
Hardness of Bounded Distance Decoding on
Lattices in `p Norms
Huck Bennett
University of Michigan, Ann Arbor, MI, USA
hdbco@umich.edu

Chris Peikert
University of Michigan, Ann Arbor, MI, USA
cpeikert@umich.edu

Abstract
Bounded Distance Decoding BDDp,α is the problem of decoding a lattice when the target point
is promised to be within an α factor of the minimum distance of the lattice, in the `p norm. We
prove that BDDp,α is NP-hard under randomized reductions where α → 1/2 as p → ∞ (and for
α = 1/2 when p = ∞), thereby showing the hardness of decoding for distances approaching the
unique-decoding radius for large p. We also show fine-grained hardness for BDDp,α. For example,
we prove that for all p ∈ [1,∞)\ 2Z and constants C > 1, ε > 0, there is no 2(1−ε)n/C -time algorithm
for BDDp,α for some constant α (which approaches 1/2 as p → ∞), assuming the randomized
Strong Exponential Time Hypothesis (SETH). Moreover, essentially all of our results also hold
(under analogous non-uniform assumptions) for BDD with preprocessing, in which unbounded
precomputation can be applied to the lattice before the target is available.

Compared to prior work on the hardness of BDDp,α by Liu, Lyubashevsky, and Micciancio
(APPROX-RANDOM 2008), our results improve the values of α for which the problem is known to be
NP-hard for all p > p1 ≈ 4.2773, and give the very first fine-grained hardness for BDD (in any norm).
Our reductions rely on a special family of “locally dense” lattices in `p norms, which we construct by
modifying the integer-lattice sparsification technique of Aggarwal and Stephens-Davidowitz (STOC
2018).

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-
tography

Keywords and phrases Lattices, Bounded Distance Decoding, NP-hardness, Fine-Grained Complex-
ity

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.36

Related Version https://arxiv.org/abs/2003.07903

Acknowledgements We thank the Simons Institute for hosting the Spring 2020 program “Lattices:
Algorithms, Complexity, and Cryptography,” at which some of this work was completed. We also
thank Noah Stephens-Davidowitz for sharing his plot-generating code from [5] with us.

1 Introduction

Lattices in Rn are a rich source of computational problems with applications across computer
science, and especially in cryptography and cryptanalysis. (A lattice is a discrete additive
subgroup of Rn, or equivalently, the set of integer linear combinations of a set of linearly
independent vectors.) Many important lattice problems appear intractable, and there is a
wealth of research showing that central problems like the Shortest Vector Problem (SVP)
and Closest Vector Problem (CVP) are NP-hard, even to approximate to within various
factors and in various `p norms [31, 8, 7, 22, 23, 17, 16, 14, 25]. (For the sake of concision,
throughout this introduction the term “NP-hard” allows for randomized reductions, which
are needed in some important cases.)

© Huck Bennett and Chris Peikert;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 36; pp. 36:1–36:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:hdbco@umich.edu
mailto:cpeikert@umich.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.36
https://arxiv.org/abs/2003.07903
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Hardness of Bounded Distance Decoding on Lattices in `p Norms

Bounded Distance Decoding

In recent years, the emergence of lattices as a powerful foundation for cryptography, including
for security against quantum attacks, has increased the importance of other lattice problems.
In particular, many modern lattice-based encryption schemes rely on some form of the
Bounded Distance Decoding (BDD) problem, which is like the Closest Vector Problem with a
promise. An instance of BDDα for relative distance α > 0 is a lattice L and a target point t
whose distance from the lattice is guaranteed to be within an α factor of the lattice’s minimum
distance λ1(L) = minv∈L\{0}‖v‖, and the goal is to find a lattice vector within that distance
of t; when distances are measured in the `p norm we denote the problem BDDp,α. Note that
when α < 1/2 there is a unique solution, but the problem is interesting and well-defined
for larger relative distances as well. We also consider preprocessing variants of CVP and
BDD (respectively denoted CVPP and BDDP), in which unbounded precomputation can be
applied to the lattice before the target is available. For example, this can model cryptographic
contexts where a fixed long-term lattice may be shared among many users.

The importance of BDD(P) to cryptography is especially highlighted by the Learning
With Errors (LWE) problem of Regev [27], which is an average-case form of BDD that has
been used (with inverse-polynomial α) in countless cryptosystems, including several that
share a lattice among many users (see, e.g., [13]). Moreover, Regev gave a worst-case to
average-case reduction from BDD to LWE, so the security of cryptosystems is intimately
related to the worst-case complexity of BDD.

Compared to problems like SVP and CVP, the BDD(P) problem has received much less
attention from a complexity-theoretic perspective. We are aware of essentially only one
work showing its NP-hardness: Liu, Lyubashevsky, and Micciancio [19] proved that BDDp,α

and even BDDPp,α are NP-hard for relative distances approaching min{1/
√

2, 1/ p
√

2}, which
is 1/

√
2 for p ≥ 2. A few other works relate BDD(P) to other lattice problems (in both

directions) in regimes where the problems are not believed to be NP-hard, e.g., [24, 11, 9].
(Dadush, Regev, and Stephens-Davidowitz [11] also gave a reduction that implies NP-hardness
of BDD2,α for any α > 1, which is larger than the relative distance of α = 1/

√
2 + ε achieved

by [19].)

Fine-grained hardness

An important aspect of hard lattice problems, especially for cryptography, is their quantitative
hardness. That is, we want not only that a problem cannot be solved in polynomial time,
but that it cannot be solved in, say, 2o(n) time or even 2n/C time for a certain constant C.
Statements of this kind can be proven under generic complexity assumptions like the
Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [15] or its variants like
Strong ETH (SETH), via fine-grained reductions that are particularly efficient in the relevant
parameters.

Recently, Bennett, Golovnev, and Stephens-Davidowitz [10] initiated a study of the
fine-grained hardness of lattice problems, focusing on CVP; follow-up work extended to
SVP and showed more for CVP(P) [5, 2]. The technical goal of these works is a reduction
having good rank efficiency, i.e., a reduction from k-SAT on n′ variables to a lattice problem
in rank n = (C + o(1))n′ for some constant C ≥ 1, which we call the reduction’s “rank
inefficiency.” (All of the lattice problems in question can be solved in 2n+o(n) time [3, 4, 6],
so C = 1 corresponds to optimal rank efficiency.) We mention that Regev’s BDD-to-LWE
reduction [27] has optimal rank efficiency, in that it reduces rank-n BDD to rank-n LWE.
However, to date there are no fine-grained NP-hardness results for BDD itself; the prior
NP-hardness proof for BDD [19] incurs a large polynomial blowup in rank.

H. Bennett and C. Peikert 36:3

1.1 Our Results
We show improved NP-hardness, and entirely new fine-grained hardness, for Bounded Distance
Decoding (and BDD with preprocessing) in arbitrary `p norms. Our work improves upon the
known hardness of BDD in two respects: the relative distance α, and the rank inefficiency C
(i.e., fine-grainedness) of the reductions. As p grows, both quantities improve, simultaneously
approaching the unique-decoding threshold α = 1/2 and optimal rank efficiency of C = 1 as
p → ∞, and achieving those quantities for p = ∞. We emphasize that these are the first
fine-grained hardness results of any kind for BDD, for any `p norm.

Our main theorem summarizing the NP- and fine-grained hardness of BDD (with and
without preprocessing) appears below in Theorem 1. For p ∈ [1,∞) and C > 1, the quantities
α∗p and α∗p,C appearing in the theorem statement are certain positive real numbers that are
decreasing in p and C, and approaching 1/2 as p→∞ (for any C). See Figure 1 for a plot
of their behavior, Equations (3.4) and (3.5) for their formal definitions, and Lemma 27 for
quite tight closed-form upper bounds.

I Theorem 1. The following hold for BDDp,α and BDDPp,α in rank n:
1. For every p ∈ [1,∞) and constant α > α∗p (where α∗p ≤ 1

2 · 4.67231/p), and for (p, α) =
(∞, 1/2), there is no polynomial-time algorithm for BDDp,α (respectively, BDDPp,α)
unless NP ⊆ RP (resp., NP ⊆ P/Poly).

2. For every p ∈ [1,∞) and constant α > min{α∗p, α∗2}, and for (p, α) = (∞, 1/2), there is
no 2o(n)-time algorithm for BDDp,α unless randomized ETH fails.

