: Again, we apply perturbations only to the spammer set during
AT and report the results for approximately equal average ||d]|2 perturbations. Figure
7.2C illustrates defense success rate in detecting AEs of the proposed approaches against

the model interpretation based attack [144] for Twitter dataset. The figure shows that
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TABLE 7.6: Clean accuracy (Cl. Ac.) and defense success rates of NU-§-MDt and
Uniform-6 against FGSM, Carlini-Wagner (CW), JSMA and Deep Fool attacks for
Spam Detection Use-case.

Defenses ¢ Cl. Ac.,% FGSM ¢=0.5% FGSM =1,% CW. % JSMA,% Deep Fool,%
Uniform-4 01 91.61 24.14+0.25 20.17+£0.31 38.93+0.54 41.51+£0.24  39.3+0.27
NU-6-MDt 91.93 28.7+0.17 271+0.21 49.624+0.33 49.59+0.18 51.73+0.31
Uniform-4 03 90.40 25.22 +0.12 21.61+£0.43 45.83+0.41 46.38+0.27 47.39+0.25
NU-6-MDt 91.31 32.15+0.34 30.88+0.36 53.45+0.22 52.68+0.13 54.61 +0.19
Uniform-4 05 87.12 27.05 + 0.50 23.08+£0.34 50.05+0.32 49.5+£0.25 49.75+0.16
NU-5-MDt 87.78 43.85 +0.62 36.12+£0.20 55.24+0.38 53.71 +£0.41 64.28 +0.55
Uniform-o 1 86.46 40.20 £ 0.57 32.98+0.31 52.77+0.24 52.944+0.26 53.224+0.10
NU-5-MDt 87.64 81.34 £ 0.83 79.85+0.75 61.89+0.37 72.93+0.77 88.75+0.78
Uniform-4 15 85.98 74.40 + 0.47 62.36 £0.75 59.71+0.28 68.95+0.85 64.5+0.86
NU-6-MDt 87.03 94.45+0.18 91.03 +£0.10 7298 +0.48 86.43+0.32 98.36 £0.25

non-uniform perturbations outperform uniform case in terms of defense S.R. for all given

|0]|2. We refer to Table 7.5 for clean accuracy results.

7.3.4 Performance Against Uniform Attacks

Throughout the experiments, we tested our non-uniform approach against various real-
istic attacks, such as problem space attacks in Section 7.3.1, feature importance-based
attack in Section 7.3.2 and explainability-based attack in Section 7.3.3. So far we em-
phasized that problem space attacks and non-uniformly norm bounded attacks are more
realistic compared to the traditional uniformly norm-bounded attacks which are mostly
considered in image domain. Yet, in this section, we also test our non-uniform approach
against the well-known uniform attacks to investigate the generalizability of our ap-
proach. We use the setting for the spam detection use-case, and compare NU-§-MDt
with Uniform-0. We utilize the adversarial robustness toolbox (ART) [168] to craft AEs
by using the default parameters for the AE generators of Carlini-Wagner (CW), JSMA
and DeepFool Methods. We also use FGSM for ¢ = 0.5 and ¢ = 1. Table 7.6 shows
the clean accuracy (Cl. Ac.) and defense S.R.’s of the robust models NU-§-MDt and
Uniform-3. We observe in Table 7.6 that the Cl. Ac. decreases as ||0||2 increases for both
Uniform-6 and NU-0-MDt but the degradation in non-uniform is less. Defense S.R.’s, on
the other hand, improve for both approaches but NU-§-MDt significantly outperforms

Uniform-0 in all cases.

We further investigate the performance of our non-uniform approach against uniformly
norm-bounded attacks for generalizability as in Section 7.3.4. We use the same setting
as in spam detection use-case, and craft AEs using standard PGD attack, i.e., the attack
in Uniform-0, for e = {0.1,0.3,0.5,0.7}. For a fair comparison between the uniform and

non-uniform approaches, we set approximately equal ||d]|2 for both models in the average
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TABLE 7.7: Defense success rates of Uniform-§, NU-0-MDt and MDt-Combo against
PGD attacks for Spam Detection Use-case. Both non-uniform defenses outperform the
uniform approach while NU-§-MDt also outperforms MDt-Combo for all cases.

