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Abstract
In learning theory, the VC dimension of a concept class C is the most common way to measure
its “richness.” A fundamental result says that the number of examples needed to learn an un-
known target concept c ∈ C under an unknown distribution D, is tightly determined by the VC
dimension d of the concept class C. Specifically, in the PAC model

Θ
(d
ε

+ log(1/δ)
ε

)
examples are necessary and sufficient for a learner to output, with probability 1−δ, a hypothesis h
that is ε-close to the target concept c (measured under D). In the related agnostic model, where
the samples need not come from a c ∈ C, we know that

Θ
( d
ε2 + log(1/δ)

ε2

)
examples are necessary and sufficient to output an hypothesis h ∈ C whose error is at most ε
worse than the error of the best concept in C.

Here we analyze quantum sample complexity, where each example is a coherent quantum state.
This model was introduced by Bshouty and Jackson [18], who showed that quantum examples
are more powerful than classical examples in some fixed-distribution settings. However, Atıcı
and Servedio [10], improved by Zhang [55], showed that in the PAC setting (where the learner
has to succeed for every distribution), quantum examples cannot be much more powerful: the
required number of quantum examples is

Ω
(d1−η

ε
+ d+ log(1/δ)

ε

)
for arbitrarily small constant η > 0.

Our main result is that quantum and classical sample complexity are in fact equal up to constant
factors in both the PAC and agnostic models. We give two proof approaches. The first is a fairly
simple information-theoretic argument that yields the above two classical bounds and yields the
same bounds for quantum sample complexity up to a log(d/ε) factor. We then give a second
approach that avoids the log-factor loss, based on analyzing the behavior of the “Pretty Good
Measurement” on the quantum state identification problems that correspond to learning. This
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shows classical and quantum sample complexity are equal up to constant factors for every concept
class C.
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1 Introduction

1.1 Sample complexity and VC dimension
Machine learning is one of the most successful parts of AI, with impressive practical ap-
plications in areas ranging from image processing, speech recognition, to even beating Go
champions. Its theoretical aspects have been deeply studied, revealing beautiful structure
and mathematical characterizations of when (efficient) learning is or is not possible in
various settings.

1.1.1 The PAC setting
Leslie Valiant’s Probably Approximately Correct (PAC) model [49] gives a precise complexity-
theoretic definition of what it means for a concept class to be (efficiently) learnable. For
simplicity we will (without loss of generality) focus on concepts that are Boolean functions,
c : {0, 1}n → {0, 1}. Equivalently, a concept c is a subset of {0, 1}n, namely {x : c(x) = 1}.
Let C ⊆ {f : {0, 1}n → {0, 1}} be a concept class. This could for example be the class of
functions computed by disjunctive normal form (DNF) formulas of a certain size, or Boolean
circuits or decision trees of a certain depth.

The goal of a learning algorithm (the learner) is to probably approximate some unknown
target concept c ∈ C from random labeled examples. Each labeled example is of the form
(x, c(x)) where x is distributed according to some unknown distribution D over {0, 1}n. After
processing a number of such examples (hopefully not too many), the learner outputs some
hypothesis h. We say that h is ε-approximately correct (w.r.t. the target concept c) if its
error probability under D is at most ε: Prx∼D[h(x) 6= c(x)] ≤ ε. Note that the learning
phase and the evaluation phase (i.e., whether a hypothesis is approximately correct) are
according to the same distribution D – as if the learner is taught and then tested by the
same teacher. An (ε, δ)-learner for the concept class C is one whose hypothesis is probably
approximately correct:

For all target concepts c ∈ C and distributions D:
Pr[the learner’s output h is ε-approximately correct] ≥ 1− δ,

where the probability is over the sequence of examples and the learner’s internal randomness.
Note that we leave the learner the freedom to output an h which is not in C. If always h ∈ C,
then the learner is called a proper PAC-learner.

Of course, we want the learner to be as efficient as possible. Its sample complexity is the
worst-case number of examples it uses, and its time complexity is the worst-case running
time of the learner. In this paper we focus on sample complexity. This allows us to ignore
technical issues of how the runtime of an algorithm is measured, and in what form the
hypothesis h is given as output by the learner.

http://dx.doi.org/10.4230/LIPIcs.CCC.2017.25
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The sample complexity of a concept class C is the sample complexity of the most efficient
learner for C. It is a function of ε, δ, and of course of C itself. One of the most fundamental
results in learning theory is that the sample complexity of C is tightly determined by a
combinatorial parameter called the VC dimension of C, due to and named after Vapnik and
Chervonenkis [50]. The VC dimension of C is the size of the biggest S ⊆ {0, 1}n that can be
labeled in all 2|S| possible ways by concepts from C: for each sequence of |S| binary labels for
the elements of S, there is a c ∈ C that has that labeling (such an S is said to be shattered by
C). Knowing this VC dimension (and ε, δ) already tells us the sample complexity of C up to
constant factors. Blumer et al. [17] proved that the sample complexity of C is lower bounded
by Ω(d/ε+ log(1/δ)/ε), and they proved an upper bound that was worse by a log(1/ε)-factor.
In very recent work, Hanneke [27] (improving on Simon [47]) got rid of this log(1/ε)-factor
for PAC learning,1 showing that the lower bound of Blumer et al. is in fact optimal: the
sample complexity of C in the PAC setting is

Θ
(d
ε

+ log(1/δ)
ε

)
. (1)

1.1.2 The agnostic setting
The PAC model assumes that the labeled examples are generated according to a target
concept c ∈ C. However, in many learning situations that is not a realistic assumption, for
example when the examples are noisy in some way or when we have no reason to believe
there is an underlying target concept at all. The agnostic model of learning, introduced by
Haussler [31] and Kearns et al. [36], takes this into account. Here, the examples are generated
according to a distribution D on {0, 1}n+1. The error of a specific concept c : {0, 1}n → {0, 1}
is defined to be errD(c) = Pr(x,b)∼D[c(x) 6= b]. When we are restricted to hypotheses in C,
we would like to find the hypothesis that minimizes errD(c) over all c ∈ C. However, it may
require very many examples to do that exactly. In the spirit of the PAC model, the goal of
the learner is now to output an h ∈ C whose error is at most an additive ε worse than that
of the best (= lowest-error) concepts in C.

Like in the PAC model, the optimal sample complexity of such agnostic learners is tightly
determined by the VC dimension of C: it is

Θ
( d
ε2 + log(1/δ)

ε2

)
, (2)

where the lower bound was proven by Vapnik and Chervonenkis [51] (see also Simon [46]),
and the upper bound was proven by Talagrand [48]. Shalev-Shwartz and Ben-David [45,
Section 6.4] call Eq. (1) and Eq. (2) the “Fundamental Theorem of PAC learning.”

1.2 Our results
In this paper we are interested in quantum sample complexity. Here a quantum example
for some concept c : {0, 1}n → {0, 1}, according to some distribution D, corresponds to an
(n+ 1)-qubit state∑

x∈{0,1}n

√
D(x)|x, c(x)〉.

1 Hanneke’s learner is not proper, meaning that its hypothesis h is not always in C. It is still an open
question whether the log(1/ε)-factor can be removed for proper PAC learning. Our lower bounds in
this paper hold for all learners, quantum as well as classical, and proper as well as improper.

CCC 2017
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In other words, instead of a random labeled example, an example is now given by a coherent
quantum superposition where the square-roots of the probabilities become the amplitudes.2
This model was introduced by Bshouty and Jackson [18], who showed that DNF formulas
are learnable in polynomial time from quantum examples when D is uniform. For learning
DNF under the uniform distribution from classical examples, the best upper bound is
quasipolynomial time [52]. With the added power of “membership queries,” where the learner
can actively ask for the label of any x of his choice, DNF formulas are known to be learnable
in polynomial time under uniform D [33], but without membership queries polynomial-time
learnability is a longstanding open problem (see [20] for a recent hardness result).

How reasonable are examples that are given as a coherent superposition rather than as
a random sample? They may seem unreasonable a priori because quantum superpositions
seem very fragile and are easily collapsed by measurement, but if we accept the “church
of the larger Hilbert space” view on quantum mechanics, where the universe just evolves
unitarily without any collapses, then they may become more palatable. It is also possible
that the quantum examples are generated by some coherent quantum process that acts like
the teacher.

How many quantum examples are needed to learn a concept class C of VC dimension d?
Since a learner can just measure a quantum example in order to obtain a classical example,
the upper bounds on classical sample complexity trivially imply the same upper bounds
on quantum sample complexity. But what about the lower bounds? Are there situations
where quantum examples are more powerful than classical? Indeed there are. We already
mentioned the results of Bshouty and Jackson [18] for learning DNF under the uniform
distribution without membership queries. Another good example is the learnability of the
concept class of linear functions over F2, C = {c(x) = a · x : a ∈ {0, 1}n}, again under the
uniform distribution D. It is easy to see that a classical learner needs about n examples to
learn an unknown c ∈ C under this D. However, if we are given one quantum example∑

x∈{0,1}n

√
D(x)|x, c(x)〉 = 1√

2n
∑

x∈{0,1}n

|x, a · x〉,

then a small modification of the Bernstein-Vazirani algorithm [16] can recover a (and hence
c) with probability 1/2. Hence O(1) quantum examples suffice to learn c exactly, with
high probability, under the uniform distribution. Atıcı and Servedio [11] used similar ideas
to learning k-juntas (concepts depending on only k of their n variables) from quantum
examples under the uniform distribution. However, PAC learning requires a learner to learn
c under all possible distributions D, not just the uniform one. The success probability of the
Bernstein-Vazirani algorithm deteriorates sharply when D is far from uniform, but that does
not rule out the existence of other quantum learners that use o(n) quantum examples and
succeed for all D.

Our main result in this paper is that quantum examples are not actually more powerful
than classical labeled examples in the PAC model and in the agnostic model: we prove that
the lower bounds on classical sample complexity of Eq. (1) and Eq. (2) hold for quantum
examples as well. Accordingly, despite several distribution-specific speedups, quantum
examples do not significantly reduce sample complexity if we require our learner to work for

2 We could allow more general quantum examples
∑

x∈{0,1}n αx|x, c(x)〉, where we only require |αx|2 =
D(x). However, that will not affect our results since our lower bounds apply to quantum examples
where we know the amplitudes are square-rooted probabilities. Adding more degrees of freedom to
quantum examples does not make learning easier.
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all distributions D. This should be contrasted with the situation when considering the time
complexity of learning. Servedio and Gortler [44] considered a concept class (already known
in the literature [37, Chapter 6]) that can be PAC-learned in polynomial time by a quantum
computer, even with only classical examples, but that cannot be PAC-learned in polynomial
time by a classical learner unless Blum integers can be factored in polynomial time (which is
widely believed to be false).