3. For every p ∈ [1,∞) \ {2} and constant α > α∗p, and for (p, α) = (∞, 1/2), there is no
2o(n)-time algorithm for BDDPp,α unless non-uniform ETH fails.
Moreover, for every p ∈ [1,∞] and α > α∗2 there is no 2o(

√
n)-time algorithm for BDDPp,α

unless non-uniform ETH fails.
4. For every p ∈ [1,∞) \ 2Z and constants C > 1, α > α∗p,C , and ε > 0, and for (p, C, α) =

(∞, 1, 1/2), there is no 2n(1−ε)/C-time algorithm for BDDp,α (respectively, BDDPp,α)
unless randomized SETH (resp., non-uniform SETH) fails.
Although we do not have closed-form expressions for α∗p and α∗p,C , we do get quite tight

closed-form upper bounds (see Lemma 27). Moreover, it is easy to numerically compute close
approximations to them, and to the values of p at which they cross certain thresholds. For
example, α∗p < 1/

√
2 for all p > p1 ≈ 4.2773, so Item 1 of Theorem 1 improves on the prior

best relative distance of any α > 1/
√

2 for the NP-hardness of BDDp,α in such `p norms [19].
As a few other example values and their consequences under Theorem 1, we have

α∗2 ≈ 1.05006, α∗3,2 ≈ 1.1418, and α∗3,5 ≈ 0.917803. So by Item 2, BDD in the Euclidean
norm for any relative distance α > 1.05006 requires 2Ω(n) time assuming randomized ETH.
And by Item 4, for every ε > 0 there is no 2(1−ε)n/2-time algorithm for BDD3,1.1418, and no
2(1−ε)n/5-time algorithm for BDD3,0.917803, assuming randomized SETH.

1.2 Technical Overview
As in prior NP-hardness reductions for SVP and BDD (and fine-grained hardness proofs for
the former) [7, 22, 16, 19, 14, 25, 5], the central component of our reductions is a family of
rank-n lattices L ⊂ Rd and target points t ∈ Rd having a certain “local density” property in
a desired `p norm. Informally, this means that L has “large” minimum distance λ(p)

1 (L) :=
minv∈L\{0}‖v‖p, i.e., there are no “short” nonzero vectors, but has many vectors “close” to
the target t. More precisely, we want λ(p)

1 (L) ≥ r and Np(L, αr, t) = exp(nΩ(1)) for some
relative distance α, where

Np(L, s, t) := |{v ∈ L : ‖v − t‖p ≤ s}|

denotes the number of lattice points within distance s of t.

CCC 2020

36:4 Hardness of Bounded Distance Decoding on Lattices in `p Norms

2 4 6 8 10
p0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
α

This Work

LLM

Unique Decoding

2 4 6 8 10
p0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
α

αp,1.1
*

αp,2
*

αp,5
*

αp,10
*

αp
*

Unique Decoding

Figure 1 Top: bounds on the relative distances α = α(p) for which BDDα,p was proved to be
NP-hard in the `p norm, in this work and in [19]; the crossover point is p1 ≈ 4.2773. (The plots
include results obtained by norm embeddings [28], hence they are maximized at p = 2.) Bottom:
our bounds α∗p,C on the relative distances α > α∗p,C for which there is no 2(1−ε)n/C-time algorithm
for BDDp,α for any ε > 0, assuming randomized SETH.

Micciancio [22] constructed locally dense lattices with relative distance approaching
2−1/p in the `p norm (for every finite p ≥ 1), and used them to prove the NP-hardness
of γ-approximate SVP in `p for any γ < 21/p. Subsequently, Liu, Lyubashevsky, and
Micciancio [19] used these lattices to prove the NP-hardness of BDD in `p for any relative
distance α > 2−1/p. However, these works observed that the relative distance depends
on p in the opposite way from what one might expect: as p grows, so does α, hence the
associated NP-hard SVP approximation factors and BDD relative distances worsen. Yet
using norm embeddings, it can be shown that `2 is essentially the “easiest” `p norm for
lattice problems [28], so hardness in `2 implies hardness in `p (up to an arbitrarily small
loss in approximation factor). Therefore, the locally dense lattices from [22] do not seem to
provide any benefits for p > 2 over p = 2, where the relative distance approaches 1/

√
2. In

addition, the rank of these lattices is a large polynomial in the relevant parameter, so they
are not suitable for proving fine-grained hardness.1

1 We mention that Khot [16] gave a different construction of locally dense lattices with other useful
properties, but their relative distance is no smaller than that of Micciancio’s construction in any `p
norm, and their rank is also a large polynomial in the relevant parameter.

H. Bennett and C. Peikert 36:5

Local density via sparsification

More recently, Aggarwal and Stephens-Davidowitz [5] (building on [10]) proved fine-grained
hardness for exact SVP in `p norms, via locally dense lattices obtained in a different way.
Because they target exact SVP, it suffices to have local density for relative distance α = 1,
but for fine-grained hardness they need Np(L, r, t) = 2Ω(n), preferably with a large hidden
constant (which determines the rank efficiency of the reduction). Following [21, 12], they
start with the integer lattice Zn and all- 1

2 s target vector t = 1
21 ∈ Rn. Clearly, there are 2n

lattice vectors all at distance r = 1
2n

1/p from t in the `p norm, but the minimum distance
of the lattice is only 1, so the relative distance of the “close” vectors is α = r, which is far
too large.

To improve the relative distance, they increase the minimum distance to at least r = 1
2n

1/p

using the elegant technique of random sparsification, which is implicit in [12] and was first
used for proving NP-hardness of approximate SVP in [17, 16]. The idea is to upper-bound
the number Np(Zn, r,0) of “short” lattice points of length at most r, by some Q. Then,
by taking a random sublattice L ⊂ Zn of determinant (index) slightly larger than Q, with
noticeable probability none of the “short” nonzero vectors will be included in L, whereas
roughly 2n/Q of the vectors “close” to t will be in L. So, as long as Q = 2(1−Ω(1))n, there
are sufficiently many lattice vectors at the desired relative distance from t.

Bounds for Np(Zn, r,0) were given by Mazo and Odlyzko [21], by a simple but pow-
erful technique using the theta function Θp(τ) :=

∑
z∈Z exp(−τ |z|p). They showed (see

Proposition 13) that

Np(Zn, r,0) ≤ min
τ>0

exp(τ · rp) ·Θp(τ)n =
(

min
τ>0

exp(τ/2p) ·Θp(τ)
)n

, (1.1)

where the equality is by r = 1
2n

1/p. So, Aggarwal and Stephens-Davidowitz need
minτ>0 exp(τ/2p) ·Θp(τ) < 2, and it turns out that this is the case for every p > p0 ≈ 2.1397.
(They also deal with smaller p by using a different target point t.)

This work: local density for small relative distance

For the NP- and fine-grained hardness of BDD we use the same basic approach as in [5], but
with the different goal of getting local density for as small of a relative distance α < 1 as we
can manage. That is, we still have 2n integral vectors all at distance r = 1

2n
1/p from the

target t = 1
21 ∈ Rn, but we want to “sparsify away” all the nonzero integral vectors of length

less than r/α. So, we want the right-hand side of the Mazo-Odlyzko bound (Equation (1.1))
to be at most 2(1−Ω(1))n for as large of a positive hidden constant as we can manage. More
specifically, for any p ≥ 1 and C > 1 (which ultimately corresponds to the reduction’s rank
inefficiency) we can obtain local density of at least 2n/C close vectors at any relative distance
greater than

α∗p,C := inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 21−1/C} .

The value of α∗p,C is strictly decreasing in both p and C, and for large C and p > p1 ≈ 4.2773
it drops below the relative distance of 1/

√
2 approached by the local-density construction

of [22] for `2 (and also `p by norm embeddings.) This is the source of our improved relative
distance for the NP-hardness of BDD in high `p norms.

We also show that obtaining local density by sparsifying the integer lattice happens to
yield a very simple reduction to BDD from the exact version of CVP, which is how we obtain
fine-grained hardness. Given a CVP instance consisting of a lattice and a target point, we

CCC 2020

36:6 Hardness of Bounded Distance Decoding on Lattices in `p Norms

essentially just take their direct sum with the integer lattice and the 1
21 target (respectively),

then sparsify. (See Lemma 21 and Theorem 19 for details.) Because this results in the
(sparsified) locally dense lattice having 2Ω(n) close vectors all exactly at the threshold of the
BDD promise, concatenating the CVP instance either keeps the target within the (slightly
weaker) BDD promise, or puts it just outside. This is in contrast to the prior reduction of [19],
where the close vectors in the locally dense lattices of [22] are at various distances from the
target, hence a reduction from approximate-CVP with a large constant factor is needed to
put the target outside the BDD promise. While approximating CVP to within any constant
factor is known to be NP-hard [8], no fine-grained hardness is known for approximate CVP,
except for factors just slightly larger than one [2].

