7 research outputs found

    An Improved Isomorphism Test for Bounded-Tree-Width Graphs

    Get PDF
    We give a new fpt algorithm testing isomorphism of n-vertex graphs of tree width k in time 2^{k polylog(k)} poly n, improving the fpt algorithm due to Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh (FOCS 2014), which runs in time 2^{O(k^5 log k)}poly n. Based on an improved version of the isomorphism-invariant graph decomposition technique introduced by Lokshtanov et al., we prove restrictions on the structure of the automorphism groups of graphs of tree width k. Our algorithm then makes heavy use of the group theoretic techniques introduced by Luks (JCSS 1982) in his isomorphism test for bounded degree graphs and Babai (STOC 2016) in his quasipolynomial isomorphism test. In fact, we even use Babai\u27s algorithm as a black box in one place. We give a second algorithm which, at the price of a slightly worse run time 2^{O(k^2 log k)}poly n, avoids the use of Babai\u27s algorithm and, more importantly, has the additional benefit that it can also be used as a canonization algorithm

    Canonisation and Definability for Graphs of Bounded Rank Width

    Full text link
    We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3k+4)(3k+4) is a complete isomorphism test for the class of all graphs of rank width at most kk. Rank width is a graph invariant that, similarly to tree width, measures the width of a certain style of hierarchical decomposition of graphs; it is equivalent to clique width. It was known that isomorphism of graphs of rank width kk is decidable in polynomial time (Grohe and Schweitzer, FOCS 2015), but the best previously known algorithm has a running time nf(k)n^{f(k)} for a non-elementary function ff. Our result yields an isomorphism test for graphs of rank width kk running in time nO(k)n^{O(k)}. Another consequence of our result is the first polynomial time canonisation algorithm for graphs of bounded rank width. Our second main result is that fixed-point logic with counting captures polynomial time on all graph classes of bounded rank width.Comment: 32 page

    Order-Related Problems Parameterized by Width

    Get PDF
    In the main body of this thesis, we study two different order theoretic problems. The first problem, called Completion of an Ordering, asks to extend a given finite partial order to a complete linear order while respecting some weight constraints. The second problem is an order reconfiguration problem under width constraints. While the Completion of an Ordering problem is NP-complete, we show that it lies in FPT when parameterized by the interval width of ρ. This ordering problem can be used to model several ordering problems stemming from diverse application areas, such as graph drawing, computational social choice, and computer memory management. Each application yields a special partial order ρ. We also relate the interval width of ρ to parameterizations for these problems that have been studied earlier in the context of these applications, sometimes improving on parameterized algorithms that have been developed for these parameterizations before. This approach also gives some practical sub-exponential time algorithms for ordering problems. In our second main result, we combine our parameterized approach with the paradigm of solution diversity. The idea of solution diversity is that instead of aiming at the development of algorithms that output a single optimal solution, the goal is to investigate algorithms that output a small set of sufficiently good solutions that are sufficiently diverse from one another. In this way, the user has the opportunity to choose the solution that is most appropriate to the context at hand. It also displays the richness of the solution space. There, we show that the considered diversity version of the Completion of an Ordering problem is fixed-parameter tractable with respect to natural paramaters that capture the notion of diversity and the notion of sufficiently good solutions. We apply this algorithm in the study of the Kemeny Rank Aggregation class of problems, a well-studied class of problems lying in the intersection of order theory and social choice theory. Up to this point, we have been looking at problems where the goal is to find an optimal solution or a diverse set of good solutions. In the last part, we shift our focus from finding solutions to studying the solution space of a problem. There we consider the following order reconfiguration problem: Given a graph G together with linear orders τ and τ ′ of the vertices of G, can one transform τ into τ ′ by a sequence of swaps of adjacent elements in such a way that at each time step the resulting linear order has cutwidth (pathwidth) at most w? We show that this problem always has an affirmative answer when the input linear orders τ and τ ′ have cutwidth (pathwidth) at most w/2. Using this result, we establish a connection between two apparently unrelated problems: the reachability problem for two-letter string rewriting systems and the graph isomorphism problem for graphs of bounded cutwidth. This opens an avenue for the study of the famous graph isomorphism problem using techniques from term rewriting theory. In addition to the main part of this work, we present results on two unrelated problems, namely on the Steiner Tree problem and on the Intersection Non-emptiness problem from automata theory.Doktorgradsavhandlin
    corecore