3,145 research outputs found

    Assessment of Different Technologies for Improving Visibility during Foggy Weather in Mining and Transportation Sectors

    Get PDF
    Generally during foggy weather in winter season, mining operation remains suspended for hours due to problem of visibility. Foggy weather also leads to accidents, loss of life and infrastructure damages in mining and transportation sectors. This paper discusses about the existing technologies for improving visibility in transportation sector and suitability assessment of these technologies in mines for uninterrupted mining operations in foggy weathe

    Pseudolite Architecture and Performance Analysis for the FAA\u27s NextGen Airspace

    Get PDF
    By 2025 the FAA plans to have fully implemented its NextGen Airspace design. NextGen takes advantage of modern positioning technologies as well as automation, data sharing, and display technologies that will allow more efficient use of our ever busier National Airspace (NAS). A key element of NextGen is the transition from surveillance RADAR providing aircraft separation and navigation to the use of the GPS and Automatic Dependent Surveillance Broadcast (ADS-B). ADS-B couples the precision of the GPS with networked ground and airborne receivers to provide precise situational awareness to pilots and controllers. The result is increased safety, capacity, and access with reduced reliance on an outdated and costly existing infrastructure. Reliance on the vulnerable GPS requires a backup system with higher positioning accuracy than those that are in place today. The USAF 746th Test Squadron at Holloman AFB, in partnership with Locata Corp., has demonstrated an Ultra High Accuracy Reference System (UHARS) over the Holloman Range composed of pseudolites (ground based satellites) transmitting GPS like signals. This study evaluates the suitability of the UHARS when applied on a national scale to meet Alternate Precision Navigation and Timing (APNT) requirements. From a systems architecture perspective UHARS is evaluated against APNT CONOPs stated Operational Improvements and Scenarios. From a signal architecture perspective the UHARS is evaluated against frequency and bandwidth constraints, service volume requirements and positioning accuracy determined by NextGen Airspace aircraft separation criteria

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Applying the ADS-B Out to Facilitate Flight Data Analysis for General Aviation

    Get PDF
    The International Civil Aviation Organization (ICAO) and major airlines believe that flight data analysis is an effective approach to mitigate the risk of aviation accidents (International Civil Aviation Organization, 2010; International Air Transport Association, 2016). In the United States, flight data analysis is encouraged by the Federal Aviation Administration (FAA) through the flight operational quality assurance (FOQA) program. Among all aviation activities, general aviation (GA) has the highest accident rate (National Transportation Safety Board, 2014). However, implementation of flight data analysis for GA not only requires expensive investment on flight data recording devices, but also increases long-term labor cost due to regular data collection and data analysis. Automatic Dependent Surveillance Broadcast Out (ADS-B Out) is a precise satellite-based surveillance system that periodically broadcasts flight data retrieved from satellites and onboard avionics of the ADS-B Out capable aircraft. Based on the standard technical provisions of the ADS-B Out, the use of ADS-B data is expected to be a possible approach to facilitate the flight data analysis for general aviation. This research explored the use of ADS-B data to facilitate flight data analysis for general aviation. Researchers started the current study phase from analyzing the structure and content of the ADSB message by referring to the ICAO technical provisions (2008) and the operational performance standard of ADS-B from the Radio Technical Commission for Aeronautics (RTCA) (2009). Based upon the findings of the ADS-B data structure and content, a set of retrievable aircraft parameters was identified, and additional aircraft parameters were derived from the basic ADS-B information. Furthermore, sets of flight metrics were developed using the aircraft parameters broadcasted by ADS-B Out. The development of flight metrics was expected to be essential for measuring flight operational performance to support flight data analysis. In addition, exceedance detection was adopted to analyze the flight metrics in flight data analysis. ADS-B data were collected using an ADS-B receiver, and 40 sets of ADS-B data were selected to detect five operational exceedances of the Cirrus SR-20 aircraft of the Purdue Fleet. Exceedances were detected from the 40 sets of data. However, researchers noticed that the sparse ADS-B data caused by the low reception rate might affect the exceedance detection. Therefore, a preliminary analysis was conducted to investigate the difference of exceedance detection using ADS-B data with different reception rates. The results of analysis indicated that sparse ADS-B data could affect the detection of exceedances, but some exceedances might be less sensitive to the sparse data. Based on the findings of this research, recommendations were proposed for future studies

    Upside Down Facebook: Raising Awareness of Behavioral Advertising Through Artistic Provocation