1.3 Discussion and Future Work

Our work raises a number of interesting issues and directions for future research. First, it
highlights that there are now two incomparable approaches for obtaining local density in
the `p norm – Micciancio’s construction [22], and sparsifying the integer lattice [12, 5] – with
each delivering a better relative distance for certain ranges of p. For p ∈ [1, p1 ≈ 4.2773],
Micciancio’s construction (with norm embeddings from `2, where applicable) delivers the
better relative distance, which approaches min{1/ p

√
2, 1/
√

2}. Moreover, this is essentially
optimal in `2, where 1/

√
2 is unachievable due to the Rankin bound, which says that in Rn

we can have at most 2n subunit vectors with pairwise distances of
√

2 or more.
A first question, therefore, is whether relative distance less than 1/

√
2 can be obtained for

all p > 2. We conjecture that this is true, but can only manage to prove it via sparsification
for all p > p1 ≈ 4.2773. More generally, an important open problem is to give a unified
local-density construction that subsumes both of the above-mentioned approaches in terms
of relative distance, and ideally in rank efficiency as well. In the other direction, another
important goal is to give lower bounds on the relative distance in general `p norms. Apart
from the Rankin bound, the only bound we are aware of is the trivial one of α ≥ 1/2 implied
by the triangle inequality, which is essentially tight for `1 and tight for `∞ (as shown by [22]
and our work, respectively).

More broadly, for the BDD relative distance parameter α there are three regimes of
interest: the local-density regime, where we know how to prove NP-hardness; the unique-
decoding regime α < 1/2; and (at least in some `p norms, including `2) the intermediate
regime between them. It would be very interesting, and would seem to require new techniques,
to show NP-hardness outside the local-density regime. One potential route would be to
devise a gap amplification technique for BDD, analogous to how SVP has been proved to be
NP-hard to approximate to within any constant factor [16, 14, 25]. Gap amplification may
also be interesting in the absence of NP-hardness, e.g., for the inverse-polynomial relative
distances used in cryptography. Currently, the only efficient gap amplification we are aware
of is a modest one that decreases the relative distance by any (1− 1/n)O(1) factor [20].

A final interesting research direction is related to the unique Shortest Vector Problem
(uSVP), where the goal is to find a shortest nonzero vector v in a given lattice, under the
promise that it is unique (up to sign). More generally, approximate uSVP has the promise
that all lattice vectors not parallel to v are a certain factor γ as long. It is known that
exact uSVP is NP-hard in `2 [18], and by known reductions it is straightforward to show the
NP-hardness of 2-approximate uSVP in `∞. Can recent techniques help to prove NP-hardness
of γ-approximate uSVP, for some constant γ > 1, in `p for some finite p, or specifically for `2?
Do NP-hard approximation factors for uSVP grow smoothly with p?

H. Bennett and C. Peikert 36:7

2 Preliminaries

For any positive integer q, we identify the quotient group Zq = Z/qZ with some set of
distinguished representatives, e.g., {0, 1, . . . , q − 1}. Let B+ := (BtB)−1Bt denote the
Moore-Penrose pseudoinverse of a real-valued matrix B with full column rank. Observe that
B+v is the unique coefficient vector c with respect to B of any v = Bc in the column span
of B.

2.1 Problems with Preprocessing

In addition to ordinary computational problems, we are also interested in (promise) problems
with preprocessing. In such a problem, an instance (xP , xQ) is comprised of a “preprocess-
ing” part xP and a “query” part xQ, and an algorithm is allowed to perform unbounded
computation on the preprocessing part before receiving the query part.

Formally, a preprocessing problem is a relation Π = {((xP , xQ), y)} of instance-solution
pairs, where Πinst := {(xP , xQ) : ∃ y s.t. ((xP , xQ), y) ∈ Π} is the set of problem instances,
and Π(xP ,xQ) := {y : ((xP , xQ), y) ∈ Π} is the set of solutions for any particular instance
(xP , xQ). If every instance (xP , xQ) ∈ Πinst has exactly one solution that is either YES or
NO, then Π is called a decision problem.

I Definition 2. A preprocessing algorithm is a pair (P,Q) where P is a (possibly randomized)
function representing potentially unbounded computation, and Q is an algorithm. The
execution of (P,Q) on an input (xP , xQ) proceeds in two phases:

first, in the preprocessing phase, P takes xP as input and produces some preprocessed
output σ;
then, in the query phase, Q takes both σ and xQ as input and produces some ultimate
output.

The running time T of the algorithm is defined to be the time used in the query phase alone,
and is considered as a function of the total input length |xP | + |xQ|. The length of the
preprocessed output is defined as A = |σ|, and is also considered as a function of the total
input length. Note that without loss of generality, A ≤ T .

If (P,Q) is deterministic, we say that it solves preprocessing problem Π if Q(P (xP), xQ) ∈
Π(xP ,xQ) for all (xP , xQ) ∈ Πinst. If (P,Q) is potentially randomized, we say that it solves Π if

Pr[Q(P (xP), xQ) ∈ Π(xP ,xQ)] ≥
2
3

for all (xP , xQ) ∈ Πinst, where the probability is taken over the random coins of both P

and Q.2

As shown below using a routine quantifier-swapping argument (as in Adleman’s Theo-
rem [1]), it turns out that for NP relations and decision problems, any randomized prepro-
cessing algorithm can be derandomized if the length of the query input xQ is polynomial
in the length of the preprocessing input xP . So for convenience, in this work we allow
for randomized algorithms, only switching to deterministic ones for our ultimate hardness
theorems.

2 Note that it could be the case that some preprocessed outputs fail to make the query algorithm output
a correct answer on some, or even all, query inputs.

CCC 2020

36:8 Hardness of Bounded Distance Decoding on Lattices in `p Norms

I Lemma 3. Let preprocessing problem Π be an NP relation or a decision problem for which
|xQ| = poly(|xP |) for all (xP , xQ) ∈ Πinst. If Π has a randomized T -time algorithm, then
it has a deterministic T · poly(|xP |+ |xQ|)-time algorithm with T · poly(|xP |+ |xQ|)-length
preprocessed output.

Proof. Let q(·) be a polynomial for which |xQ| ≤ q(|xP |) for all (xP , xQ) ∈ Πinst. Let (P,Q)
be a randomized T -time algorithm for Π, which by standard repetition techniques we can
assume has probability strictly less than exp(−q(|xP |)) of being incorrect on any (xP , xQ) ∈
Πinst, with only a poly(|xP |+ |xQ|)-factor overhead in the running time and preprocessed
output length. Fix some arbitrary xP . Then by the union bound over all (xP , xQ) ∈ Πinst
and the hypothesis, we have

Pr[∃ (xP , xQ) ∈ Πinst : Q(P (xP), xQ) 6∈ Π(xP ,xQ)] < 1.

So, there exist coins for P and Q for which Q(P (xP), xQ) ∈ Π(xP ,xQ) for all (xP , xQ) ∈ Πinst.
By fixing these coins we make P a deterministic function of xP , and we include the coins
for Q along with the preprocessed output P (xP), thus making Q deterministic as well. The
resulting deterministic algorithm solves Π with the claimed resources, as needed. J

Reductions for preprocessing problems

We need the following notions of reductions for preprocessing problems. The following
generalizes Turing reductions and Cook reductions (i.e., polynomial-time Turing reductions).

I Definition 4. A Turing reduction from one preprocessing problem X to another one Y
is a pair of algorithms (RP , RQ) satisfying the following properties: RP is a (potentially
randomized) function with access to an oracle P , whose output length is polynomial in its
input length; RQ is an algorithm with access to an oracle Q; and if (P,Q) solves problem Y ,
then (RPP , R

Q
Q) solves problem X. Additionally, it is a Cook reduction if RQ runs in time

polynomial in the total input length of RP and RQ.

Similarly, the following generalizes mapping reductions and Karp reductions (i.e., polynomial-
time mapping reductions) for decision problems.