Defenses [|6]]2 Attack e=0.1 Attack e=0.3 Attack e=0.5 Attack ¢=0.7
Uniform-6 90.6 +0.18 83.9+0.34 16.6 £0.47 14.8 £0.65
NU-§-MDt 0.1 92.8£0.21 88.2+ 041 34.95+0.5 21.4+0.22
MDt-Combo 91.6 £0.24 86.3+0.28 24.44+0.38 19.2 £0.32
Uniform-§ 92.6 +0.14 89.05+0.24 30.54+0.42 20.85 £ 0.58
NU-§-MDt 0.3 93.2+0.10 90.95+0.22 61.75+0.51 46.3+0.41
MDt-Combo 93 +£0.11 89.24 £0.19  47.88+0.72 31.5+0.39
Uniform-§ 92.9+0.08 91.440.05 88 +0.22 86.5+0.25
NU-§-MDt 0.5 93.3+0.05 91.45+0.06 89.45+0.17 87.7+0.12
MDt-Combo 93.1£0.10 91.4£0.11 89.30 £0.14 87.2+£0.18
Uniform-0 93.2+0.14 91.9 £ 0.25 90.18 £0.20 88.38 £ 0.22
NU-§-MDt 1 94.5+0.11 94.17+042 93.33+0.15 93.14+0.31
MDt-Combo 94.39 £ 0.10 92.42 4+ 0.28 91.444+0.19 91.33 £0.26
Uniform-¢ 93.224+0.16  92.01+£0.27  90.61+£0.24  89.78+0.15
NU-§-MDt 1.5 9445+0.12 9438+0.31 93.76+0.16 93.48+0.11
MDt-Combo 94.27+0.11 93.14+0.20 92.34+0.27 91.84+0.17

sense. In this section, we also consider a non-uniform robust model which enforces the
AT constraint first on [|2d]|2 and then ||§||2. That is, the non-uniform attack is always
a valid uniform attack in the strict sense. We call this defense Combo due to using the

combination of both projections in (7.3) and (7.5).

Table 7.7 shows the defense success rates of Uniform-§, NU-0-MDt and MDt-Combo,
which denotes the Combo approach for 2 selected as the Mahalanobis matrix for the
benign samples, against PGD attacks for Spam Detection Use-case. We observe that
our non-uniform approach outperforms the uniform approach for all cases, hence it is
also effective against the uniformly norm-bounded attacks which makes it generalizable.
Furthermore, Table 7.7 shows that MDt-Combo performs in between Uniform-6 and NU-
d-MDt. This is due to the fact that the strict constraint on ||d||2 reduces the effect of

non-uniform projection.

7.3.5 Quality of Perturbation Sets

In this section, we quantitatively and qualitatively analyze how well non-uniform per-
turbations capture realistic attacks using y-consistency property defined in Section 7.2
and lower dimensional space visualization. Our intuition is that a successful attack
evades detection since AEs appear benign to the model. That is, AEs have high like-
lihood according to the distribution of benign samples. Therefore, we measure a per-
turbed sample’s quality by its ~y-consistency with the benign set distribution. Defini-
tion 7.1 leverages Theorem 7.2, which shows that smaller MD for § indicates higher

~v-consistency and hence higher quality of the perturbed sample. Moreover, we expect
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Uniform-6
NU-G-Mdtarget

(A) Uniform-o0 (B) NU-0-MDtarget (C) Histogram of MD
square, 6TE;:105

Ficure 7.3: UMAP visualization of benign, malicious and adversarial samples gener-
ated by (A) Uniform-6 and (B) NU-J-MDtarget, and (C) the density histogram of their
6T2;:106 =2C —2log~.

AEs that evade the model and benign samples to be embedded closer to each other in the
lower-dimensional subspace. Figure 7.3 illustrates UMAP visualization [169] of benign,
malicious and adversarial samples for the spam detection use-case. AEs generated by
NU-0-MDtarget show better alignment with benign distribution, which shows that NU-
d-MDtarget mimics a more realistic attack. We also show the histogram of MD squares,
ie. 5TE;:10(5 = 2C — 2log~y, of 1660 AEs from Uniform-é and NU-§-MDtarget in Figure
7.3C, where the average values are 2.1 and 1.28, respectively. Following Theorem 7.2

and Figure 7.3C, §’s from NU-§-MDtarget have higher «, and hence, are more realistic.

7.4 Certified Robustness with Non-uniform Perturbations

In this section, we present methods for certifying robustness with non-uniform pertur-
bations. We consider two well-known methods; linear programming (LP) [32] and ran-

domized smoothing [170].