Earlier work on quantum sample complexity had already gotten close to extending the
lower bound of Eq. (1) to PAC learning from quantum examples. Atıcı and Servedio [10]
first proved a lower bound of Ω(

√
d/ε+ d+ log(1/δ)/ε) using the so-called “hybrid method.”

Their proof technique was subsequently pushed further by Zhang [55] to

Ω
(d1−η

ε
+ d+ log(1/δ)

ε

)
for arbitrarily small constant η > 0. (3)

Here we optimize these bounds, removing the η and achieving the optimal lower bound for
quantum sample complexity in the PAC model (Eq. (1)).

We also show that the lower bound (Eq. (2)) for the agnostic model extends to quantum
examples. As far as we know, in contrast to the PAC model, no earlier results were known
for quantum sample complexity in the agnostic model.

We have two different proof approaches, which we sketch below.

1.2.1 An information-theoretic argument
In Section 3 we give a fairly intuitive information-theoretic argument that gives optimal
lower bounds for classical sample complexity, and that gives nearly-optimal lower bounds for
quantum sample complexity. Let us first see how we can prove the classical PAC lower bound
of Eq. (1). Suppose S = {s0, s1, . . . , sd} is shattered by C (we now assume VC dimension d+1
for ease of notation). Then we can consider a distribution D that puts probability 1− 4ε on
s0 and probability 4ε/d on each of s1, . . . , sd.3 For every possible labeling (`1 . . . `d) ∈ {0, 1}d
of s1, . . . , sd there will be a concept c ∈ C that labels s0 with 0, and labels si with `i for all
i ∈ {1, . . . , d}. Under D, most examples will be (s0, 0) and hence give us no information when
we are learning one of those 2d concepts. Suppose we have a learner that ε-approximates c
with high probability under this D using T examples. Informally, our information-theoretic
argument has the following three steps:
1. In order to ε-approximate c, the learner has to learn the c-labels of at least 3/4 of the

s1, . . . , sd (since together these have 4ε of the D-weight, and we want an ε-approximation).
As all 2d labelings are possible, the T examples together contain Ω(d) bits of information
about c.

2. T examples give at most T times as much information about c as one example.
3. One example gives only O(ε) bits of information about c, because it will tell us one of

the labels of s1, . . . , sd only with probability 4ε (and otherwise it just gives c(s0) = 0).
Putting these steps together implies T = Ω(d/ε).4 This argument for the PAC setting
is similar to an algorithmic-information argument of Apolloni and Gentile [8] and an
information-theoretic argument for variants of the PAC model with noisy examples of
Gentile and Helmbold [25].

3 We remark that the distributions used here for proving lower bounds on quantum sample complexity
have been used by Ehrenfeucht et al. [21] for analyzing classical PAC sample complexity.

4 The other part of the lower bound of Eq. (1) does not depend on d and is fairly easy to prove.

CCC 2017
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As far as we know, this type of reasoning has not yet been applied to the sample complexity
of agnostic learning. To get good lower bounds there, we consider a set of distributions Da,
indexed by d-bit string a. These distributions still have the property that if a learner gets
ε-close to the minimal error, then it will have to learn Ω(d) bits of information about the
distribution (i.e., about a). Hence the first step of the argument remains the same. The
second step of our argument also remains the same, and the third step shows an upper
bound of O(ε2) on the amount of information that the learner can get from one example.
This then implies T = Ω(d/ε2). We can also reformulate this for the case where we want
the expected additional error of the hypothesis over the best classifier in C to be at most ε,
which is how lower bounds are often stated in learning theory. We emphasize that our
information-theoretic proof is simpler than the proofs in [7, 13, 45, 39].

This information-theoretic approach recovers the optimal classical bounds on sample
complexity, but also generalizes readily to the quantum case where the learner gets T
quantum examples. To obtain lower bounds on quantum sample complexity we use the same
distributions D (now corresponding to a coherent quantum state) and basically just need to
re-analyze the third step of the argument. In the PAC setting we show that one quantum
example gives at most O(ε log(d/ε)) bits of information about c, and in the agnostic setting
it gives O(ε2 log(d/ε)) bits. This implies lower bounds on sample complexity that are only
a logarithmic factor worse than the optimal classical bounds for the PAC setting (Eq. (1))
and the agnostic setting (Eq. (2)). This is not quite optimal yet, but already better than
the previous best known lower bound (Eq. (3)). The logarithmic loss in step 3 is actually
inherent in this information-theoretic argument: in some cases a quantum example can give
roughly ε log d bits of information about c, for example when c comes from the concept class
of linear functions.

1.2.2 A state-identification argument
In order to get rid of the logarithmic factor we then try another proof approach, which views
learning from quantum examples as a quantum state identification problem: we are given T
copies of the quantum example for some concept c and need to ε-approximate c from this.
In order to render ε-approximation of c equivalent to exact identification of c, we use good
linear error-correcting codes, restricting to concepts whose d-bit labeling of the elements of
the shattered set s1, . . . , sd corresponds to a codeword. We then have 2Ω(d) possible concepts,
one for each codeword, and need to identify the target concept from a quantum state that is
the tensor product of T identical quantum examples.

State-identification problems have been well studied, and many tools are available for
analyzing them. In particular, we will use the so-called “Pretty Good Measurement” (PGM,
also known as “square root measurement” [29]) introduced by Hausladen and Wootters [30].
The PGM is a specific measurement that one can always use for state identification, and
whose success probability is no more than quadratically worse than that of the very best
measurement.5 In Section 4 we use Fourier analysis to give an exact analysis of the average
success probability of the PGM on the state-identification problems that come from both the
PAC and the agnostic model. This analysis could be useful in other settings as well. Here it
implies that the number of quantum examples, T , is lower bounded by Eq. (1) in the PAC
setting, and by Eq. (2) in the agnostic setting.

5 Even better, in our application the PGM is the optimal measurement, though this is not essential for
our proof.
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Using the Pretty Good Measurement, we are also able to prove lower bounds for PAC
learning under random classification noise, which models the real-world situation that the
learning data can have some errors. Classically in the random classification noise model
(introduced by Angluin and Laird [6]), instead of obtaining labeled examples (x, c(x)) for some
unknown c ∈ C, the learner obtains noisy examples (x, bx), where bx = c(x) with probability
1− η and bx = 1− c(x) with probability η, for some noise rate η ∈ [0, 1/2). Similarly, in the
quantum learning model we could naturally define a noisy quantum example as an (n+ 1)-
qubit state∑

x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉.

Using the PGM, we are able to show that the quantum sample complexity of PAC learning
a concept class C under random classification noise is:

Ω
( d

(1− 2η)2ε
+ log(1/δ)

(1− 2η)2ε

)
. (4)

We remark here that the best known classical sample complexity lower bound (see [46]) under
the random classification noise is equal to the quantum sample complexity lower bound
proven in Eq. (4).

1.3 Related work
Let us briefly discuss some related work in quantum learning theory, referring to our recent
survey [9] for more. In this paper we focus on sample complexity, which is a fundamental
information-theoretic quantity. Sample complexity concerns a form of “passive” learning: the
learner gets a number of examples at the start of the process, and then has to extract enough
information about the target concept from these. We may also consider more active learning
settings, in particular ones where the learner can make membership queries (i.e., learn the
label c(x) for any x of his choice). Servedio and Gortler [44] showed that in this setting,
classical and quantum complexity are polynomially related. They also exhibit an example of a
factor-n speed-up from quantum membership queries using the Bernstein-Vazirani algorithm.
Jackson et al. [34] showed how quantum membership queries can improve Jackson’s classical
algorithm for learning DNF with membership queries under the uniform distribution [33].

For quantum exact learning (also referred to as the oracle identification problem in the
quantum literature), Kothari [40] resolved a conjecture of Hunziker et al. [32], that states
that for any concept class C, the number of quantum membership queries required to exactly
identify a concept c ∈ C is O( log |C|√

γ̂C
), where γ̂C is a combinatorial parameter of the concept

class C which we shall not define here (see [10] for a precise definition). Montanaro [42]
showed how low-degree polynomials over a finite field can be identified more efficiently using
quantum algorithms.

In many ways the time complexity of learning is at least as important as the sample
complexity. We already mentioned that Servedio and Gortler [44] exhibited a concept class
based on factoring Blum integers that can be learned in quantum polynomial time but not in
classical polynomial time, unless Blum integers can be factored efficiently. Under the weaker
(but still widely believed) assumption that one-way functions exist, they exhibited a concept
class that can be learned exactly in polynomial time using quantum membership queries, but
that takes superpolynomial time to learn from classical membership queries. Gavinsky [24]
introduced a model of learning called “Predictive Quantum” (PQ), a variation of quantum

CCC 2017
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PAC learning, and exhibited a relational concept class that is polynomial-time learnable
in PQ, while any “reasonable” classical model requires an exponential number of classical
examples to learn the concept class.

Aïmeur et al. [3, 4] consider a number of quantum algorithms in learning contexts such as
clustering via minimum spanning tree, divisive clustering, and k-medians, using variants of
Grover’s algorithm [26] to improve the time complexity of the analogous classical algorithms.
Recently, there have been some quantum machine learning algorithms based on the HHL
algorithm [28] for solving (in a weak sense) very well-behaved linear systems. However, these
algorithms often come with some fine print that limits their applicability, and their advantage
over classical is not always clear. We refer to Aaronson [2] for references and caveats. There
has also been some work on quantum training of neural networks [53, 54].

In addition to learning classical objects such as Boolean functions, one may also study the
learnability of quantum objects. In particular, Aaronson [1] studied how well n-qubit quantum
states can be learned from measurement results. In general, an n-qubit state ρ is specified
by exp(n) many parameters, and exp(n) measurement results on equally many copies of ρ
are needed to learn a good approximation of ρ (say, in trace distance). However, Aaronson
showed an interesting and surprisingly efficient PAC-like result: from O(n) measurement
results, with measurements chosen i.i.d. according to an unknown distribution D on the set
of all possible two-outcome measurements, we can learn an n-qubit quantum state ρ̃ that
has roughly the same expectation value as ρ for “most” possible two-outcome measurements.
In the latter, “most” is again measured under D, just like in the usual PAC learning the
error of the learner’s hypothesis is evaluated under the same distribution D that generated
the learner’s examples. Accordingly, O(n) rather than exp(n) measurement results suffice to
approximately learn an n-qubit state for most practical purposes.

The use of Fourier analysis in analyzing the success probability of the Pretty Good
Measurement in quantum state identification appears in a number of earlier works. By
considering the dihedral hidden subgroup problem (DHSP) as a state identification problem,
Bacon et al. [14] show that the PGM is the optimal measurement for DHSP and prove a
lower bound on the sample complexity of Ω(log |G|) for a dihedral group G using Fourier
analysis. Ambainis and Montanaro [5] view the “search with wildcard” problem as a state
identification problem. Using ideas similar to ours, they show that the (x, y)-th entry of the
Gram matrix for the ensemble depends on the Hamming distance between x and y, allowing
them to use Fourier analysis to obtain an upper bound on the success probability of the
state identification problem using the PGM.

