20,633 research outputs found

    An iterative warping and clustering algorithm to estimate multiple wave-shape functions from a nonstationary oscillatory signal

    Full text link
    Nonsinusoidal oscillatory signals are everywhere. In practice, the nonsinusoidal oscillatory pattern, modeled as a 1-periodic wave-shape function (WSF), might vary from cycle to cycle. When there are finite different WSFs, s1,,sKs_1,\ldots,s_K, so that the WSF jumps from one to another suddenly, the different WSFs and jumps encode useful information. We present an iterative warping and clustering algorithm to estimate s1,,sKs_1,\ldots,s_K from a nonstationary oscillatory signal with time-varying amplitude and frequency, and hence the change points of the WSFs. The algorithm is a novel combination of time-frequency analysis, singular value decomposition entropy and vector spectral clustering. We demonstrate the efficiency of the proposed algorithm with simulated and real signals, including the voice signal, arterial blood pressure, electrocardiogram and accelerometer signal. Moreover, we provide a mathematical justification of the algorithm under the assumption that the amplitude and frequency of the signal are slowly time-varying and there are finite change points that model sudden changes from one wave-shape function to another one.Comment: 39 pages, 11 figure

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Extended mixed integer quadratic programming for simultaneous distributed generation location and network reconfiguration

    Get PDF
    Introduction. To minimise power loss, maintain the voltage within the acceptable range, and improve power quality in power distribution networks, reconfiguration and optimal distributed generation placement are presented. Power flow analysis and advanced optimization techniques that can handle significant combinatorial problems must be used in distribution network reconfiguration investigations. The optimization approach to be used depends on the size of the distribution network. Our methodology simultaneously addresses two nonlinear discrete optimization problems to construct an intelligent algorithm to identify the best solution. The proposed work is novel in that it the Extended Mixed-Integer Quadratic Programming (EMIQP) technique, a deterministic approach for determining the topology that will effectively minimize power losses in the distribution system by strategically sizing and positioning Distributed Generation (DG) while taking network reconfiguration into account. Using an efficient Quadratic Mixed Integer Programming (QMIP) solver (IBM ®), the resulting optimization problem has a quadratic form. To ascertain the range and impact of various variables, our methodology outperforms cutting-edge algorithms described in the literature in terms of the obtained power loss reduction, according to extensive numerical validation carried out on typical IEEE 33- and 69-bus systems at three different load factors. Practical value. Examining the effectiveness of concurrent reconfiguration and DG allocation versus sole reconfiguration is done using test cases. According to the findings, network reconfiguration along with the installation of a distributed generator in the proper location, at the proper size, with the proper loss level, and with a higher profile, is effective.  Вступ. Для мінімізації втрат потужності, підтримки напруги в допустимому діапазоні та покращення якості електроенергії у розподільчих мережах представлена реконфігурація та оптимальне розміщення розподіленої генерації. При дослідженнях реконфігурації розподільної мережі необхідно використовувати аналіз потоку потужності та передові методи оптимізації, які можуть вирішувати серйозні комбінаторні проблеми. Підхід до оптимізації, що використовується, залежить від розміру розподільної мережі. Наша методологія одночасно вирішує дві задачі нелінійної дискретної оптимізації, щоби побудувати інтелектуальний алгоритм для визначення найкращого рішення. Пропонована робота є новою, оскільки вона використовує метод розширеного змішано-цілочисельного квадратичного програмування (EMIQP), детермінований підхід до визначення топології, що ефективно мінімізує втрати потужності в системі розподілу за рахунок стратегічного визначення розмірів та позиціонування розподіленої генерації (DG) з урахуванням реконфігурації мережі. При використанні ефективного солвера Quadratic Mixed Integer Programming (QMIP) (IBM®) результуюча задача оптимізації має квадратичну форму. Щоб з'ясувати діапазон та вплив різних змінних, наша методологія перевершує передові алгоритми, описані в літературі, з точки зору одержаного зниження втрат потужності, згідно з великою числовою перевіркою, проведеною на типових системах з шинами IEEE 33 і 69 при трьох різних коефіцієнтах навантаження. Практична цінність. Вивчення ефективності одночасної реконфігурації та розподілу DG у порівнянні з єдиною реконфігурацією проводиться з використанням тестових прикладів. Відповідно до результатів, реконфігурація мережі разом із установкою розподіленого генератора в потрібному місці, належного розміру, з належним рівнем втрат і з більш високим профілем є ефективною