7.4.1 LP Formulation

We can provably certify the robustness of deep ReLU networks against non-uniform
adversarial perturbations at the input. Our derivation follows an LP formulation of
the adversary’s problem with ReLU relaxations, then the dual problem of the LP and
activation bound calculation. It can be viewed as an extension of [32]. Similar to [32],

we consider a k layer feedforward deep ReLLU network with

Ziv1 = Wizi + b, z; = max{%;,0}, fori=1,--- [k —1 (7.7)
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We denote Z. q(z) := {fo(x +0) : ||Q6]||, < €} as the set of all attainable final-layer
activations by input perturbation . Since this is a non-convex set for multi-layer net-
works which is hard to optimize over, we consider a convex outer bound on Z o(x) and
optimize the worst case loss over this bound to guarantee that no AEs within Z o(z)
can evade the network. As done in [32], we relax the ReLU activations by representing
z = max{0, 2} with their upper convex envelopes z > 0,z > 2, —uz + (u — )z < —ul,
where [ and u are the known lower and upper bounds for the pre-ReLLU activations. We
denote the new relaxed set of all attainable final-layer activations by Z.q(z). Assuming
that an adversary targets a specific class to fool the classifier, we write the LP as

minimize ¢’ 2, st. 2 € Zeg (7.8)
2k

where ¢ := e, true — €,target 1S the difference between the selection vector of true and the

Yy
target class.

Y

A positive valued objective for all classes as a solution to equation (7.8) indicates that
there is no adversarial perturbation within Agp which can evade the classifier. To be able
to solve equation (7.8) in a tractable way, we consider its dual whose feasible solution
provides a guaranteed lower bound for the LP. It is previously shown by [32] that a
feasible set of the dual problem can be formulated similar to a standard backpropagation
network and solved efficiently. The dual problem of our LP with ReLU relaxation and

non-uniform perturbation constraints is expressed in the following theorem.

Theorem 7.3. The dual of the linear program (7.8) can be written as

mammzze Z%Hb -l—ZZl” i ily — ol a — €| |,

=2 j€TI;
s.t. ve=—c, Uj= W), for i=k—1,...,1
(7.9)
0 JeL;
Vij = ﬁi,j je_’[;", fOTi:k—l,...,2
a s Wil —miglogl- JEL

where L, If and I; represent the activation sets in layer i for I and u are both negative,

both positive and span zero, respectively.

When 7;; = —=%4— Theorem 7.3 shows that the dual problem can be represented

ui,j—lij

as a linear back propagation network, which provides a tractable solution for a lower

bound of the primal objective. To solve equation (7.9), we need to calculate lower and

upper bounds for each layer incrementally. The proof of the Theorem 7.3 is provided in
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Algorithm 2 Activation Bound Calculation

Input: Network parameters {W;, b;}, input data z, input constraint matrix Q and
ball size €, norm type q.

Initialize 07 := WlT, (= blT

b =W +bf —¢llQ W]

ug = o Wi +b] +€||Q7 W,

voz, == (D2)7,Wq

Co =103

fori=2tok—1do

7 7
=20+ Y G —€e|Q 1 n|lg+ X Laol-viels
Jj=1 i:2,i/€Ii

1 3
uipr =2 o+ 3 GHelQ g - X Lalvials
j=1 i=2,i'€Z;
vz, = vz, (Di)z, Wi
G =¢GDiwe
=i (Di>Ii WiT
end for
Output: {l;,u;}5_,

Appendix A.2, and lower and upper bound calculations are explained in the following

parts.

Activation Bounds: The dual objective function provides a bound on any linear func-
tion ¢!'2;,. Therefore, we can compute the dual objective for ¢ = —I and ¢ = I to obtain
lower and upper bounds. For ¢ = I, value of v; for all activations simultaneously is given

by

0 jET;
0 =W DipaWiky...D,W! and v; = D;i;, where (D;)j; =11 jeT
qujz] JEL

(7.10)

Similar to [32], bounds for v; and 7; can be computed for each layer by cumulatively
generating bounds for 2, then 23 and so on. By initializing 7 := W{, ¢; := bl first
bounds are Iy := xT W + b — ¢||Q7WT||, and ug := 2T W] + b + €| |Q*WT||,, where
the norms are taken over the columns. Calculation of the bounds for each layer is given

below in Algorithm 2.