1.4 Organization
In Section 2 we formally define the classical and quantum learning models and introduce the
Pretty Good Measurement. In Section 3 we prove our information-theoretic lower bounds
both for classical and quantum learning. In Section 4 we prove an optimal quantum lower
bound for PAC and agnostic learning by viewing the learning process as a state identification
problem. We conclude in Section 5 with some open questions for further work.

2 Preliminaries

2.1 Notation
Let [n] = {1, . . . , n}. For x, y ∈ {0, 1}d, the bit-wise sum x + y is over F2, the Hamming
distance d(x, y) is the number of indices on which x and y differ, |x+y| is the Hamming weight
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of the string x+ y (which equals dH(x, y)), and x · y =
∑
i xiyi (where the sum is over F2).

For an n-dimensional vector space, the standard basis is denoted by {ei ∈ {0, 1}n : i ∈ [n]},
where ei is the vector with a 1 in the i-th coordinate and 0’s elsewhere. We write log for
logarithm to base 2, and ln for base e. We will often use the bijection between the sets
{0, 1}k and [2k] throughout this paper. Let 1[A] be the indicator for an event A, and let
δx,y = 1[x=y]. We denote random variables in bold, such as A, B.

For a Boolean function f : {0, 1}m → {0, 1} and M ∈ Fm×k2 we define f ◦M : {0, 1}k →
{0, 1} as (f ◦M)(x) := f(Mx) (where the matrix-vector product is over F2) for all x ∈ {0, 1}k.
For a distribution D : {0, 1}n → [0, 1], let supp(D) = {x ∈ {0, 1}n : D(x) 6= 0}. By x ∼ D,
we mean x is sampled according to the distribution D, i.e., Pr[X = x] = D(x).

If M is a positive semidefinite (psd) matrix, we define
√
M as the unique psd matrix

that satisfies
√
M ·
√
M = M , and

√
M(i, j) as the (i, j)-th entry of

√
M . For a matrix

A ∈ Rm×n, we denote the singular values of A by σ1(A) ≥ σ2(A) ≥ · · · ≥ σmin{m,n}(A) ≥ 0.
The spectral norm of A is ‖A‖ = maxx∈Rn,‖x‖=1 ‖Ax‖ = σ1. Given a set of d-dimensional
vectors U = {u1, . . . , un} ∈ Rd, the Gram matrix V corresponding to the set U is the n× n
psd matrix defined as V (i, j) = utiuj for i, j ∈ [n], where uti is the row vector that is the
transpose of the column vector ui.

A technical tool used in our analysis of state identification problems is Fourier analysis
on the Boolean cube. We will just introduce the basics of Fourier analysis here, referring
to [43] for more. Define the inner product between functions f, g : {0, 1}n → R as

〈f, g〉 = E
x

[f(x) · g(x)]

where the expectation is uniform over x ∈ {0, 1}n. For S ⊆ [n] (equivalently S ∈ {0, 1}n),
let χS(x) := (−1)S·x denote the parity of the variables (of x) indexed by the set S. It is
easy to see that the set of functions {χS}S⊆[n] forms an orthonormal basis for the space of
real-valued functions over the Boolean cube. Hence every f can be decomposed as

f(x) =
∑
S⊆[n]

f̂(S)(−1)S·x for all x ∈ {0, 1}n,

where f̂(S) = 〈f, χS〉 = Ex[f(x) · χS(x)] is called a Fourier coefficient of f .

2.2 Learning in general
In machine learning, a concept class C over {0, 1}n is a set of concepts c : {0, 1}n → {0, 1}. We
refer to a concept class C as being trivial if either C contains only one concept, or C contains
two concepts c0, c1 with c0(x) = 1 − c1(x) for every x ∈ {0, 1}n. For c : {0, 1}n → {0, 1},
we will often refer to the tuple (x, c(x)) ∈ {0, 1}n+1 as a labeled example, where c(x) is
the label of x.

A central combinatorial concept in learning is the Vapnik-Chervonenkis (VC) dimension
[50]. Fix a concept class C over {0, 1}n. A set S = {s1, . . . , st} ⊆ {0, 1}n is said to be
shattered by a concept class C if {(c(s1), . . . , c(st)) : c ∈ C} = {0, 1}t. In other words, for
every labeling ` ∈ {0, 1}t, there exists a c ∈ C such that (c(s1), . . . , c(st)) = `. The VC
dimension of a concept class C is the size of the largest S ⊆ {0, 1}n that is shattered by C.

2.3 Classical learning models
In this paper we will be concerned mainly with the PAC (Probably Approximately Correct)
model of learning introduced by Valiant [49], and the agnostic model of learning introduced
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by Haussler [31] and Kearns et al. [36]. For further reading, see standard textbooks in
computational learning theory such as [38, 7, 45].

In the classical PAC model, a learner A is given access to a random example oracle
PEX(c,D) which generates labeled examples of the form (x, c(x)) where x is drawn from an
unknown distribution D : {0, 1}n → [0, 1] and c ∈ C is the target concept that A is trying
to learn. For a concept c ∈ C and hypothesis h : {0, 1}n → {0, 1}, we define the error of h
compared to the target concept c, under D, as errD(h, c) = Prx∼D[h(x) 6= c(x)]. A learning
algorithm A is an (ε, δ)-PAC learner for C, if the following holds:

For every c ∈ C and distribution D, given access to the PEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε with probability at least 1− δ.

The sample complexity of A is the maximum number of invocations of the PEX(c,D) oracle
which the learner makes, over all concepts c ∈ C, distributions D, and the internal randomness
of the learner. The (ε, δ)-PAC sample complexity of a concept class C is the minimum sample
complexity over all (ε, δ)-PAC learners for C.

Agnostic learning is the following model: for a distribution D : {0, 1}n+1 → [0, 1], a
learner A is given access to an AEX(D) oracle that generates examples of the form (x, b)
drawn from the distribution D. We define the error of h : {0, 1}n → {0, 1} under D as
errD(h) = Pr(x,b)∼D[h(x) 6= b]. When h is restricted to come from a concept class C, the
minimal error achievable is optD(C) = minc∈C{errD(c)}. In agnostic learning, a learner A
needs to output a hypothesis h whose error is not much bigger than optD(C). A learning
algorithm A is an (ε, δ)-agnostic learner for C if:

For every distribution D on {0, 1}n+1, given access to the AEX(D) oracle:
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability at least 1− δ.

Note that if there is a c ∈ C which perfectly classifies every x with label y for (x, y) ∈ supp(D),
then optD(C) = 0 and we are in the setting of proper PAC learning. The sample complexity
of A is the maximum number of invocations of the AEX(c,D) oracle which the learner makes,
over all distributions D and over the learner’s internal randomness. The (ε, δ)-agnostic sample
complexity of a concept class C is the minimum sample complexity over all (ε, δ)-agnostic
learners for C.

2.4 Quantum information theory
Throughout this paper we will assume the reader is familiar with the following quantum
terminology. An n-dimensional pure state is |ψ〉 =

∑n
i=1 αi|i〉, where |i〉 is the n-dimensional

unit vector that has a 1 only at position i, the αi’s are complex numbers called the amplitudes,
and

∑
i∈[n] |αi|2 = 1. An n-dimensional mixed state (or density matrix) ρ =

∑n
i=1 pi|ψi〉〈ψi|

is a mixture of pure states |ψ1〉, . . . , |ψn〉 prepared with probabilities p1, . . . , pn, respectively.
The eigenvalues λ1, . . . , λn of ρ are non-negative reals and satisfy

∑
i∈[n] λi = 1. If ρ is pure

(i.e., ρ = |ψ〉〈ψ| for some |ψ〉), then one of the eigenvalues is 1 and the others are 0.
To obtain classical information from ρ, one could apply a POVM (positive-operator-valued

measure) to the state ρ. An m-outcome POVM is specified by a set of positive semidefinite
matrices {Mi}i∈[m] with the property

∑
iMi = Id. When this POVM is applied to the mixed

state ρ, the probability of the j-th outcome is given by Tr(Mjρ).
For a probability vector (p1, . . . , pk) (where

∑
i∈[k] pi = 1), the entropy function is

defined as H(p1, . . . , pk) = −
∑
i∈[k] pi log pi. When k = 2, with p1 = p and p2 = 1 − p,

we denote the binary entropy function as H(p). For a state ρAB on the Hilbert space
HA ⊗ HB, we let ρA be the reduced state after taking the partial trace over HB. The
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entropy of a quantum state ρA is defined as S(A) = −Tr(ρA log ρA). The mutual information
is defined as I(A : B) = S(A) + S(B) − S(AB), and conditional entropy is defined as
S(A|B) = S(AB)−S(B). Classical information-theoretic quantities correspond to the special
case where ρ is a diagonal matrix whose diagonal corresponds to the probability distribution of
the random variable. Writing ρA in its eigenbasis, it follows that S(A) = H(λ1, . . . , λdim(ρA)),
where λ1, . . . , λdim(ρA) are the eigenvalues of ρ. If ρA is a pure state, S(A) = 0.

2.5 Quantum learning models
The quantum PAC learning model was introduced by Bshouty and Jackson in [18]. The
quantum PAC model is a generalization of the classical PAC model, instead of having
access to random examples (x, c(x)) from the PEX(c,D) oracle, the learner now has access to
superpositions over all (x, c(x)). For an unknown distribution D : {0, 1}n → [0, 1] and concept
c ∈ C, a quantum example oracle QPEX(c,D) acts on |0n, 0〉 and produces a quantum example∑
x∈{0,1}n

√
D(x)|x, c(x)〉 (we leave QPEX undefined on other basis states). A quantum

learner is given access to some copies of the state generated by QPEX(c,D) and performs a
POVM where each outcome is associated with a hypothesis. A learning algorithm A is an
(ε, δ)-PAC quantum learner for C if:

For every c ∈ C and distribution D, given access to the QPEX(c,D) oracle:
A outputs an h such that errD(h, c) ≤ ε, with probability at least 1− δ.

The sample complexity of A is the maximum number invocations of the QPEX(c,D) oracle,
maximized over all c ∈ C, distributions D, and the learner’s internal randomness. The (ε, δ)-
PAC quantum sample complexity of a concept class C is the minimum sample complexity
over all (ε, δ)-PAC quantum learners for C.

We define quantum agnostic learning now. For a joint distribution D : {0, 1}n+1 → [0, 1]
over the set of examples, the learner has access to an QAEX(D) oracle which acts on |0n, 0〉
and produces a quantum example

∑
(x,b)∈{0,1}n+1

√
D(x, b)|x, b〉. A learning algorithm A is

an (ε, δ)-agnostic quantum learner for C if:

For every distribution D, given access to the QAEX(D) oracle:
A outputs an h ∈ C such that errD(h) ≤ optD(C) + ε with probability at least 1− δ.

