86 research outputs found

    A rank-adaptive robust integrator for dynamical low-rank approximation

    Get PDF
    A rank-adaptive integrator for the dynamical low-rank approximation of matrix and tensor differential equations is presented. The fixed-rank integrator recently proposed by two of the authors is extended to allow for an adaptive choice of the rank, using subspaces that are generated by the integrator itself. The integrator first updates the evolving bases and then does a Galerkin step in the subspace generated by both the new and old bases, which is followed by rank truncation to a given tolerance. It is shown that the adaptive low-rank integrator retains the exactness, robustness and symmetry-preserving properties of the previously proposed fixed-rank integrator. Beyond that, up to the truncation tolerance, the rank-adaptive integrator preserves the norm when the differential equation does, it preserves the energy for Schrödinger equations and Hamiltonian systems, and it preserves the monotonic decrease of the functional in gradient flows. Numerical experiments illustrate the behaviour of the rank-adaptive integrator

    Clutter Suppression in Ultrasound: Performance Evaluation of Low-Rank and Sparse Matrix Decomposition Methods

    Get PDF
    Vessel diseases are often accompanied by abnormalities related to vascular shape and size. Therefore, a clear visualization of vasculature is of high clinical significance. Ultrasound Color Flow Imaging (CFI) is one of the prominent techniques for flow visualization. However, clutter signals originating from slow-moving tissue is one of the main obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature by suppressing the clutters is an essential step for many applications of ultrasound CFI. In this thesis, we focus on a state-of-art algorithm framework called Decomposition into Low-rank and Sparse Matrices (DLSM) framework for ultrasound clutter suppression. Currently, ultrasound clutter suppression is often performed by Singular Value Decomposition (SVD) of the data matrix, which is a branch of eigen-based filtering. This approach exhibits two well-known limitations. First, the performance of SVD is sensitive to the proper manual selection of the ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in the presence of large random noise in the data set. A potential solution to these issues is the use of DLSM framework. SVD, as a means for singular values, is also one of the widely used algorithms for solving the minimization problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD and use approximated SVD or SVD-free ideas which may have better performance with higher robustness and lower computing time due to the expensive computational cost of full SVD. In practice, these models separate blood from clutter based on the assumption that steady clutter represents a low-rank structure and the moving blood component is sparse. In this thesis, we exploit the feasibility of exploiting low-rank and sparse decomposition schemes, originally developed in the field of computer vision, in ultrasound clutter suppression. Since ultrasound images have different texture and statistical properties compared to images in computer vision, it is of high importance to evaluate how these methods translate to ultrasound CFI. We conduct this evaluation study by adapting 106 DLSM algorithms and validating them against simulation, phantom and in vivo rat data sets. The advantage of simulation and phantom experiments is that the ground truth vessel map is known, and the advantage of the in vivo data set is that it enables us to test algorithms in a realistic setting. Two conventional quality metrics, Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR), are used for performance evaluation. In addition, computation times required by different algorithms for generating the clutter suppressed images are reported. Our extensive analysis shows that the DLSM framework can be successfully applied to ultrasound clutter suppression

    Low-Rank Iterative Solvers for Large-Scale Stochastic Galerkin Linear Systems

    Get PDF
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016von Dr. rer. pol. Akwum Agwu OnwuntaLiteraturverzeichnis: Seite 135-14
    corecore