
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (Toulouse INP)
Discipline ou spécialité :

Présentée et soutenue par :

Titre :

Unité de recherche :

Ecole doctorale :

Directeur(s) de Thèse :

Rapporteurs :

Membre(s) du jury :
M. BRUNO SARENI, TOULOUSE INP, Président

M. ANTONIN PONSICH, UNIVERSIDAD AUTONOMA METRPOLITANA MEXICO, Membre
M. JOSE MARIA PONCE ORTEGA, U. Michoacana Morelia, Membre

MME ANNABELLE BRISSE, EUROPEAN INSTITUTE FOR ENERGY RESEARCH, Membre
MME CATHERINE AZZARO-PANTEL, TOULOUSE INP, Membre

M. VICTOR CANTU MEDRANO

Génie des Procédés et de l'Environnement

Métaheuristiques et matheuristiques pour des problèmes d'optimisation
multi-objectifs en génie des procédés: application à la conception d'une

chaîne logistique « hydrogène »

le vendredi 2 juillet 2021

Mécanique, Energétique, Génie civil, Procédés (MEGeP)

 Laboratoire de Génie Chimique ( LGC)

MME CATHERINE AZZARO-PANTEL
M. ANTONIN PONSICH

 

M. ANTONIO ESPUÑA, UNIV POLITECNICA DE CATALUNYA BARCELONA
M. JEAN-BAPTISTE CAILLAU, UNIVERSITE COTE D'AZUR





to my father, the doctor of the family

iii





Acknowledgments

I gratefully thank the Mexican Council of Science and Technology (CONACyT) and
the Energy Department of Mexico (SENER) for the scholarship support for pursuing
PhD studies during the last three years; without their support, it would likely be
impossible to achieve this work.

I express my sincere gratitude to my advisors Catherine Azzaro-Pantel and
Antonin Ponsich. I thank you for giving me this great opportunity of doing a PhD
thesis under your supervision. This has been the window to acquire the proper
scientific understanding from your expertise and to realize the excellence of your
human quality. The time we have worked together is counted in years, yet the tracks
you have left in my career is counted in a lifetime.

I thank Prof. Antonio Espuña and Prof. Jean-Baptiste Caillau, my thesis reviewers,
not only for your time and effort you dedicated for reading the document, but also for
your valuable comments and insights as experts in the Mathematical Optimization
area. It is an honor for me to have your critical opinion on my research.

I wish to thank also Prof. Bruno Sareni, Prof. José María Ponce Ortega and
Scientific Advisor Annabelle Brisse, for your precious examination of my research
work. I genuinely thank you for each question you asked and each comment you
made; thanks to your expertise you allowed me to broader the perspectives of my
work.

In a more general way, I want to express my gratefulness to each professor who
devoted a moment of his/her life for sharing with me a bit of their great knowledge.
In particular, I bring to mind professors in Mexico which initially contributed to
develop my scientific background. Thank you.

Besides, my gratitude goes to my family which support has been tangible regard-
less of the distance all these years. Thank you very much for your understanding and
unconditional love. I miss you.

I thank Liliana, my wife. Thank you for your love, your encouragement and effort
each day since we met each other. Our lives have changed since we arrived in France
for the first time. This story of us is like a dream come true. Thank you! Also, I thank
Elias and Thiago, for making these moments much happier by being with us on this
journey.

And lastly but most importantly, I thank God for the privilege of accomplishing
this doctoral research. I know I am blessed. Thank you.

v





Abstract

Complex optimization problems are ubiquitous in Process Systems Engineering (PSE)
and are generally solved by deterministic approaches. The treatment of real case
studies usually involves mixed-integer variables, nonlinear functions, a large number
of constraints, and several conflicting criteria to be optimized simultaneously, thus
challenging the classical methods. The main motivation of this research is therefore
to explore alternative solution methods for addressing these complex multiobjective
optimization problems related to the PSE area, focusing on the recent advances in
Evolutionary Computation. If multiobjective evolutionary algorithms (MOEAs) have
proven to be robust for the solution of multiobjective problems, their performance
yet strongly depends on the constraint-handling techniques for the solution of highly
constrained problems. The core of innovation of this research is the adaptation of
metaheuristic-based tools to this class of PSE problems. For this purpose, a two-stage
strategy was developed.

First, an empirical study was performed in the perspective of comparing different
algorithmic configurations and selecting the best to provide a high-quality approx-
imation of the Pareto front. This study, comprising both academic test problems
and several PSE applications, demonstrated that a method using the gradient-based
mechanism to repair infeasible solutions consistently obtains the best results, in
particular for handling equality constraints. Capitalizing on the experience from this
preliminary numerical investigation, a novel matheuristic solution strategy was then
developed and adapted to the problem of Hydrogen Supply Chain (HSC) design that
encompasses the aforementioned numerical difficulties, considering both economic
and environmental criteria.

A MOEA based on decomposition combined with the gradient-based repair was
first explored as a solution technique. However, due to the important number of
mass balances (equality constraints), this approach showed a poor convergence to the
optimal Pareto front. Therefore, a novel matheuristic was developed and adapted to
this problem, following a bilevel decomposition: the upper level (discrete) addresses
the HSC structure design problem (facility sizing and location), whereas the lower
level (Linear Programming problem) solves the corresponding operation subproblem
(production and transportation). This strategy allows the development of an ad-hoc
matheuristic solution technique, through the hybridization of a MOEA (upper level)
with a LP solver (lower level) using a scalarizing function to deal with the two
objectives considered. The numerical results obtained for the Occitanie region case
study highlight that the hybrid approach produces an accurate approximation of the
optimal Pareto front, more efficiently than exact solution methods.

Finally, the matheuristic allowed studying the HSC design problem with more
realistic assumptions regarding the technologies used for hydrogen synthesis, the
learning rates capturing the increasing maturity of these technologies over time and
nonlinear relationships for the computation of Capital and Operational Expenditures
(CAPEX and OPEX) for the hydrogen production facilities. The resulting novel model,
with a non-convex, bi-objective mixed-integer nonlinear programming (MINLP)
formulation, can be efficiently solved through minor modifications in the hybrid
algorithm proposed earlier, which finds its mere justification in the determination of
the time-wise deployment of sustainable hydrogen supply chains.
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Résumé

Les approches systémiques du Génie des Procédés font très fréquemment intervenir
des problèmes complexes d’optimisation, généralement résolus par des approches
déterministes. L’étude de cas réels implique des variables mixtes, des fonctions non
linéaires, un grand nombre de contraintes ainsi que plusieurs critères conflictuels
à optimiser simultanément, ce qui met à l’épreuve ces méthodes classiques. La
motivation principale de cette recherche est donc d’explorer des méthodes alterna-
tives pour résoudre ces problèmes d’optimisation multi-objectif complexes avec une
attention particulière sur les avancées récentes des méthodes évolutionnaires. Si les
algorithmes évolutionnaires multi-objectifs (MOEA) se sont avérés robustes pour la
résolution de problèmes multiobjectifs, leurs performances dépendent largement des
techniques de gestion des contraintes pour les problèmes fortement contraints. Le
cœur de l’innovation de cette étude consiste en l’adaptation d’outils basés sur les
métaheuristiques à cette classe de problèmes en Génie des Procédés. Dans ce but, la
stratégie de recherche a comporté deux volets.

Tout d’abord, une étude empirique a été réalisée afin de comparer différentes
configurations algorithmiques et sélectionner la meilleure pour fournir des approx-
imations de fronts de Pareto de haute qualité. Cette étude, comprenant à la fois
des problèmes de test académiques et applications en Génie des Procédés, a montré
qu’une méthode utilisant le gradient de contraintes pour réparer les solutions infais-
ables obtenait les meilleurs résultats, en particulier pour le traitement des contraintes
d’égalité. En capitalisant sur l’expérience acquise lors de cette étude numérique
préliminaire, la conception optimale de chaînes logistiques durables « hydrogène »
(HSC), prenant en compte des critères économiques et environnementaux, est étudiée.

Une méthode MOEA basée sur la décomposition et combinée à la réparation basée
sur le gradient, a d’abord été exploré pour résoudre le problème. Cependant, en
raison du nombre important de bilans massiques (contraintes égalité), cette approche
a montré une faible convergence vers le front de Pareto optimal. Une nouvelle
stratégie a donc été développée et adaptée à ce problème, à travers une reformulation
en deux niveaux : le niveau supérieur (discret) traite le problème de conception de la
structure de la HSC (dimensionnement et emplacement des installations), tandis que
le niveau inférieur (problème de programmation linéaire) résout le sous-problème
opérationnel correspondant (production et transport). Cette stratégie permet le
développement d’une technique de solution matheuristique ad-hoc, par l’hybridation
d’un MOEA avec un solveur LP utilisant une fonction de scalarisation pour traiter les
deux objectifs considérés. Les résultats numériques obtenus pour l’étude de cas de la
région Occitanie soulignent que l’approche hybride produit une bonne approximation
du front de Pareto, et ce plus efficacement que les méthodes exactes.

Enfin, la matheuristique a permis d’étudier le problème de conception de la
HSC avec des hypothèses plus réalistes concernant les technologies utilisées pour
la synthèse de l’hydrogène, les taux d’apprentissage reflétant la maturité croissante
de ces technologies au fil du temps et les relations non linéaires pour le calcul des
dépenses d’investissement et d’exploitation (CAPEX et OPEX) des installations de
production d’hydrogène. Le nouveau modèle, qui fait intervenir une formulation
bi-objectif mixte non linéaire (MINLP), peut être résolu efficacement par l’algorithme
hybride proposé.
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Resumen

Los enfoques sistémicos en Ingeniería de Procesos hacen intervenir frecuentemente
problemas complejos de optimización, los cuales suelen resolverse mediante enfoques
deterministas. En particular, dichos problemas implican variables mixtas, funciones
no lineales, un considerable número de restricciones, además de múltiples criterios
antagónicos que deben optimizarse simultáneamente, lo cual supone un reto para los
métodos clásicos de optimización. La principal motivación de esta investigación es,
por tanto, explorar métodos de resolución alternativos para abordar problemas de
optimización multiobjetivo en Ingeniería de Procesos, teniendo en cuenta los avances
recientes en Computación Evolutiva. A este respecto, los algoritmos evolutivos
multiobjetivo (MOEAs, por sus siglas en inglés) han demostrado ser robustos para la
solución de problemas multiobjetivo, sin embargo, su rendimiento depende en gran
medida de las técnicas de manejo de restricciones. La innovación de este trabajo es
la adaptación de metaheurísticas de estado del arte a problemas en Ingeniería de
Procesos.

En primer lugar, un estudio experimental fue realizado afín de comparar difer-
entes configuraciones algorítmicas y seleccionar la mejor, capaz de proporcionar
aproximaciones precisas del frente de Pareto. Este estudio, que comprende tanto
problemas académicos como de aplicación en Ingeniería de Procesos, demostró que
un método que utiliza la información del gradiente de las restricciones para reparar
las soluciones no factibles obtiene los mejores resultados, en particular en problemas
con restricciones de igualdad. A partir de estos experimentos preliminares, se inves-
tigó el diseño óptimo de cadenas de suministro de hidrógeno (HSC, por sus siglas en
inglés), teniendo en cuenta criterios económicos y medioambientales.

En primer lugar, se exploró como técnica de resolución un MOEA basado en
la descomposición combinado con la reparación basada en el cálculo del gradiente.
Sin embargo, debido al importante número de balances de materia (restricciones de
igualdad), este enfoque mostró una pobre convergencia hacia el frente de Pareto
óptimo. Por lo tanto, se desarrolló una nueva estrategia de resolución adaptada a
este problema, basada en una reformulación binivel: el nivel superior (problema
discreto) aborda el problema de diseño de la estructura de la HSC (dimensionamiento
y ubicación de las instalaciones), mientras que el nivel inferior (problema lineal)
resuelve el subproblema correspondiente a la operación de la cadena de suministro
(producción y transporte). De este modo, la técnica de resolución consiste en la
hibridación de un MOEA con un solver de programación lineal, que utiliza una
función de escalarización para tratar los dos objetivos considerados. Los resultados
computacionales obtenidos para el caso de estudio de la región Occitanie indican que
el enfoque híbrido produce una aproximación precisa del frente de Pareto óptimo, de
forma más eficiente que los métodos deterministas.

Por último, la técnica híbrida permitió estudiar el problema de diseño de la HSC
con supuestos más realistas en cuanto a las tecnologías utilizadas para la síntesis
de hidrógeno, las tasas de aprendizaje que reflejan la creciente madurez de estas
tecnologías en función del tiempo, así como las relaciones no lineales para el cálculo
de los costos de capital y de operación. El modelo resultante, formulado como
un problema bi-objetivo de programación entera mixta no lineal (MINLP), puede
resolverse eficientemente mediante el algoritmo híbrido propuesto.
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Introduction

General context

The main research goals in process systems engineering (PSE) consist in the modeling,
design, synthesis, simulation and optimization of processes for transforming products.
At a macroscopic level, these tasks necessarily involve preliminary studies for the
synthesis and design of production systems, in order to numerically generate different
scenarios that allow identifying appropriate structures and operating mode policies
or to optimize one or different performance criteria. Historically, these preliminary
studies used to address the maximization of yield or efficiency of production, storage
and distribution systems, or the minimization of both capital and operating costs,
as well as costs related to energy and material feedstocks. These goals, from a
mathematical optimization point of view, can be considered as objective functions
and combined into net present value (NPV) functions.