I Definition 5. A mapping reduction from one preprocessing decision problem X to another
one Y is a pair (RP , RQ) satisfying the following properties: RP is a deterministic function
whose output length is polynomial in its input length; RQ is a deterministic algorithm; and
for any YES (respectively, NO) instance (xP , xQ) of X, the output pair (yP , yQ) is a YES
(resp., NO) instance of Y , where (yP , yQ) are defined as follows:

first, RP takes xP as input and outputs some (σ′, yP), where σ′ is some “internal”
preprocessed output;
then, RQ takes (σ′, xQ) as input and outputs some yQ.

Additionally, it is a Karp reduction if RQ runs in time polynomial in the total input length
of RP and RQ.

It is straightforward to see that if X mapping reduces to Y , and there is a deterministic
polynomial-time preprocessing algorithm (PY , QY) that solves Y , then there is also one
(PX , QX) that solves X, which works as follows:
1. the preprocessing algorithm PX , given a preprocessing input xp, first computes (σ′, yP) =

RP (xP), then computes σY = PY (yP) and outputs σX = (σ′, σY);
2. the query algorithm QX , given σX = (σ′, σY) and a query input xQ, computes yQ =

RQ(σ′, xQ) and finally outputs QY (σY , yQ).

H. Bennett and C. Peikert 36:9

2.2 Lattices
A lattice is the set of all integer linear combinations of some linearly independent vectors
b1, . . . , bn. It is convenient to arrange these vectors as the columns of a matrix. Accordingly,
we define a basis B = (b1, . . . , bn) ∈ Rd×n to be a matrix with linearly independent columns,
and the lattice generated by basis B as

L(B) :=
{ n∑
i=1

aibi : a1, . . . , an ∈ Z
}
.

Let Bdp denote the centered unit `p ball in d dimensions. Given a lattice L ⊂ Rd of rank
n, for 1 ≤ i ≤ n let

λ
(p)
i (L) := inf{r > 0 : dim(span(r · Bdp ∩ L)) ≥ i}

denote the ith successive minimum of L with respect to the `p norm.
We denote the `p distance of a vector t to a lattice L as

distp(t,L) := min
v∈L
‖v − t‖p .

2.3 Bounded Distance Decoding (with Preprocessing)
The primary computational problem that we study in this work is the Bounded Distance
Decoding Problem (BDD), which is a version of the Closest Vector Problem (CVP) in which
the target vector is promised to be relatively close to the lattice.

I Definition 6. For 1 ≤ p ≤ ∞ and α = α(n) > 0, the α-Bounded Distance Decoding
problem in the `p norm (BDDp,α) is the (search) promise problem defined as follows. The
input is (a basis of) a rank-n lattice L and a target vector t satisfying distp(t,L) ≤ α(n) ·
λ

(p)
1 (L). The goal is to output a lattice vector v ∈ L that satisfies ‖v − t‖p ≤ α(n) · λ(p)

1 (L).
The preprocessing (search) promise problem BDDPp,α is defined analogously, where the

preprocessing input is (a basis of) the lattice, and the query input is the target t.

We note that in some works, BDD is defined to have the goal of finding a v ∈ L such
that ‖v − t‖p = distp(t,L). This formulation is clearly no easier than the one defined above.
So, our hardness theorems, which are proved for the definition above, immediately apply to
the alternative formulation as well.

We also remark that for α < 1/2, the promise ensures that there is a unique vector v
satisfying ‖v − t‖p ≤ α · λ(p)

1 (L). However, BDD is still well defined for α ≥ 1/2, i.e., above
the unique-decoding radius. As in prior work, our hardness results for BDDp,α are limited
to this regime.

To the best of our knowledge, essentially the only previous study of the NP-hardness of
BDD is due to [19], which showed the following result.3

I Theorem 7 ([19, Corollaries 1 and 2]). For any p ∈ [1,∞) and α > 1/21/p, there is no
polynomial-time algorithm for BDDp,α (respectively, with preprocessing) unless NP ⊆ RP
(resp., unless NP ⊆ P/Poly).

3 Additionally, [11] gave a reduction from CVP to BDD2,α but only for some α > 1. Also, [26, 20] gave a
reduction from GapSVPγ to BDD, but only for large γ = γ(n) for which GapSVP is not known to be
NP-hard.

CCC 2020

36:10 Hardness of Bounded Distance Decoding on Lattices in `p Norms

Regev and Rosen [28] used norm embeddings to show that almost any lattice problem is
at least as hard in the `p norm, for any p ∈ [1,∞], as it is in the `2 norm, up to an arbitrarily
small constant-factor loss in the approximation factor. In other words, they essentially
showed that `2 is the “easiest” `p norm for lattice problems. (In addition, their reduction
preserves the rank of the lattice.) Based on this, [19] observed the following corollary, which
is an improvement on the factor α from Theorem 7 for all p > 2.

I Theorem 8 ([19, Corollary 3]). For any p ∈ [1,∞) and α > 1/
√

2, there is no polynomial-
time algorithm for BDDp,α (respectively, with preprocessing) unless NP ⊆ RP (resp., unless
NP ⊆ P/Poly).

Figure 1 shows the bounds from Theorems 7 and 8 together with the new bounds achieved
in this work as a function of p.

2.4 Sparsification
A powerful idea, first used in the context of hardness proofs for lattice problems in [17], is
that of random lattice sparsification. Given a lattice L with basis B, we can construct a
random sublattice L′ ⊆ L as

L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}

for uniformly random z ∈ Znq , where q is a suitably chosen prime.

I Lemma 9. Let q be a prime and let x1, . . . ,xN ∈ Znq \ {0} be arbitrary. Then

Pr
z←Zn

q

[∃ i ∈ [N] such that 〈z,xi〉 = 0 (mod q)] ≤ N

q
.

Proof. We have Pr[〈z,xi〉 = 0] = 1/q for each xi, and the claim follows by the union
bound. J

The following corollary is immediate.

I Corollary 10. Let q be a prime and L be a lattice of rank n with basis B. Then for all
r > 0 and all p ∈ [1,∞],

Pr
z←Zn

q

[λ(p)
1 (L′) < r] ≤

No
p (L \ {0}, r,0)

q
,

where L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}.

I Theorem 11 ([29, Theorem 3.1]). For any lattice L of rank n with basis B, prime q, and
lattice vectors x,y1, . . . ,yN ∈ L such that B+x 6= B+yi (mod q) for all i ∈ [N], we have

1
q
−N
q2 −

N

qn−1 ≤ Pr
z,c←Zn

q

[〈z, B+x+c〉 = 0 (mod q)∧〈z, B+yi+c〉 6= 0 (mod q) ∀ i ∈ [N]] ≤ 1
q

+ 1
qn

.

We will use only the lower bound from Theorem 11, but we note that the upper bound is
relatively tight for q � N .

I Corollary 12. For any p ∈ [1,∞] and r ≥ 0, lattice L of rank n with basis B, vector t,
prime q, and lattice vectors v1, . . . ,vN ∈ L such that ‖vi − t‖p ≤ r for all i ∈ [N] and such
that all the B+vi mod q are distinct, we have

Pr
z,c←Zn

q

[distp(t+Bc,L′) ≤ r] ≥ N

q
− N(N − 1)

q2 − N(N − 1)
qn−1 ,

where L′ = {v ∈ L : 〈z, B+v〉 = 0 (mod q)}.

H. Bennett and C. Peikert 36:11

Proof. Observe that for each i ∈ [N], the events

Ei := [〈z, B+vi〉 = 0 (mod q) and 〈z, B+vj〉 6= 0 (mod q) for all j 6= i]

are disjoint, and by invoking Theorem 11 with x = vi and the yj being the remaining vk for
k 6= i, we have

Pr
z,c

[Ei] ≥
1
q
− N − 1

q2 − N − 1
qn−1 .

Also observe that if Ei occurs, then vi + Bc ∈ L′ (also vj + Bc 6∈ L′ for all j 6= i, but we
will not need this). Therefore,

distp(t+Bc,L′) ≤ ‖t+Bc− (vi +Bc)‖ = ‖t− vi‖ ≤ r .