The sample complexity of A is the maximum number invocations of the QAEX(D) oracle
over all distributions D and over the learner’s internal randomness. The (ε, δ)-agnostic
quantum sample complexity of a concept class C is the minimum sample complexity over all
(ε, δ)-agnostic quantum learners for C.

2.6 Pretty Good Measurement
Consider an ensemble of d-dimensional states, E = {(pi, |ψi〉)}i∈[m], where

∑
i∈[m] pi = 1.

Suppose we are given an unknown state |ψi〉 sampled according to the probabilities and we
are interested in maximizing the average probability of success to identify the state that
we are given. For a POVM specified by positive semidefinite matricesM = {Mi}i∈[m], the
probability of obtaining outcome j equals 〈ψi|Mj |ψi〉. The average success probability is
defined as

PM(E) =
m∑
i=1

pi〈ψi|Mi|ψi〉.
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Let P opt(E) = maxM PM(E) denote the optimal average success probability of E , where the
maximization is over the set of valid m-outcome POVMs.

For every ensemble E , the so-called Pretty Good Measurement (PGM) is a specific POVM
(depending on the ensemble E), which we shall define shortly, that does reasonably well
against E . Suppose PPGM (E) is defined as the average success probability of identifying the
states in E using the PGM, then we have that

P opt(E)2 ≤ PPGM (E) ≤ P opt(E),

where the second inequality follows because P opt(E) is a maximization over all valid POVMs
and the first inequality was shown by Barnum and Knill [15].

For completeness we give a simple proof of P opt(E)2 ≤ PPGM (E) below (similar to [41]).
Let |ψ′i〉 = √pi|ψi〉, and E ′ = {|ψ′i〉 : i ∈ [m]} be the set of states in E , renormalized to
reflect their probabilities. Define ρ =

∑
i∈[m] |ψ′i〉〈ψ′i|. The PGM is defined as the set of

measurement operators {|νi〉〈νi|}i∈[m] where |νi〉 = ρ−1/2|ψ′i〉 (the inverse square root of ρ is
taken over its non-zero eigenvalues). We first verify this is a valid POVM:

m∑
i=1
|νi〉〈νi| = ρ−1/2

( m∑
i=1
|ψ′i〉〈ψ′i|

)
ρ−1/2 = Id .

Let G be the Gram matrix for the set E ′, i.e., G(i, j) = 〈ψ′i|ψ′j〉 for i, j ∈ [m]. It can be
verified that

√
G(i, j) = 〈ψ′i|ρ−1/2|ψ′j〉. Hence

PPGM (E) =
∑
i∈[m]

pi|〈νi|ψi〉|2 =
∑
i∈[m]

|〈νi|ψ′i〉|2 =
∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2 =
∑
i∈[m]

√
G(i, i)2.

We now prove P opt(E)2 ≤ PPGM (E). Suppose M is the optimal measurement. Since E
consists of pure states, by a result of Eldar et al. [23], we can assume without loss of generality
that the measurement operators inM are rank-1, so Mi = |µi〉〈µi| for some |µi〉. Note that

1 = Tr(ρ) = Tr
( ∑
i∈[m]

|µi〉〈µi|ρ1/2
∑
j∈[m]

|µj〉〈µj |ρ1/2
)

=
∑

i,j∈[m]

|〈µi|ρ1/2|µj〉|2 ≥
∑
i∈[m]

〈µi|ρ1/2|µi〉2.
(5)

Then, using the Cauchy-Schwarz inequality, we have

P opt(E) =
∑
i∈[m]

|〈µi|ψ′i〉|2 =
∑
i∈[m]

|〈µi|ρ1/4ρ−1/4|ψ′i〉|2

≤
∑
i∈[m]

〈µi|ρ1/2|µi〉〈ψ′i|ρ−1/2|ψ′i〉

≤
√∑
i∈[m]

〈µi|ρ1/2|µi〉2
√∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2

Eq. (5)
≤

√∑
i∈[m]

〈ψ′i|ρ−1/2|ψ′i〉2 =
√
PPGM (E).

The above shows that for all ensembles E , the PGM for that ensemble is not much
worse than the optimal measurement. In some cases the PGM is the optimal measurement.
In particular, an ensemble E is called geometrically uniform if E = {Ui|ϕ〉 : i ∈ [m]} for
some Abelian group of matrices {Ui}i∈[m] and state |ϕ〉. Eldar and Forney [22] showed
P opt(E) = PPGM (E) for such E .
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2.7 Known results and required claims
The following theorems characterize the sample complexity of classical PAC and agnostic learn-
ing.

I Theorem 1 ([17, 27]). Let C be a concept class with VC-dim(C) = d+1. In the PAC model,
Θ
(
d
ε + log(1/δ)

ε

)
examples are necessary and sufficient for a classical (ε, δ)-PAC learner for C.

I Theorem 2 ([51, 46, 48]). Let C be a concept class with VC-dim(C) = d. In the agnostic
model, Θ

(
d
ε2 + log(1/δ)

ε2

)
examples are necessary and sufficient for a classical (ε, δ)-agnostic

learner for C.

We will use the following well-known theorem from the theory of error-correcting codes:

I Theorem 3. For every sufficiently large integer n, there exists an integer k ∈ [n/4, n] and a
matrix M ∈ Fn×k2 of rank k, such that the associated [n, k, d]2 linear code {Mx : x ∈ {0, 1}k}
has minimal distance d ≥ n/8.

We will need the following claims later

I Claim 4. Let f : {0, 1}m → R and let M ∈ Fm×k2 . Then the Fourier coefficients of f ◦M
are f̂ ◦M(Q) =

∑
S∈{0,1}m:MtS=Q f̂(S) for all Q ⊆ [k] (where M t is the transpose of the

matrix M).

Proof. Writing out the Fourier coefficients of f ◦M

f̂ ◦M(Q) = E
z∈{0,1}k

[(f ◦M)(z)(−1)Q·z]

= E
z∈{0,1}k

[ ∑
S∈{0,1}m

f̂(S)(−1)S·(Mz)+Q·z
]

(Fourier expansion of f)

=
∑

S∈{0,1}m

f̂(S) E
z∈{0,1}k

[(−1)(MtS+Q)·z] (using 〈S,Mz〉 = 〈M tS, z〉)

=
∑

S:MtS=Q

f̂(S). (using Ez∈{0,1}k (−1)(z1+z2)·z = δz1,z2)

J

I Claim 5. max{(c/
√
t)t : t ∈ [1, c2]} = ec

2/(2e).

Proof. The value of t at which the function
(
c/
√
t
)t

is the largest, is obtained by differenti-
ating the function with respect to t,

d

dt

(
c/
√
t
)t

= (c/
√
t)t
(

ln(c/
√
t)− 1/2

)
.

Equating the derivative to zero we obtain the maxima (the second derivative can be checked
to be negative) at t = c2/e. J

I Fact 6. For all ε ∈ [0, 1/2] we have H(ε) ≤ O(ε log(1/ε)), and (from the Taylor series)

1−H(1/2 + ε) ≤ 2ε2/ ln 2 +O(ε4).

I Fact 7. For every positive integer n, we have that
(
n
k

)
≤ 2nH(k/n) for all k ≤ n and∑m

i=0
(
n
i

)
≤ 2nH(m/n) for all m ≤ n/2.
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The following facts are well-known in quantum information theory.

I Fact 8. Let binary random variable b ∈ {0, 1} be uniformly distributed. Suppose an
algorithm is given |ψb〉 (for unknown b) and is required to guess whether b = 0 or b = 1. It
will guess correctly with probability at most 1

2 + 1
2
√

1− |〈ψ0|ψ1〉|2.

Note that if we can distinguish |ψ0〉 and |ψ1〉 with probability ≥ 1− δ, then |〈ψ0|ψ1〉| ≤
2
√
δ(1− δ).

I Fact 9. (Subadditivity of quantum entropy): For an arbitrary bipartite state ρAB on the
Hilbert space HA ⊗HB, it holds that S(ρAB) ≤ S(ρA) + S(ρB).

3 Information-theoretic lower bounds

Upper bounds on sample complexity carry over from classical to quantum PAC learning,
because a quantum example becomes a classical example if we just measure it. Our main
goal is to show that the lower bounds also carry over. All our lower bounds will involve
two terms, one that is independent of C and one that is dependent on the VC dimension of
C. In Section 3.1 we prove the VC-independent part of the lower bounds for the quantum
setting (which also is a lower bound for the classical setting), in Section 3.2 we present an
information-theoretic lower bound on sample complexity for PAC learning and agnostic
learning which yields optimal VC-dependent bounds in the classical case. Using similar ideas,
in Section 3.3 we obtain near-optimal bounds in the quantum case.

3.1 VC-independent part of lower bounds

I Lemma 10 ([10]). Let C be a non-trivial concept class. For every δ ∈ (0, 1/2), ε ∈ (0, 1/4),
a (ε, δ)-PAC quantum learner for C has sample complexity Ω( 1

ε log 1
δ ).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C defined on
two inputs {x1, x2} as follows c1(x1) = c2(x1) = 0 and c1(x2) = 0, c2(x2) = 1. Consider
the distribution D(x1) = 1 − ε and D(x2) = ε. For i ∈ {1, 2}, the state of the algorithm
after T queries to QPEX(ci, D) is |ψi〉 = (

√
1− ε|x1, 0〉+

√
ε|x2, ci(x2)〉)⊗T . It follows that

〈ψ1|ψ2〉 = (1− ε)T . Since the success probability of an (ε, δ)-PAC quantum learner is ≥ 1− δ,
Fact 8 implies 〈ψ1|ψ2〉 ≤ 2

√
δ(1− δ). Hence T = Ω( 1

ε log 1
δ ). J

I Lemma 11. Let C be a non-trivial concept class. For every δ ∈ (0, 1/2), ε ∈ (0, 1/4), a
(ε, δ)-agnostic quantum learner for C has sample complexity Ω( 1

ε2 log 1
δ ).

Proof. Since C is non-trivial, we may assume there are two concepts c1, c2 ∈ C and there
exists an input x ∈ {0, 1}n such that c1(x) 6= c2(x). Consider the two distributions
D− and D+ defined as follows: D±(x, c1(x)) = (1 ± ε)/2 and D±(x, c2(x)) = (1 ∓ ε)/2.
Let |ψ±〉 be the state after T queries to QAEX(D±), i.e., |ψ±〉 = (

√
(1± ε)/2|x, c1(x)〉 +√

(1∓ ε)/2|x, c2(x)〉)⊗T . It follows that 〈ψ+|ψ−〉 = (1− ε2)T/2. Since the success probabil-
ity of an (ε, δ)-agnostic quantum learner is ≥ 1− δ, Fact 8 implies 〈ψ+|ψ−〉 ≤ 2

√
δ(1− δ).

