Privacy and security in cyber-physical systems

Abstract

Data privacy has attracted increasing attention in the past decade due to the emerging technologies that require our data to provide utility. Service providers (SPs) encourage users to share their personal data in return for a better user experience. However, users' raw data usually contains implicit sensitive information that can be inferred by a third party. This raises great concern about users' privacy. In this dissertation, we develop novel techniques to achieve a better privacy-utility trade-off (PUT) in various applications. We first consider smart meter (SM) privacy and employ physical resources to minimize the information leakage to the SP through SM readings. We measure privacy using information-theoretic metrics and find private data release policies (PDRPs) by formulating the problem as a Markov decision process (MDP). We also propose noise injection techniques for time-series data privacy. We characterize optimal PDRPs measuring privacy via mutual information (MI) and utility loss via added distortion. Reformulating the problem as an MDP, we solve it using deep reinforcement learning (DRL) for real location trace data. We also consider a scenario for hiding an underlying ``sensitive'' variable and revealing a ``useful'' variable for utility by periodically selecting from among sensors to share the measurements with an SP. We formulate this as an optimal stopping problem and solve using DRL. We then consider privacy-aware communication over a wiretap channel. We maximize the information delivered to the legitimate receiver, while minimizing the information leakage from the sensitive attribute to the eavesdropper. We propose using a variational-autoencoder (VAE) and validate our approach with colored and annotated MNIST dataset. Finally, we consider defenses against active adversaries in the context of security-critical applications. We propose an adversarial example (AE) generation method exploiting the data distribution. We perform adversarial training using the proposed AEs and evaluate the performance against real-world adversarial attacks.Open Acces

    Similar works