For certification of robustness within a non-uniform norm ball around a test sample, we
need the objective of the LP to be positive for all classes. Since the solution of the dual
problem is a lower bound on the primal LP, it provides a worst case certification guaran-
tee against the AEs within the non-uniform norm ball. We provide certification results
for the robustness of Uniform-§ and NU-§-MDt (NU-6-MDtarget) for spam detection

use-case in Table 7.8. We consider both uniform and non-uniform input constraints in
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TABLE 7.8: Average certification margin and number of successful certified samples
out of 1000 spammers for NU-6-MDt and Uniform-0 for Spam Detection Use-case.

Model Defense S.R. Cert. Method Margin Cert. Success

Uniform-Cert 1.07 34.72 £ 0.94%
NU-Cert-SHAP 1.84 72.64 £+ 0.6%
Uniform-§  54.87 £1.1% NU-Cert-Pearson 2.04 76.8 = 0.71%

NU-Cert-MD 2.40 80.2 + 0.56%
NU-Cert-MDt 2.40 80.2 + 0.55%
Uniform-Cert 1.11 42.95 4+ 0.69%
NU-Cert-SHAP 1.9 74.65 + 0.85%
NU-6-MDt  63.4+0.74%  NU-Cert-Pearson 2.06 78.38 + 0.76%
NU-Cert-MD 2.41 81.3 +0.68%
NU-Cert-MDt 2.41 81.3+0.67%

certification, namely Uniform-Cert for the standard LP approach for certification with
uniform perturbation constraint [32]|, and NU-Cert-(.) for the non-uniform constraint.
We implement our non-uniform approach into the LP by modifying [32] with our 2 ma-
trix, and generate various certification methods by non-uniform 2, e.g. NU-Cert-SHAP,
NU-Cert-Pearson, NU-Cert-MD and NU-Cert-MDt. Our purpose is not to propose the
tightest certification bounds but to show that non-uniform constraints result in larger

certification margins compared to the uniform case.

We compare Uniform-0 and NU-0-MDt to evaluate certification results. Dropout layers
are removed from the model for LP solution, and AT is performed for ¢ = 0.3. Certifi-
cation is done by solving the LP for € = 0.3 over 1000 spammers. The objective should
be positive for all classes to certify the corresponding sample. The margin between the
objective and zero gives an idea about how tight the bound is [171]. Table 7.8 demon-
strates two main results: (i) the certification success of NU-0-MDtarget over Uniform-0
for each certification method supports our claim that non-uniform perturbations provide
higher robustness than the uniform approach; and (ii) certification with non-uniform

constraints provide larger certification margins and hence tighter bound.

7.4.2 Randomized Smoothing

Robustness certification via randomized smoothing [170] is an empirical alternative to
the LP. The idea is constructing a “smoothed” classifier g from the base classifier f. In
the original formulation in [170], g returns the most likely output returned by f given
input z is perturbed by isotropic Gaussian noise. Here, we provide robustness guarantee
in binary case for randomized smoothing framework when non-isotropic Gaussian noise

is used to allow robustness to non-uniform perturbations:

g(w) = argmax,cy P(f(x +n) =y) where n~ N(0,%). (7.11)
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TABLE 7.9: Percentage of successfully certified samples for NU-6-MDt and Uniform-0
with various certification approaches with randomized smoothing for Spam Detection
use-case.

Model UC NUC-Pearson NUC-SHAP NUC-MD NUC-MDt
Uniform-6  50.96% 61.11% 64.24% 65.72% 66.45%
NU-6-MDt  61.8% 67.14% 71.25% 85.34% 90.11%

Adapting notation and Theorem 2 from [170], let p, be the probability of the most
probable class y = a when the base classifier f classifies N'(z,¥). Then the below

theorem holds.

Theorem 7.4. In binary classification problem, suppose p, € (%, 1] satisfies P(f(x+n) =
a) > pa. Then g(x +5) = a for all VT -1§ < ®; 1 (pa) — gs0, where 1 := VoTE—15,
@;}L(&) 15 the quantile function of the x distribution of d degrees of freedom, and qsg is
the 501" quantile.

See Appendix A.3 for the proof. In Theorem 7.4, we show that a smoothed classifier g
is robust around x within o Mahalanobis distance vd7¥~1 < @ Y(pa) — gs0 , where
D, L(pa) is the quantile function for probability p,. The same result holds if we replace

Pq With lower bound p,.