However, the current vision of PSE is the integration of the above-mentioned
processes within their surrounding territory, particularly including environmental
and societal concerns. To this end, different methodologies or tools providing an
evaluation of the impact of industrial activities over humankind and environment
have been proposed. Some of them consist in assigning a straightforward cost to these
social or environmental impacts, while others are more sophisticated, such as Life-
Cycle Assessment (LCA) that involves a cradle-to-grave approach. It is important to
note that, while considering these new approaches embedded in PSE, the optimization
of environment-based or society-based objectives should not be at the expense of
economic criteria such as cost minimization or NPV maximization. This is why the
simultaneous optimization of different kinds of objectives (economic, environmental,
etc.) must be considered, thus leading to the treatment of multiobjective optimization
problems (MOPs).

In order to optimize the variety of performance criteria as those described above,
the relevant features of the considered systems are captured within optimization
models that involve the definition of decision variables and constraints, in addition
to objective function(s). Typically, optimization problems related to PSE include
constraints (both equality and inequality), continuous and discrete variables (hence
discontinuous search space) and nonlinearities. The equality constraints usually
represent mass and energy balances, whereas inequality constraints may refer to
some bounds on any output variable, e.g., a production time that must be lower than
a horizon time limit, the concentration of a contaminant in some plant effluent that
should respect some environmental upper limit, some bounds related to production
plant capacities, and so on. Further, the continuous decision variables may represent
physical parameters, e.g., operating conditions, stream flow rates or compositions,
while discrete variables may account for the existence of some structures, e.g., number
of trays in a distillation column, number of transformation (reactor) units or number
of production items in a processing stage. Depending on the problem, the number of
variables and constraints can turn out to be relatively high.

As a summary, the optimization problems formulated in PSE applications gener-
ally present the following properties: (1) they are typically multiobjective, i.e., several
conflicting criteria must be simultaneously optimized, (2) they might involve an
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important number of variables of different natures (continuous/discrete) implying
high computational complexities (many of such problems have been proven to be
NP-hard), (3) they include a significant number of constraints and (4) the mathemati-
cal functions involved in the corresponding optimization models might be nonlinear
and sometimes non-convex. According to the type of variables and constraints they
present, their mathematical models can be classified into LP (Linear Programming),
MILP (Mixed-Integer Linear Programming), NLP (Nonlinear Programming) and
MINLP (Mixed-Integer Nonlinear Programming).

Throughout the years, mathematical programming (MP) techniques have been
used to address the solution of these problems. Several algorithms have been proposed
to solve to optimality these problems (for a review, see Floudas and Gounaris,
2009; Tawarmalani and Sahinidis, 2013). It should be noted, however, that these
deterministic methods rely on the determination of a “good” initial solution (i.e., close
to the optimum) or on convexity assumptions to guarantee global optimality. Besides,
their performance may strongly depend on the problem formulation, meaning that a
different algebraic form of the same equations might lead to quite different algorithmic
performances (Liberti, 2008), in terms of both efficacy and efficiency. In other words,
the problem needs to satisfy some specific mathematical characteristics (e.g., convexity,
derivability) so that an automatic valid reformulation can be generated, otherwise, the
reformulated convex problem might miss the original global optimum and converge
to a local optimum. Furthermore, the application of these exact techniques can
be computationally expensive to obtain the rigorous global solution of large-scale
problems. A final issue is the multiobjective aspect of the problem, which is usually
addressed through classical techniques such as weighted sum aggregation functions
or ε-constraint. Nevertheless, the drawbacks of these classical scalarizing strategies
are well known, these are:

1. Multiple executions are needed to construct an accurate approximation of the
whole Pareto front (one run to obtain one solution).

2. The resulting scalar optimization problems are parametrized (for example by a
weight vector) to explore a specific subregion of the search space. To produce an
evenly distributed Pareto frontier approximation, the corresponding parameters
should be appropriately tuned, which might turn into a harsh task because of
the nonlinear relationship between decision variables and cost functions.

An alternative to MP techniques is to use metaheuristics, formally defined as top-
level general strategies which guide other lower-level heuristics1 to search for feasible
solutions in difficult domains or search landscapes (Coello Coello et al., 2007, p. 63).
These methods are typically characterized by their stochastic nature, their ability to
provide good-quality solutions in tractable computational times (though guarantee
of optimality cannot be provided) and by the fact that no particular mathematical
properties of the problem are required, e.g., derivability or convexity. In the context of
multiobjective optimization, multiobjective evolutionary algorithms (MOEAs) stand
as powerful bio-inspired search techniques suitable to solve such types of problems.
It is important to recall that MOEAs have been proposed as efficient solution methods
for tackling highly multimodal (non-convex) multiobjective optimization problems.
Besides, MOEAs can provide an approximation of the Pareto front in one single run

1Heuristic: a problem-solving technique in which the most appropriate local solution or partial
solution is selected using comparative rules.
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and are less susceptible to the shape or continuity of the Pareto front. Regarding
the use of these population-based algorithms in PSE literature, the main and almost
the only reference is the NSGA-II (Deb et al., 2002), which became really popular
in a wide range of applications due to its claimed superiority over other MOEAs
of the same generation (late 1990s and early 2000s), such as the Pareto Archived
Evolutionary Strategy (PAES), introduced in (Knowles and Corne, 1999), or the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) (Zitzler et al., 2001). However,
almost no PSE study reports the use of alternative and more recent metaheuristic
multiobjective solution methods, for example, MOEA/D (Zhang and Li, 2007), which
works under the decomposition-based paradigm; SMS-EMOA (Emmerich et al., 2005),
an indicator-based algorithm aiming directly for the optimization of a performance
metric; AMOSA (Bandyopadhyay et al., 2008), a Pareto dominance-based algorithm
that incorporates a probability of selecting dominated solutions, similar to that
employed in the simulating annealing algorithm; or MOPSO (Zapotecas-Martínez
and Coello Coello, 2011), which extends the use of particle swarm optimization
algorithms to multiobjective optimization under a decomposition-based approach.

At this point, it should be emphasized that the applicability of MOEAs to PSE
problems is usually limited by a deficiency of these techniques to manage constraints,
and in particular, equality constraints that might involve an important number of
decision variables, such as those representing mass and energy balances in the PSE
area. In this respect, on the one hand, Evolutionary Computation (EC) researchers
have proposed a number of sophisticated strategies for constraint handling that differ
on their working principle, e.g., some repair infeasible solutions at some extent, others
perform stochastic comparisons among solutions, while the simplest ones penalize
infeasible solutions (static penalty function) or prefer feasible solutions over infeasible
ones (feasibility rules). The performance of these techniques, nevertheless, is usually
measured only on some academic benchmarks that might include unrealistic proper-
ties (or neglect some important ones) which may lead to overestimate/underestimate
them. In fact, almost no comparative study includes equality-constrained problems,
similar to those related to PSE. On the other hand, in what regards the constraint-
handling techniques employed in the PSE literature, the vast majority of related works
use old strategies such as penalty functions or feasibility rules, or carry out a problem
reformulation aiming to reduce, as many as possible, the number of constraints.
These strategies, though efficient for solving small-size problems, are likely to be
inefficient for solving large-size PSE case studies.

In addition, approaches that hybridize mathematical programming techniques
and metaheuristics exist, and are becoming particularly popular in recent years.
These approaches are known as hybrid methods or matheuristics. They seek to take
advantage of each solution method, mitigating simultaneously their disadvantages
(Jourdan et al., 2009). In many cases, better results than those obtained by each
method separately are obtained using this kind of approaches, especially in real-
life large-size problems. Besides, some recently published works related to PSE
area present solution tools based on this kind of hybridization (see, for instance,
Hernández-Pérez et al. (2020), López-Flores et al. (2021), and Teh et al. (2019)).

Summarizing, though significant advances are found in the literature dedicated
to metaheuristics design, with a particular focus on strategies dealing with multiple
objectives and constraint-handling, only a few have been explored in the PSE area,
where classical deterministic optimization methods are usually employed although
not being the most appropriate approaches, in particular for problems considering
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multiple criteria or containing non-convex search spaces. Therefore, the scientific
objective of this thesis is to investigate the relevance of state-of-the-art MOEAs as
alternative methods for the solution of complex PSE optimization problems. This
issue is treated, in a first part, through an empirical study devoted to the comparison
of MOEAs operators applied to academic and PSE test problems, with an increasing
complexity of problem features (number of objectives, type of constraints, continu-
ous/mixed variables). In a second part, the optimal design of the hydrogen supply
chain (HSC), which is being studied in the research team, will serve as an application
support for the study.

An empirical study on constraint-handling with multiple objectives

As mentioned previously, evolutionary algorithms constitute potential alternatives
to exact methods, in particular for tackling multiobjective optimization problems.
Nevertheless, since MOEAs experience issues for working with highly constrained
search spaces, a preliminary study on constraint-handling techniques in MOEAs is
necessary for the correct evaluation of this kind of methods on PSE problems. In this
vein, a numerical comparison on some state-of-the-art constraint-handling techniques
in metaheuristics is carried out in a single-objective framework, for which these
techniques were first proposed. Hence, in Chapter 2, 14 constrained problems related
to the PSE area are investigated. The conclusions drawn in this chapter, suggesting a
significant superiority of the method using the gradient information of constraints,
are then explored in a multiobjective framework in the subsequent chapter.

In Chapter 3, the gradient-based repair method is embedded within six classical
constraint-handling techniques and two different MOEAs: NSGA-II and MOEA/D.
The test functions include classical academic benchmark problems with inequality
constraints, as well as recent problems with equality constraints, so as to identify the
most promising technique to be used later in an engineering problem.

Optimal design of hydrogen supply chains as a support of the methodology

The growing concern about the depletion of fossil energy sources, such as oil and
gas, as well as the degradation of the environment by the combustion of these
conventional fuels, has motivated the search for a more sustainable energy model
based on renewable energy systems. In this context, hydrogen represents a potential
alternative to fossil fuels by enabling meaningful reductions of CO2 emissions in
multiple sectors like industry, building and transportation (Brey, 2020). In addition,
hydrogen can be produced from a variety of feedstocks, including fossil fuels (coupled
with processes that capture, utilize and store CO2, CCUS) and, more importantly,
from renewable sources like biomass, wind or solar energy. It can consequently store
surplus power from renewable energies when the electrical grid cannot absorb it
(Carrera Guilarte and Azzaro-Pantel, 2020; IEA, 2019). In this research work, only the
mobility sector is considered, yet the methodology developed shall be replicable to
other sectors.

The optimal design of the sustainable hydrogen supply chain constitutes a current
challenge to society as it gives the basis for the evaluation of a cost-efficient hydrogen-
based economy. The variety of alternatives for hydrogen production, transportation,
storage and distribution, makes the design and management of the hydrogen supply
chain a complex task. This issue generally uses a set of approaches to efficiently
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Figure 1: Hydrogen supply chain for mobility uses.

integrate each aspect of the supply chain, so that hydrogen is produced and dis-
tributed at the right quantities, to the right locations and at the right time, in order to
minimize the system global cost and environmental impact while satisfying service
level requirements. A hydrogen supply chain involves multiple echelons from energy
source, production, storage, transportation and distribution that interact along the
chain (see Figure 1). These multiple echelons are within the scope of this thesis.

Several works have been published that propose a superstructure representing all
the possible paths in the supply chain, with their corresponding mathematical model.
Then, the mathematical formulation of the optimization problem usually takes the
form of a multiobjective mixed-integer linear programming problem, though only
the bi-objective case (economic and environmental criteria) is usually considered.
The solution strategy commonly adopted uses a commercial MILP solver (generally,
CPLEX) combined with approaches based on scalarizing techniques, e.g., weighted
sum or ε-constraint. This strategy, although effective for finding some solutions be-
longing to the true Pareto front, appear to be computationally prohibitive for treating
large-size instances or for providing accurate Pareto front approximations, mainly
because of the combinatorial aspects of the problem and the issue of appropriately
tuning the scalarizing parameters (weight vectors or ε-levels) for each run. Some
significant works using this strategy are Almansoori and Shah (2012), Almaraz et al.
(2015), Câmara et al. (2019), Hugo et al. (2005), and Kim and Moon (2008).