So, the probability in the left-hand side of the claim is at least

Pr
z,c

[⋃
i∈[N]

Ei

]
=
∑
i∈[N]

Pr
z,c

[Ei] ≥
N

q
− N(N − 1)

q2 − N(N − 1)
qn−1 . J

2.5 Counting Lattice Points in a Ball
Following [5], for any discrete set A of points (e.g., a lattice, or a subset thereof), we denote
the number of points in A contained in the closed and open (respectively) `p ball of radius r
centered at a point t as

Np(A, r, t) := |{y ∈ A : ‖y − t‖p ≤ r}| , (2.1)
No
p (A, r, t) := |{y ∈ A : ‖y − t‖p < r}| . (2.2)

Clearly, No
p (A, r, t) ≤ Np(A, r, t).

For 1 ≤ p <∞ and τ > 0 define

Θp(τ) :=
∑
z∈Z

exp(−τ |z|p) .

We use the following upper bound due to Mazo and Odlyzko [21] on the number of short
vectors in the integer lattice. We include its short proof for completeness.

I Proposition 13 ([21]). For any p ∈ [1,∞), r > 0, and n ∈ N,

Np(Zn, r,0) ≤ min
τ>0

exp(τrp) ·Θp(τ)n .

Proof. For τ > 0 we have

Θp(τ)n =
∑

z∈Zn

exp(−τ‖z‖pp) ≥
∑

z∈Zn∩rBn
p

exp(−τ‖z‖pp) ≥ exp(−τrp) ·Np(Zn, r,0) .

The result follows by rearranging and taking the minimum over all τ > 0. J

2.6 Hardness Assumptions
We recall the Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [15], and
several of its variants. These hypotheses make stronger assumptions about the complexity
of the k-SAT problem than the assumption P 6= NP, and serve as highly useful tools for
studying the fine-grained complexity of hard computational problems. Indeed, we will show
that strong fine-grained hardness for BDD follows from these hypotheses.

CCC 2020

36:12 Hardness of Bounded Distance Decoding on Lattices in `p Norms

I Definition 14. The (randomized) Exponential Time Hypothesis ((randomized) ETH)
asserts that there is no (randomized) 2o(n)-time algorithm for 3-SAT on n variables.

I Definition 15. The (randomized) Strong Exponential Time Hypothesis ((randomized)
SETH) asserts that for every ε > 0 there exists k ∈ Z+ such that there is no (randomized)
2(1−ε)n-time algorithm for k-SAT on n variables.

For proving hardness of lattice problem with preprocessing, we define (Max-)k-SAT with
preprocessing as follows. The preprocessing input is a size parameter n, encoded in unary.
The query input is a k-SAT formula φ with n variables and m (distinct) clauses, together
with a threshold W ∈ {0, . . .m} in the case of Max-k-SAT. For k-SAT, it is a YES instance
if φ is satisfiable, and is a NO instance otherwise. For Max-k-SAT, it is a YES instance if
there exists an assignment to the variables of φ that satisfies at least W of its clauses, and is
a NO instance otherwise.

Observe that because the preprocessing input is just n, a preprocessing algorithm for
(Max-)k-SAT with preprocessing is equivalent to a (non-uniform) family of circuits for the
problem without preprocessing. Also, for any fixed k, because there are only O(nk) possible
clauses on n variables, the length of the query input for (Max-)k-SAT instances having
preprocessing input n is poly(n), so we get the following corollary of Lemma 3.

I Corollary 16. If (Max-)k-SAT with preprocessing has a randomized T (n)-time algorithm,
then it has a deterministic T (n) · poly(n)-time algorithm using T (n) · poly(n)-length prepro-
cessed output.

Following, e.g., [30, 2], we also define non-uniform variants of ETH and SETH, which
deal with the complexity of k-SAT with preprocessing. More precisely, non-uniform ETH
asserts that no family of size-2o(n) circuits solves 3-SAT on n variables (equivalently, 3-SAT
with preprocessing does not have a 2o(n)-time algorithm), and non-uniform SETH asserts
that for every ε > 0 there exists k ∈ Z+ such that no family of circuits of size 2(1−ε)n

solves k-SAT on n variables (equivalently, k-SAT with preprocessing does not have a 2(1−ε)n-
time algorithm). These hypotheses are useful for analyzing the fine-grained complexity of
preprocessing problems.

One might additionally consider “randomized non-uniform” versions of (S)ETH. However,
Corollary 16 says that a randomized algorithm for (Max-)k-SAT with preprocessing can
be derandomized with only polynomial overhead, so randomized non-uniform (S)ETH is
equivalent to (deterministic) non-uniform (S)ETH, so we only consider the latter.

Finally, we remark that one can define weaker versions of randomized or non-uniform
(S)ETH with Max-3-SAT (respectively, Max-k-SAT) in place of 3-SAT (resp., k-SAT). Many
of our results hold even under these weaker hypotheses. In particular, the derandomization
result in Corollary 16 applies to both k-SAT and Max-k-SAT.

3 Hardness of BDDp,α

In this section, we present our main result by giving a reduction from a known-hard variant
GapCVP′p of the Closest Vector Problem (CVP) to BDD. We peform this reduction in two
main steps.
1. First, in Section 3.1 we define a variant of BDDp,α, which we call (S, T)-BDDp,α. Essen-

tially, an instance of this problem is a lattice that may have up to S “short” nonzero
vectors of `p norm bounded by some r, and a target vector that is “close” to – i.e.,
within distance αr of – at least T lattice vectors. (The presence of short vectors prevents
this from being a true BDDp,α instance.) We then give a reduction, for S � T , from
(S, T)-BDDp,α to BDDp,α itself, using sparsification.

H. Bennett and C. Peikert 36:13

2. Then, in Section 3.2 we reduce from GapCVP′p to (S, T)-BDDp,α for suitable S � T

whenever α is sufficiently large as a function of p (and the desired rank efficiency), based
on analysis given in Section 3.3 and Lemma 27.

3.1 (S, T)-BDD to BDD
We start by defining a special decision variant of BDD. Essentially, the input is a lattice and a
target vector, and the problem is to distinguish between the case where there are few “short”
lattice vectors but many lattice vectors “close” to the target, and the case where the target
is not close to the lattice. There is a gap factor between the “close” and “short” distances,
and for technical reasons we count only those “close” vectors having binary coefficients with
respect to the given input basis.

I Definition 17. Let S = S(n), T = T (n) ≥ 0, p ∈ [1,∞], and α = α(n) > 0. An instance
of the decision promise problem (S, T)-BDDp,α is a lattice basis B ∈ Rd×n, a distance r > 0,
and a target t ∈ Rd.

It is a YES instance if No
p (L(B) \ {0}, r,0) ≤ S(n) and Np(B · {0, 1}n, αr, t) ≥ T (n).

It is a NO instance if distp(t,L(B)) > αr.
The search version is: given a YES instance (B, r, t), find a v ∈ L(B) such that ‖v−t‖p ≤ αr.

The preprocessing search and decision problems (S, T)-BDDPp,α are defined analogously,
where the preprocessing input is B and r, and the query input is t.

We stress that in the preprocessing problems BDDP, the distance r is part of the
preprocessing input; this makes the problem no harder than a variant where r is part of the
query input. So, our hardness results for the above definition immediately apply to that
variant as well. However, our reduction from (S, T)-BDDP (given in Lemma 18) critically
relies on the fact that r is part of the preprocessing input.

Clearly, there is a trivial reduction from the decision version of (S, T)-BDDp,α to its
search version (and similarly for the preprocessing problems): just call the oracle for the
search problem and test whether it returns a lattice vector within distance αr of the target.
So, to obtain more general results, our reductions involving (S, T)-BDD will be from the
search version, and to the decision version.

Reducing to BDD

We next observe that for S(n) = 0 and any T (n) > 0, there is almost a trivial reduction
from (S, T)-BDDp,α to ordinary BDDp,α, because YES instances of the former satisfy the
BDDp,α promise. (See below for the easy proof.) The only subtlety is that we want the
BDDp,α oracle to return a lattice vector that is within distance αr of the target; recall that
the definition of BDDp,α only guarantees distance α ·λ(p)

1 (L(B)). This issue is easily resolved
by modifying the lattice to upper bound its minimum distance by r, which increases the
lattice’s rank by one. (For the alternative definition of BDD described after Definition 6, the
trivial reduction works, and no increase in the rank is needed.)

I Lemma 18. For any T (n) > 0, p ∈ [1,∞], and α = α(n) > 0, there is a deterministic
Cook reduction from the search version of (0, T (n))-BDDp,α (resp., with preprocessing) in
rank n to BDDp,α (resp., with preprocessing) in rank n+ 1.