We implement our non-uniform approach into randomized smoothing by modifying [172]
with our non-isotropic noise space. Table 7.9 shows certification S.R. of Uniform-§ and
NU-§-MDt, when they are certified by standard randomized smoothing with A (0,01)
(UC), and our non-uniform methods with N (0, 3,) for corresponding X,. That is, ¥,—¢
for NUC-MDt, ¥,_¢913 NUC-MD, = I for NUC-Pearson and 41 for NUC-SHAP are
used when the average training distortion budget is ||§|2=5 and the average certification
distortion is [|d]|2=2.8. Table 7.9 shows that NU-0-MDt is certifiably robust for more
samples than Uniform-§ for all certification methods. Moreover, certification with non-
uniform noise, especially with NUC-MDt, provides higher certification S.R. compared to

uniform noise.

7.5 Conclusions

In this work, we study adversarial robustness against evasion attacks, with a focus on
applications where input features have to comply with certain domain constraints. We
assume Gaussian data distribution in our consistency analysis, as well as precomputed
covariance matrix and Shapley values. Under these assumptions, our results on three
different applications demonstrate that non-uniform perturbation sets in AT improve

adversarial robustness, and non-uniform bounds provide better robustness certification.
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As an unintended negative social impact, our insights might be used by malicious parties
to generate AEs. However, this work provides the necessary defense mechanisms against

these potential attacks.



Chapter 8

Conclusions

Right to privacy is a fundamental human right, which has been recognized in the Univer-
sal Declaration of Human Rights [173]. Specifically, information privacy is one’s right to
control how personal information is collected, shared, archived or used. With the increas-
ing number of countries enacting their own privacy regulations, such as the General Data
Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), Personal In-
formation Protection and Electronic Documents Act (PIPEDA), service providers’ failure
to follow applicable data privacy may lead to fines, lawsuits, and even prohibition of a
site’s use in certain jurisdictions [9]. Hence, addressing private data sharing problem
is necessary. Especially when we consider the emerging IoT technologies and growing
number of services that ask the users to share their personal data, private data sharing
techniques are the key tools bridging between the service providers’ and users’ demands.
One of the most important changes that has been brought to GDPR, in 2018 is the need
for privacy by design. While the privacy by default means that when a service is released
to the public, the strictest privacy settings should apply by default, privacy by design
states that any personal data processing action must contain privacy-preserving at every

step. The techniques proposed in this dissertation target achieving the privacy by design.

In this dissertation, we have exclusively focused on PUT for data sharing using informa-
tion theoretic tools. We investigated various methods for sharing a modified version of
the user data to keep the sensitive information private, such as using RB and RES for
SM data, noise injection, data release mechanism selection and exploiting the physical
characteristic of the communication channel. The main advantage of our approaches is
that the information theoretic metrics provide theoretical guarantees on the achievable
level of privacy and utility. Hence, the proposed approaches are provably effective regard-
less of the computational capability of the attacker. Besides learning the best released

data distributions for privacy applications, we have also proposed a method to generate
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realistic adversarial example distributions for trustworthiness of machine learning mod-
els in security-critical applications. This can be considered a complementary topic for
privacy-critical applications that we have presented in the earlier chapters. We proposed
defenses against adversarial attacks for various cyber-security domains, such as malware,

fraud and spam detection, which has not widely been covered in the literature.

In Chapter 3, we have presented an extensive overview for SM privacy enabling tech-
niques containing both data manipulation and demand shaping. We introduced MDP
formulations for information theoretic privacy in SM systems and analyzed their solu-
tions. Besides the existing work, we also proposed PUT for SM with an RB and a RES

under a special energy generation process and solved it by DyP.

In Chapter 4, we have studied a fundamental PUT when a user is sharing sensitive
time-series data with the SP. While Chapter 3 has the main focus on demand shaping
techniques, here, data obfuscation techniques have been proposed and information theo-
retic guarantees are provided for the PUT. We have focused on the information leakage
at the trace level. This is due to the fact that prior works mostly preserve the privacy for
the current time but may still leak significant amount of information as the adversary can
exploit temporal correlations in a trace. We have measured the time-series privacy by
the MI between the released and the original trajectories. By characterizing the optimal
solution using the Markov property in the time-series, we have proposed a simplified on-
line private data release policy which preserves the optimality. We have reformulated the
online data release problem as an MDP, and numerically evaluated it using A2C-DRL

on both synthetic data and GPS trajectory dataset.