Further, with the aim of mitigating the numerical difficulties associated with
the solution of large-scale instances, some works proposed a strategy based on a
bilevel (master-slave) decomposition (Guillén-Gosálbez et al., 2010; Sabio et al., 2010).
Though these methods proved to be efficient for addressing the bi-objective case of
the problem, they make use of ε-constraint method for addressing the multiobjective
aspect of the problem, and thus might become impractical if more objectives are
considered.
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Combining deterministic and metaheuristic approaches

In the second part of this thesis, the scientific objective is to develop an adapted
solution technique for the problem the design of hydrogen supply chains. First,
the conclusions obtained from the first part on constraint-handling are exploited to
propose a first strategy using MOEAs. Then, a novel strategy using a matheuristic
is developed, that is, a hybrid optimization method that combines elements of both
exact and stochastic methods in a cooperative way (Ball, 2011; Jourdan et al., 2009).
More precisely, this solution strategy is based on bilevel decomposition, so that
appropriate solution methods can be applied to the decisions levels involved. The
upper level problem considers the installation of production and storage facilities (i.e.,
a multiobjective combinatorial problem), while the lower level focuses on the problem
associated to transportation and production rates (linear programming problem of
low complexity). The solution of the master problem is performed by a MOEA, taking
thus full advantage of its potential to tackle the multiobjective and combinatorial
features of the problem. Then, for each partial solution proposed by the evolutionary
algorithm, the slave problem is addressed by a linear programming solver. In this
way, the multiobjective bilevel problem is solved in an iterative manner, in one single
run.

The interest of such a strategy is that it allows exploring a more realistic for-
mulation of the problem, one that integrates algebraic sizing-cost relationships for
production and storage facilities. As a consequence, the resulting model involves
nonlinear terms since installation costs generally follow a classical “six-tenth” power
rule for scaling equipment and plant costs. Thus, in spite of the fact that the resulting
model takes the form of a MINLP problem, the proposed hybrid methodology still
serves as an efficient approach for tackling this problem, because each nonlinear term
is to be handled by the MOEA at the upper level, whereas the lower level will remain
a LP problem. Finally, this methodology is able to provide details encompassing
simultaneously spatial, temporal and technological aspects.

Scientific objective

The motivation of this thesis is to explore the applicability of recent advances on
Evolutionary Computation in the Process Systems Engineering area. More precisely,
these recent advances comprise (1) sophisticated constraint-handling techniques, dif-
ferent from penalty functions or feasibility rules, and (2) MOEAs that are constructed
on paradigms different from Pareto dominance, i.e., decomposition and performance
indicators. In this way, alternative efficient solution methods may be identified for
tackling PSE optimization problems. Besides, a case study of current interest is
investigated, namely, the multiobjective design of hydrogen supply chains (HSC),
through state-of-the-art strategies that employ both MOEAs and MP techniques.

Therefore, taking into account the context previously presented, the four following
research questions that arise are:

1. What is the best solution approach to tackle current PSE problems, typically
formulated as multiobjective optimization problems?

2. Considering the recent advances in the metaheuristics field, in particular those
related to constraint-handling, do they constitute efficient techniques for treating
highly-constrained problems as those related to PSE?
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3. Can a matheuristic approach be designed for the solution of the HSC design
problem, so that it outperforms classical exact methods, thus providing solutions
in tractable computational times?

4. And finally, can a matheuristic approach be designed as a general solution tool
for a broad range of PSE problems?

The present work aims to provide answers to these research questions throughout
each chapter, and they will be directly addressed in the last section (conclusions and
perspectives).

Thesis structure

This thesis is composed of two main parts comprising seven chapters. The first
part, which include the first three chapters, is mainly devoted to an empirical study
on constraint-handling for multiobjective optimization algorithms. The second part
(Chapters 4 to 7), is dedicated to the optimal design of hydrogen supply chains.

In particular, the Chapter 1 presents a general overview on multiobjective opti-
mization; it covers some definitions and formal notation employed throughout this
thesis. It also presents the classical scalarizing techniques generally used within math-
ematical programming approaches, and then introduces multiobjective evolutionary
algorithms. The main components common to any MOEA are briefly described, as
well as some popular genetic operators, and the three different selection paradigms
in MOEAs. For each “family” of algorithms, a representative algorithm is presented
in deeper details: NSGA-II, MOEA/D and SMS-EMOA.

The Chapter 2 presents a comparative study on constraint-handling techniques in
metaheuristics, for the solution of PSE optimization problems, in a single-objective
framework. The study takes into account 5 constraint-handling techniques and 14
PSE problems of small and medium sizes that, despite of their sizes, entail difficulties
to classical techniques for converging to the global optimum. The obtained results
showed the superiority of the method based on the repair of infeasible solutions
using the constraint gradient (never used before in the PSE area), in particular when
treating highly constrained problems.

The Chapter 3, based on the same philosophy, presents similar experiments
in the context of multiobjective optimization. The purpose is to verify that the
results obtained for the single-objective case are valid for problems with multiple
objectives. To this end, the gradient-based repair is embedded within six state-of-
the-art constraint-handling techniques, in their canonical version. The respective
performances of these different methods, with and without the use of the repair
technique, included within two classical MOEAs (NSGA-II and MOEA/D), are
compared. Experiments were carried out on popular test suites drawn from the EC
literature, as well as recent problems containing equality constraints.

The Chapter 4 introduces the context of optimal design of hydrogen supply chains.
It provides the essential features of this important case study, describing in details
every echelon of the supply chain. Thus, it constitutes the basis for the following
chapters.

The Chapter 5 investigates the applicability of MOEAs for the optimal design of
hydrogen supply chains. The results obtained using MOEA/D with gradient-based
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repair method are presented and discussed. The need for a solution technique more
adapted to the problem features is highlighted, leading to the use of a hybrid strategy.

The Chapter 6 is devoted to the presentation of a novel matheuristic based on
bilevel optimization for the multiobjective design of hydrogen supply chains. This
chapter also presents the numerical experiments made for the validation of this
strategy. In a first step, three instances of small to medium sizes and a single-period
were solved using MOEA/D at the upper level. Then, six instances of larger size were
studied, using a more appropriate algorithm for two-objective real-world problems,
SMS-EMOA.

The Chapter 7 is dedicated to the presentation of a formulation of the HSC that
captures spatial, temporal and technological details. The modifications to the base
MILP model are explained in a first part, with a particular focus on the impact on the
solution approach. The second part of this chapter is dedicated to the presentation of
the numerical results and their discussion.

Finally, general conclusions of this thesis are drawn, along with some perspectives
for future work. Appendix A presents the mathematical formulation of the problems
studied in the first chapter, as well as the information regarding local and global
optimal solutions. Appendix B contains the nomenclature related to the HSC case
study, as well as the data for the different instances.

The doctoral research presented in this manuscript was conducted at the Labora-
tory of Chemical Engineering, UMR 5503 CNRS/INP/UPS in the Process Systems
Engineering department from March, 2018 to July, 2021. It is worth highlighting that
the work presented in this thesis has been presented to the scientific community,
in particular through two research articles in international journals, two conference
papers and one book chapter:

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2021).
“Constraint-handling techniques within differential evolution for solving pro-
cess engineering problems”. In: Applied Soft Computing 108, p. 107442. doi:
https://doi.org/10.1016/j.asoc.2021.107442.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (accepted). “A
novel matheuristic based on bi-level optimization for the multi-objective design
of hydrogen supply chains”. In: Computers & Chemical Engineering, p. 107370.
doi: https://doi.org/10.1016/j.compchemeng.2021.107370.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2020a). “Multi-
objective evolutionary algorithm based on decomposition (MOEA/D) for opti-
mal design of hydrogen supply chains”. In: Computer Aided Chemical Engineering.
Ed. by Sauro Pierucci, Flavio Manenti, Giulia Luisa Bozzano, and Davide Manca.
Vol. 48. Elsevier, pp. 883–888. doi: https://doi.org/10.1016/B978-0-12-
823377-1.50148-8.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2020b). “Opti-
mal design of hydrogen supply chains by a multiobjective evolutionary algo-
rithm based on decomposition (MOEA/D)”. in: EasyChair ROADEF2021.

• Victor H Cantú, Antonin Ponsich, and Catherine Azzaro-Pantel (Apr. 2021).
“Constraint Handling in Metaheuristics and Applications”. In: ed. by Anand J
Kulkarni, Efrén Mezura-Montes, Yong Wang, Amir H Gandomi, and Ganesh
Krishnasamy. 1st ed. Springer Singapore. Chap. On the use of gradient-based

https://doi.org/https://doi.org/10.1016/j.asoc.2021.107442
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Introduction

Contexte général

Les principaux objectifs de recherche en Procédés et Systèmes Industriels (PSI) con-
sistent à modéliser, synthétiser, simuler et optimiser les procédés de transformation
des produits. À un niveau macroscopique, ces tâches impliquent nécessairement
des études préliminaires pour la synthèse et la conception de systèmes de produc-
tion, afin de générer numériquement différents scénarios permettant d’identifier les
structures et les politiques de mode de fonctionnement appropriées, ou d’optimiser
un ou plusieurs critères de performance. Historiquement, ces études préliminaires
ont eu pour but de maximiser le rendement ou l’efficacité des systèmes de produc-
tion, de stockage et de distribution, ou de minimiser les coûts d’investissement et
d’exploitation, ainsi que les coûts liés à l’énergie et aux matières premières. Ces
critères peuvent être considérés, du point de vue de l’optimisation mathématique,
comme des fonctions objectif, éventuellement combinés en fonctions de valeur actuelle
nette (VAN).

Cependant, la vision actuelle en PSI est l’intégration des processus susmentionnés
dans leur territoire environnant, incluant notamment des préoccupations environ-
nementales et sociétales. A cette fin, différentes méthodologies ou outils permettant
d’évaluer l’impact des activités industrielles sur l’homme et l’environnement ont été
proposés. Certains d’entre eux consistent à attribuer un coût direct à ces impacts
sociaux ou environnementaux, tandis que d’autres sont plus sophistiquées, comme
l’analyse du cycle de vie (ACV) qui implique une approche « du berceau à la tombe ».
Il est important de noter que, tout en considérant ces nouvelles approches intégrées
aux PSI, l’optimisation des objectifs environnementaux ou sociaux ne doit pas se
faire au détriment des critères économiques, tels que la minimisation des coûts ou la
maximisation de la VAN. C’est pourquoi l’optimisation simultanée de différents types
d’objectifs (économiques, environnementaux, etc.) doit être envisagée, conduisant au
traitement de problèmes d’optimisation multi-objectif.

Afin d’optimiser la variété de critères de performance tels que ceux décrits ci-
dessus, les caractéristiques pertinentes des systèmes considérés sont représentées
au moyen de modèles d’optimisation qui impliquent la définition de variables de
décision et de contraintes, en plus de la (ou des) fonction(s) objectif. Généralement,
les problèmes d’optimisation liés au domaine des PSI comprennent des contraintes
(égalité et inégalité), des variables continues et discrètes (d’où un espace de recherche
discontinu) et des non-linéarités. Les contraintes égalité représentent généralement
des bilans de masse et d’énergie, tandis que les contraintes d’inégalité font en général
référence à certaines limites sur une variable de sortie, par exemple, un temps de
production qui doit être inférieur à un horizon de temps limité, la concentration
d’un contaminant dans un effluent d’usine qui doit respecter une limite supérieure
environnementale, certaines limites liées aux capacités de l’usine de production, etc.
Par ailleurs, les variables de décision continues peuvent représenter des paramètres
physiques, par exemple des conditions de fonctionnement, des débits ou des compo-
sitions de flux, tandis que les variables discrètes peuvent rendre compte de l’existence
de certaines structures, par exemple le nombre de plateaux dans une colonne de distil-
lation, le nombre d’unités de transformation (réacteurs) ou le nombre d’équipements

11



12 Introduction

de production dans une étape de traitement. Selon le problème, le nombre de
variables et de contraintes peut s’avérer relativement élevé.

En résumé, les problèmes d’optimisation formulés dans les applications de PSI
présentent généralement les propriétés suivantes : (1) ils sont typiquement multi-
objectifs, c’est-à-dire que plusieurs critères antagonistes doivent être optimisés simul-
tanément, (2) ils peuvent impliquer un nombre important de variables de différentes
natures (continues/discrètes), impliquant des complexités de calcul élevées (beau-
coup de ces problèmes se sont avérés NP-difficiles), (3) ils incluent un nombre
significatif de contraintes et (4) les fonctions mathématiques impliquées dans les mod-
èles d’optimisation correspondants peuvent être non linéaires et parfois non convexes.
En fonction du type de variables et de contraintes qu’ils présentent, les modèles
mathématiques associés à ces problèmes peuvent être classés en PL (Programmation
Linéaire), PLM (Programmation Linéaire en variables Mixtes), PNL (Programmation
Non Linéaire) et PNLM (Programmation Non Linéaire en variables Mixtes).