    Stability of space-time isogeometric methods for wave propagation problems

    Full text link
    This thesis aims at investigating the first steps toward an unconditionally stable space-time isogeometric method, based on splines of maximal regularity, for the linear acoustic wave equation. The unconditional stability of space-time discretizations for wave propagation problems is a topic of significant interest, by virtue of the advantages of space-time methods compared with more standard time-stepping techniques. In the case of continuous finite element methods, several stabilizations have been proposed. Inspired by one of these works, we address the stability issue by studying the isogeometric method for an ordinary differential equation closely related to the wave equation. As a result, we provide a stabilized isogeometric method whose effectiveness is supported by numerical tests. Motivated by these results, we conclude by suggesting an extension of this stabilization tool to the space-time isogeometric formulation of the acoustic wave equation.Comment: Masters thesi

    Interview with Wolfgang Knauss

    Get PDF
    An oral history in four sessions (September 2019–January 2020) with Wolfgang Knauss, von Kármán Professor of Aeronautics and Applied Mechanics, Emeritus. Born in Germany in 1933, he speaks about his early life and experiences under the Nazi regime, his teenage years in Siegen and Heidelberg during the Allied occupation, and his move to Pasadena, California, in 1954 under the sponsorship of a local minister and his family. He enrolled in Caltech as an undergraduate in 1957, commencing a more than half-century affiliation with the Institute and GALCIT (today the Graduate Aerospace Laboratories of Caltech). He recalls the roots of his interest in aeronautics, his PhD solid mechanics studies with his advisor, M. Williams, and the GALCIT environment in the late 1950s and 1960s at the dawn of the Space Age, including the impact of Sputnik and classes with NASA astronauts. He discusses his experimental and theoretical work on materials deformation, dynamic fracture, and crack propagation, including his solid-propellant fuels research for NASA and the US Army, wide-ranging programs with the US Navy, and his pioneering micromechanics investigations and work on the time-dependent fracture of polymers in the 1990s. He offers his perspective on GALCIT’s academic culture, its solid mechanics and fluid mechanics programs, and its evolving administrative directions over the course of five decades, as well as its impact and reputation both within and beyond Caltech. He describes his work with Caltech’s undergraduate admissions committee and his scientific collaborations with numerous graduate students and postdocs and shares his recollections of GALCIT and other Caltech colleagues, including C. Babcock, D. Coles, R.P. Feynman, Y.C. Fung, G. Neugebauer, G. Housner, D. Hudson, H. Liepmann, A. Klein, G. Ravichandran, A. Rosakis, A. Roshko, and E. Sechler. Six appendices contributed by Dr. Knauss, offering further insight into his life and career, also form part of this oral history and are cross-referenced in the main text

    Underwater optical wireless communications in turbulent conditions: from simulation to experimentation