    Full text link
    The majority of Americans are aware and concerned about corporations' collection and use of personal data for behavioral advertising, but are resigned to having little to no control. Opaque corporate data disclosures, limited privacy controls, complex data flows, and cognitive limitations impede understanding of behavioral advertising. Alternative tools created by privacy researchers seek to make data transparent and actionable, but fall short in creating an emotional response, fully clarifying behavioral advertising systems, and breaking through digital resignation. Using conceptual artistic perspectives on technology and privacy and privacy research from human-computer interaction as inspirations, this thesis proposes an approach to raising awareness of behavioral advertising through artistic provocation. Using Facebook's "Information About You" data download as a test-bed, I develop a prototype for a new kind of experience called Upside Down Facebook, which re-frames institutional privacy issues as social privacy issues through deliberately "creepy" posts about data made by a personified version of Facebook. In a preliminary evaluation study (n=7), a majority of participants were provoked by this experience to learn more about how their data is used for behavioral advertising and take action to change their settings. This work suggests the potential of Upside Down Facebook to help individuals learn about behavioral advertising and take action, as well as the potential for artistic provocation to inform new perspectives on designing privacy tools and research on data privacy.Master of Science in InformationSchool of Informationhttp://deepblue.lib.umich.edu/bitstream/2027.42/168560/1/20210427_Soonthornsawad,Joe_Final_MTOP_Thesis.pd

    Space Systems: Emerging Technologies and Operations

    Get PDF
    SPACE SYSTEMS: EMERGING TECHNOLOGIES AND OPERATIONS is our seventh textbook in a series covering the world of UASs / CUAS/ UUVs. Other textbooks in our series are Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA\u27s Advanced Air Assets, 1st edition. Our previous six titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols et al., 2021) (Nichols R. K. et al., 2020) (Nichols R. et al., 2020) (Nichols R. et al., 2019) (Nichols R. K., 2018) Our seventh title takes on a new purview of Space. Let\u27s think of Space as divided into four regions. These are Planets, solar systems, the great dark void (which fall into the purview of astronomers and astrophysics), and the Dreamer Region. The earth, from a measurement standpoint, is the baseline of Space. It is the purview of geographers, engineers, scientists, politicians, and romantics. Flying high above the earth are Satellites. Military and commercial organizations govern their purview. The lowest altitude at which air resistance is low enough to permit a single complete, unpowered orbit is approximately 80 miles (125 km) above the earth\u27s surface. Normal Low Earth Orbit (LEO) satellite launches range between 99 miles (160 km) to 155 miles (250 km). Satellites in higher orbits experience less drag and can remain in Space longer in service. Geosynchronous orbit is around 22,000 miles (35,000 km). However, orbits can be even higher. UASs (Drones) have a maximum altitude of about 33,000 ft (10 km) because rotating rotors become physically limiting. (Nichols R. et al., 2019) Recreational drones fly at or below 400 ft in controlled airspace (Class B, C, D, E) and are permitted with prior authorization by using a LAANC or DroneZone. Recreational drones are permitted to fly at or below 400 ft in Class G (uncontrolled) airspace. (FAA, 2022) However, between 400 ft and 33,000 ft is in the purview of DREAMERS. In the DREAMERS region, Space has its most interesting technological emergence. We see emerging technologies and operations that may have profound effects on humanity. This is the mission our book addresses. We look at the Dreamer Region from three perspectives:1) a Military view where intelligence, jamming, spoofing, advanced materials, and hypersonics are in play; 2) the Operational Dreamer Region; whichincludes Space-based platform vulnerabilities, trash, disaster recovery management, A.I., manufacturing, and extended reality; and 3) the Humanitarian Use of Space technologies; which includes precision agriculture wildlife tracking, fire risk zone identification, and improving the global food supply and cattle management. Here’s our book’s breakdown: SECTION 1 C4ISR and Emerging Space Technologies. C4ISR stands for Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance. Four chapters address the military: Current State of Space Operations; Satellite Killers and Hypersonic Drones; Space Electronic Warfare, Jamming, Spoofing, and ECD; and the challenges of Manufacturing in Space. SECTION 2: Space Challenges and Operations covers in five chapters a wide purview of challenges that result from operations in Space, such as Exploration of Key Infrastructure Vulnerabilities from Space-Based Platforms; Trash Collection and Tracking in Space; Leveraging Space for Disaster Risk Reduction and Management; Bio-threats to Agriculture and Solutions From Space; and rounding out the lineup is a chapter on Modelling, Simulation, and Extended Reality. SECTION 3: Humanitarian Use of Space Technologies is our DREAMERS section. It introduces effective use of Drones and Precision Agriculture; and Civilian Use of Space for Environmental, Wildlife Tracking, and Fire Risk Zone Identification. SECTION 3 is our Hope for Humanity and Positive Global Change. Just think if the technologies we discuss, when put into responsible hands, could increase food production by 1-2%. How many more millions of families could have food on their tables? State-of-the-Art research by a team of fifteen SMEs is incorporated into our book. We trust you will enjoy reading it as much as we have in its writing. There is hope for the future.https://newprairiepress.org/ebooks/1047/thumbnail.jp