Hence T = Ω( 1
ε2 log 1

δ ) J
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3.2 Information-theoretic lower bounds on sample complexity: classical
case

3.2.1 Optimal lower bound for classical PAC learning
I Theorem 12. Let C be a concept class with VC-dim(C) = d+1. Then for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-PAC learner for C has sample complexity Ω

(
d
ε + log(1/δ)

ε

)
.

Proof. Consider an (ε, δ)-PAC learner for C that uses T examples. The d-independent part
of the lower bound, T = Ω(log(1/δ)/ε), even holds for quantum examples and was proven
in Lemma 10. Hence it remains to prove T = Ω(d/ε). It suffices to show this for a specific
distribution D, defined as follows. Let S = {s0, s1, . . . , sd} ⊆ {0, 1}n be some (d+ 1)-element
set shattered by C. Define D(s0) = 1− 4ε and D(si) = 4ε/d for all i ∈ [d].

Because S is shattered by C, for each string a ∈ {0, 1}d, there exists a concept ca ∈ C such
that ca(s0) = 0 and ca(si) = ai for all i ∈ [d]. We define two correlated random variables A
and B corresponding to the concept and to the examples, respectively. Let A be a random
variable that is uniformly distributed over {0, 1}d; if A = a, let B = B1 . . .BT be T i.i.d.
examples from ca according to D. We give the following three-step analysis of these random
variables:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).

Proof. Let random variable h(B) ∈ {0, 1}d be the hypothesis that the learner produces
(given the examples in B) restricted to the elements s1, . . . , sd. Note that the error of the
hypothesis errD(h(B), cA) equals dH(A, h(B)) · 4ε/d, because each si where A and h(B)
differ contributes D(si) = 4ε/d to the error. Let Z be the indicator random variable for
the event that the error is ≤ ε. If Z = 1, then dH(A, h(B)) ≤ d/4. Since we are analyzing
an (ε, δ)-PAC learner, we have Pr[Z = 1] ≥ 1− δ, and H(Z) ≤ H(δ). Given a string h(B)
that is d/4-close to A, A ranges over a set of only

∑d/4
i=0
(
d
i

)
≤ 2H(1/4)d possible d-bit

strings (using Fact 7), hence H(A | B,Z = 1) ≤ H(A | h(B),Z = 1) ≤ H(1/4)d. We
now lower bound I(A : B) as follows:

I(A : B) = H(A)−H(A | B)
≥ H(A)−H(A | B,Z)−H(Z)
= H(A)− Pr[Z = 1] ·H(A | B,Z = 1)

− Pr[Z = 0] ·H(A | B,Z = 0)−H(Z)
≥ d− (1− δ)H(1/4)d− δd−H(δ)
= (1− δ)(1−H(1/4))d−H(δ).

2. I(A : B) ≤ T · I(A : B1).
Proof. This inequality is essentially due to Jain and Zhang [35, Lemma 5], we include the
proof for completeness.

I(A : B) = H(B)−H(B | A) = H(B)−
T∑
i=1

H(Bi | A)

≤
T∑
i=1

H(Bi)−
T∑
i=1

H(Bi | A) =
T∑
i=1

I(A : Bi),

where the second equality used independence of the Bi’s conditioned on A, and the
inequality uses Fact 9. Since I(A : Bi) = I(A : B1) for all i, we get the inequality.

CCC 2017



25:16 Optimal Quantum Sample Complexity of Learning Algorithms

3. I(A : B1) = 4ε.
Proof. View B1 = (I,L) as consisting of an index I ∈ {0, 1, . . . , d} and a corresponding
label L ∈ {0, 1}. With probability 1 − 4ε, (I,L) = (0, 0). For each i ∈ [d], with
probability 4ε/d, (I,L) = (i,Ai). Note that I(A : I) = 0 because I is independent of A;
I(A : L | I = 0) = 0; and I(A : L | I = i) = I(Ai : L | I = i) = H(Ai | I = i)−H(Ai |
L, I = i) = 1− 0 = 1 for all i ∈ [d]. We have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i) = 4ε.

Combining these three steps implies T = Ω(d/ε). J

3.2.2 Optimal lower bound for classical agnostic learning
I Theorem 13. Let C be a concept class with VC-dim(C) = d. Then for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-agnostic learner for C has sample complexity Ω

(
d
ε2 + log(1/δ)

ε2

)
.

Proof. The d-independent part of the lower bound, T = Ω(log(1/δ)/ε2), even holds for
quantum examples and was proven in Lemma 11. For the other part, the proof is similar to
Theorem 12, as follows. Assume an (ε, δ)-agnostic learner for C that uses T examples. We
need to prove T = Ω(d/ε2). For shattered set S = {s1, . . . , sd} ⊆ {0, 1}n and a ∈ {0, 1}d,
define distribution Da on [d]× {0, 1} by Da(i, `) = (1 + (−1)ai+`4ε)/2d.

Again let random variable A ∈ {0, 1}d be uniformly random, corresponding to the values
of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da. Note that ca is the
minimal-error concept from C w.r.t. Da, and concept cã has additional error dH(a, ã) · 4ε/d.
Accordingly, an (ε, δ)-agnostic learner has to produce (from B) an h(B) ∈ {0, 1}d, which,
with probability at least 1− δ, is d/4-close to A. Our three-step analysis is very similar to
Theorem 12; only the third step changes:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) = 1−H(1/2 + 2ε) = O(ε2).

Proof. View the Da-distributed random variable B1 = (I,L) as index I ∈ [d] and label
L ∈ {0, 1}. The marginal distribution of I is uniform; conditioned on I = i, the bit L
equals Ai with probability 1/2 + 2ε. Hence

I(A : L | I = i) = I(Ai : L | I = i) = H(Ai | I = i)−H(Ai | L, I = i) = 1−H(1/2+2ε).

Using Fact 6, we have

I(A : B1) = I(A : I) + I(A : L | I) =
d∑
i=1

Pr[I = i] · I(A : L | I = i)

= 1−H(1/2 + 2ε) = O(ε2).

Combining these three steps implies T = Ω(d/ε2). J

In the theorem below, we optimize the constant in the lower bound of the sample
complexity in Theorem 13. In learning theory such lower bounds are often stated slightly
differently. In order to compare the lower bounds, we introduce the following. We first
define an ε-average agnostic learner for a concept class C as a learner that, given access to
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T samples from an AEX(D) oracle (for some unknown distribution D), needs to output a
hypothesis hXY (where (X,Y) ∼ DT ) that satisfies

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≤ ε.

Lower bounds on the quantity (E(X,Y)∼DT [errD(hXY)]− optD(C)) are generally referred to
as minimax lower bounds in learning theory. For concept class C, Audibert [12, 13] showed
that there exists a distribution D, such that if the agnostic learner uses T samples from
AEX(D), then

E
(X,Y)∼DT

[errD(hXY)]− optD(C) ≥ 1
6

√
d

T
.

Equivalently, this is a lower bound of T ≥ d
36ε2 on the sample complexity of an ε-average

agnostic learner. We obtain a slightly weaker lower bound that is essentially T ≥ d
62ε2 :

I Theorem 14. Let C be a concept class with VC-dim(C) = d. Then for every ε ∈ (0, 1/10],
there exists a distribution for which every ε-average agnostic learner has sample complexity
at least d

ε2 ·
(

1
62 −

log(2d+2)
4d

)
.

Proof. The proof is similar to Theorem 13. Assume an ε-average agnostic learner for C

that uses T samples. For shattered set S = {s1, . . . , sd} ⊆ {0, 1}n and a ∈ {0, 1}d, define
distribution Da on [d]× {0, 1} by Da(i, `) = (1 + (−1)ai+`βε)/2d, for some constant β ≥ 2
which we shall pick later.

Again let random variable A ∈ {0, 1}d be uniformly random, corresponding to the values
of concept ca on S, and B = B1 . . .BT be T i.i.d. samples from Da. Note that ca is the
minimal-error concept from C w.r.t. Da, and concept cã has additional error dH(a, ã) · βε/d.
Accordingly, an ε-average agnostic learner has to produce (from B) an h(B) ∈ {0, 1}d, which
satisfies EA,B[dH(A, h(B))] ≤ d/β.

Our three-step analysis is very similar to Theorem 13; only the first step changes:
1. I(A : B) ≥ d(1−H(1/β))− log(d+ 1).

Proof. Define random variable Z = dH(A, h(B)), then E[Z] ≤ d/β. Note that given a
string h(B) that is `-close to A, A ranges over a set of only

(
d
`

)
≤ 2H(`/d)d possible d-bit

strings (using Fact 7), hence H(A | B,Z = `) ≤ H(A | h(B),Z = `) ≤ H(`/d)d. We now
lower bound I(A : B)

I(A : B) = H(A)−H(A | B)
≥ H(A)−H(A | B,Z)−H(Z)

= d−
d+1∑
`=0

Pr[Z = `] ·H(A | B,Z = `)−H(Z)

≥ d− E
`∈{0,...,d}

[H(`/d)d]− log(d+ 1) (since Z ∈ {0, . . . , d})

≥ d− dH
(E`[`]

d

)
− log(d+ 1) (using Jensen’s inequality)

≥ d− dH(1/β)− log(d+ 1), (using E[Z] ≤ d/β)

where for the third inequality we used the concavity of the binary entropy function to
conclude E`[H(`/d)] ≤ H(E`[`]/d), and for the fourth inequality we used that β ≥ 2.

2. I(A : B) ≤ T · I(A : B1).

3. I(A : B1) = 1−H(1/2 + βε/2)
Fact 6
≤ β2ε2/ ln 4 +O(ε4).
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Combining these three steps implies

T ≥ d ln 4
ε2 ·

(1−H(1/β)
β2 +O(ε2) −

log(d+ 1)
β2d+O(dε2)

)
.

Using ε ≤ 1/10, β = 4 to optimize this lower bound, we obtain T ≥ d
ε2 ·
(

1
62 −

log(2d+2)
4d

)
. J

3.3 Information-theoretic lower bounds on sample complexity:
quantum case

Here we will “quantize” the above two classical information-theoretic proofs, yielding lower
bounds for quantum sample complexity (in both the PAC and the agnostic setting) that are
tight up to a logarithmic factor.

3.3.1 Near-optimal lower bound for quantum PAC learning
I Theorem 15. Let C be a concept class with VC-dim(C) = d+1. Then, for every δ ∈ (0, 1/2)
and ε ∈ (0, 1/4), every (ε, δ)-PAC quantum learner for C has sample complexity Ω

(
d

ε log(d/ε) +
log(1/δ)

ε

)
.

Proof. The proof is analogous to Theorem 12. We use the same distribution D, with the Bi

now being quantum samples: |ψa〉 =
∑
i∈{0,1,...,d}

√
D(si)|i, ca(si)〉. The AB-system is now

in the following classical-quantum state:

1
2d

∑
a∈{0,1}d

|a〉〈a| ⊗ |ψa〉〈ψa|⊗T .