Au fil des années, ce sont les techniques de programmation mathématique (PM)
qui ont en général été utilisées pour résoudre ces problèmes. Plusieurs algorithmes ont
été proposés pour résoudre ces problèmes de manière optimale (pour un panorama
complet, voir Floudas and Gounaris, 2009; Tawarmalani and Sahinidis, 2013). Il
convient toutefois de noter que ces méthodes déterministes reposent sur la déter-
mination d’une “bonne” solution initiale (c’est-à-dire proche de l’optimum) ou sur
des hypothèses de convexité pour garantir l’optimalité globale. En outre, leur per-
formance peut dépendre fortement de la formulation du problème, ce qui signifie
qu’une forme algébrique différente des mêmes équations peut conduire à des per-
formances algorithmiques très différentes (Liberti, 2008), en termes d’efficacité et de
qualité de solutions trouvées. En d’autres termes, le problème doit satisfaire certaines
caractéristiques mathématiques spécifiques (par exemple, la convexité, la dérivabilité)
pour qu’une reformulation automatique valide puisse être générée. Sinon, la refor-
mulation convexe pourrait manquer exclure l’optimum global du problème original
et amener à une convergence vers un optimum local. En outre, l’application de ces
techniques exactes peut être coûteuse en termes de calcul pour obtenir la solution
globale rigoureuse de problèmes à grande échelle. Enfin une dernière question est
l’aspect multiobjectif du problème, qui est généralement traité par des techniques
classiques telles que les fonctions d’agrégation (par exemple, somme pondérée) ou la
technique de contraintes ε. Néanmoins, les inconvénients de ces stratégies classiques
de scalarisation sont bien connus, en particulier :

1. Plusieurs exécutions sont nécessaires pour construire une approximation précise
de l’ensemble du front de Pareto (une exécution nécessaire par solution).

2. Les problèmes d’optimisation scalaire qui en résultent sont paramétrés (par
exemple par un vecteur de poids) pour explorer une sous-région spécifique de
l’espace de recherche. Pour que l’approximation de la frontière de Pareto soit
distribuée de manière uniforme, les paramètres correspondants doivent être
ajustés de façon appropriée, ce qui peut s’avérer une tâche difficile en raison de
la relation non linéaire entre les variables de décision et les fonctions de coût.

Une alternative aux techniques de PM consiste à utiliser des métaheuristiques,
formellement définies comme des stratégies générales de niveau supérieur, guidant
d’autres heuristiques de niveau inférieur pour rechercher des solutions réalisables
dans des espaces de recherche complexes (Coello Coello et al., 2007, p. 63). Ces
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méthodes sont généralement caractérisées par leur nature stochastique, leur capacité
à fournir des solutions de bonne qualité en des temps de calcul contrôlables (bien
qu’une garantie d’optimalité ne puisse être fournie) et par le fait qu’aucune propriété
mathématique particulière du problème n’est requise, par exemple, la dérivabilité
ou la convexité. Dans le contexte de l’optimisation multiobjectif, les algorithmes
évolutionnaires multi-objectifs (MOEA) sont de puissantes techniques de recherche
bio-inspirées, adaptées à la résolution de ce type de problèmes. Il est important
de rappeler que les MOEA ont été proposés comme des méthodes efficaces pour
résoudre les problèmes d’optimisation multi-objectifs hautement multimodaux (non
convexes). En outre, les MOEA peuvent fournir une approximation du front de
Pareto en une seule exécution et sont moins sensibles à la forme ou à la continuité du
front de Pareto optimal. En ce qui concerne l’utilisation de ces algorithmes distribués
(c’est-à-dire, basés sur l’évolution d’une population de solutions) dans la littérature
en PSI, la principale et presque unique référence est l’algorithme NSGA-II (Deb et al.,
2002), très populaire dans un large éventail d’applications en raison de sa supériorité
par rapport à d’autres MOEA de la même génération (fin des années 1990 et début
des années 2000), tels que les algorithmes PAES (Knowles and Corne, 1999), ou
SPEA2 (Zitzler et al., 2001). Cependant, presque aucune étude en PSI ne fait état de
l’utilisation de méthodes alternatives et plus récentes, par exemple, MOEA/D (Zhang
and Li, 2007), qui fonctionne selon le paradigme de décomposition ; SMS-EMOA
(Emmerich et al., 2005), un algorithme basé sur des indicateurs visant directement
l’optimisation d’une métrique de performance ; AMOSA (Bandyopadhyay et al.,
2008), un algorithme basé sur la dominance de Pareto qui incorpore une probabilité
de sélection des solutions dominées, similaire à celle employée dans l’algorithme de
recuit simulé ; ou MOPSO (Zapotecas-Martínez and Coello Coello, 2011), qui étend
l’utilisation des algorithmes d’optimisation par essaims de particules à l’optimisation
multiobjectif, dans le cadre d’une approche basée sur la décomposition.

À ce stade, il convient de souligner que l’applicabilité des MOEA aux problèmes de
PSI est généralement limitée par l’incapacité de ces techniques à gérer des contraintes,
en particulier les contraintes égalité qui peuvent impliquer un nombre important
de variables de décision, comme celles qui représentent les bilans massiques et
énergétiques dans le domaine des PSI. À cet égard, les chercheurs en Algorithmes
Évolutionnaires (AE) ont proposé un certain nombre de stratégies sophistiquées
pour la gestion des contraintes, qui diffèrent par leur mode de fonctionnement.
Par exemple, certaines réparent les solutions infaisables dans une certaine mesure,
d’autres effectuent des comparaisons stochastiques entre les solutions, tandis que
les plus simples pénalisent les solutions infaisables (fonction de pénalité statique)
ou préfèrent les solutions faisables aux solutions infaisables (règles de faisabilité).
Néanmoins, la performance de ces techniques n’est généralement évaluée que sur des
problèmes test académiques, qui peuvent inclure des propriétés irréalistes (ou négliger
certaines propriétés importantes), ce qui peut conduire à les surestimer/sous-estimer.
En fait, presque aucune étude comparative n’inclut les problèmes comportant des
contraintes égalité, similaires à ceux liés aux PSI. D’autre part, en ce qui concerne
les techniques de traitement des contraintes employées dans la littérature associée
aux PSI, la grande majorité des travaux utilisent des stratégies plutôt anciennes,
telles que les fonctions de pénalité ou les règles de faisabilité, ou effectuent une
reformulation du problème visant à réduire, autant que possible, le nombre de
contraintes. Ces stratégies, bien qu’efficaces pour résoudre des problèmes de petite
taille, sont susceptibles d’être inefficaces pour résoudre des cas d’étude de grande
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taille en PSI.
Par ailleurs, il existe des approches hybrides entre les techniques de program-

mation mathématique et les métaheuristiques, qui sont devenues particulièrement
populaires dans les dernières années. Ces approches sont connues sous le nom de
méthodes hybrides ou matheuristiques. Elles cherchent à tirer avantage de chaque
méthode canonique de résolution, tout en atténuant simultanément leurs incon-
vénients (Jourdan et al., 2009). Dans de nombreux cas, de meilleurs résultats que
ceux obtenus par chaque méthode séparément sont obtenus en utilisant ce type
d’approches, en particulier dans les problèmes réels de grande taille. Certains travaux
récemment publiés dans le domaine des PSI présentent des outils de résolution
basés sur ce type d’hybridation (voir, par exemple, Hernández-Pérez et al. (2020),
López-Flores et al. (2021), and Teh et al. (2019)).

En résumé, des avancées significatives aient été réalisées dans la littérature dédiée à
la conception de métaheuristiques, avec un accent particulier sur les stratégies traitant
des objectifs multiples et le traitement des contraintes. Cependant, seules quelques
unes ont été exploitées dans le domaine des PSI, où les méthodes d’optimisation
déterministes classiques sont habituellement employées bien que n’étant pas les
approches les plus appropriées, en particulier pour les problèmes considérant des
critères multiples ou contenant des espaces de recherche non convexes. Par con-
séquent, l’objectif scientifique de cette thèse est d’étudier la pertinence de MOEA
récents comme méthodes alternatives pour la résolution de problèmes d’optimisation
complexes en PSI. Cette question est traitée, dans une première partie, à travers une
étude empirique consacrée à la comparaison d’opérateurs évolutionnaires multiobjec-
tif appliqués à des problèmes académiques et des problèmes test tirés de la littérature
en PSI, avec une complexité croissante des caractéristiques du problème (nombre
d’objectifs, type de contraintes, variables continues/mixtes). Dans une deuxième
partie, la conception optimale de la chaîne d’approvisionnement en hydrogène (HSC),
qui est étudiée dans l’équipe de recherche, servira de support d’application à l’étude.

Une étude empirique sur le traitement des contraintes avec des objectifs
multiples

Comme mentionné précédemment, les algorithmes évolutionnaires constituent des
alternatives potentielles aux méthodes exactes, en particulier pour aborder les prob-
lèmes d’optimisation multi-objectif. Néanmoins, étant donné que les MOEA ren-
contrent des problèmes pour travailler avec des espaces de recherche sévèrement
contraints, une étude préliminaire sur les techniques de gestion des contraintes dans
les MOEA est nécessaire pour une évaluation correcte de ce type de méthodes, en
vue d’une application à des problèmes de PSI. Dans cette optique, une comparaison
numérique de certaines techniques récentes de traitement des contraintes dans les mé-
taheuristiques est effectuée dans un cadre mono-objectif, pour lequel ces techniques
ont été proposées pour la première fois. Ainsi, dans le Chapitre 2, 14 problèmes
contraints liés au domaine de PSI sont étudiés. Les conclusions tirées dans ce chapitre,
suggérant une supériorité significative d’une méthode utilisant l’information du
gradient des contraintes, sont ensuite exploitées dans un cadre multiobjectif dans le
chapitre suivant.

Dans le Chapitre 3, la méthode de réparation par gradient des contraintes est inté-
grée à six techniques classiques de gestion des contraintes et à deux MOEA différents :
NSGA-II et MOEA/D. Les fonctions test comprennent des problèmes académiques de
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référence, incluant des contraintes inégalité, ainsi que des problèmes plus récents avec
des contraintes égalité, afin d’identifier la technique la plus prometteuse à utiliser
ultérieurement dans un problème d’ingénierie.

Conception optimale des chaînes d’approvisionnement en hydrogène à
l’appui de la méthodologie

L’inquiétude croissante concernant l’épuisement des sources d’énergie fossiles, telles
que le pétrole et le gaz, ainsi que la dégradation de l’environnement par la com-
bustion de ces combustibles conventionnels, a motivé la recherche d’un modèle
énergétique plus durable basé sur des systèmes utilisant les énergies renouvelables.
Dans ce contexte, l’hydrogène représente une alternative potentielle aux combustibles
fossiles permettant des réductions significatives des émissions de CO2 dans de mul-
tiples secteurs comme l’industrie, le bâtiment et le transport (Brey, 2020). En outre,
l’hydrogène peut être produit à partir de diverses matières premières, y compris les
combustibles fossiles (associés à des procédés de captage, d’utilisation et de stockage
du CO2, CCUS) et, surtout, à partir de sources renouvelables comme la biomasse,
l’énergie éolienne ou solaire. L’hydrogène peut par conséquent stocker le surplus
d’énergie provenant des énergies renouvelables lorsque le réseau électrique ne peut
l’absorber (Carrera Guilarte and Azzaro-Pantel, 2020; IEA, 2019). Dans ce travail
de recherche, seul le secteur de la mobilité est considéré, mais la méthodologie
développée doit pouvoir être reproduite dans d’autres secteurs.

La conception optimale de la chaîne d’approvisionnement durable en hydrogène
constitue un défi actuel pour la société, car elle sert de base à l’évaluation d’une
économie rentable basée sur l’hydrogène. La diversité des solutions disponibles pour
la production, le transport, le stockage et la distribution de l’hydrogène fait de la
conception et de la gestion de la chaîne d’approvisionnement en hydrogène une
tâche complexe. Cette question fait généralement appel à un ensemble d’approches
visant à intégrer efficacement chaque aspect de la chaîne d’approvisionnement, de
sorte que l’hydrogène soit produit et distribué dans les bonnes quantités, aux bons
endroits et au bon moment, afin de minimiser le coût global du système et l’impact
environnemental tout en satisfaisant aux exigences de niveau de service. Une chaîne
d’approvisionnement en hydrogène implique de multiples échelons depuis la source
d’énergie, la production, le stockage, le transport et la distribution qui interagissent
tout au long de la chaîne (voir la Figure 2). Ces multiples échelons entrent dans le
cadre de cette thèse.

Plusieurs travaux ont été publiés, proposant une superstructure représentant
toutes les options possibles dans la chaîne d’approvisionnement, ainsi que le modèle
mathématique correspondant. Par a suite, la formulation mathématique du prob-
lème d’optimisation prend généralement la forme d’un problème de programmation
linéaire en variables mixtes multiobjectif, bien que seul le cas bi-objectif (critères
économiques et environnementaux) soit généralement considéré. La stratégie de
résolution généralement adoptée utilise un solveur PLM commercial (généralement,
CPLEX) combiné à des approches de scalarisation, par exemple, la somme pondérée
ou la technique des contraintes ε. Cette stratégie, bien qu’efficace pour trouver cer-
taines solutions appartenant au véritable front de Pareto, semble être prohibitive sur
le plan informatique pour traiter des instances de grande taille ou pour fournir des
approximations précises du front de Pareto, principalement en raison des aspects
combinatoires du problème et du réglage approprié des paramètres de scalarisation
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Figure 2: Chaîne d’approvisionnement en hydrogène pour les usages liés à la mobilité.

