488 research outputs found

    Indoor Geo-location And Tracking Of Mobile Autonomous Robot

    Get PDF
    The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates

    Fusing Automatically Extracted Annotations for the Semantic Web

    Get PDF
    This research focuses on the problem of semantic data fusion. Although various solutions have been developed in the research communities focusing on databases and formal logic, the choice of an appropriate algorithm is non-trivial because the performance of each algorithm and its optimal configuration parameters depend on the type of data, to which the algorithm is applied. In order to be reusable, the fusion system must be able to select appropriate techniques and use them in combination. Moreover, because of the varying reliability of data sources and algorithms performing fusion subtasks, uncertainty is an inherent feature of semantically annotated data and has to be taken into account by the fusion system. Finally, the issue of schema heterogeneity can have a negative impact on the fusion performance. To address these issues, we propose KnoFuss: an architecture for Semantic Web data integration based on the principles of problem-solving methods. Algorithms dealing with different fusion subtasks are represented as components of a modular architecture, and their capabilities are described formally. This allows the architecture to select appropriate methods and configure them depending on the processed data. In order to handle uncertainty, we propose a novel algorithm based on the Dempster-Shafer belief propagation. KnoFuss employs this algorithm to reason about uncertain data and method results in order to refine the fused knowledge base. Tests show that these solutions lead to improved fusion performance. Finally, we addressed the problem of data fusion in the presence of schema heterogeneity. We extended the KnoFuss framework to exploit results of automatic schema alignment tools and proposed our own schema matching algorithm aimed at facilitating data fusion in the Linked Data environment. We conducted experiments with this approach and obtained a substantial improvement in performance in comparison with public data repositories

    Context Exploitation in Data Fusion

    Get PDF
    Complex and dynamic environments constitute a challenge for existing tracking algorithms. For this reason, modern solutions are trying to utilize any available information which could help to constrain, improve or explain the measurements. So called Context Information (CI) is understood as information that surrounds an element of interest, whose knowledge may help understanding the (estimated) situation and also in reacting to that situation. However, context discovery and exploitation are still largely unexplored research topics. Until now, the context has been extensively exploited as a parameter in system and measurement models which led to the development of numerous approaches for the linear or non-linear constrained estimation and target tracking. More specifically, the spatial or static context is the most common source of the ambient information, i.e. features, utilized for recursive enhancement of the state variables either in the prediction or the measurement update of the filters. In the case of multiple model estimators, context can not only be related to the state but also to a certain mode of the filter. Common practice for multiple model scenarios is to represent states and context as a joint distribution of Gaussian mixtures. These approaches are commonly referred as the join tracking and classification. Alternatively, the usefulness of context was also demonstrated in aiding the measurement data association. Process of formulating a hypothesis, which assigns a particular measurement to the track, is traditionally governed by the empirical knowledge of the noise characteristics of sensors and operating environment, i.e. probability of detection, false alarm, clutter noise, which can be further enhanced by conditioning on context. We believe that interactions between the environment and the object could be classified into actions, activities and intents, and formed into structured graphs with contextual links translated into arcs. By learning the environment model we will be able to make prediction on the target\u2019s future actions based on its past observation. Probability of target future action could be utilized in the fusion process to adjust tracker confidence on measurements. By incorporating contextual knowledge of the environment, in the form of a likelihood function, in the filter measurement update step, we have been able to reduce uncertainties of the tracking solution and improve the consistency of the track. The promising results demonstrate that the fusion of CI brings a significant performance improvement in comparison to the regular tracking approaches

    Multi-source electricity information fusion methods: A survey

    Get PDF
    With the vigorous development of the global economy, the demand for electricity quality from all walks of life is also increasing, so it is essential to ensure the electric power grid’s safe, stable, and efficient operation. Multi-source electric power information fusion, as the core technology of electric power grid data processing, has become the foundation to promote the intelligent and automatic development of the electric power grid. This paper presents the first work on the survey of the methods of electricity information fusion. It first gives an overview of the process of electricity information fusion and shows the types of electricity data. Then, we provide different classifications of existing methods in view of communication annotation and electric power data, and conduct a thorough comparison and analysis of them. Moreover, we introduce the relevant data sets and evaluation criteria of electric power information and summarize the corresponding evaluation scenarios. Finally, we conclude the maturity of existing works and provide an outlook on future multi-source electric power information fusion methods

    Context-dependent combination of sensor information in Dempster–Shafer theory for BDI

    Get PDF
    © 2016, The Author(s). There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work

    Semantic Decision Support for Information Fusion Applications

    Get PDF
    La thèse s'inscrit dans le domaine de la représentation des connaissances et la modélisation de l'incertitude dans un contexte de fusion d'informations. L'idée majeure est d'utiliser les outils sémantiques que sont les ontologies, non seulement pour représenter les connaissances générales du domaine et les observations, mais aussi pour représenter les incertitudes que les sources introduisent dans leurs observations. Nous proposons de représenter ces incertitudes au travers d'une méta-ontologie (DS-ontology) fondée sur la théorie des fonctions de croyance. La contribution de ce travail porte sur la définition d'opérateurs d'inclusion et d'intersection sémantique et sur lesquels s'appuie la mise en œuvre de la théorie des fonctions de croyance, et sur le développement d'un outil appelé FusionLab permettant la fusion d'informations sémantiques à partir du développement théorique précédent. Une application de ces travaux a été réalisée dans le cadre d'un projet de surveillance maritime.This thesis is part of the knowledge representation domain and modeling of uncertainty in a context of information fusion. The main idea is to use semantic tools and more specifically ontologies, not only to represent the general domain knowledge and observations, but also to represent the uncertainty that sources may introduce in their own observations. We propose to represent these uncertainties and semantic imprecision trough a metaontology (called DS-Ontology) based on the theory of belief functions. The contribution of this work focuses first on the definition of semantic inclusion and intersection operators for ontologies and on which relies the implementation of the theory of belief functions, and secondly on the development of a tool called FusionLab for merging semantic information within ontologies from the previous theorical development. These works have been applied within a European maritime surveillance project.ROUEN-INSA Madrillet (765752301) / SudocSudocFranceF
    • …
    corecore