    Study of the Business Model of three Earth Observation (EO) companies already present in the Very Low Earth Orbit market (VLEO)

    Get PDF
    The emergence of a new private spaceflight industry has taken the Earth Observation (EO) sector by surprise. NewSpace companies are challenging the traditional satellite sector by addressing their services to mass market requirements of high-quality and low-cost EO. As part of the DISCOVERER project, this study aims to determine the Key Success Factors to consider by a new EO company at Low Earth Orbit (LEO). Hence, three businesses fitting the description were analyzed with the Case Study Methodology to establish their Business Model Canvas (BMC), associated Patterns, and Key Success Factors. The investigation consolidated the newly proposed Democratizing Business Model Pattern and added new characteristics. Successful EO NewSpace firms are getting divided between integrated operators, integrated manufacturers, and end-user specialists. A new EO company should consider the Democratizing Pattern success factors and the Vertically Integrated Strategies (VIS), depending on its disruptive idea and resource capabilities. Further research is needed to identify new factors, strengthen the validity of the Pattern, and VIS tendencies

    UAS Surveillance Criticality

    Get PDF
    The integration of unmanned aircraft systems (UAS) into the national airspace system (NAS) poses considerable challenges. Maintaining human safety is perhaps chief among these challenges as UAS remote pilots will need to interact with other UAS, piloted aircraft, and other conditions associated with flight. A research team of 6 leading UAS research universities was formed to respond to a set of surveillance criticality research questions. Five analysis tools were selected following a literature review to evaluate airborne surveillance technology performance. The analysis tools included: Fault Trees, Monte Carlo Simulations, Hazard Analysis, Design of Experiments (DOE), and Human-in-the-Loop Simulations. The Surveillance Criticality research team used results from these analyses to address three primary research questions and provide recommendations for UAS detect-and-avoid mitigation and areas for further research

    Unmanned Vehicle Systems & Operations on Air, Sea, Land

    Get PDF
    Unmanned Vehicle Systems & Operations On Air, Sea, Land is our fourth textbook in a series covering the world of Unmanned Aircraft Systems (UAS) and Counter Unmanned Aircraft Systems (CUAS). (Nichols R. K., 2018) (Nichols R. K., et al., 2019) (Nichols R. , et al., 2020)The authors have expanded their purview beyond UAS / CUAS systems. Our title shows our concern for growth and unique cyber security unmanned vehicle technology and operations for unmanned vehicles in all theaters: Air, Sea and Land – especially maritime cybersecurity and China proliferation issues. Topics include: Information Advances, Remote ID, and Extreme Persistence ISR; Unmanned Aerial Vehicles & How They Can Augment Mesonet Weather Tower Data Collection; Tour de Drones for the Discerning Palate; Underwater Autonomous Navigation & other UUV Advances; Autonomous Maritime Asymmetric Systems; UUV Integrated Autonomous Missions & Drone Management; Principles of Naval Architecture Applied to UUV’s; Unmanned Logistics Operating Safely and Efficiently Across Multiple Domains; Chinese Advances in Stealth UAV Penetration Path Planning in Combat Environment; UAS, the Fourth Amendment and Privacy; UV & Disinformation / Misinformation Channels; Chinese UAS Proliferation along New Silk Road Sea / Land Routes; Automaton, AI, Law, Ethics, Crossing the Machine – Human Barrier and Maritime Cybersecurity.Unmanned Vehicle Systems are an integral part of the US national critical infrastructure The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. Unmanned Vehicle (UV) Systems & Operations On Air, Sea, Land discusses state-of-the-art technology / issues facing U.S. UV system researchers / designers / manufacturers / testers. We trust our newest look at Unmanned Vehicles in Air, Sea, and Land will enrich our students and readers understanding of the purview of this wonderful technology we call UV.https://newprairiepress.org/ebooks/1035/thumbnail.jp

    System elements required to guarantee the reliability, availability and integrity of decision-making information in a complex airborne autonomous system

    Get PDF
    Current air traffic management systems are centred on piloted aircraft, in which all the main decisions are made by humans. In the world of autonomous vehicles, there will be a driving need for decisions to be made by the system rather than by humans due to the benefits of more automation such as reducing the likelihood of human error, handling more air traffic in national airspace safely, providing prior warnings of potential conflicts etc. The system will have to decide on courses of action that will have highly safety critical consequences. One way to ensure these decisions are robust is to guarantee that the information being used for the decision is valid and of very high integrity. [Continues.
    • …
    corecore