In Chapter 5, we have considered a scenario in which the data release mechanisms are
fixed and the user actively chooses from among them to make sure the utility received
from the SP is maximized while his confidence about a sensitive latent information is
kept below a threshold. The user stops sharing her data with the SP right before this
threshold is exceeded. We consider two different scenarios and various privacy and utility
measures. In the first scenario, we assume the user is only concerned about the PUT and
does not consider the stopping time for data release. The proposed policy maximizes the
confidence of the SP on the non-sensitive information which is represented by the SP’s
belief on its true value, and stops the data release when the confidence on the sensitive
information reaches the threshold. In this scenario, MI between the released data and
the non-sensitive information is also considered as a utility measure and compared with
the belief utility numerically. In the second scenario, the user aims to minimize the SP’s
error probability in non-sensitive information as quickly as possible while keeping his
belief in the true value of the sensitive variable below a threshold. Besides the belief

based privacy constraint, we also consider the MI between the sensitive variable and the
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released data as the privacy measure. We numerically compare the belief and MI-based
privacy constraints that represent the worst-case and the average case privacy policies,
respectively. Similarly to Chapter 4, in our numerical evaluations, we have used MDP

formulation and A2C-DRL solution both scenarios.

In Chapter 6, we have studied a wiretap channel scenario in which the user wants to
share her data with a legitimate receiver over a noisy communication channel, and a
passive eavesdropper tries to infer the user’s sensitive information through his noisy
channel. Similar to previous chapters, we considered privacy-aware data sharing in this
scenario, i.e., a certain level of information leakage about the sensitive information to the
eavesdropper is allowed in return of utility from the receiver. In addition to the private
data sharing techniques presented previously, in this chapter, we have also exploited the
physical characteristics of the noisy channel to preserve privacy. We have evaluated the
performance of sharing image data in a wiretap channel setting represented by a VAE

and a classifier.

In Chapter 7, we have investigated the trustworthiness of neural network models for
security-critical applications. So far we had focused on passive adversaries which are cu-
rious about the user’s sensitive information, and breach the privacy. We have proposed
various data modification techniques, such as demand shaping, noise injection, and etc.
In this chapter, as a complementary work, we have focused on active adversaries which in-
ject noise in the test samples to create adversarial examples that can evade the DNN. We
propose an empirical defense that exploits the input data distribution to generate realis-
tic adversarial examples during training. We have also proposed robustness certification
methods with non-uniform certification bounds around the data samples. Robustness of
DNNs against realistic attacks is crucial for certain applications, such as malware, fraud
and spam detection, since these applications are critical for the user’s security. However,
in the literature, most work has focused on CV domain, which has distinct properties
than other domains. Since the defenses commonly used in the literature for CV domain
do not usually provide high robustness for other applications, there is a need for more
studies on generating realistic attacks and effective defenses in other domains than CV.
This chapter has proposed a complete attack-defense-certification approach especially in

these less explored domains.
Research Challenges

In this dissertation, we have studied several problems related to privacy and security in
cyber-physical systems, e.g., private data sharing and neural network security. However,
there are challenges in addressing certain questions and the literature still lacks solutions

for these problems.
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Firstly, there are various application-dependent privacy measures in the literature. The
lack of a generic privacy measure makes it difficult to compare different privacy-preserving
strategies. Hence, information theoretic measures and tools, such as MI that has been
used throughout the thesis, are more preferable since they provide theoretical guarantees
on the achievable privacy and utility level regardless of the computational capability
of the attacker. However, using information theoretic measures leads us to the next

challenge, i.e., the concerns about the data-driven real-world applications.

In most real-world applications, data distributions are not available to either the user or
the SP. However, computation of correct information theoretic measures relies heavily
on accurate estimation of the underlying distributions. Various variational bounds have
been proposed for estimating the MI using neural networks. Although these bounds are
effective for certain downstream tasks, they are still far from representing the real MI.
Hence, it is crucial to further investigate tools for accurate estimation of MI for privacy

sensitive applications.

Finally, robustness of DNNs against active adversaries must be investigated further in
domains other than CV. For example, every year there is a new wave of cyber-attacks
crafted by attackers using Al and new technologies in malware domain. This makes it
difficult to keep up with new unseen data for traditional malware detectors. On the other
hand, DNN detectors might also fail when the attacks are well-crafted such that they are
imperceptible to a domain expert and modified to evade the detection. Defending the
detection in such domains is not an easy task since the adversarial examples are crafted
on the real malware binaries rather than deferentiable DNN inputs, that we call problem
space attacks. Typical CV domain defenses cannot be easily mapped from feature space
to problem space, therefore, there is a high demand in the literature for realistic defenses

that are robust against problem space attacks.