    Get PDF
    Underwater optical wireless communication (UOWC) is a technology that aims to apply high speed optical wireless communication (OWC) techniques to the underwater channel. UOWC has the potential to provide high speed links over relatively short distances as part of a hybrid underwater network, along with radio frequency (RF) and underwater acoustic communications (UAC) technologies. However, there are some difficulties involved in developing a reliable UOWC link, namely, the complexity of the channel. The main focus throughout this thesis is to develop a greater understanding of the effects of the UOWC channel, especially underwater turbulence. This understanding is developed from basic theory through to simulation and experimental studies in order to gain a holistic understanding of turbulence in the UOWC channel. This thesis first presents a method of modelling optical underwater turbulence through simulation that allows it to be examined in conjunction with absorption and scattering. In a stationary channel, this turbulence induced scattering is shown to cause and increase both spatial and temporal spreading at the receiver plane. It is also demonstrated using the technique presented that the relative impact of turbulence on a received signal is lower in a highly scattering channel, showing an in-built resilience of these channels. Received intensity distributions are presented confirming that fluctuations in received power from this method follow the commonly used Log-Normal fading model. The impact of turbulence - as measured using this new modelling framework - on link performance, in terms of maximum achievable data rate and bit error rate is equally investigated. Following that, experimental studies comparing both the relative impact of turbulence induced scattering on coherent and non-coherent light propagating through water and the relative impact of turbulence in different water conditions are presented. It is shown that the scintillation index increases with increasing temperature inhomogeneity in the underwater channel. These results indicate that a light beam from a non-coherent source has a greater resilience to temperature inhomogeneity induced turbulence effect in an underwater channel. These results will help researchers in simulating realistic channel conditions when modelling a light emitting diode (LED) based intensity modulation with direct detection (IM/DD) UOWC link. Finally, a comparison of different modulation schemes in still and turbulent water conditions is presented. Using an underwater channel emulator, it is shown that pulse position modulation (PPM) and subcarrier intensity modulation (SIM) have an inherent resilience to turbulence induced fading with SIM achieving higher data rates under all conditions. The signal processing technique termed pair-wise coding (PWC) is applied to SIM in underwater optical wireless communications for the first time. The performance of PWC is compared with the, state-of-the-art, bit and power loading optimisation algorithm. Using PWC, a maximum data rate of 5.2 Gbps is achieved in still water conditions

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%

    Interference mitigation in LiFi networks

    Get PDF
    Due to the increasing demand for wireless data, the radio frequency (RF) spectrum has become a very limited resource. Alternative approaches are under investigation to support the future growth in data traffic and next-generation high-speed wireless communication systems. Techniques such as massive multiple-input multiple-output (MIMO), millimeter wave (mmWave) communications and light-fidelity (LiFi) are being explored. Among these technologies, LiFi is a novel bi-directional, high-speed and fully networked wireless communication technology. However, inter-cell interference (ICI) can significantly restrict the system performance of LiFi attocell networks. This thesis focuses on interference mitigation in LiFi attocell networks. The angle diversity receiver (ADR) is one solution to address the issue of ICI as well as frequency reuse in LiFi attocell networks. With the property of high concentration gain and narrow field of view (FOV), the ADR is very beneficial for interference mitigation. However, the optimum structure of the ADR has not been investigated. This motivates us to propose the optimum structures for the ADRs in order to fully exploit the performance gain. The impact of random device orientation and diffuse link signal propagation are taken into consideration. The performance comparison between the select best combining (SBC) and maximum ratio combining (MRC) is carried out under different noise levels. In addition, the double source (DS) system, where each LiFi access point (AP) consists of two sources transmitting the same information signals but with opposite polarity, is proven to outperform the single source (SS) system under certain conditions. Then, to overcome issues around ICI, random device orientation and link blockage, hybrid LiFi/WiFi networks (HLWNs) are considered. In this thesis, dynamic load balancing (LB) considering handover in HLWNs is studied. The orientation-based random waypoint (ORWP) mobility model is considered to provide a more realistic framework to evaluate the performance of HLWNs. Based on the low-pass filtering effect of the LiFi channel, we firstly propose an orthogonal frequency division multiple access (OFDMA)-based resource allocation (RA) method in LiFi systems. Also, an enhanced evolutionary game theory (EGT)-based LB scheme with handover in HLWNs is proposed. Finally, due to the characteristic of high directivity and narrow beams, a vertical-cavity surface-emitting laser (VCSEL) array transmission system has been proposed to mitigate ICI. In order to support mobile users, two beam activation methods are proposed. The beam activation based on the corner-cube retroreflector (CCR) can achieve low power consumption and almost-zero delay, allowing real-time beam activation for high-speed users. The mechanism based on the omnidirectional transmitter (ODTx) is suitable for low-speed users and very robust to random orientation