The first two steps of our argument are identical to Theorem 12. We only need to re-analyze
step 3:
1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) ≤ H(4ε) + 4ε log(2d) = O(ε log(d/ε)).

Proof. Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1)− S(AB1) = S(B1),

where the first equality follows from definition and the second equality uses S(A) = d

since A is uniformly distributed in {0, 1}d, and S(AB1) = d since the matrix σ =
1
2d

∑
a∈{0,1}d |a〉〈a| ⊗ |ψa〉〈ψa| is block diagonal with 2d rank-1 blocks on the diagonal.

It thus suffices to bound the entropy of the singular values of the reduced state of B1,
which is

ρ = 1
2d

∑
a∈{0,1}d

|ψa〉〈ψa|.

Let σ0 ≥ σ1 ≥ · · · ≥ σ2d ≥ 0 be its singular values. Since ρ is a density matrix, these
form a probability distribution. Note that the upper-left entry of the matrix |ψa〉〈ψa| is
D(s0) = 1− 4ε, hence so is the upper-left entry of ρ. This implies σ0 ≥ 1− 4ε. Consider
sampling a number N ∈ {0, 1, . . . , 2d} according to the σ-distribution. Let Z be the
indicator random variable for the event N 6= 0, which has probability 1− σ0 ≤ 4ε. Note
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that H(N | Z = 0) = 0, because Z = 0 implies N = 0. Also, H(N | Z = 1) ≤ log(2d),
because if Z = 1 then N ranges over 2d elements. We now have

S(ρ) = H(N) = H(N,Z) = H(Z) +H(N | Z)
= H(Z) + Pr[Z = 0] ·H(N | Z = 0) + Pr[Z = 1] ·H(N | Z = 1)
≤ H(4ε) + 4ε log(2d)
= O(ε log(d/ε)). (using Fact 6)

Combining these three steps implies T = Ω
(

d
ε log(d/ε)

)
. J

3.3.2 Near-optimal lower bound for quantum agnostic learning
I Theorem 16. Let C be a concept class with VC-dim(C) = d. Then for every δ ∈ (0, 1/2) and
ε ∈ (0, 1/4), every (ε, δ)-agnostic quantum learner for C has sample complexity Ω

(
d

ε2 log(d/ε) +
log(1/δ)
ε2

)
.

Proof. The proof is analogous to Theorem 13, with the Bi now being quantum samples
for Da, |ψa〉 =

∑
i∈[d],`∈{0,1}

√
Da(i, `)|i, `〉. Again we only need to re-analyze step 3:

1. I(A : B) ≥ (1− δ)(1−H(1/4))d−H(δ) = Ω(d).
2. I(A : B) ≤ T · I(A : B1).
3. I(A : B1) = O(ε2 log(d/ε)).

Proof (of step 3). As in step 3 of the proof of Theorem 15, it suffices to upper bound the
entropy of

ρ = 1
2d

∑
a∈{0,1}d

|ψa〉〈ψa|.

We now lower bound the largest singular value of ρ. Consider |ψ〉 = 1√
2d

∑
i∈[d],`∈{0,1} |i, `〉.

〈ψ|ψa〉 = 1
d

∑
i∈[d]

1
2

(√
1 + 4ε+

√
1− 4ε

)
= 1

2

(√
1 + 4ε+

√
1− 4ε

)
≥ 1− 2ε2 −O(ε4),

where the last inequality used the Taylor series expansion of
√

1 + x. This implies that
the largest singular value of ρ is at least

〈ψ|ρ|ψ〉 = 1
2d

∑
a∈{0,1}d

|〈ψ|ψa〉|2 ≥ 1− 4ε2 −O(ε4).

We can now finish as in step 3 of the proof of Theorem 15:

I(A : B1) ≤ S(ρ) ≤ H(4ε2) + 4ε2 log(2d) Fact 6= O(ε2 log(d/ε)).

Combining these three steps implies T = Ω
(

d
ε2 log(d/ε)

)
. J

4 A lower bound by analysis of state identification

In this section we present a tight lower bound on quantum sample complexity for both
the PAC and the agnostic learning settings, using ideas from Fourier analysis to analyze
the performance of the Pretty Good Measurement. The core of both lower bounds is the
following theorem.
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I Theorem 17. For m ≥ 10, let f : {0, 1}m → R be defined as f(z) = (1− β |z|m )T for some
β ∈ (0, 1] and T ∈ [1,m/(e3β)]. For k ≤ m, let M ∈ Fm×k2 be a matrix with rank k. Suppose
A ∈ R2k×2k is defined as A(x, y) = (f ◦M)(x+ y) for x, y ∈ {0, 1}k, then

√
A(x, x) ≤ 2

√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m+

√
Tmβ for all x ∈ {0, 1}k.

Proof. The structure of the proof is to first diagonalize A, relating its eigenvalues to the
Fourier coefficients of f . This allows to calculate the diagonal entries of

√
A exactly in

terms of those Fourier coefficients. We then upper bound those Fourier coefficients using a
combinatorial argument.

We first observe the well-known relation between the eigenvalues of a matrix P defined
as P (x, y) = g(x+ y) for x, y ∈ {0, 1}k, and the Fourier coefficients of g.

I Claim 18. Suppose g : {0, 1}k → R and P ∈ R2k×2k is defined as P (x, y) = g(x+ y), then
the eigenvalues of P are {2kĝ(Q) : Q ∈ {0, 1}k}.

Proof. Let H ∈ R2k×2k be the matrix defined as H(x, y) = (−1)x·y for x, y ∈ {0, 1}k. It is
easy to see that H−1(x, y) = (−1)x·y/2k. We now show that H diagonalizes P :

(HPH−1)(x, y) = 1
2k

∑
z1,z2∈{0,1}k

(−1)z1·x+z2·yg(z1 + z2)

= 1
2k

∑
z1,z2,Q∈{0,1}k

(−1)z1·x+z2·y ĝ(Q)(−1)Q·(z1+z2)

(Fourier expansion of g)

= 1
2k

∑
Q∈{0,1}k

ĝ(Q)
∑

z1∈{0,1}k

(−1)(x+Q)·z1
∑

z2∈{0,1}k

(−1)(y+Q)·z2

= 2kĝ(x)δx,y (using
∑
z∈{0,1}k [(−1)(a+b)·z] = 2kδa,b)

The eigenvalues of P are the diagonal entries, {2kĝ(Q) : Q ∈ {0, 1}k}. J

We now relate the diagonal entries of
√
A to the Fourier coefficients of f :

I Claim 19. For all x ∈ {0, 1}k, we have

√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S) .

Proof. Since A(x, y) = (f ◦M)(x + y), by Claim 18 it follows that H (as defined in the
proof of Claim 18) diagonalizes A and the eigenvalues of A are {2kf̂ ◦M(Q) : Q ∈ {0, 1}k}.
Hence, we have

√
A = H−1 · diag

({√
2kf̂ ◦M(Q) : Q ∈ {0, 1}k

})
·H,

and the diagonal entries of
√
A are

√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√
f̂ ◦M(Q) Claim 4= 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S). J

In the following lemma, we give an upper bound on the Fourier coefficients of f , which in
turn (from the claim above) gives an upper bound on the diagonal entries of

√
A.
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I Lemma 20. For β ∈ (0, 1], the Fourier coefficients of f : {0, 1}m → R defined as
f(z) = (1− β |z|m )T , satisfy

0 ≤ f̂(S) ≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m, for all S such that |S| = q.

Proof. In order to see why the Fourier coefficients of f are non-negative, we first define
the set U = {u⊗Tx }x∈{0,1}m where ux =

√
1− β|0, 0〉 +

√
β/m

∑
i∈[m] |i, xi〉. Let V be the

2m × 2m Gram matrix for the set U . For x, y ∈ {0, 1}m, we have

V (x, y) = (u∗xuy)T =
(

1− β + β

m

m∑
i=1
〈xi|yi〉

)T
=
(

1− β + β

m
(m− |x+ y|)

)T
=
(

1− β |x+ y|
m

)T
= f(x+ y).

By Claim 18, the eigenvalues of the Gram matrix V are {2mf̂(S) : S ∈ {0, 1}m}. Since the
Gram matrix is psd, its eigenvalues are non-negative, which implies that f̂(S) ≥ 0 for all
S ∈ {0, 1}m.

We now prove the upper bound in the lemma. By definition,

f̂(S) = E
z∈{0,1}m

[(
1− β |z|

m

)T
(−1)S·z

]
= E
z∈{0,1}m

[(
1− β

2 + β

2m

m∑
i=1

(−1)zi

)T
(−1)S·z

]
(since |z| =

∑
i∈[m]

1−(−1)zi

2 )

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)`
E

z∈{0,1}m

[ m∑
i1,...,i`=1

(−1)z·(ei1 +···+ei`
+S)
]

=
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1 +···+ei`
=S]

(using Ez∈{0,1}m [(−1)(z1+z2)·z] = δz1,z2)

We will use the following claim to upper bound the combinatorial sum in the quantity above.

I Claim 21. Fix S ∈ {0, 1}m with Hamming weight |S| = q. For every ` ∈ {q, . . . , T}, we
have

m∑
i1,...,i`=1

1[ei1 +···+ei`
=S] ≤

`! ·m(`−q)/2
/(

2(`−q)/2((`− q)/2)!
)

if (`− q) is even

0 otherwise

Proof. Since |S| = q, we can write S = er1 + · · ·+ erq
for distinct r1, . . . , rq ∈ [m]. There

are
(
`
q

)
ways to pick q indices in (i1, . . . , i`) (w.l.o.g. let them be i1, . . . , iq) and there are q!

factorial ways to assign (r1, . . . , rq) to (i1, . . . , iq). It remains to count the number of ways
that we can assign values to the remaining indices iq+1, . . . , i` such that eiq+1 + · · ·+ ei` = 0.
If `− q is odd then this number is 0, so from now on assume `− q is even. We upper bound
the number of such assignments by partitioning the `− q indices into pairs and assigning the
same value to both indices in each pair.

We first count the number of ways to partition a set of `− q indices into subsets of size 2.
This number is exactly (`− q)!

(
2(`−q)/2((`− q)/2)!

)−1
. Furthermore, there are m possible

values that can be assigned to the pair of indices in each of the (`− q)/2 subsets such that
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ei + ej = 0 within each subset. Note that assigning m possible values to each pair of indices
in the (`− q)/2 subsets overcounts, but this rough upper bound is sufficient for our purposes.

Combining the three arguments, we conclude
d∑

i1,...,i`=1
1[ei1 +···+ei`

=S] ≤
(
`

q

)
q! · (`− q)! ·m(`−q)/2

/(
2(`−q)/2((`− q)/2)!

