2,538 research outputs found

    On the Closest Vector Problem with a Distance Guarantee

    Get PDF
    We present a substantially more efficient variant, both in terms of running time and size of preprocessing advice, of the algorithm by Liu, Lyubashevsky, and Micciancio for solving CVPP (the preprocessing version of the Closest Vector Problem, CVP) with a distance guarantee. For instance, for any α<1/2\alpha < 1/2, our algorithm finds the (unique) closest lattice point for any target point whose distance from the lattice is at most α\alpha times the length of the shortest nonzero lattice vector, requires as preprocessing advice only NO~(nexp(α2n/(12α)2))N \approx \widetilde{O}(n \exp(\alpha^2 n /(1-2\alpha)^2)) vectors, and runs in time O~(nN)\widetilde{O}(nN). As our second main contribution, we present reductions showing that it suffices to solve CVP, both in its plain and preprocessing versions, when the input target point is within some bounded distance of the lattice. The reductions are based on ideas due to Kannan and a recent sparsification technique due to Dadush and Kun. Combining our reductions with the LLM algorithm gives an approximation factor of O(n/logn)O(n/\sqrt{\log n}) for search CVPP, improving on the previous best of O(n1.5)O(n^{1.5}) due to Lagarias, Lenstra, and Schnorr. When combined with our improved algorithm we obtain, somewhat surprisingly, that only O(n) vectors of preprocessing advice are sufficient to solve CVPP with (the only slightly worse) approximation factor of O(n).Comment: An early version of the paper was titled "On Bounded Distance Decoding and the Closest Vector Problem with Preprocessing". Conference on Computational Complexity (2014

    Hardness of Bounded Distance Decoding on Lattices in ?_p Norms

    Get PDF
    Bounded Distance Decoding BDD_{p,?} is the problem of decoding a lattice when the target point is promised to be within an ? factor of the minimum distance of the lattice, in the ?_p norm. We prove that BDD_{p, ?} is NP-hard under randomized reductions where ? ? 1/2 as p ? ? (and for ? = 1/2 when p = ?), thereby showing the hardness of decoding for distances approaching the unique-decoding radius for large p. We also show fine-grained hardness for BDD_{p,?}. For example, we prove that for all p ? [1,?) ? 2? and constants C > 1, ? > 0, there is no 2^((1-?)n/C)-time algorithm for BDD_{p,?} for some constant ? (which approaches 1/2 as p ? ?), assuming the randomized Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold (under analogous non-uniform assumptions) for BDD with preprocessing, in which unbounded precomputation can be applied to the lattice before the target is available. Compared to prior work on the hardness of BDD_{p,?} by Liu, Lyubashevsky, and Micciancio (APPROX-RANDOM 2008), our results improve the values of ? for which the problem is known to be NP-hard for all p > p? ? 4.2773, and give the very first fine-grained hardness for BDD (in any norm). Our reductions rely on a special family of "locally dense" lattices in ?_p norms, which we construct by modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC 2018)

    The nearest-colattice algorithm

    Get PDF
    In this work, we exhibit a hierarchy of polynomial time algorithms solving approximate variants of the Closest Vector Problem (CVP). Our first contribution is a heuristic algorithm achieving the same distance tradeoff as HSVP algorithms, namely βn2βcovol(Λ)1n\approx \beta^{\frac{n}{2\beta}}\textrm{covol}(\Lambda)^{\frac{1}{n}} for a random lattice Λ\Lambda of rank nn. Compared to the so-called Kannan's embedding technique, our algorithm allows using precomputations and can be used for efficient batch CVP instances. This implies that some attacks on lattice-based signatures lead to very cheap forgeries, after a precomputation. Our second contribution is a proven reduction from approximating the closest vector with a factor n32β3n2β\approx n^{\frac32}\beta^{\frac{3n}{2\beta}} to the Shortest Vector Problem (SVP) in dimension β\beta.Comment: 19 pages, presented at the Algorithmic Number Theory Symposium (ANTS 2020
    corecore