    Networks: A study in Analysis and Design

    Get PDF
    In this dissertation, we will look at two fundamental aspects of Networks: Network Analysis and Network Design. In part A, we look at Network Analysis area of the dissertation which involves finding the densest subgraph in each graph. The densest subgraph extraction problem is fundamentally a non-linear optimization problem. Nevertheless, it can be solved in polynomial time by an exact algorithm based on the iterative solution of a series of max-flow sub-problems. To approach graphs with millions of vertices and edges, one must resort to heuristic algorithms. We provide an efficient implementation of a greedy heuristic from the literature that is extremely fast and has some nice theoretical properties. An extensive computational analysis shows that the proposed heuristic algorithm proved very effective on many test instances, often providing either the optimal solution or near-optimal solution within short computing times. In part-B, we discuss Network design, which is a cornerstone of mathematical optimization, is about defining the main characteristics of a network satisfying requirements on connectivity, capacity, and level-of-service. In multi-commodity network design, one is required to design a network minimizing the installation cost of its arcs and the operational cost to serve a set of point-to-point connections. This prototypical problem was recently enriched by additional constraints imposing that each origin-destination of a connection is served by a single path satisfying one or more level-of-service requirements, thus defining the Network Design with Service Requirements. These constraints are crucial, e.g., in telecommunications and computer networks, in order to ensure reliable and low-latency communication. We provide a new formulation for the problem, where variables are associated with paths satisfying the end-to-end service requirements. A fast algorithm for enumerating all the exponentially-many feasible paths and, when this is not viable, a column generation scheme that is embedded into a branch-and-cut-and-price algorithm is provided

    Optimising acoustic cavitation for industrial application

    Get PDF
    The ultrasonic horn is one of the most commonly used acoustic devices in laboratories and industry. For its efficient application to cavitation mediated process, the cavitation generated at its tip as a function of its tip-vibration amplitudes still needed to be studied in detail. High-speed imaging and acoustic detection are used to investigate the cavitation generated at the tip of an ultrasonic horn, operating at a fundamental frequency, f0, of 20 kHz. Tip-vibration amplitudes are sampled at fine increments across the range of input powers available. The primary bubble cluster under the tip is found to undergo subharmonic periodic collapse, with concurrent shock wave emission, at frequencies of f0/m, with m increasing through integer values with increasing tip-vibration amplitude. The contribution of periodic shock waves to the noise spectra of the acoustic emissions is confirmed. Transitional input powers for which the value of m is indistinct, and shock wave emission irregular and inconsistent, are identified through Vrms of the acoustic detector output. For cavitation applications mediated by bubble collapse, sonications at transitional powers may lead to inefficient processing. The ultrasonic horn is also deployed to investigate the role of shock waves in the fragmentation of intermetallic crystals, nominally for ultrasonic treatment of Aluminium melt, and in a novel two-horn configuration for potential cavitation enhancement effects. An experiment investigating nitrogen fixation via cavitation generated by focused ultrasound exposures is also described. Vrms from the acoustic detector is again used to quantify the acoustic emissions for comparison to the sonochemical nitrite yield and for optimisation of sonication protocols at constant input energy. The findings revealed that the acoustic cavitation could be enhanced at constant input energy through optimisation of the pulse duration and pulse interval. Anomalous results may be due to inadequate assessment for the nitrate generated. The studies presented in this thesis have illustrated means of improving the cavitation efficiency of the used acoustic devices, which may be important to some selected industrial processes
    corecore