(vecteurs de poids ou niveaux ε) pour chaque exécution. Parmi les travaux importants
utilisant cette stratégie, citons Almansoori and Shah (2012), Almaraz et al. (2015),
Câmara et al. (2019), Hugo et al. (2005), and Kim and Moon (2008).

En outre, dans le but d’atténuer les difficultés numériques associées à la résolution
d’instances de grande échelle, certains travaux ont proposé une stratégie basée sur
une décomposition bi-niveaux (maître-esclave) (Guillén-Gosálbez et al., 2010; Sabio
et al., 2010). Bien que ces méthodes se soient avérées efficaces dans le cas bi-objectif du
problème, elles utilisent la méthode des contraintes ε pour traiter l’aspect multiobjectif
du problème, et pourraient donc devenir peu pratiques si plus de deux objectifs sont
considérés.

Combinaison d’approches déterministes et métaheuristiques

Dans la deuxième partie de cette thèse, l’objectif scientifique est de développer
une technique de résolution adaptée au problème de la conception de chaînes
d’approvisionnement en hydrogène. Tout d’abord, les conclusions obtenues dans
la première partie sur le traitement des contraintes sont exploitées pour proposer
une première stratégie utilisant les MOEA durable. Puis, une nouvelle stratégie
utilisant une matheuristique est développée, c’est-à-dire une méthode d’optimisation
hybride qui combine des éléments des méthodes exactes et stochastiques de manière
coopérative parencitejourdan2009hybridizing, ball2011heuristics. Plus précisément,
cette stratégie de résolution est basée sur une décomposition bi-niveaux, de sorte
que des méthodes appropriées peuvent être appliquées aux niveaux de décision
concernés. Le problème du niveau supérieur concerne l’installation d’équipements
de production et de stockage (c’est-à-dire un problème combinatoire multiobjectif),
tandis que le niveau inférieur se concentre sur le problème associé au programme
de transport et taux de production (problème de programmation linéaire de faible
complexité). La solution du problème principal est effectuée par un MOEA, tirant
ainsi pleinement parti de son potentiel pour traiter les caractéristiques multi-objectifs
et combinatoires du problème. Ensuite, pour chaque solution partielle proposée par
l’algorithme évolutionnaire, le problème esclave est traité par un solveur de program-
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mation linéaire. De cette façon, le problème multiobjectif bi-niveaux est résolu de
manière itérative, en une seule exécution.

L’intérêt d’une telle stratégie est qu’elle permet d’explorer une formulation plus
réaliste du problème, qui intègre alors des relations algébriques entre le dimension-
nement et le coût des installations de production et de stockage. En conséquence, le
modèle implique des termes non linéaires puisque les coûts d’installation obéissent
généralement à la règle classique de puissance des « six dixième » pour la mise
à l’échelle des coûts des équipements et des usines. Ainsi, bien que le modèle ré-
sultant prenne la forme d’un problème de type PNLM, la méthodologie hybride
proposée peut toujours être utilisée pour résoudre efficacement ce problème, car
tous les termes non linéaires doivent être traités par le MOEA au niveau supérieur,
tandis que le niveau inférieur restera un problème PL. Enfin, cette méthodologie
est capable de fournir des détails englobant simultanément les aspects spatiaux,
temporels et technologiques relatif au déploiement de la chaîne d’approvisionnement
de l’hydrogène.

Objectif scientifique

La motivation de cette thèse est d’explorer l’applicabilité des avancées récentes en
Calcul Évolutionnaire dans le domaine de l’ingénierie des systèmes de procédés. Plus
précisément, ces avancées récentes comprennent (1) des techniques sophistiquées
de gestion des contraintes, différentes des fonctions de pénalité ou des règles de
faisabilité, et (2) des MOEA qui sont construits sur des paradigmes différents du
principe de dominance de Pareto, en particulier : algorithmes travaillant par décom-
position ou basé sur des indicateurs de performance. De cette façon, des méthodes
de solution efficaces alternatives peuvent être identifiées pour aborder les problèmes
d’optimisation complexes en PSI. En outre, une étude de cas d’intérêt actuel est
examinée, à savoir la conception multiobjectif des chaînes d’approvisionnement en
hydrogène (HSC), par le biais de stratégies de pointe qui utilisent à la fois les MOEA
et les techniques MP.

Par conséquent, compte tenu du contexte présenté précédemment, quatre ques-
tions de recherche se posent :

1. Quelle est l’approche la plus adaptée pour résoudre les problèmes actuels en PSI,
généralement formulés comme des problèmes d’optimisation multi-objectif ?

2. Compte tenu des avancées récentes dans le domaine des métaheuristiques, en
particulier celles liées au traitement des contraintes, ces techniques sont-elles
efficaces pour traiter des problèmes fortement contraints comme ceux liés au
domaine des PSI ?

3. Une approche matheuristique peut-elle être conçue pour la résolution du prob-
lème de conception du HSC, de sorte qu’elle surpasse les méthodes exactes
classiques et fournisse des solutions dans des temps de calcul raisonnables ?

4. Enfin, une approche matheuristique peut-elle être conçue comme un outil de
solution général pour un large éventail de problèmes en PSI ?

Le travail présenté dans cette thèse vise à aborder ces questions de recherche tout
au long de chaque chapitre. Une réponse explicite sera apportée à chacune d’elles
dans la dernière section (conclusions et perspectives).
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Structure de la thèse

Cette thèse est composée de deux parties principales comprenant sept chapitres.
La première partie, qui comprend les trois premiers chapitres, est principalement
consacrée à une étude empirique sur le traitement des contraintes pour les algorithmes
d’optimisation multi-objectif. La deuxième partie (Chapitres 4 à 7), est consacrée à la
conception optimale des chaînes d’approvisionnement en hydrogène.

En particulier, le Chapitre 1 présente une vue d’ensemble de l’optimisation mul-
tiobjectif ; il couvre certaines définitions et la notation formelle employée tout au
long de cette thèse. Il présente également les techniques classiques de scalarisation
généralement utilisées dans les approches de programmation mathématique, puis
introduit les algorithmes évolutionnaires multiobjectifs. Les principaux composants
communs à tout MOEA sont brièvement décrits, ainsi que certains opérateurs géné-
tiques populaires, et les trois différents paradigmes de sélection dans les MOEA. Pour
chaque "famille" d’algorithmes, un algorithme représentatif est présenté de manière
plus détaillée : NSGA-II, MOEA/D et SMS-EMOA.

Le Chapitre 2 présente une étude comparative des techniques de traitement des
contraintes dans les métaheuristiques, pour la résolution de problèmes d’optimisation
en PSI, dans un cadre mono-objectif. L’étude prend en compte 5 techniques de
traitement des contraintes et 14 problèmes PSE de petite et moyenne taille qui,
malgré leur taille, posent des difficultés aux techniques classiques pour converger
vers l’optimum global. Les résultats obtenus montrent la supériorité d’une méthode
basée sur la réparation des solutions infaisables à l’aide du gradient des contrainte
(jamais utilisé auparavant dans le domaine des PSI), en particulier lors du traitement
de problèmes fortement contraints.

Le Chapitre 3, basé sur la même philosophie, présente des expériences similaires
dans le contexte de l’optimisation multiobjectif. L’objectif est de vérifier que les résul-
tats obtenus pour le cas mono-objectif sont valables pour les problèmes considérant
plusieurs objectifs. À cette fin, la réparation par gradient est intégrée à six techniques
de gestion des contraintes de l’état-de-l’art. Les performances respectives de ces
différentes méthodes, dans leur version canonique et avec l’utilisation de la technique
de réparation, inclues dans deux MOEA classiques (NSGA-II et MOEA/D), sont
comparées. Les expériences ont été menées sur des banques de problèmes populaires
tirées de la littérature de Calcul Évolutionnaire, ainsi que sur des problèmes récents
contenant des contraintes égalité.

Le Chapitre 4 présente le contexte de la conception optimale des chaînes
d’approvisionnement en hydrogène. Il fournit les caractéristiques essentielles de
ce cas d’étude important, en décrivant en détail chaque échelon de la chaîne
d’approvisionnement. Il constitue ainsi la base des chapitres suivants.

Le Chapitre 5 étudie l’applicabilité des MOEA pour la conception optimale
des chaînes d’approvisionnement en hydrogène. Les résultats obtenus en utilisant
l’algorithme MOEA/D avec la méthode de réparation par gradient sont présentés et
analysés. La nécessité d’une technique de résolution plus adaptée aux caractéristiques
du problème est mise en évidence, ce qui conduit à l’utilisation d’une stratégie
hybride.

Le Chapitre 6 est consacré à la présentation d’une nouvelle matheuristique
basée sur l’optimisation bi-niveaux pour la conception multiobjectif des chaînes
d’approvisionnement en hydrogène. Ce chapitre présente également les expériences
numériques réalisées pour la validation de cette stratégie. Dans un premier temps,
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trois instances de petite à moyenne taille et à période unique ont été résolues en
utilisant MOEA/D au niveau supérieur. Puis, six instances de plus grande taille ont
été étudiées, en utilisant un algorithme plus approprié pour les problèmes bi-objectifs,
SMS-EMOA.

Le Chapitre 7 est consacré à la présentation d’une formulation de la HSC qui
prend en compte les détails spatiaux, temporels et technologiques. Les modifications
apportées au modèle PLM de base sont expliquées dans une première partie, avec un
accent particulier sur l’impact sur l’approche de la résolution. La deuxième partie
de ce chapitre est consacrée à la présentation des résultats numériques et à leur
discussion.

Enfin, des conclusions générales de cette thèse sont tirées, ainsi que quelques per-
spectives pour des travaux futurs. L’annexe A présente la formulation mathématique
des problèmes étudiés dans le premier chapitre, ainsi que les informations concernant
les solutions optimales locales et globales. L’annexe B contient la nomenclature
relative à l’étude de cas HSC, ainsi que les données des différentes instances.

La recherche doctorale présentée dans ce manuscrit a été menée au Laboratoire
de Génie Chimique, UMR 5503 CNRS/INP/UPS dans le département Procédés et
Systèmes Industriels de mars 2018 à juillet 2021. Aussi, il convient de souligner que
les travaux présentés dans cette thèse ont été présentés à la communauté scientifique,
notamment par le biais de deux articles de recherche dans des revues internationales,
de deux articles de conférence et d’un chapitre de livre :

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2021).
“Constraint-handling techniques within differential evolution for solving pro-
cess engineering problems”. In: Applied Soft Computing 108, p. 107442. doi:
https://doi.org/10.1016/j.asoc.2021.107442.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (accepted). “A
novel matheuristic based on bi-level optimization for the multi-objective design
of hydrogen supply chains”. In: Computers & Chemical Engineering, p. 107370.
doi: https://doi.org/10.1016/j.compchemeng.2021.107370.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2020a). “Multi-
objective evolutionary algorithm based on decomposition (MOEA/D) for opti-
mal design of hydrogen supply chains”. In: Computer Aided Chemical Engineering.
Ed. by Sauro Pierucci, Flavio Manenti, Giulia Luisa Bozzano, and Davide Manca.
Vol. 48. Elsevier, pp. 883–888. doi: https://doi.org/10.1016/B978-0-12-
823377-1.50148-8.

• Victor H Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (2020b). “Opti-
mal design of hydrogen supply chains by a multiobjective evolutionary algo-
rithm based on decomposition (MOEA/D)”. in: EasyChair ROADEF2021.

• Victor H Cantú, Antonin Ponsich, and Catherine Azzaro-Pantel (Apr. 2021).
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1.1 Introduction

This chapter provides the background related to multiobjective optimization and the
formal notation that will be used in the manuscript. First, Section 1.2 presents general
definitions covering multiobjective optimization problems, optimality definitions,
reference points and performance indicators. Section 1.3 introduces some classical
scalarizing techniques, mainly used with mathematical programming approaches,
namely aggregation functions and ε-constraint method. Section 1.4 gives a general
overview on multiobjective evolutionary algorithms (MOEAs), outlining the main
components common to any MOEA as well as the three different paradigms they
are constructed on: Pareto dominance, decomposition and performance indicators.
In addition, the most representative algorithm to each of the three paradigms is
presented in more details.

Note that this chapter focuses only on a posteriori solution methods, i.e., methods
that do not require a priori information on the decision makers’ preferences. Indeed,
in real-world engineering problems, the decision-makers usually do not have a priori
knowledge about efficient solutions and, therefore, methods that can provide a set
of alternative choices are more interesting. For a review on a priori and interactive
approaches, the reader is referred to Miettinen (2012).
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1.2 Basic concepts

The formulation of many real-world engineering problems involves the simultaneous
optimization of several performance criteria (objectives), frequently with a set of
constraints that need to be fulfilled. Typically, there is conflict between objectives,
which means that improving one criterion results in the deterioration of another, and
hence it does not exist a single solution that is optimal with respect to every objective
function. These problems can be stated mathematically as constrained multiobjective
optimization problems.