CCC 2020

36:14 Hardness of Bounded Distance Decoding on Lattices in `p Norms

Proof. The reduction works as follows. On input (B, r, t), call the BDDp,α oracle on

B′ :=
(
B 0
0 r

)
, t′ :=

(
t

0

)
,

and (without loss of generality) receive from the oracle a vector v′ = (v, zr) for some v ∈ L
and z ∈ Z. Output v.

We analyze the reduction. Let L = L(B) and L′ = L(B′). Because the input is a YES
instance, we have No

p (L \ {0}, r,0) = 0 and hence λ(p)
1 (L) ≥ r, so λ(p)

1 (L′) = r. Moreover,
Np(B ·{0, 1}n, αr, t) > 0 implies that distp(t′,L′) = dist(t,L) ≤ αr = α ·λ(p)

1 (L′). So, (B′, t′)
satisfies the BDDp,α promise, hence the oracle is obligated to return some v′ = (v, zr) ∈ L′

where v ∈ L and αr = αλ
(p)
1 (L′) ≥ ‖v′ − t′‖p ≥ ‖v − t‖p. Therefore, the output v of the

reduction is a valid solution.
Finally, observe that all of the above also constitutes a valid reduction for the preprocessing

problems, because B′ depends only on the preprocessing part B, r of the input. J

We now present a more general randomized reduction from (S, T)-BDDp,α to BDDp,α,
which works whenever T (n) ≥ 10S(n). The essential idea is to sparsify the input lattice, so
that with some noticeable probability no short vectors remain, but at least one vector close
to the target does remain. In this case, the result will be an instance of (0, 1)-BDDp,α, which
reduces to BDDp,α as shown above.

We note that the triangle inequality precludes the existence of (S, T)-BDDp,α instances
with T > S + 1 and α ≤ 1/2, so with this approach we can only hope to show hardness of
BDDp,α for α > 1/2, i.e., the unique-decoding regime remains out of reach.

I Theorem 19. For any S = S(n) ≥ 1 and T = T (n) ≥ 10S that is efficiently computable
(for unary n), p ∈ [1,∞], and α = α(n) > 0, there is a randomized Cook reduction with no
false positives from the search version of (S, T)-BDDp,α (resp., with preprocessing) in rank n
to BDDp,α (resp., with preprocessing) in rank n+ 1.

Proof. By Lemma 18, it suffices to give such a reduction to (0, 1)-BDDp,α in rank n, which
works as follows. On input (B, r, t), let L = L(B). First, randomly choose a prime q where
10T ≤ q ≤ 20T . Then sample z, c ∈ Znq independently and uniformly at random, and define

L′ := {v ∈ L : 〈z, B+v〉 = 0 (mod q)} and t′ := t+Bc .

Let B′ be a basis of L′. (Such a basis is efficiently computable from B, z, and q. See, e.g., [29,
Claim 2.15].) Invoke the (0, 1)-BDDp,α oracle on (B′, r, t′), and output whatever the oracle
outputs.

We now analyze the reduction. We are promised that (B, r, t) is a YES instance of
(S, T)-BDDp,α, and it suffices to show that (B′, r, t′) is a YES instance of (0, 1)-BDDp,α, i.e.,
λ

(p)
1 (L′) ≥ r and distp(t′,L′) ≤ αr, with some positive constant probability. By Corollary 10

we have

Pr[λ(p)
1 (L′) < r] ≤

No
p (L \ {0}, r,0)

q
≤ S

q
≤ 1

100 .

Furthermore, because there are T vectors vi ∈ L for which ‖vi − t‖p ≤ αr, and their
coefficient vectors B+vi ∈ {0, 1}n are distinct (as integer vectors, and hence also modulo q),
by Corollary 12 we have

Pr[distp(t′,L′) ≤ αr] ≥
T

q
− T 2

q2 −
T 2

qn−1 ≥
1
20 −

1
400 −

1
400qn−3 .

H. Bennett and C. Peikert 36:15

Therefore, by the union bound we have

Pr[λ(p)
1 (L′) ≥ r and distp(t′,L′) ≤ αr] ≥

1
20 −

1
400 −

1
400qn−3 −

1
100 ≥

1
40

for all n ≥ 3, as desired.
Finally, the above also constitutes a valid reduction for the preprocessing problems (in

the sense of Definition 4), because B′ depends only on B from the preprocessing part of the
input and the reduction’s own random choices (and r remains unchanged). J

3.2 GapCVP’ to (S, T)-BDD
Here we show that a known-hard variant of the (exact) Closest Vector Problem reduces to
(S, T)-BDD (in its decision version).

I Definition 20. For p ∈ [1,∞], the (decision) promise problem GapCVP′p is defined as
follows: an instance consists of a basis B ∈ Rd×n and a target vector t ∈ Rd.

It is a YES instance if there exists x ∈ {0, 1}n such that ‖Bx− t‖p ≤ 1.
It is a NO instance if distp(t,L(B)) > 1.

The preprocessing (decision) promise problem GapCVPP′p is defined analogously, where the
preprocessing input is B and the query input is t.

Observe that for GapCVP′p the distance threshold is 1 (and not some instance-dependent
value) without loss of generality, because we can scale the lattice and target vector. The same
goes for GapCVPP′p, with the caveat that any instance-dependent distance threshold would
need to be included in the preprocessing part of the input, not the query part. (See Remark 26
below for why this is essentially without loss of generality, under a mild assumption on the
GapCVPP′p instances.) We remark that some works define these problems with a stronger
requirement that in the NO case, distp(zt,L(B)) > r for all z ∈ Z \ {0}. We will not need
this stronger requirement, and some of the hardness results for GapCVP′ that we rely on
are not known to hold with it, so we use the weaker requirement.

We next describe a simple transformation on lattices and target vectors: we essentially
take a direct sum of the input lattice with the integer lattice of any desired dimension n and
append an all- 1

2 s vector to the target vector.

I Lemma 21. For any n′ ≤ n, define the following transformations that map a basis B′
of a rank-n′ lattice L′ to a basis B of a rank-n lattice L, and a target vector t′ to a target
vector t:

B :=

 1
2B
′ 0

In′ 0
0 In−n′

 , t := 1
2

 t′

1n′

1n−n′

 , (3.1)

and define

sp = sp(n) := 1
2 (n+ 1)1/p for p ∈ [1,∞), and s∞ := 1/2. (3.2)

Then:
1. No

p (L, r,0) ≤ No
p (Zn, r,0) for all r ≥ 0;

2. if there exists an x ∈ {0, 1}n′ such that ‖B′x−t′‖p ≤ 1, then Np(B ·{0, 1}n, sp, t) ≥ 2n−n′ ;
3. if distp(t′,L′) > 1 then distp(t,L) > sp.

CCC 2020

36:16 Hardness of Bounded Distance Decoding on Lattices in `p Norms

Proof. Item 1 follows immediately by construction of B, because vectors v′ = (1
2B
′x,x,y) ∈

L for x,y ∈ Zn correspond bijectively to vectors v = (x,y) ∈ Zn, and ‖v‖p ≤ ‖v′‖p.
For Item 2, for every y ∈ {0, 1}n−n′ , the vector v := (1

2B
′x,x,y) ∈ L satisfies

‖v − t‖pp =
‖B′x− t′‖pp

2p + n

2p ≤ s
p
p

for finite p, and ‖v − t‖∞ = max(1
2‖B

′x− t′‖∞, 1
2) = 1

2 = s∞. The claim follows.
For Item 3, for finite p we have

distp(t,L)p ≥ distp(t′,L′)p

2p + n

2p >
n+ 1

2p = spp ,

and for p =∞ we immediately have dist∞(t,L) ≥ 1
2 dist∞(t′,L′) > 1

2 = s∞, as needed. J

I Corollary 22. For any p ∈ [1,∞], α > 0, and poly(n′)-bounded n ≥ n′, there is a
deterministic Karp reduction from GapCVP′p (resp., with preprocessing) in rank n′ to the
decision version of (S, T)-BDDp,α (resp., with preprocessing) in rank n, where S(n) =
No
p (Zn \ {0}, sp/α,0) for sp as defined in Equation (3.2), and T (n) = 2n−n′ .

