8 research outputs found

    MaaSim: A Liveability Simulation for Improving the Quality of Life in Cities

    Get PDF
    Urbanism is no longer planned on paper thanks to powerful models and 3D simulation platforms. However, current work is not open to the public and lacks an optimisation agent that could help in decision making. This paper describes the creation of an open-source simulation based on an existing Dutch liveability score with a built-in AI module. Features are selected using feature engineering and Random Forests. Then, a modified scoring function is built based on the former liveability classes. The score is predicted using Random Forest for regression and achieved a recall of 0.83 with 10-fold cross-validation. Afterwards, Exploratory Factor Analysis is applied to select the actions present in the model. The resulting indicators are divided into 5 groups, and 12 actions are generated. The performance of four optimisation algorithms is compared, namely NSGA-II, PAES, SPEA2 and eps-MOEA, on three established criteria of quality: cardinality, the spread of the solutions, spacing, and the resulting score and number of turns. Although all four algorithms show different strengths, eps-MOEA is selected to be the most suitable for this problem. Ultimately, the simulation incorporates the model and the selected AI module in a GUI written in the Kivy framework for Python. Tests performed on users show positive responses and encourage further initiatives towards joining technology and public applications.Comment: 16 page

    Process Knowledge-guided Autonomous Evolutionary Optimization for Constrained Multiobjective Problems

    Get PDF
    Various real-world problems can be attributed to constrained multi-objective optimization problems. Although there are various solution methods, it is still very challenging to automatically select efficient solving strategies for constrained multi-objective optimization problems. Given this, a process knowledge-guided constrained multi-objective autonomous evolutionary optimization method is proposed. Firstly, the effects of different solving strategies on population states are evaluated in the early evolutionary stage. Then, the mapping model of population states and solving strategies is established. Finally, the model recommends subsequent solving strategies based on the current population state. This method can be embedded into existing evolutionary algorithms, which can improve their performances to different degrees. The proposed method is applied to 41 benchmarks and 30 dispatch optimization problems of the integrated coal mine energy system. Experimental results verify the effectiveness and superiority of the proposed method in solving constrained multi-objective optimization problems.The National Key R&D Program of China, the National Natural Science Foundation of China, Shandong Provincial Natural Science Foundation, Fundamental Research Funds for the Central Universities and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235hj2023Electrical, Electronic and Computer Engineerin

    Adaptiver Suchansatz zur multidisziplinären Optimierung von Leichtbaustrukturen unter Verwendung hybrider Metaheuristik

    Get PDF
    Within the last few years environmental regulations, safety requirements and market competitions forced the automotive industry to open up a wide range of new technologies. Lightweight design is considered as one of the most innovative concepts to fulfil environmental, safety and many other objectives at competitive prices. Choosing the best design and production process in the development period is the most significant link in the automobile production chain. A wide range of design and process parameters needs to be evaluated to achieve numerous goals of production. These goals often stand in conflict with each other. In addition to the variation of the concepts and following the objectives, some limitations such as manufacturing restrictions, financial limits, and deadlines influence the choice of the best combination of variables. This study introduces a structural optimization tool for assemblies made of sheet metal, e.g. the automobile body, based on parametrization and evaluation of concepts in CAD and CAE. This methodology focuses on those concepts, which leads to the use of the right amount of light and strong material in the right place, instead of substituting the whole structure with the new material. An adaptive hybrid metaheuristic algorithm is designed to eliminate all factors that would lead to a local minimum instead of global optimum. Finding the global optimum is granted by using some explorative and exploitative search heuristics, which are intelligently organized by a central controller. Reliability, accuracy and the speed of the proposed algorithm are validated via a comparative study with similar algorithms for an academic optimization problem, which shows valuable results. Since structures might be subject to a wide range of load cases, e.g. static, cyclic, dynamic, temperature-dependent etc., these requirements need to be addressed by a multidisciplinary optimization algorithm. To handle the nonlinear response of objectives and to tackle the time-consuming FEM analyses in crash situations, a surrogate model is implemented in the optimization tool. The ability of such tool to present the optimum results in multi-objective problems is improved by using some user-selected fitness functions. Finally, an exemplary sub-assembly made of sheet metal parts from a car body is optimized to enhance both, static load case and crashworthiness.Die Automobilindustrie hat in den letzten Jahren unter dem Druck von Umweltvorschriften, Sicherheitsanforderungen und wettbewerbsfähigem Markt neue Wege auf dem Gebiet der Technologien eröffnet. Leichtbau gilt als eine der innovativsten und offenkundigsten Lösungen, um Umwelt- und Sicherheitsziele zu wettbewerbsfähigen Preisen zu erreichen. Die Wahl des besten Designs und Verfahrens für Produktionen in der Entwicklungsphase ist der wichtigste Ring der Automobilproduktionskette. Um unzählige Produktionsziele zu erreichen, müssen zahlreiche Design- und Prozessparameter bewertet werden. Die Anzahl und Variation der Lösungen und Ziele sowie einige Einschränkungen wie Fertigungsbeschränkungen, finanzielle Grenzen und Fristen beeinflussen die Auswahl einer guten Kombination von Variablen. In dieser Studie werden strukturelle Optimierungswerkzeuge für aus Blech gefertigte Baugruppen, z. Karosserie, basierend auf Parametrisierung und Bewertung von Lösungen in CAD bzw. CAE. Diese Methodik konzentriert sich auf die Lösungen, die dazu führen, dass die richtige Menge an leichtem / festem Material an der richtigen Stelle der Struktur verwendet wird, anstatt vollständig ersetzt zu werden. Eine adaptive Hybrid-Metaheuristik soll verhindern, dass alle Faktoren, die Bedrohungsoptimierungstools in einem lokalen Minimum konvergieren, anstelle eines globalen Optimums. Das Auffinden des globalen Optimums wird durch einige explorative und ausbeuterische Such Heuristiken gewährleistet. Die Zuverlässigkeit, Genauigkeit und Geschwindigkeit des vorgeschlagenen Algorithmus wird mit ähnlichen Algorithmen in akademischen Optimierungsproblemen validiert und führt zu respektablen Ergebnissen. Da Strukturen möglicherweise einem weiten Bereich von Lastfällen unterliegen, z. statische, zyklische, dynamische, Temperatur usw. Möglichkeit der multidisziplinären Optimierung wurde in Optimierungswerkzeugen bereitgestellt. Um die nichtlineare Reaktion von Zielen zu überwinden und um den hohen Zeitverbrauch von FEM-Analysen in Absturzereignissen zu bewältigen, könnte ein Ersatzmodell vom Benutzer verwendet werden. Die Fähigkeit von Optimierungswerkzeugen, optimale Ergebnisse bei Problemen mit mehreren Zielsetzungen zu präsentieren, wird durch die Verwendung einiger vom Benutzer ausgewählten Fitnessfunktionen verbessert. Eine Unterbaugruppe aus Blechteilen, die zur Automobilkarosserie gehören, ist optimiert, um beide zu verbessern; statischer Lastfall und Crashsicherheit