In conclusion, despite the various works targeting private data sharing with passive ad-
versaries and defenses against active adversaries, the literature still lacks unified solutions
for both private data sharing and adversarial defenses. However, we hope that our work
presented in this dissertation has contributed towards answering some of these questions
and unsolved issues in privacy and security problems, as well as encouraging further

developments in the field.
Future Directions

ITP has been widely studied in the past decades, however, only recent works have pro-
vided data-driven approaches for real-world applications. For example, similarly to Chap-
ter 3, [174] and [175] propose privacy-cost trade-off for SM systems using I'TP and provide
MDP solutions via DyP. Moreover, they extend this approach further to real-data and
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solve an RL problem using Q-learning. While [174] assumes distribution knowledge as
in Chapter 3, [175] uses DNNs to estimate the conditional distribution for a lower bound
on MI privacy. A potential future direction for SM privacy application can be a fully
data-driven ITP approach, which uses tighter lower and upper bounds for accurate MI
estimation. This direction also requires considering stationarity assumption of RL ap-

proaches while learning MI approximation, which is a big challenge.

In Chapter 6, we have proposed an end-to-end learning for privacy over a wiretap channel.
We estimate MI-based terms for both privacy and utility by assuming certain DNN
models for both the legitimate receiver and the eavesdropper, since we do not have
access to the real distributions and it is intractable to estimate the priors. Another
future direction can be considering privacy-aware communications over a wiretap channel

without making an assumption on the receiver or eavesdropper network.

Finally, we have proposed an effective adversarial defense in Chapter 7 using non-uniform
perturbations during adversarial training. The proposed method is generalizable since it
provides robustness against both feature-space and problem-space attacks. A potential
extension of this work can be applying non-uniform perturbations in the problem-space,

e.g., malware space, by taking challenging domain specific constraints into account.
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Appendix A

Proofs for Chapter 7

A.1 Proof of Theorem 7.2

For an AE x that is generated under the Mahalanobis distance constraint, i.e., x € A@Q,

we can write the following bound:

1
min log f(z|y) = C— ,5T2;1(5 = log~y (A.1)
IEAe,Z 2

where the second equality is a result of y-consistency assumption. Then, by using the

upper limit of £5 Mahalanobis distance of § for M = Zy_l, we get

\/OTE, 16 = /2C —2logy < e (A.2)

A.2 Proof of Theorem 7.3

The linear program with non-uniform input perturbation and relaxed ReLU constraints

can be written as

minimize !z,
2k

s.t. Ziv1 =Wizi+bi,i=1,...,k—1
192(21 — 2)|[p < €
2i;=0i=2... k—1jeI" (A.3)
Zij=2i4,i=2,....k—1,j €T
2i5 >0, 25 > %4,
((uij = lij)zig — wij2ig) < —uigli
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We associate the following Lagrangian variables with each of the constraints except the

¢, norm constraint in Problem A.3,

Zig1 = Wizi + bj = vig1
d=z1—x =1
—Zij <0= Wi j (A4)
Zij—%; <0=>1;

(Wi = lij)zij — wijZig) < —uijlij = i

We do not define explicit dual variables for z; ; = 0 and z; ; = Z; ; since they will be zero
in the optimization. Then, we create the following Lagrangian by grouping up the terms
with Zi, 7:’1‘:
k—1
. _ T
L(2,2,v, 6, A, T, 1, ¥0) = = > (g + Tig — Nig (g — lig) + (W vign);)zi

1=2
JEL;

k—1 k—1
+ D (Tig = Niguig + vig)iig + (et v a = Y viabi
=2 1=1
JEL;
k—1
+ Z i juigli g + Wl + 976 — (Wl +¢) 'z

=2
J€Z;

(A.5)

subject to 16|, < e

Now, we take the minimum of L(.) w.r.t z, Z and §:

k—1
inf L(z,2,v,0,\, 7, p1,9) = —inf Y (mig + 7ij — Nij(wij — Lig) + (Wi visa);) 21
z7z76 Zi?] Z»:2
J€EL;
k—1 k—1
+ 1r21f( Z(Ti’j — /\i,jui,j + I/@j)é@j + (C + Vk>T£’k) — Z Z/Z-j;_lbi
i=1

