1,046 research outputs found

    A Survey of Quantum Learning Theory

    Get PDF
    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation. This version will appear as Complexity Theory Column in SIGACT News in June 2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a referenc

    Improved Bounds on Quantum Learning Algorithms

    Full text link
    In this article we give several new results on the complexity of algorithms that learn Boolean functions from quantum queries and quantum examples. Hunziker et al. conjectured that for any class C of Boolean functions, the number of quantum black-box queries which are required to exactly identify an unknown function from C is O(logCγ^C)O(\frac{\log |C|}{\sqrt{{\hat{\gamma}}^{C}}}), where γ^C\hat{\gamma}^{C} is a combinatorial parameter of the class C. We essentially resolve this conjecture in the affirmative by giving a quantum algorithm that, for any class C, identifies any unknown function from C using O(logCloglogCγ^C)O(\frac{\log |C| \log \log |C|}{\sqrt{{\hat{\gamma}}^{C}}}) quantum black-box queries. We consider a range of natural problems intermediate between the exact learning problem (in which the learner must obtain all bits of information about the black-box function) and the usual problem of computing a predicate (in which the learner must obtain only one bit of information about the black-box function). We give positive and negative results on when the quantum and classical query complexities of these intermediate problems are polynomially related to each other. Finally, we improve the known lower bounds on the number of quantum examples (as opposed to quantum black-box queries) required for (ϵ,δ)(\epsilon,\delta)-PAC learning any concept class of Vapnik-Chervonenkis dimension d over the domain {0,1}n\{0,1\}^n from Ω(dn)\Omega(\frac{d}{n}) to Ω(1ϵlog1δ+d+dϵ)\Omega(\frac{1}{\epsilon}\log \frac{1}{\delta}+d+\frac{\sqrt{d}}{\epsilon}). This new lower bound comes closer to matching known upper bounds for classical PAC learning.Comment: Minor corrections. 18 pages. To appear in Quantum Information Processing. Requires: algorithm.sty, algorithmic.sty to buil

    Quantum Algorithms for Learning and Testing Juntas

    Full text link
    In this article we develop quantum algorithms for learning and testing juntas, i.e. Boolean functions which depend only on an unknown set of k out of n input variables. Our aim is to develop efficient algorithms: - whose sample complexity has no dependence on n, the dimension of the domain the Boolean functions are defined over; - with no access to any classical or quantum membership ("black-box") queries. Instead, our algorithms use only classical examples generated uniformly at random and fixed quantum superpositions of such classical examples; - which require only a few quantum examples but possibly many classical random examples (which are considered quite "cheap" relative to quantum examples). Our quantum algorithms are based on a subroutine FS which enables sampling according to the Fourier spectrum of f; the FS subroutine was used in earlier work of Bshouty and Jackson on quantum learning. Our results are as follows: - We give an algorithm for testing k-juntas to accuracy ϵ\epsilon that uses O(k/ϵ)O(k/\epsilon) quantum examples. This improves on the number of examples used by the best known classical algorithm. - We establish the following lower bound: any FS-based k-junta testing algorithm requires Ω(k)\Omega(\sqrt{k}) queries. - We give an algorithm for learning kk-juntas to accuracy ϵ\epsilon that uses O(ϵ1klogk)O(\epsilon^{-1} k\log k) quantum examples and O(2klog(1/ϵ))O(2^k \log(1/\epsilon)) random examples. We show that this learning algorithms is close to optimal by giving a related lower bound.Comment: 15 pages, 1 figure. Uses synttree package. To appear in Quantum Information Processin

    Learning DNFs under product distributions via {\mu}-biased quantum Fourier sampling

    Full text link
    We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The best classical algorithm (without access to membership queries) runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficiently learnable under the uniform distribution using a quantum example oracle. Our proof is based on a new quantum algorithm that efficiently samples the coefficients of a {\mu}-biased Fourier transform.Comment: 17 pages; v3 based on journal version; minor corrections and clarification

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Optimal Quantum Sample Complexity of Learning Algorithms

    Get PDF
    \newcommand{\eps}{\varepsilon} In learning theory, the VC dimension of a concept class CC is the most common way to measure its "richness." In the PAC model \Theta\Big(\frac{d}{\eps} + \frac{\log(1/\delta)}{\eps}\Big) examples are necessary and sufficient for a learner to output, with probability 1δ1-\delta, a hypothesis hh that is \eps-close to the target concept cc. In the related agnostic model, where the samples need not come from a cCc\in C, we know that \Theta\Big(\frac{d}{\eps^2} + \frac{\log(1/\delta)}{\eps^2}\Big) examples are necessary and sufficient to output an hypothesis hCh\in C whose error is at most \eps worse than the best concept in CC. Here we analyze quantum sample complexity, where each example is a coherent quantum state. This model was introduced by Bshouty and Jackson, who showed that quantum examples are more powerful than classical examples in some fixed-distribution settings. However, Atici and Servedio, improved by Zhang, showed that in the PAC setting, quantum examples cannot be much more powerful: the required number of quantum examples is \Omega\Big(\frac{d^{1-\eta}}{\eps} + d + \frac{\log(1/\delta)}{\eps}\Big)\mbox{ for all }\eta> 0. Our main result is that quantum and classical sample complexity are in fact equal up to constant factors in both the PAC and agnostic models. We give two approaches. The first is a fairly simple information-theoretic argument that yields the above two classical bounds and yields the same bounds for quantum sample complexity up to a \log(d/\eps) factor. We then give a second approach that avoids the log-factor loss, based on analyzing the behavior of the "Pretty Good Measurement" on the quantum state identification problems that correspond to learning. This shows classical and quantum sample complexity are equal up to constant factors.Comment: 31 pages LaTeX. Arxiv abstract shortened to fit in their 1920-character limit. Version 3: many small changes, no change in result
    corecore