)
.

which yields the claim. J

Continuing with the evaluation of the Fourier coefficient and using the claim above,
we have

f̂(S) =
T∑
`=0

(
T

`

)(
1− β

2

)T−`( β

2m

)` m∑
i1,...,i`=1

1[ei1 +···+ei`
=S]

≤
T∑
`=q

(
T

`

)(
1− β

2

)T−`( β

2m

)`
`! ·m(`−q)/2

/(
2(`−q)/2

(`− q
2

)
!
)

(by Claim 21)

=
(

1− β

2

)T( 2
m

)q/2 T∑
`=q

(
T

`

)
`!
( β

m(2− β)

)`(m
2

)`/2/(`− q
2

)
!

≤
(

1− β

2

)T( 2
m

)q/2 T∑
`=q

(
T · β

m
·
√
m

2

)`/(`− q
2

)
! (since β < 1 and

(
T
`

)
`! ≤ T `)

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r 1
(r/2)! (substituting r ← (`− q))

≤
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

( Tβ√
2m

)r er/2

(r/2)r/2
(using n! ≥ (n/e)n)

=
(

1− β

2

)T(Tβ
m

)q T−q∑
r=0

(√eTβ√
mr

)r
≤
(

1− β

2

)T(Tβ
m

)q T∑
r=0

(√eTβ√
mr

)r
(since the summands are ≥ 0)

=
(

1− β

2

)T(Tβ
m

)q( de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
+

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r)
.

Note that by the assumptions of the theorem, T 2e3β2/m ≤ Tβ ≤ T , which allowed us to
split the sum into two pieces in the last equality. At this point, we upper bound both pieces
in the last equation separately. For the first piece, using Claim 5 it follows that

(√
eTβ√
mr

)r
is

maximized at r = dT 2β2/me. Hence we get

de3T 2β2/me∑
r=0

(√eTβ√
mr

)r
≤
(

2 + e3T 2β2

m

)
edT

2β2/me/2 ≤ 2e22T 2β2/m+1, (6)

where the first inequality uses Claim 5 and the second inequality uses 2 + x ≤ 2ex for x ≥ 0
and e3 + 1/2 ≤ 22. For the second piece, we use

T∑
r=de3T 2β2/me+1

(√eTβ√
mr

)r
≤

T∑
r=de3T 2β2/me+1

(1
e

)r
≤

T∑
r=1

(1
e

)r
= 1− e−T

e− 1 ≤ 2/3. (7)
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So we finally get

f̂(S) ≤
(

1− β

2

)T(Tβ
m

)q(
2e22T 2β2/m+1 + 2/3

)
(using Eq. (6), (7))

≤ 4e
(

1− β

2

)T(Tβ
m

)q
e22T 2β2/m (since 22T 2β2/m > 0)

J

The theorem follows by putting together Claim 19 and Lemma 20:
√
A(x, x) = 1

2k/2
∑

Q∈{0,1}k

√ ∑
S∈{0,1}m:MtS=Q

f̂(S) (using Claim 19)

≤ 1
2k/2

∑
Q∈{0,1}k

∑
S∈{0,1}m:MtS=Q

√
f̂(S) (using lower bound from Lemma 20)

= 1
2k/2

∑
S∈{0,1}m

√
f̂(S) (∪Q{S : M tS = Q} = {0, 1}m since rank(M)=k)

= 1
2k/2

m∑
q=0

∑
S∈{0,1}m:|S|=q

√
f̂(S)

≤ 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m

m∑
q=0

(
m

q

)(Tβ
m

)q/2
(using Lemma 20)

= 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m

(
1 +

√
Tβ

m

)m
(using binomial theorem)

≤ 2
√
e

2k/2
(

1− β

2

)T/2
e11T 2β2/m+

√
Tmβ . (using (1 + x)t ≤ ext for x, t ≥ 0)

J

4.1 Optimal lower bound for quantum PAC learning
We can now prove our tight lower bound on quantum sample complexity in the PAC model:

I Theorem 22. Let C be a concept class with VC-dim(C) = d+ 1, for sufficiently large d.
Then for every δ ∈ (0, 1/2) and ε ∈ (0, 1/20), every (ε, δ)-PAC quantum learner for C has
sample complexity Ω

(
d
ε + 1

ε log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 10. To prove the d-dependent
part, define a distribution D on a set S = {s0, . . . , sd} ⊆ {0, 1}n that is shattered by C as
follows: D(s0) = 1− 20ε and D(si) = 20ε/d for all i ∈ [d].

Now consider a [d, k, r]2 linear code (for k ≥ d/4, distance r ≥ d/8) as shown to exist in
Theorem 3 with the generator matrix M ∈ Fd×k2 of rank k. Let {Mx : x ∈ {0, 1}k} ⊆ {0, 1}d
be the set of codewords in this linear code; these satisfy dH(Mx,My) ≥ d/8 whenever
x 6= y. For each x ∈ {0, 1}k, let cx be a concept defined on the shattered set as: cx(s0) = 0
and cx(si) = (Mx)i for all i ∈ [d]. The existence of such concepts in C follows from
the fact that S is shattered by C. From the distance property of the code, we have
Prs∼D[cx(s) 6= cy(s)] ≥ 20ε

d
d
8 = 5ε/2. This in particular implies that an (ε, δ)-PAC quantum

learner that tries to ε-approximate a concept from {cx : x ∈ {0, 1}k} should successfully
identify that concept with probability at least 1− δ.

We now consider the following state identification problem: for x ∈ {0, 1}k, denote
|ψx〉 =

∑
i∈{0,...,d}

√
D(si)|si, cx(si)〉. Let the (ε, δ)-PAC quantum sample complexity be T .
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Assume T ≤ d/(20e3ε), since otherwise T ≥ Ω(d/ε) and the theorem follows. Suppose
the learner has knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}, and is given
|ψx〉⊗T ∈ E for a uniformly random x. The learner would like to maximize the average
probability of success to identify the given state. For this problem, we prove a lower bound
on T using the PGM defined in Section 2.6. In particular, we show that using the PGM, if a
learner successfully identifies the states in E , then T = Ω(d/ε). Since the PGM is the optimal
measurement6 that the learner could have performed, the result follows. The following lemma
makes this lower bound rigorous and will conclude the proof of the theorem.

I Lemma 23. For every x ∈ {0, 1}k, let |ψx〉 =
∑
i∈{0,...,d}

√
D(si)|si, cx(si)〉, and E =

{(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then7

PPGM (E) ≤ 4e
2d/4+Tε e

8800T 2ε2/d+4
√

5Tdε.

Before we prove the lemma, we first show why it implies the theorem. Since we observed
above that P opt(E) = PPGM (E), a good learner satisfies PPGM (E) = Ω(1) (say for δ = 1/4),
which in turn implies

Ω(max{d, Tε}) ≤ O(min{T 2ε2/d,
√
Tdε}).

Note that if Tε maximizes the left-hand side, then d ≤ Tε and hence T ≥ Ω(d/ε). The
remaining cases are Ω(d) ≤ T 2ε2/d and Ω(d) ≤

√
Tdε. Both these statements give us

T ≥ Ω(d/ε). Hence the theorem follows, and it remains to prove Lemma 23:

Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k × 2k Gram matrix for E ′. As
we saw in Section 2.6, the success probability of identifying the states in the ensemble E
using the PGM is

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of the Gram matrix G can be written as:

G(x, y) = 1
2k 〈ψx|ψy〉

T = 1
2k
(

(1− 20ε) + 20ε
d

d∑
i=1
〈cx(si)|cy(si)〉

)T
= 1

2k
(

(1− 20ε) + 20ε
d

(d− dH(Mx,My))
)T

= 1
2k
(

1− 20ε
d
dH(Mx,My)

)T
,

whereMx,My ∈ {0, 1}d are codewords in the linear code defined earlier. Define f : {0, 1}d →
R as f(z) = (1 − 20ε

d |z|)
T , and let A(x, y) = (f ◦M)(x + y) for x, y ∈ {0, 1}k. Note that

G = A/2k. Since we assumed T ≤ d/(20e3ε), we can use Theorem 17 (by choosing m = d

6 For x ∈ {0, 1}k, define unitary Ucx : |si, b〉 → |si, b + cx(si)〉 for all i ∈ {0, . . . , d}. The ensemble
E is generated by applying {Ucx}x∈{0,1}k to |ϕ〉 =

∑
i∈{0,...,d}

√
D(si)|si, 0〉. View cx = (0,Mx) ∈

{0, 1}d+1 as a concatenated string where Mx is a codeword of the [d, k, r]2 code. Since the 2k codewords
of the [d, k, r]2 code form a linear subspace, {Ucx}x∈{0,1}k is an Abelian group. From the discussion in
Section 2.6, we conclude that the PGM is the optimal measurement for this state identification problem.

7 We made no attempt to optimize the constants here.
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and β = 20ε) to upper bound the success probability of successfully identifying the states in
the ensemble E using the PGM.

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2

= 1
2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e
2k
(

1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 17)

= 4e
2k
(

1− 10ε
)T
e8800T 2ε2/d+4

√
5Tdε (substituting β = 20ε)

≤ 4e
2k+Tε e

8800T 2ε2/d+4
√

5Tdε (using (1− 10ε)T ≤ e−10εT ≤ 2−εT )

The lemma follows by observing that k ≥ d/4. J
J

4.2 Optimal lower bound for quantum agnostic learning
We now use the same approach to obtain a tight lower bound on quantum sample complexity
in the agnostic setting.

I Theorem 24. Let C be a concept class with VC-dim(C) = d, for sufficiently large d. Then
for every δ ∈ (0, 1/2) and ε ∈ (0, 1/10), every (ε, δ)-agnostic quantum learner for C has
sample complexity Ω

(
d
ε2 + 1

ε2 log 1
δ

)
.

Proof. The d-independent part of the lower bound is Lemma 11. For the d-dependent term
in the lower bound, consider a [d, k, r]2 linear code (for k ≥ d/4, distance r ≥ d/8) as shown
to exist in Theorem 3, with generator matrix M ∈ Fd×k2 of rank k. Let {Mx : x ∈ {0, 1}k} ⊆
{0, 1}d be the set of 2k codewords in this linear code; these satisfy dH(Mx,My) ≥ d/8
whenever x 6= y. To each codeword x ∈ {0, 1}k we associate a distribution Dx as follows:

Dx(si, b) = 1
d

(1
2 + 1

2(−1)(Mx)i+bα
)
, for (i, b) ∈ [d]× {0, 1},

where S = {s1, . . . , sd} is a set that is shattered by C, and α is a parameter which we
shall pick later. Let cx ∈ C be a concept that labels S according to Mx ∈ {0, 1}d. The
existence of such cx ∈ C follows from the fact that S is shattered by C. Note that cx is
the minimal-error concept in C w.r.t. Dx. A learner that labels S according to some string
` ∈ {0, 1}d has additional error dH(Mx, `) · α/d compared to cx. This in particular implies
that an (ε, δ)-agnostic quantum learner has to find (with probability at least 1 − δ) an `
such that dH(Mx, `) ≤ dε/α. We pick α = 20ε and we get dH(Mx, `) ≤ d/20. However,
since Mx was a codeword of a [d, k, r]2 code with distance r ≥ d/8, finding an ` satisfying
dH(Mx, `) ≤ d/20 is equivalent to identifying Mx, and hence x.