Proof. Given an input GapCVP′p instance (B′, t′), the reduction simply outputs (B, r =
sp/α, t), where B, t are as in Equation (3.1). Observe that this is also valid for the prepro-
cessing problems because B and r depend only on B′. Correctness follows immediately by
Lemma 21. J

3.3 Setting Parameters
We now investigate the relationship among the choice of `p norm (for finite p), the BDD
relative distance α, and the rank ratio C := n/n′, subject to the constraint

No
p (Zn, sp/α,0) ≤ 2n−n

′
/10 = T (n)/10 , (3.3)

so that the reductions in Corollary 22 and Theorem 19 can be composed. For p ∈ [1,∞) and
C > 1, define

α∗p,C := inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 21−1/C} , (3.4)

α∗p := lim
C→∞

α∗p,C = inf{α∗ > 0 : min
τ>0

exp(τ/(2α∗)p) ·Θp(τ) ≤ 2} . (3.5)

These quantities are well defined because for any C > 1 we have 21−1/C > 1, so the inequality
in Equation (3.4) is satisfied for sufficiently large τ and α∗. Moreover, it is straightforward
to verify that α∗p,C is strictly decreasing in both p and C, and α∗p is strictly decreasing
in p. Although it is not clear how to solve for these quantities in closed form, it is possible
to approximate them numerically to good accuracy (see Figure 1), and to get quite tight
closed-form upper bounds (see Lemma 27). We now show that to satisfy Equation (3.3) it
suffices to take any constant α > α∗p,C .

I Corollary 23. For any p ∈ [1,∞), C ≥ 1, and constant α > α∗p,C (Equation (3.4)), there
is a deterministic Karp reduction from GapCVP′p (resp., with preprocessing) in rank n′ to
the decision version of (S, T)-BDDp,α (resp., with preprocessing) in rank n = Cn′, where
S(n) = T (n)/10 and T (n) = 2(1−1/C)n.

H. Bennett and C. Peikert 36:17

Proof. Recalling that sp = 1
2 (n+ 1)1/p, by Proposition 13, No

p (Zn, sp/α,0) is at most

Np(Zn, sp/α,0) ≤ min
τ>0

exp(τ · (sp/α)p) ·Θp(τ)n

= min
τ>0

exp(τ · (n+ 1)/(2α)p) ·Θp(τ)n

=
(

min
τ>0

exp(τ/(n(2α)p)) · exp(τ/(2α)p) ·Θp(τ)
)n

.

Because α > α∗p,C , we have that minτ>0 exp(τ/(2α)p) ·Θp(τ) is a constant strictly less than
21−1/C . So, No

p (Zn, sp/α,0) ≤ 2(1−1/C)n/10 = T (n)/10 for all large enough n. The claim
follows from Corollary 22. J

I Theorem 24. For any p ∈ [1,∞), C ≥ 1, and constant α > α∗p,C , there is a randomized
Cook reduction with no false positives from GapCVP′p (resp., with preprocessing) in rank n′
to BDDp,α (resp., with preprocessing) in rank n = Cn′ + 1. Furthermore, the same holds for
p =∞, C = 1, α = 1/2, and the reduction is deterministic.

Proof. For finite p, we simply compose the reductions from Corollary 23 and Theorem 19,
with the trivial decision-to-search reduction for (S, T)-BDDp,α in between.

For p =∞, we first invoke the deterministic reduction from Corollary 22, from GapCVP′∞
in rank n′ to (S, T)-BDD∞,1/2 in rank Cn′ = n′, where S = No

∞(Zn \ {0}, 1,0) = 0 and
T = 20 > 0. By Lemma 18, the latter problem reduces deterministically to BDD∞,1/2 in
rank n′ + 1.

Lastly, all of these reductions work for the preprocessing problems as well, because their
component reductions do. J

3.4 Putting it all Together
We now combine our reductions from GapCVP′ to BDD with prior hardness results for
GapCVP′ (stated below in Theorem 25) to obtain our ultimate hardness theorems for BDD.
We first recall relevant known hardness results for GapCVP′p and GapCVPP′p.

I Theorem 25 ([23, 10, 2]). The following hold for GapCVP′p and GapCVPP′p in rank n:
1. For every p ∈ [1,∞], GapCVP′p is NP-hard, and GapCVPP′p has no polynomial-time

(preprocessing) algorithm unless NP ⊆ P/Poly.
2. For every p ∈ [1,∞], there is no 2o(n)-time randomized algorithm for GapCVP′p unless

randomized ETH fails.
3. For every p ∈ [1,∞] \ {2}, there is no 2o(n)-time algorithm for GapCVPP′p, and there is

no 2o(
√
n)-time algorithm for GapCVPP′2, unless non-uniform ETH fails.

4. For every p ∈ [1,∞] \ 2Z and every ε > 0, there is no 2(1−ε)n-time randomized algorithm
for GapCVP′p (respectively, GapCVPP′p) unless randomized SETH (resp., non-uniform
SETH) fails.

I Remark 26. Several of the above results are stated slightly differently from what appears
in [23, 10, 2]. First, all of the above results for GapCVP′p (respectively, GapCVPP′p) are
instead stated for GapCVPp (resp., GapCVPPp). However, inspection shows that the
reductions are indeed to GapCVP′p or GapCVPP′p, so this difference is immaterial.

Second, the above statements ruling out randomized algorithms for GapCVP′p assuming
randomized (S)ETH are instead phrased in [10, 2] as ruling out deterministic algorithms
for GapCVP′p assuming deterministic (S)ETH. However, because these results are proved
via deterministic reductions, randomized algorithms for GapCVP′p have the consequences
claimed above.

CCC 2020

36:18 Hardness of Bounded Distance Decoding on Lattices in `p Norms

Third, the above results for GapCVPP′p follow from the reductions given in (the proofs of)
[23], [2, Theorem 4.3], [10, Theorem 1.4 and Lemma 6.1], and [2, Theorem 4.6]. However, those
reductions all prove hardness for the variant of GapCVPP′p where the distance threshold r is
part of the query input, rather than the preprocessing input. Inspection of [2, Theorem 4.6]
shows that r is fixed in the output instance, so this difference is immaterial in that case. We
next describe how to handle this difference for the remaining cases. Below we give, for any
p ∈ [1,∞), a straightforward rank-preserving mapping reduction (in the sense of Definition 5)
from the variant of GapCVPP′p where the distance threshold r is part of the query input
to the variant where it is part of the preprocessing input, assuming that r is always at
most some r∗ that depends only on B, and whose length log r∗ is polynomial in the length
of B. Inspection shows that such an r∗ does indeed exist for the reductions given in [23], [2,
Theorem 4.3], and [10, Lemma 6.1], which handles the second difference for those cases.

The mapping reduction (RP , RQ) in question maps (B, (t, r)) 7→ ((B′, r∗), t′) as follows.
First, RP takes B as input, and sets B′ :=

(
B
0t

)
; it also outputs σ′ = r∗ as side information

for RQ. Then, RQ takes (t, r) and r∗ as input, and outputs t′ := (t, ((r∗)p − rp)1/p). Using
the guarantee that r∗ ≥ r, it is straightforward to check that the output instance ((B′, r∗), t′)
is a YES instance (respectively, NO instance) if the input instance (B, (t, r)) is a YES
instance resp., NO instance, as required.

Finally, we again remark that several of the hardness results in Theorem 25 in fact hold
under weaker versions of randomized or non-uniform (S)ETH that relate to Max-3-SAT
(respectively, Max-k-SAT), instead of 3-SAT (resp. k-SAT). Therefore, it is straightforward
to obtain corresponding hardness results for BDD(P) under these weaker assumptions as well.

We can now prove our main theorem, restated from the introduction:

I Theorem 1. The following hold for BDDp,α and BDDPp,α in rank n:
1. For every p ∈ [1,∞) and constant α > α∗p (where α∗p ≤ 1

2 · 4.67231/p), and for (p, α) =
(∞, 1/2), there is no polynomial-time algorithm for BDDp,α (respectively, BDDPp,α)
unless NP ⊆ RP (resp., NP ⊆ P/Poly).

2. For every p ∈ [1,∞) and constant α > min{α∗p, α∗2}, and for (p, α) = (∞, 1/2), there is
no 2o(n)-time algorithm for BDDp,α unless randomized ETH fails.

3. For every p ∈ [1,∞) \ {2} and constant α > α∗p, and for (p, α) = (∞, 1/2), there is no
2o(n)-time algorithm for BDDPp,α unless non-uniform ETH fails.
Moreover, for every p ∈ [1,∞] and α > α∗2 there is no 2o(

√
n)-time algorithm for BDDPp,α

unless non-uniform ETH fails.
4. For every p ∈ [1,∞) \ 2Z and constants C > 1, α > α∗p,C , and ε > 0, and for (p, C, α) =

(∞, 1, 1/2), there is no 2n(1−ε)/C-time algorithm for BDDp,α (respectively, BDDPp,α)
unless randomized SETH (resp., non-uniform SETH) fails.