1.2.1 Problem definition

We study a constrained multiobjective optimization problem (CMOP) of the form:

minimize f(x) (1.1)
subject to gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q

li ≤ xi ≤ ui, i = 1, . . . , n.

where x = [x1, x2, . . . , xn]T is a n-dimensional vector of decision variables (either
discrete or continuous), f(x) = [ f1(x), f2(x), . . . , fk(x)]T is a k-dimensional vector
of conflicting objective functions to be minimized1, p is the number of inequality
constraints and q is the number of equality constraints. The functions gi and hj may
be linear or nonlinear, continuous or not, real-valued functions. Each variable xi
has upper and lower bounds, ui and li, respectively, which define the search space
S ⊆ Rn. Inequality and equality constraints, as well as the decision variables’ bounds,
define the feasible region F ⊆ S .

The CMOP’s evaluation function, f : S → Z , maps decision variables (x =
x1, x2, . . . , xn) to vectors (f = f1, f2, . . . , fk), that is, each solution in the decision
variable space is associated to a point in the objective space, according to the objective
function. This is illustrated in Figure 1.1 for the case of two decision variables
n = 2 and three objective functions k = 3 where a disconnected feasible region is
represented in both decision and objective spaces.

In the context of constrained optimization, the overall constraint violation is useful
to evaluate the degree of infeasibility of a solution x. It is defined as:

φ(x) =
p

∑
i=1

max{0, gi(x)}α +
q

∑
j=1

∣∣hj(x)
∣∣α . (1.2)

where α takes a positive value, in this work α = 1. Note that equality constraints can
be transformed into inequality constraints as: ∀j ∈ {1, . . . , q},

∣∣hj(x)
∣∣− ε ≤ 0, where

ε is a small tolerance, typically ε = 1e− 4.

1.2.2 Optimality concepts

In multiobjective optimization, in order to compare two feasible solutions x, y ∈ F ,
the Pareto dominance relation must be defined: A solution x is said to dominate a

1For the case of maximization, a negative sign is just added to the objective function
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Figure 1.1: Multiobjective problem mapping.

solution y, denoted by x ≺ y, if and only if x is at least as good as y for all
objectives (∀i ∈ {1, . . . , k}, fi(x) ≤ fi(y)) and better for at least one objective (∃j ∈
{1, . . . , k}, f j(x) < f j(y)).

The set of all incomparable solutions, also known as efficient or non-dominated
solutions, constitutes the Pareto Optimal Set (PS), and is formally defined as:

PS = {x∗ ∈ F : @x ∈ F , x ≺ x∗}. (1.3)

The mapping of these non-dominated vectors in the objective space is collectively
known as the Pareto Optimal Front (PF ) or True Pareto Front (true PF), expressed as:

PF = {f(x∗) : x∗ ∈ PS}. (1.4)

Throughout this work, we use the term true PF interchangeably with PF . Further,
since the PS may contain an infinite number of solutions, the multiobjective problem
is limited to determine a finite number of Pareto optimal solutions that represents a
good approximation of the PF in terms of both convergence and diversity, so that
decision makers can select a solution according to their experience and preferences.

1.2.3 Reference points

The ideal objective vector z∗ ∈ Rk, also known as utopian point, is obtained by minimiz-
ing each objective function individually subject to the constraints, in this manner, each
component of the ideal vector can be represented as z∗i = min{ fi(x) : x ∈ F}. The
nadir objective vector znad ∈ Rk constitutes an upper bound of the Pareto optimal front.
It is defined in the objective space as znad

i = max{ fi(x) : x ∈ PS}. It is used, along
with the ideal point, for performing an objective normalization in some scalarizing
functions.

1.2.4 Performance indicators

With the purpose of evaluating the quality of an approximation to the Pareto optimal
front, several performance indicators (or metrics) have been proposed in the literature.
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These indicators aim to measure desirable aspects of non-dominated sets (Zitzler
et al., 2000) and their corresponding front, namely: (1) the distance of the obtained
approximation front to the Pareto optimal front, which is to be minimized, (2) the
distribution of the solutions found in the objective space and (3) the extent of the
non-dominated front in the objective space, which should contain a wide range of
values for each objective.

Several performance metrics exist, for example, the hypervolume, the inverted
generational distance, the R2 indicator, among many others (for a review see Coello
Coello et al., 2007, p. 254-266). Later in this work, two popular metrics are to
be employed for carrying out algorithm performance comparisons, these are the
hypervolume and the inverted generational distance. They are described in the
following.

Hypervolume

The hypervolume (HV), also known as S metric, is an indicator that reflects the
volume of objective space enclosed by a Pareto front approximation A and a reference
point z dominated by all elements of A (Zitzler and Thiele, 1998). Its mathematical
representation is described in the following equation:

HV(A; z) = L
(⋃

a∈A

{x : a ≺ x ≺ z}
)

(1.5)

where L is the Lebesgue measure (k-dimensional volume) and z should be dominated
by all elements on A. This performance indicator has the remarkable property that
its maximum value is yielded only by the optimal Pareto set. It is the only known
indicator to have this “Pareto-compliance” property. A large HV value shows that
a given solution set approximates the Pareto optimal front well in terms of both
convergence and diversity in the objective space. A graphical representation of the
hypervolume in two dimensions (area), for a classical benchmark problem, is provided
in Figure 1.2. Set A in Figure 1.2 does not exhibit convergence nor diversity, and its
hypervolume value is the lowest of the three sets. In set B, all solutions achieve good
convergence, but a cluster of solutions is observed in the middle part of the front,
evidencing a poor diversity. Finally in set C, solutions show a good convergence and
are well distributed along the Pareto front, so that the highest hypervolume value is
obtained among the three sets.

The main drawback of using the hypervolume is its high computational cost,
which grows exponentially with the number of objectives (Knowles and Corne, 2002).

Inverted generational distance

The inverted generational distance (IGD) indicates how far the approximated Pareto
front A is from the discretized Pareto optimal front R, i.e., it is the average distance
from each true Pareto point to its nearest solution in the given approximated front
(Van Veldhuizen and Lamont, 2000). It is mathematically expressed as:

IGD(A; R) =

(
∑|R|i=1 d2

i

)
|R| (1.6)
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Figure 1.2: Hypervolume representation for the ZDT1 minimization problem.
HV(A) = 0.5808; HV(B) = 0.8101; HV(C) = 0.8237.

where |R| is the number of solutions in the Pareto optimal front R and di is the
Euclidean distance in the objective space between a vector i in R to the nearest
member of A. This indicator measures both convergence and diversity. A smaller
value of IGD indicates a better performance of the algorithm.

1.3 Scalarizing techniques

Typically, in the PSE literature, optimization problems of the form in (1.1) are ad-
dressed by scalarizing techniques. This means that the problem is transformed into a
set of scalar (single-objective) problems, for instance, by combining objective functions
into a new objective function or by reformulating some objectives as constraints. In
this way, classical algorithms for the solution of scalar optimization problems can
be used. Once the transformation has been performed, the resulting problem is
solved several times, using different parameters, with the aim of obtaining different
efficient solutions at each execution. Depending on the scalarizing technique and the
problem under study, solutions along the whole Pareto front can be found. However,
this procedure can become computationally expensive for the accurate solution of
large-size problems, or for problems involving more than two objectives. In addition,
the parametrization chosen for each scalar optimization is not trivial for obtaining
well-distributed approximated Pareto fronts. In the following, some classical scalariz-
ing techniques found in the PSE literature are presented, namely utility functions and
the ε-constraint approach.

1.3.1 Utility functions

A utility function u, also known as aggregation function or scalarizing function,
transforms the original CMOP into a scalar optimization problem, through a weight
vector w whose elements represent the preference or priority corresponding to each
objective and that serves as a target direction in the objective space. Problem (1.1)
then becomes:

minimize u(f′(x); w) (1.7)
subject to x ∈ F
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where w must satisfy wi ≥ 0 for all i = 1, . . . , k and, usually, ∑k
i=1 wi = 1. In general,

it is recommended to perform an objective normalization, so that all objective values
have the same magnitude order. This normalization can take the form of:

f′(x) =
f(x)− z∗

znad − z∗
. (1.8)

where z∗, znad ∈ Rk are the ideal and nadir points, obtained from the single-objective
optimization of each objective function. In the following, some characteristics of
two popular utility functions are described. For a comprehensive study on utility
functions, the reader is referred to Pescador-Rojas et al. (2017).

Weighted sum

The weighting sum is probably the simplest and most widely used method to trans-
form a CMOP into a scalar problem. A weight is assigned to each objective function
and minimizes the corresponding weighted sum of the objectives. The problem takes
the form of:

uws(f′; w) =
k

∑
i=1

wi f ′i (x) (1.9)

In order to obtain Pareto optimal solutions, the weight vectors wi must take only
positive values. The main drawback of this method is that not all Pareto optimal
points can be found if the true PF is concave (convex in the case of maximization).
Besides, a uniformly distributed set of weighting vectors does not necessarily produce
a uniformly distributed representation of the Pareto optimal set (Das and Dennis,
1998).

Weighted Tchebycheff

Also known as weighted min-max function, the weighted Tchebycheff function (TCH)
seeks to minimize the weighted norm-1 distance between the objective vector and the
ideal point. It can be written as:

utch(f′(x); w) = max
i=1,...,k

{wi| f ′i (x)|} (1.10)

This method can provide solutions along the Pareto optimal front with appropriate
variations of the weight vector. However, in some cases, it can produce solutions that
are only weakly Pareto optimal (i.e., dominated solutions). To address this drawback,
the augmented Tchebycheff function (ATCH) was proposed (Kaliszewski, 1987), which
always produces Pareto optimal solutions. It is expressed as follows:

uatch(f′(x); w) = max
i=1,...,k

{wi| f ′i (x)|}+ α
k

∑
i=1

wi| f ′i (x)| (1.11)

where α must take small values, for instance 0.001 as proposed in (Pescador-Rojas
et al., 2017).
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Achievement scalarizing

The achievement scalarizing function (ASF) (ibid.) can produce weakly Pareto optimal
solutions and is written as:

uas f (f′(x); w) = max
i=1,...,k

{ f ′i (x)
wi

}
(1.12)

Despite its similarity to the weighted Tchebycheff function, recent studies indicate
that ASF outperforms TCH in problems involving more than three objectives, as
ASF can find an objective vector parallel to w (Hernández Gómez and Coello Coello,
2015). Moreover, in order to remove weakly Pareto optimal solutions, the augmented
achievement scalarizing function (AASF) is defined as:

uaas f (f′(x); w) = max
i=1,...,k

{ f ′i (x)
wi

}
+ α

k

∑
i=1

f ′i (x)
wi

(1.13)

where α must take small values, for instance 0.001 as proposed in (Pescador-Rojas
et al., 2017).

1.3.2 ε-constraint method

In the ε-constraint method, the multiobjective problem is transformed into several
single-objective optimization problems with additional constraints, i.e., one of the
objective functions is selected to be optimized at a time, while the others are treated
as constraints by setting an upper bound to each of them. The problem to be solved
takes the form of:

minimize f`(x), (1.14)
subject to f j(x) ≤ ε j ∀j = 1, . . . , k, j 6= `,

x ∈ F

where ` ∈ {1, . . . , k}.
It is important to note that, in order to obtain appropriate values for ε j, a pre-

liminary analysis needs to be made, usually by carrying out a single-objective opti-
mization for each objective function. Besides, by varying the ε j values appropriately,
non-inferior solutions of the problem can be obtained. However, this may yield also
some weakly dominated solutions, because the ε constraints are not necessarily active
at the solution found. Some improved versions of this method indeed tackle this
problem by forcing the ε constraints to be saturated (Mavrotas, 2009; Mavrotas and
Florios, 2013). Again, the main disadvantage of the method is that it can become
computationally expensive for solving large-scale problems, or problems with more
than two objectives.

1.4 Evolutionary multiobjective optimization

Multiobjective evolutionary algorithms (MOEAs) are bio-inspired search algorithms
that mimic natural evolutionary processes, such as selection, crossover and mutation,
to steer a set of solutions (the so-called population) towards optimal or near-optimal
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solutions (Bäck, 1996; Emmerich and Deutz, 2018). Due to their population-based
working mode, they have the ability to provide an approximation of the Pareto set in
one single run and do not require particular mathematical properties of the problem,
e.g., continuity or convexity. The common features to all MOEAs are:

1. A population of individuals (solutions), updated at each generation (i.e., itera-
tion) t and denoted as Pt = {x(1), x(2), . . . , x(µ)}, where x(i) ∈ S represents and
individual and µ is the population size (operating parameter).

2. The parent selection. It consists in choosing the individuals that will participate
in the reproduction (combination) of the members of the current generation
(parents), in order to produce new ones (offspring). Typically, this is done by a
biased random sampling or tournament selection, but is sometimes dictated by
the variation operator.

3. The variation operator. This operator stochastically generates new individuals
from the given parents, through the crossover and mutation processes. In
the evolutionary metaphor context, this operator corresponds to the sexual
reproduction and serves to combine the genetic information of the parents. De-
pending on the solution representation (encoding), different variation operators
exist. Examples of variation operators for binary encoding are 1/2/k-point
crossover and binary mutation; whereas for real encoding, some popular oper-
ators are simulated binary crossover (SBX) with polynomial mutation, or the
so-called differential evolution mutation operator, among others.