    Metaheuristic and matheuristic approaches for multi-objective optimization problems in process engineering : application to the hydrogen supply chain design

    Get PDF
    Complex optimization problems are ubiquitous in Process Systems Engineering (PSE) and are generally solved by deterministic approaches. The treatment of real case studies usually involves mixed-integer variables, nonlinear functions, a large number of constraints, and several conflicting criteria to be optimized simultaneously, thus challenging the classical methods. The main motivation of this research is therefore to explore alternative solution methods for addressing these complex multiobjective optimization problems related to the PSE area, focusing on the recent advances in Evolutionary Computation. If multiobjective evolutionary algorithms (MOEAs) have proven to be robust for the solution of multiobjective problems, their performance yet strongly depends on the constraint-handling techniques for the solution of highly constrained problems. The core of innovation of this research is the adaptation of metaheuristic-based tools to this class of PSE problems. For this purpose, a two-stage strategy was developed. First, an empirical study was performed in the perspective of comparing different algorithmic configurations and selecting the best to provide a high-quality approximation of the Pareto front. This study, comprising both academic test problems and several PSE applications, demonstrated that a method using the gradient-based mechanism to repair infeasible solutions consistently obtains the best results, in particular for handling equality constraints. Capitalizing on the experience from this preliminary numerical investigation, a novel matheuristic solution strategy was then developed and adapted to the problem of Hydrogen Supply Chain (HSC) design that encompasses the aforementioned numerical difficulties, considering both economic and environmental criteria. A MOEA based on decomposition combined with the gradient-based repair was first explored as a solution technique. However, due to the important number of mass balances (equality constraints), this approach showed a poor convergence to the optimal Pareto front. Therefore, a novel matheuristic was developed and adapted to this problem, following a bilevel decomposition: the upper level (discrete) addresses the HSC structure design problem (facility sizing and location), whereas the lower level (Linear Programming problem) solves the corresponding operation subproblem (production and transportation). This strategy allows the development of an ad-hoc matheuristic solution technique, through the hybridization of a MOEA (upper level) with a LP solver (lower level) using a scalarizing function to deal with the two objectives considered. The numerical results obtained for the Occitanie region case study highlight that the hybrid approach produces an accurate approximation of the optimal Pareto front, more efficiently than exact solution methods. Finally, the matheuristic allowed studying the HSC design problem with more realistic assumptions regarding the technologies used for hydrogen synthesis, the learning rates capturing the increasing maturity of these technologies over time and nonlinear relationships for the computation of Capital and Operational Expenditures (CAPEX and OPEX) for the hydrogen production facilities. The resulting novel model, with a non-convex, bi-objective mixed-integer nonlinear programming (MINLP) formulation, can be efficiently solved through minor modifications in the hybrid algorithm proposed earlier, which finds its mere justification in the determination of the timewise deployment of sustainable hydrogen supply chains
    corecore