80,065 research outputs found

    On kissing numbers and spherical codes in high dimensions

    Get PDF
    We prove a lower bound of Ω(d3/2⋅(2/3)d)\Omega (d^{3/2} \cdot (2/\sqrt{3})^d) on the kissing number in dimension dd. This improves the classical lower bound of Chabauty, Shannon, and Wyner by a linear factor in the dimension. We obtain a similar linear factor improvement to the best known lower bound on the maximal size of a spherical code of acute angle θ\theta in high dimensions

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun

    Local Complexity of Delone Sets and Crystallinity

    Full text link
    This paper characterizes when a Delone set X is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the hetereogeneity of their distribution. Let N(T) count the number of translation-inequivalent patches of radius T in X and let M(T) be the minimum radius such that every closed ball of radius M(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a `gap in the spectrum' of possible growth rates between being bounded and having linear growth, and that having linear growth is equivalent to X being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in this bound is best possible in all dimensions. For M(T), either M(T) is bounded or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package
    • …
    corecore