4. The environmental selection (survival). It specifies which individuals will
survive to the next generation and are likely to be used as parents. Generally,
the best individuals among the parents and offspring are chosen (i.e., parents
and offspring populations compete for their survival to the next generation),
which is referred to as elitism. It is worth mentioning that in this step, different
selection paradigms exist in the framework of multiobjective optimization:
Pareto dominance, decomposition and performance metric (see more details in
Section 1.4.2).

In addition, some MOEAs use an external archive that acts as a secondary popu-
lation across generations. This archive stores the non-dominated solutions found so
far and usually has a user-defined size limit.

In the following, two classical variation operators are described in more details. A
representative algorithm of each selection paradigm is also presented along with its
main characteristics and pseudocode, these are, NSGA-II (Deb et al., 2002), MOEA/D
(Zhang and Li, 2007) and SMS-EMOA (Emmerich et al., 2005).

1.4.1 Variation operators

Simulated Binary Crossover (SBX)

This crossover technique was proposed in (Deb and Agrawal, 1995) to overcome some
drawbacks observed in binary-coded genetic algorithms when used for continuous
optimization problems, such as the necessity to define in advance the desired precision
on the final solution, the computational burden associated to solution encoding, or
the so-called Hamming drift problem, i.e., slight differences in the genotype (encoded
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solution vector) may result in large differences in the phenotype (decoded decision
variables), and vice versa. In SBX, two parents x(1) and x(2) generate two offspring
y(1) and y(2) according to:

y(1)i = 0.5
(
(1− βi)x(1)i + (1 + βi)x(2)i

)
(1.15)

y(2)i = 0.5
(
(1 + βi)x(1)i + (1− βi)x(2)i

)
where i ∈ {1, . . . , n}, that is, the procedure is done for each decision variable, with a
probability pc. The parameter βi is calculated as:

βi =

(2u)
1

ηc+1 , if u ≤ 0.5(
1

2(1−u)

) 1
ηc+1

, otherwise
(1.16)

where u is a random number between 0 and 1, and ηc is the distribution index, which
is a parameter set by users.

The particular probability distribution β was designed in order that SBX performs
similarly to single-point crossover in binary-coded genetic algorithms. It takes the
form of:

p(β) =

{
0.5(ηc + 1)βηc , if 0 ≤ β ≤ 1
0.5(ηc + 1)β−ηc−2, if β > 1

(1.17)

where ηc has a direct effect in the spread of child solutions (in the search space):
if ηc is large, there is a higher probability that the offspring are close to the parent
solutions, on the contrary, if ηc takes small values, solutions distant from the parents
are likely to be generated. In this work, SBX operator is employed with standard
settings: pc = 1, ηc = 20.

Regarding the encoding of discrete variables, the authors of (ibid.) recommended
the use of an adapted operator for the representation of those variables only. However,
in practice, SBX is usually extended for handling discrete variables in a simple manner:
discrete variables are encoded as continuous ones and their value is rounded to the
closest integer only in the evaluation module (and not in the solution encoding).

Besides, in order to maintain diversity in the population, a mutation operator can
be used. This is usually achieved by adding a perturbation to the current value of a
variable, following a predefined polynomial probability distribution.

Differential evolution

Differential evolution (DE), is a relatively recent evolutionary algorithm (EA) pro-
posed by Storn and Price (1997). The key point of this EA is a variation operator
that performs differences between individuals’ decision vectors for generating new
solutions. Although using at least three individuals to produce one offspring, this
variation operator is generally referred to as a mutation operator. More precisely,
a mutant individual is produced by adding a scaled difference vector to another
individual (base vector). In the classical version (rand/1/bin), this operation can be
written as:

v(i) = x(r1) + F · (x(r2) − x(r3)) (1.18)
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where r1 6= r2 6= r3 6= i ∈ {1, . . . , µ} are indexes randomly chosen among the
population, and F is a scaling parameter. The mutant vector v(i) is then recombined
with its parent with a crossover probability CR. This procedure produces an offspring
y(i) according to:

y(i)j =

{
v(i)j if u ∼ U(0, 1) ≤ CR or j = jr,

x(i)j otherwise
(1.19)

where j ∈ {1, . . . , n} and jr is a randomly chosen index ∈ {1, . . . , n} ensuring that y(i)

gets at least one variable from the mutant v(i).
Depending on the mutation and crossover schemes considered, several variants

of this mutation operator exist. They are usually denoted as DE/a/b/c, where a
specifies the base vector which can be rand (randomly chosen) or best (the vector with
better fitness from the current population), b denotes the number of difference vectors
used, and c denotes the crossover scheme that can be bin (independent binomial
experiments) or exp (exponential crossover, similar to single-point crossover in GA).
In this work, the most popular version of DE is used, that is, DE/rand/1/bin, which
considers one difference between individuals randomly chosen from the population
and performs binomial crossover, as represented in (1.18) and (1.19).

Similar to the SBX operator, discrete variables in DE are encoded in a straightfor-
ward way: they are rounded to the next integer, only for evaluation purposes.

1.4.2 Selection paradigms

Pareto-based algorithms: NSGA-II

This family of algorithms uses the Pareto dominance relationship to differentiate
individuals in the population. The population is ranked according to this criterion
and, in general, use the contribution to diversity as the second selection criterion
among solutions that are incomparable according to Pareto dominance. Examples of
such algorithms are SPEA2 (Zitzler et al., 2001) and PAES (Knowles and Corne, 1999),
while the most widely used is NSGA-II (Deb et al., 2002).

In NSGA-II, the fitness (rank) of an individual is assigned primarily according
to the non-dominated front it belongs to, also known as the nondomination level,
and is determined as follows: non-dominated individuals in some population P are
assigned rank 1 and removed from P, then, non-dominated individuals in the new
population (P without first-rank individuals) are assigned rank 2 and removed from
it. This process is repeated until each solution has an assigned rank.

More generally, at each generation t, an offspring population Qt of size µ is gener-
ated through classical variation operators, usually SBX with polynomial mutation.
Then, the union of parents and offspring populations (Rt = Pt ∪ Qt), of size 2µ, is
sorted in multiple fronts according to non-dominance. The µ best individuals, i.e.,
those belonging to the first ranks, are selected for surviving to the next generation
and conform the next population Pt+1 (see Figure 1.3a). At this respect, in order to
exactly select µ individuals from Pt ∪Qt, only a given number of solutions might be
needed from a given rank. In this case, a measure of density of solutions in their
neighborhood, the so-called crowding distance, is used as the selection criterion. It is
given by the average distance in each dimension of the two nearest neighbors that
surround a solution (as represented in Figure 1.3b). In this manner, those individuals
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is introduced by comparing current population with previously
found best nondominated solutions, the procedure is different
after the initial generation. We first describe theth generation
of the proposed algorithm as shown at the bottom of the page.

The step-by-step procedure shows that NSGA-II algorithm is
simple and straightforward. First, a combined population

is formed. The population is of size . Then, the
population is sorted according to nondomination. Since all
previous and current population members are included in,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the setfor the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
their ranking. Thus, solutions from the set are chosen next,
followed by solutions from the set , and so on. This procedure
is continued until no more sets can be accommodated. Say that
the set is the last nondominated set beyond which no other
set can be accommodated. In general, the count of solutions in
all sets from to would be larger than the population size.
To choose exactly population members, we sort the solutions
of the last front using the crowded-comparison operator
in descending order and choose the best solutions needed to fill
all population slots. The NSGA-II procedure is also shown in
Fig. 2. The new population of size is now used for se-
lection, crossover, and mutation to create a new population
of size . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
both the rank and crowded distance of each solution in the pop-
ulation, we calculate these quantities while forming the popula-
tion , as shown in the above algorithm.

Consider the complexity of one iteration of the entire algo-
rithm. The basic operations and their worst-case complexities
are as follows:

1) nondominated sorting is ;
2) crowding-distance assignment is ;
3) sorting on is .

The overall complexity of the algorithm is , which is
governed by the nondominated sorting part of the algorithm. If

Fig. 2. NSGA-II procedure.

performed carefully, the complete population of size need
not be sorted according to nondomination. As soon as the sorting
procedure has found enough number of fronts to havemem-
bers in , there is no reason to continue with the sorting pro-
cedure.

The diversity among nondominated solutions is introduced
by using the crowding comparison procedure, which is used in
the tournament selection and during the population reduction
phase. Since solutions compete with their crowding-distance (a
measure of density of solutions in the neighborhood), no extra
niching parameter (such as needed in the NSGA) is re-
quired. Although the crowding distance is calculated in the ob-
jective function space, it can also be implemented in the param-
eter space, if so desired [3]. However, in all simulations per-
formed in this study, we have used the objective-function space
niching.

IV. SIMULATION RESULTS

In this section, we first describe the test problems used to
compare the performance of NSGA-II with PAES and SPEA.
For PAES and SPEA, we have identical parameter settings
as suggested in the original studies. For NSGA-II, we have
chosen a reasonable set of values and have not made any effort
in finding the best parameter setting. We leave this task for a
future study.

combine parent and offspring population
- - - all nondominated fronts of
and

until until the parent population is filled
- - calculate crowding-distance in

include th nondominated front in the parent pop
check the next front for inclusion

Sort sort in descending order using
choose the first elements of

- - use selection, crossover and mutation to create
a new population

increment the generation counter

(a) Selection procedure.

DEB et al.: A FAST AND ELITIST MULTIOBJECTIVE GA: NSGA-II 185

Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not requireany user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.

1) Density Estimation:To get an estimate of the density of
solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this thecrowding
distance). In Fig. 1, the crowding distance of theth solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).

The crowding-distance computation requires sorting the pop-
ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continued with other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set.

Here, refers to the th objective function value of the
th individual in the set and the parameters and are

the maximum and minimum values of theth objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front) are in-
volved, the above algorithm has computational
complexity.

After all population members in the set are assigned a
distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.

2) Crowded-Comparison Operator:The crowded-compar-
ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individualin the population
has two attributes:

1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.

With these three new innovations—a fast nondominated
sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop

Initially, a random parent population is created. The pop-
ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism

- -
number of solutions in

for each set initialize distance
for each objective

sort sort using each objective value
so that boundary points are always selected

for to for all other points

(b) Crowding distance calculation.

Figure 1.3: Main aspects of NSGA-II. Taken from Deb et al., 2002.

that most contribute to the uniform distribution of solutions in the objective space are
selected. This process is depicted in Figure 1.3 and the corresponding pseudocode is
given in Algorithm 1.

Algorithm 1 NSGA-II Algorithm

1: initialize population P0 ⊂ Fµ

2: while not terminate do
3: {Begin variate}
4: Qt ← ∅
5: for all i ∈ {1, . . . , µ} do
6: (x(1), x(2))← select_mates(Pt) {select parent individuals}
7: r(i)t ← recombine(x(1), x(2))

8: q(i)
t ← mutate(r(i)t )

9: Qt ← Qt ∪ {q(i)
t }

10: end for
11: {End variate}
12: {Begin selection, select µ-“best” out of (Pt ∪Qt) by a two step procedure:}
13: (R1, . . . , R`)← non-dom_sort(f, Pt ∪Qt) {Assign rank based on Pareto dominance}
14: Find the element of the partition, Riµ , for which the sum of the cardinalities |R1|+
· · ·+ |Riµ | is for the first time ≥ µ. If |R1|+ · · ·+ |Riµ | = µ, Pt+1 ← ∪

iµ
i=1Ri, otherwise

determine set H containing µ− (|R1|+ · · ·+ |Riµ−1|) elements from Riµ with the highest

crowding distance and Pt+1 ← (∪iµ−1
i=1 Ri) ∪ H.

15: {End selection}
16: t← t + 1
17: end while
18: return Pt

The typical selection carried out according to NSGA-II is shown in Figure 1.4,
for a given generation, considering a minimization problem for both objectives and
µ = 50. In the left-hand side picture, the combined population Rt has 100 individuals,
composed of parents and offspring. It contains 19 solutions in rank 1, which are
all selected; 21 solutions in rank 2, also selected; and 25 solutions in rank 3 (the
remaining solutions have higher ranks). Thus, only 10 (= 50− 19− 21) solutions are
selected out of the 25 belonging to the third rank, according to the crowding distance
criterion (see the right-hand side in Figure 1.4).

Pareto-based algorithms usually works well for problems containing up to three
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(a) Ranked population conformed of parents
and offspring.

(b) Best µ individuals selected to survive for
the next generation.

Figure 1.4: Typical selection according to NSGA-II (minimization problem).

objectives and can effectively cope with discontinuities in the objective space. Their
main concerns typically appears when treating many-objective problems (i.e., prob-
lems having four or more objectives) since a majority of individuals might be non-
dominated and the search is then exclusively guided by the diversity criterion, without
promoting convergence.