Now consider the following state identification problem: for x ∈ {0, 1}k, let |ψx〉 =∑
(i,b)∈[d]×{0,1}

√
Dx(si, b)|si, b〉. Let the (ε, δ)-agnostic quantum sample complexity be T .

Assume T ≤ d/(100e3ε2), since otherwise T ≥ Ω(d/ε2) and the theorem follows. Suppose
the learner has knowledge of the ensemble E = {(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}, and is given
|ψx〉⊗T ∈ E for uniformly random x. The learner would like to maximize the average
probability of success to identify the given state. For this problem, we prove a lower bound
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on T using the PGM defined in Section 2.6. In particular, we show that using the PGM,
if a learner successfully identifies the states in E , then T = Ω(d/ε2). Since the PGM is
the optimal measurement8 that the learner could have performed, the result follows. The
following lemma makes this lower bound rigorous and will conclude the proof of the theorem.

I Lemma 25. For x ∈ {0, 1}k, let |ψx〉 =
∑

(i,b)∈[d]×{0,1}
√
Dx(si, b)|si, b〉, and E =

{(2−k, |ψx〉⊗T ) : x ∈ {0, 1}k}. Then

PPGM (E) ≤ 4e
e(d ln 2)/4+25Tε2 e

220000T 2ε4/d+20
√
Tdε2

.

Before we prove the lemma, we first show why it implies the theorem. Since we observed
above that P opt(E) = PPGM (E), a good learner satisfies PPGM (E) = Ω(1) (say for δ = 1/4),
which in turn implies

Ω(max{d, Tε2}) ≤ O(min{T 2ε4/d,
√
Tdε2}).

Like in the proof of Theorem 22, this implies a lower bound of T = Ω(d/ε2) and proves the
theorem. It remains to prove Lemma 25:

Proof. Let E ′ = {2−k/2|ψx〉⊗T : x ∈ {0, 1}k} and G be the 2k × 2k Gram matrix for the set
E ′. As we saw in Section 2.6, the success probability of identifying the states in the ensemble
E using the PGM is

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2.

For all x, y ∈ {0, 1}k, the entries of G can be written as:

2k ·G(x, y) = 〈ψx|ψy〉T

=
( ∑

(i,b)∈[d]×{0,1}

√
Dx(i, b)Dy(i, b)

)T
=
( 1

2d
∑

(i,b)∈[d]×{0,1}

√
(1 + 10ε(−1)(Mx)i+b)(1 + 10ε(−1)(My)i+b)

)T
=
( 1

2d
∑
(i,b):

(Mx)i=(My)i

(1 + 10ε(−1)(Mx)i+b) + 1
2d

∑
(i,b):

(Mx)i 6=(My)i

√
1− 100ε2

)T

=
(d− dH(Mx,My)

d
+
√

1− 100ε2

d
dH(Mx,My)

)T
=
(

1− 1−
√

1− 100ε2

d
dH(Mx,My)

)T
.

where we used α = 20ε in the third equality.
Let β = 1 −

√
1− 100ε2, which is at most 1 for ε ≤ 1/10. Define f : {0, 1}d → R as

f(z) = (1 − β
d |z|)

T , and let A(x, y) = (f ◦M)(x + y) for x, y ∈ {0, 1}k. Then G = A/2k.

8 For x ∈ {0, 1}k, define unitary Ucx =
∑

i∈[d] |si〉〈si| ⊗ X(Mx)i , where X is the NOT-gate, so
X(Mx)i |b〉 = |b + (Mx)i〉 for b ∈ {0, 1}. The ensemble E is generated by applying {Ucx}x∈{0,1}k

to |ϕ〉 = 1√
d

∑
(i,b)∈[d]×{0,1}

√
1
2 + 1

2 (−1)bα|si, b〉. Since the 2k codewords of the [d, k, r]2 code form a
linear subspace, {Ucx}x∈{0,1}k is an Abelian group. From the discussion in Section 2.6, we conclude
that the PGM is the optimal measurement for this state identification problem.
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Note that T ≤ d/(100e3ε2) ≤ d/(e3β) (the first inequality is by assumption and the second
inequality follows for ε ≤ 1/10 and β ≤ 1). Since we assumed T ≤ d/(100e3ε2), we can
use Theorem 17 (by choosing m = d and β = 1−

√
1− 100ε2) to upper bound the success

probability of identifying the states in the ensemble E :

PPGM (E) =
∑

x∈{0,1}k

√
G(x, x)2

= 1
2k

∑
x∈{0,1}k

√
A(x, x)2 (since G = A/2k)

≤ 4e
2k
(

1− β

2

)T
e22T 2β2/d+2

√
Tdβ (using Theorem 17)

≤ 4e
2k
(

1− β

2

)T
e220000T 2ε4/d+20

√
Tdε2 (using β = 1−

√
1− 100ε2 ≤ 100ε2)

≤ 4e
2k
(

1− 25ε2
)T
e220000T 2ε4/d+20

√
Tdε2 (using

√
1− 100ε2 ≤ 1− 50ε2)

≤ 4e
ek ln 2+25Tε2 e

220000T 2ε4/d+20
√
Tdε2

. (using (1− x)t ≤ e−xt for x, t ≥ 0)

The lemma follows by observing that k ≥ d/4. J
J

4.3 Additional results
In this section we mention two additional results that can also be obtained using Theorem 17.

4.3.1 Quantum PAC sample complexity under random classification
noise

In the theorem below, we show a lower bound on the quantum PAC sample complexity under
the random classification noise model with noise rate η. Recall that in this model, for every
c ∈ C and distribution D, ε, δ > 0, given access to copies of the η-noisy state,∑

x∈{0,1}n

√
(1− η)D(x)|x, c(x)〉+

√
ηD(x)|x, 1− c(x)〉,

a (ε, δ)-PAC quantum learner is required to output an hypothesis h such that errD(c, h) ≤ ε
with probability at least 1− δ.

I Theorem 26. Let C be a concept class with VC-dim(C) = d+ 1, for sufficiently large d.
Then for every δ ∈ (0, 1/2), ε ∈ (0, 1/20) and η ∈ (0, 1/2), every (ε, δ)-PAC quantum learner
for C in the PAC setting with random classification noise rate η, has sample complexity
Ω
(

d
(1−2η)2ε + log(1/δ)

(1−2η)2ε

)
.

One can use exactly the same proof technique as in Lemma 10 and Theorem 22 to prove
this, with only the additional inequality 1− 2

√
η(1− η) ≤ (1− 2η)2, which holds for η ≤ 1/2.

We omit the details of the calculation.

4.3.2 Distinguishing codeword states
Ashley Montanaro (personal communication) alerted us to the following interesting special
case of our PGM-based result.
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Consider an [n, k, d]2 linear code {Mx : x ∈ {0, 1}k}, where M ∈ Fn×k2 is the rank-k
generator matrix of the code, k = Ω(n), and distinct codewords have Hamming distance at
least d.9 For every x ∈ {0, 1}k, define a codeword state |ψx〉 = 1√

n

∑
i∈[n] |i, (Mx)i〉. These

states form an example of a quantum fingerprinting scheme [19]: 2k states whose pairwise
inner products are bounded away from 1. How many copies do we need to identify one
such fingerprint?

Let E = {(2−k, |ψx〉) : x ∈ {0, 1}k} be an ensemble of codeword states. Consider the
following task: given T copies of an unknown state drawn uniformly from E , we are required
to identify the state with probability ≥ 4/5. From Holevo’s theorem one can easily obtain a
lower bound of T = Ω(k/ logn) copies, since the learner should obtain Ω(k) bits of information
(i.e., identify k-bit string x with probability ≥ 4/5), while each copy of the codeword state
gives at most logn bits of information. In the theorem below, we improve that Ω(k/ logn)
to the optimal Ω(k) for constant-rate codes.

I Theorem 27. Let E = {|ψx〉 = 1√
n

∑
i∈[n] |i, (Mx)i〉 : x ∈ {0, 1}k}, where M ∈ Fn×k2 is

the generator matrix of an [n, k, d]2 linear code with k = Ω(n). Then Ω(k) copies of an
unknown state from E (drawn uniformly at random) are necessary to be able to identify that
state with probability at least 4/5.

One can use exactly the proof technique of Theorem 22 to prove the theorem. Suppose
we are given T copies of the unknown codeword state. Assume T ≤ n, since otherwise
T ≥ n ≥

√
kn and the theorem follows. Observe that the Gram matrix G for E ′ =

{2−k/2|ψx〉⊗T : x ∈ {0, 1}k} can be written as G(x, y) = 1
2k

(
1− |M(x+y)|

n

)T
for x, y ∈ {0, 1}k.

Using Theorem 17 (choosing β = 1 and m = n) to upper bound the success probability of
successfully identifying the states in the ensemble E using the PGM, we obtain

PPGM (E) ≤ 4e
2k+T e

22T 2/n+2
√
Tn.

As in the proof of Theorem 22, this implies the lower bound of Theorem 27. We omit the
details of the calculation.

5 Conclusion

The main result of this paper is that quantum examples give no significant improvement over
the usual random examples in passive, distribution-independent settings. Of course, these
negative results do not mean that quantum machine learning is useless. In our introduction
we already mentioned improvements from quantum examples for learning under the uniform
distribution; improvements from using quantum membership queries; and improvements in
time complexity based on quantum algorithms like Grover’s and HHL. Quantum machine
learning is still in its infancy, and we hope for many more positive results.

We end by identifying a number of open questions for future work:
We gave lower bounds on sample complexity for the rather benign random classification
noise. What about other noise models, such a malicious noise?
What is the quantum sample complexity for learning concepts whose range is [k] rather
than {0, 1}, for some k > 2? Even the classical sample complexity is not fully determined
yet [45, Section 29.2].

9 Note that throughout this paper C was a concept class in {0, 1}n and d was the VC dimension of C.
The use of n, d in this section has been changed to conform to the convention in coding theory.
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Classically, it is still an open question whether the log(1/ε)-factor in the upper bound
of [17] for (ε, δ)-proper PAC learning is necessary. A weaker result (possibly easier to
prove) would be to give a (ε, δ)-quantum proper PAC learner without this log(1/ε)-factor.
In the introduction we mentioned a few examples of learning under the uniform distribution
where quantum examples are significantly more powerful than classical examples. Can
we find more such examples of quantum improvements in sample complexity in fixed-
distribution settings?
Can we find more examples of quantum speed-up in time complexity of learning, for
example for learning depth-3 or even constant-depth circuits?
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