1=2
JEL;

k—1
Nijuigli; + 9T inf 76 — inf(W{ Ta.
+ ; i,jWigbi g + P x+ ||Qt§r|l|p§e¢ lg ( i V2 + ¢) 21
j€Li
(A.6)
We can represent the term Hgigﬂf Y16 independent of § using the following dual norm
p=€
definition.
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Cauchy-Schwarz inequality for dual norm:

We can write the Cauchy-Schwarz inequality as a8 < ||a||,]|||4, where % + % =1and

g norm represents the dual of p norm. Let @ = \lo?i\p’ the definition of dual norm is
T
18ll, = sup a7B. (A7)
llallp<1
We can write inf 7§ = —sup (—¢76) = —sup ¢7§. For a = %5 and = eQ 1,
[I€20][p<e 1121 [p<e 1196]|p<e
we get 679 < H%5||p||eQ_11/)||q which implies — sup ¥T6 = —¢||Q7 19|,
l1Q6]lp<e

Hence, the minimization of L(.) becomes,

k—1 k—1
— Z Z/ZHbZ' + Z )\Mui’jli’j + ¢T$ — EHQ_li/)Hq if cond.
inf L(.) = (A.8)
z,7,0
—00 o.w.,

where the conditions are

Vv = —cC
Wi vy = —1p
vij =0, €I
" . (A.9)
vij = (Wi vip);, j €1,
(g —lig)Xig — pig —7ig) = Wivie); | img 4
JEL;
Vi,j = UijNij = Tij
The dual problem can be rearranged and reduced to the standard form
k—1 k—1
mazzd)\mize - Z vibi + T — €| Q71| + Z M () (A.10)
l/7 b 7T’M i:l i:2
s.t. v =c¢ (A.11)
Wl V9 = —w (A12)
v j =0, g€ (A.13)
vij=Wivig);, j €L (A.14)
((wig = lig)hij — i = 7ig) = Wivie)i | ima
U (A.15)

Vij = UijAij = Tij

A, 7o > 0. (A.16)
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The insight of the dual problem is that it can also be written in the form of a deep
network. Consider the equality constraint (A.15), the dual variable A corresponds to the
upper bounds in the convex ReLU relaxation, while p and 7 correspond to the lower
bounds z > 0 and z > Z, respectively. By the complementary property, these variables
will be zero of ReLLU constraint is non-tight, and non-zero if the ReLLU constraint is tight.
since the upper and lower bounds cannot be tight simultaneously, either A or u+ 7 must

be zero. Hence, at the optimal solution to the dual problem,

(wij = lig) i [(WT’” + 1))+

T (A.17)
Tig + mig = (Wi vi+1);]-
Combining this with the constraint v; ; = w; j\; j — 75 ; leads to
vig = = (W vi+ 1l = nl(Wivi+ 1);)- (A.18)
1/7.7 7]

for j € Z; and 0 <7 < 1. This is a leaky ReLLU operation with a slope of - Z—Ji,j in the
positive portion and and a negative slope 1 between 0 and 1. Also note that from (A.12)
—1p denotes the pre-activation variable for the first layer. For the sake of simplicity, we
use 7; to denote the pre-activation variable for layer 4, then the objective of the dual

problem becomes

k—1 k—1
W; l . .
Sp.(z,v) =-— Zugrlbi + Z Z ﬁ[l/”h e — || |,
i=1 i=2 jez; W W] (A.19)
:_Z%Hb +Zzlw”w —ofx— €| ]|
=2 j€I;

Hence, the final form of the dual problem can be rewritten as a network with objective

Sp.(z,v), input —c and activations Z as follows:

maxnmze Zyz—i—lb + Z Z Lijloijlv — e — € |Q 7 i,

1=2 j€I;
s.t. VL = —C

= Wlvi),i=k—-1,...,1

0 jEeL

)

Vi = ﬁiJ ]€I+ i=k—1,...,2

(]

o gl = nlbigl- G e
(A.20)
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A.3 Proof of Theorem 7.4

Let X and Y be random variables such that X ~ AV (z,X) and Y ~ N (z + 4, %). Next,
we define the set A := {z | 0T8Nz —2) < m@;ﬁ(&)}, where 7 1= V6T 1§
and ®;}(py) is the quantile function of the y distribution of d degree of freedom
for the probability p,, so that P(X € A) = p,. Consequently, P(Y € A) =
D, 4 ((P;,cll (Pa) — m> To ensure that Y is classified as class A, we need

.4 (@;;(&) - \/5T2—15) >1/2 (A.21)

which can be satisfied if and only if V§TX 15 < &} (Pa) — 50
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