Proof. For BDD, each item of the theorem follows from the corresponding item of Theo-
rem 25, followed by Theorem 24 and then (where needed) rank-preserving norm embeddings
from `2 to `p [28]. (Also, Lemma 27 below provides the upper bound on α∗p.) The claims
for BDDP follow similarly, combined with the well-known fact that P/Poly = BPP/Poly
and Corollary 16.4 J

4 In fact, P/Poly = BPP/Poly also follows as a corollary of the more general derandomization result
in Lemma 3.

H. Bennett and C. Peikert 36:19

3.5 An Upper Bound on α∗
p,C and α∗

p

We conclude with closed-form upper bounds on α∗p,C and α∗p. The main idea is to replace
Θp(τ) with an upper bound of Θ1(τ) (which has a closed-form expression) in Equations (3.4)
and (3.5), then directly analyze the value of τ > 0 that minimizes the resulting expressions.
This leads to quite tight bounds (and also yields tighter bounds than the techniques used in
the proof of [5, Claim 4.4], which bounds a related quantity). For example, α∗2 ≈ 1.05006,
and the upper bound in Lemma 27 gives α∗2 ≤ 1.08078; similarly, α∗5 ≈ 0.672558 and the
upper bound in Lemma 27 gives α∗5 ≤ 0.680575.

I Lemma 27. Define

g(σ, τ) := exp(τ/σ) ·
(

2
1− exp(−τ) − 1

)
and τ∗(σ) := arcsinh(σ) = ln(σ +

√
1 + σ2). Let σ∗ and σ∗C for C > 1 be the (unique)

constants for which g(σ∗, τ∗(σ∗)) = 2 and g(σ∗C , τ∗(σ∗C)) = 21−1/C . Then for any p ∈ [1,∞),
we have

α∗p,C ≤
1
2 · (σ

∗
C)1/p and α∗p ≤

1
2 · (σ

∗)1/p ≤ 1
2 · 4.67231/p .

In particular, α∗p,C → 1/2 as p→∞ for any fixed C > 1, and therefore α∗p → 1/2 as p→∞.

Proof. For any τ > 0, by the definition of Θp(τ) and the formula for summing geometric
series we have

Θp(τ) ≤ Θ1(τ) = 1 + 2
∞∑
i=1

exp(−τ)i = 2
1− exp(−τ) − 1 . (3.6)

Define the objective function

f(p, α) := min
τ>0

exp(τ/(2α)p) ·Θp(τ)

to be the expression that is upper-bounded in Equations (3.4) and (3.5). For any fixed α > 0,
set σ := (2α)p. Applying Equation (3.6), it follows that f(p, α) ≤ g(σ, τ) for any τ > 0. This
implies that if there exists some τ > 0 satisfying g(σ, τ) ≤ 2 then α∗p ≤ 1

2σ
1/p, and similarly,

if g(σ, τ) ≤ 21−1/C then α∗p,C ≤ 1
2σ

1/p.
By standard calculus,

∂g

∂τ
= eτ/σ

1− e−τ ·
(

(1 + e−τ)/σ − 2e−τ/(1− e−τ)
)
.

Setting the right-hand side of the above expression equal to 0 and solving for τ yields the
single real solution

τ = τ∗(σ) = arcsinh(σ) = ln(σ +
√

1 + σ2) ,

which is a local minimum, and therefore a global minimum of g(σ, τ) for any fixed σ > 0.
Define the univariate function g∗(σ) := g(σ, τ∗(σ)). The fact that σ∗ and σ∗C exist and

are unique follows by noting that limσ→0+ g∗(σ) = ∞, that limσ→∞ g∗(σ) = 1, and that
g∗(σ) is strictly decreasing in σ > 0. By definition of σ∗ (respectively, σ∗C), it follows that
g∗(σ∗) = 2 for α = 1

2 (σ∗)1/p, and g∗(σ∗C) = 21−1/C for α = 1
2 (σ∗C)1/p, as desired. Moreover,

one can check numerically that σ∗ ≤ 4.6723. J

CCC 2020

36:20 Hardness of Bounded Distance Decoding on Lattices in `p Norms

References
1 Leonard M. Adleman. Two theorems on random polynomial time. In FOCS, pages 75–83,

1978.
2 Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-

grained hardness of CVP(P)— Everything that we can prove (and nothing else), 2019.
arXiv:1911.02440.

3 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2n time using discrete Gaussian sampling: Extended abstract. In
STOC, pages 733–742, 2015.

4 Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving the closest vector
problem in 2n time – the discrete Gaussian strikes again! In FOCS, pages 563–582, 2015.

5 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,
pages 228–238, 2018.

6 Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! An embarrassingly
simple 2n-time algorithm for SVP (and CVP). In Symposium on Simplicity in Algorithms,
volume 61, pages 12:1–12:19, 2018.

7 Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In STOC, pages 10–19, 1998.

8 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317–331,
1997. doi:10.1006/jcss.1997.1472.

9 Shi Bai, Damien Stehlé, and Weiqiang Wen. Improved reduction from the bounded distance
decoding problem to the unique shortest vector problem in lattices. In ICALP, pages 76:1–76:12,
2016.

10 Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. On the quantitative
hardness of CVP. In FOCS, 2017.

11 Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the closest vector problem
with a distance guarantee. In IEEE Conference on Computational Complexity, pages 98–109,
2014.

12 N. D. Elkies, A. M. Odlyzko, and J. A. Rush. On the packing densities of superballs and other
bodies. Inventiones mathematicae, 105:613–639, December 1991.

13 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197–206, 2008.

14 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. Theory of Computing, 8(1):513–531, 2012. Preliminary version in
STOC 2007.

15 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

16 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005. Preliminary version in FOCS 2004.

17 Subhash Khot. Hardness of approximating the shortest vector problem in high `p norms. J.
Comput. Syst. Sci., 72(2):206–219, 2006.

18 Ravi Kumar and D. Sivakumar. On the unique shortest lattice vector problem. Theor. Comput.
Sci., 255(1-2):641–648, 2001.

19 Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On bounded distance decoding for
general lattices. In APPROX-RANDOM, pages 450–461, 2006.

20 Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In CRYPTO, pages 577–594, 2009.

21 J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatshefte für
Mathematik, 110:47–61, March 1990.

22 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. SIAM J. Comput., 30(6):2008–2035, 2000. Preliminary version in FOCS 1998.

http://arxiv.org/abs/1911.02440
https://doi.org/10.1006/jcss.1997.1472

H. Bennett and C. Peikert 36:21

23 Daniele Micciancio. The hardness of the closest vector problem with preprocessing. IEEE
Trans. Information Theory, 47(3):1212–1215, 2001. doi:10.1109/18.915688.

24 Daniele Micciancio. Efficient reductions among lattice problems. In SODA, pages 84–93, 2008.
25 Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic

reduction. Theory of Computing, 8(1):487–512, 2012.
26 Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In

STOC, pages 333–342, 2009.
27 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,

56(6):1–40, 2009. Preliminary version in STOC 2005.
28 Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In STOC, pages

447–456, 2006.
29 Noah Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP. In SODA,

pages 1748–1764, 2016. doi:10.1137/1.9781611974331.ch121.
30 Noah Stephens-Davidowitz and Vinod Vaikuntanathan. SETH-hardness of coding problems.

In FOCS, pages 287–301, 2019.
31 Peter van Emde Boas. Another NP-complete problem and the complexity of computing short

vectors in a lattice. Technical Report 81-04, University of Amsterdam, 1981.

CCC 2020

https://doi.org/10.1109/18.915688
https://doi.org/10.1137/1.9781611974331.ch121

	Introduction
	Our Results
	Technical Overview
	Discussion and Future Work

	Preliminaries
	Problems with Preprocessing
	Lattices
	Bounded Distance Decoding (with Preprocessing)
	Sparsification
	Counting Lattice Points in a Ball
	Hardness Assumptions

	Hardness of BDD_p,alpha
	(S, T)-BDD to BDD
	GapCVP' to (S, T)-BDD
	Setting Parameters
	Putting it all Together
	An Upper Bound on alpha_(p,C)^* and alpha_p^*