Decomposition-based algorithm: MOEA/D

MOEAs based on decomposition divide the problem into several scalar (single-
objective) subproblems using scalarizing (or utility) functions. The emblematic
algorithm MOEA/D is built on this paradigm (Zhang and Li, 2007). In MOEA/D,
the original MOP is divided into a number of scalar optimization subproblems equal
to the number of individuals in the population, that is, each individual searches
in a specific region of the objective space, according to its assigned weight vector.
Therefore, the weight vectors should be evenly distributed in the search space in order
to produce an uniformly-distributed approximation of the Pareto front. Weight vector
generation is typically done through the Simplex-Lattice method (Das and Dennis,
1998). Then, the optimization procedure is performed in a collaborative way: the
population is divided into neighborhoods (according to the similarity of the weight
vectors assigned to different individuals), and individuals in the same neighborhood
may exchange information, i.e. solutions. In particular, when an offspring is generated
for an individual, this new solution is shared with the neighboring individuals, which
may accept it according to the corresponding fitness, computed as the utility function
employed. Nevertheless, the number of neighbors that can pick a given solutions is
limited, to avoid hampering the diversity of the population.

In its canonical form, MOEA/D uses the SBX crossover with polynomial mutation
as variation operators, but recent versions employ the differential evolution operator,
also combined with polynomial mutation, with significant improvements obtained
with respect to SBX (Zhang et al., 2009). Besides, in order to avoid objective scaling
issues, an objective normalization such as (1.8) is usually performed, considering the
reference points found so far. Finally, the classical version of MOEA/D makes use of
an external archive that stores the non-dominated solutions found throughout the
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optimization process. The pseudocode is provided in Algorithm 2. It is important to
highlight that MOEA/D offers advantages with respect to methods that independently
solve the scalar subproblems (like those in mathematical programming literature),
as the search is carried out in a cooperative manner (Emmerich and Deutz, 2018).
Besides, the external archive may contain many more solutions than individuals in
the initial population.

Algorithm 2 MOEA/D
1: input: nr, δ {number of replacements, probability of choosing parents locally}
2: set: EP = ∅ {external archive}
3: input: Λ = {λ(1), . . . , λ(µ)} {weight vectors}
4: initialize neighborhoods B(i) by collecting k closest weight vectors in Λ for each λ(i)

5: initialize population P0 ⊂ Fµ

6: initialize z∗, znad from P0
7: while not terminate do
8: for all i ∈ {1, . . . , µ} do
9: Set c = 0 {number of replacements effectuated}

10: {Begin variate}
11: T ← mates_pool(Pt, B(i), δ) {choose of mating pool}
12: (x(1), x(2), x(3))← select_mates(T) {select parent individuals}
13: y← recombine(x(1), x(2), x(3))
14: y′ ← mutate(y)
15: {End variate}
16: {Begin selection}
17: Randomly pick an index j from T.
18: if u(f′(y′); λ(j)) < u(f′(x(j)); λ(j)) and c < nr then
19: x(j) ← y′

20: c← c + 1
21: T ← T \ {j} and go to line 17 {delete j from T}
22: end if
23: {End selection}
24: Update z∗, znad.
25: end for
26: Update EP
27: t← t + 1
28: end while
29: return Pt and EP

In Figure 1.5 some aspects of the decomposition-based approach are illustrated.
To this end, a two-objective minimization problem is analyzed, whose Pareto optimal
front involves both convex and concave shapes. In red and blue colors (and a mix of
both), the weight vectors, which assign target directions for the scalar subproblems,
are depicted. It can be noted that, even if the weight vectors are uniformly distributed
in the objective space, the resulting search direction highly depends on the chosen
scalarizing function. In this way, the weighted sum function cannot find (or search)
solutions in concave regions of the PF, as shown in the left figure. On the contrary,
the target directions defined by ATCH and AASF functions cover the whole PF and
are well distributed. Therefore, efficient solutions (shown in circles) are found all
along the PF.

Recently, decomposition-based MOEAs have become very popular mainly because
they scale well to problems with many objective functions, see Pescador-Rojas et al.



36 Chapter 1. General overview on multiobjective optimization

Figure 1.5: Target directions using different scalarizing functions for a given problem.

(2017). Another significant example of a decomposition-based algorithm is NSGA-III
(Deb and Jain, 2013), which combines the Pareto-dominance scheme used in NSGA-II,
but substitutes the crowding distance by a niching mechanism using weight vectors
as search directions.

Indicator-based algorithms: SMS-EMOA

The third selection paradigm in MOEAs is based on optimizing performance indica-
tors, which measure the quality of the Pareto front approximation (see Section 1.2.4
of this chapter), instead of optimizing directly the objectives. In particular, a relevant
algorithm is SMS-EMOA (Emmerich et al., 2005) which seeks to maximize the only
indicator known to be Pareto-compliant, the hypervolume indicator. SMS-EMOA is
a steady-state greedy algorithm, meaning that only one individual is generated at
each iteration and no decrease in the hypervolume covered by the current population
is allowed. This implies that new offspring solutions can only integrate the current
population if replacing a member increases the hypervolume covered by the popu-
lation, or, more precisely, if the new offspring (1) dominates at least one individual
in the current population, or (2) does not contribute the least to the hypervolume
computation provided that it belongs to the last Pareto front. This is detailed in the
following:

• Condition (1) is taken from the above-described NSGA-II algorithm, and is easy
to grasp: among two solutions, the one that dominates the other is preferred at
any point of the evolutionary process.

• Condition (2) introduces the contribution to the hypervolume ∆S of each indi-
vidual as the selection criterion for those individuals in the last front considered
(according to the non-dominated sorting procedure in NSGA-II). That is, the
individual that contributes the least to the hypervolume is discarded from the
worst ranked front.

In a bi-objective case, the contribution to the hypervolume can be computed efficiently
as the product of the difference of the objective values between two subsequent
solutions, once the set has been sorted in ascending order according to the values of
the first objective function f1. Note that, since extreme points are to be maintained in
the population, the contribution to the hypervolume is only computed for internal
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Figure 1.6: Representation of the contribution to the hypervolume for the ZDT1
problem.

solutions of the last non-dominated rank. Then, considering the last front R` =
{s1, . . . , s|R`|} with |R`| > 2, the ∆S of each internal solution si is computed as:

∆S (si, R`) = ( f1(si+1)− f1(si)) · ( f2(si−1)− f2(si)) (1.20)

for all n ∈ {2, . . . , |R`| − 1}. In Figure 1.6 the contribution of the hypervolume
of three approximation sets is displayed graphically for a classical test function,
ZTD1 (Zitzler et al., 2000). The area of each rectangle corresponds to the ∆S of
each candidate solution. The red rectangle in sets A and B represents the ∆S of the
solution that contributes the least to the HV. Thus, the best possible approximation
to the Pareto front for a given number of efficient solutions is a set in which each
solution contributes in an equal extent to the hypervolume total value, such as set C
in Figure 1.6.

The main drawback of SMS-EMOA is the high computational cost of ∆S for more
than two objectives, which undermines its efficiency for many objectives or large sets
(Knowles and Corne, 2002).

Algorithm 3 SMS-EMOA
1: initialize population P0 ⊂ Fµ

2: while not terminate do
3: {Begin variate}
4: (x(1), x(2))← select_mates(Pt) {select parent individuals}
5: ct ← recombine(x(1), x(2))
6: qt ← mutate(ct)
7: {End variate}
8: {Begin selection, select µ-“best” out of Pt ∪ {qt} by a two step procedure:}
9: (R1, . . . , R`)← non-dom_sort(f, Pt ∪ qt) {Assign rank based on Pareto dominance}

10: r ← argmins∈R`
[∆S (s, R`)] {Detect element of R` with lowest ∆S (s, R`) }

11: Pt+1 ← (Pt ∪ qt) \ {r} {Eliminate detected element}
12: {End selection}
13: t← t + 1
14: end while
15: return Pt
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1.5 Conclusions

In this first chapter, the background related to multiobjective optimization has been
presented. This general overview has covered methods typically employed in the
PSE literature, i.e., scalarizing techniques that decompose the problem into a set of
single-objective subproblems. Though efficient solutions can be obtained by these
methods, in many cases, they can constitute computationally expensive techniques,
for instance, if high accuracy of the Pareto front approximation is desired, or if many
objectives are involved. Therefore, a particular attention has been paid to MOEAs,
for which recent advances can entail potential benefits as solution techniques to
PSE applications. The features common to all MOEAs have been described, namely,
the set of individuals that conform the population at a given generation, the parent
selection, the variation operators and the survival selection. As can be noted, a MOEA
in its canonical form does not contain a constraint-handling mechanism, mainly
because, originally, they have been designed to work in unconstrained search spaces.
Actually, this feature (constraint-handling) is one of the most important for effectively
addressing PSE optimization problems.

Therefore, taking the above observations into account, a preliminary study on
constraint-handling needs to be carried out before implementing MOEAs to real-world
PSE case studies. The next two chapters provide systematic studies on constraint-
handling techniques, first in a single-objective framework, and then, for multiobjective
optimization problems.
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2.1 Introduction

In this chapter, a comparison study on some state-of-the-art constraint-handling
techniques in metaheuristics is carried out in a single-objective framework. As a
reminder, the scientific objective of this PhD thesis is to explore alternative solution
methods to complex optimization problems related to process systems engineering,
which usually involve multiple conflicting objectives that need to be simultaneously
optimized. Metaheuristics and, in particular, multiobjective evolutionary algorithms,
are potential alternatives to exact methods, able to provide good-quality solutions in
tractable computational times. Nevertheless, the main drawback they present is the
inability to cope effectively with constraints, in part because they have been designed
to work under unconstrained search spaces. Hence, multiple constraint-handling
mechanisms have been proposed to be embedded within evolutionary algorithms,
typically in a single-objective framework, and more recently some have been explored
for multiobjective problems. Therefore, this chapter provides a comparison study on
some state-of-the-art constraint-handling techniques, considering 14 single-objective

The content of this chapter has been published in the form of journal article. Victor H Cantú, Cather-
ine Azzaro-Pantel, and Antonin Ponsich (2021). “Constraint-handling techniques within differential
evolution for solving process engineering problems”. In: Applied Soft Computing 108, p. 107442. doi:
https://doi.org/10.1016/j.asoc.2021.107442
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problems related to PSE area. The techniques considered are: static penalty func-
tion, stochastic ranking, feasibility rules, ε-constraint method and gradient-based
repair. The obtained results allow to get insights about the best constraint-handling
techniques to be used later in multiobjective PSE problems.

The chapter is organized as follows. Section 2.2 presents a brief description of
mathematical programming techniques and evolutionary algorithms, focusing on
the main difficulties they present for the solution of complex PSE problems. Then,
Section 2.3 discusses the constraint-handling techniques in metaheuristics; some
state-of-the-art methods proposed in the dedicated literature are reviewed and are
compared to classical techniques usually employed in PSE literature. Then, Section 2.4
includes a detailed description of some of the most representative constraint-handling
techniques in EAs, which will be employed for the study. After that, the methodology
developed for the computational experiments is presented along with some informa-
tion regarding the test problems. The obtained results are presented and discussed in
Section 2.6. The last section is devoted to the conclusions of this work.

2.2 Motivation

Complex optimization problems are ubiquitous in chemical engineering, and more
generally, in process systems engineering (PSE). Examples of optimization problems
related to this area encompass batch process design (Ponsich et al., 2007; Voudouris
and Grossmann, 1992), phase equilibrium (Dowling and Biegler, 2015), distillation
sequencing (Zhu et al., 2016), heat exchanger networks (Ayala et al., 2016; Yee and
Grossmann, 1991), reactor network design (Kaiser et al., 2016), supply chain design
(Almaraz et al., 2015; Woo et al., 2016), among others. All these real-world problems
are typically represented by a mathematical model involving both discrete and
continuous variables, and a set of linear and nonlinear constraints, i.e., leading to a
mixed-integer nonlinear programming (MINLP) formulations.

Throughout the years, mathematical programming techniques have been used to
address the solution of these problems. Several algorithms such as the Generalized
Benders Decomposition (GBD), Outer-Approximation with the Equality-Relaxation
strategy (OA/ER) and multiple Branch-and-Bound algorithms (BB) have been pro-
posed to solve to global optimality these problems (in general with some user-defined
tolerance over the optimality gap, i.e., the difference between the lower and upper
bounds) (Floudas and Gounaris, 2009; Tawarmalani and Sahinidis, 2013). It should
be noted, however, that all these Newton-based methods rely on the appropriate
selection of an initial solution and on derivability and convexity assumptions re-
garding the nonlinear functions to guarantee the global optimum solution. In fact,
their performance may depend strongly on the problem’s formulation, meaning
that a different algebraic form representing the same system might lead to quite
different algorithmic performances (Liberti, 2008). That is, the problem needs to
satisfy some specific mathematical characteristics (e.g., convexity, derivability) so that
a valid reformulation can be generated automatically. Otherwise, the reformulated
convex problem might miss the original global optimum and converge to a local
optimum. For the convex relaxation to be performed, the problem has to be reduced
to a standard form, in which nonlinear terms are linearized (by adding new variables
and constraints), and then each non-convex term is replaced by a convex envelope
obtained as the convex hull of the inequality constraints. Since one of the key factors
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to obtain the global optimum consists in computing a tight convex lower bound,
several methods have been proposed depending on the mathematical characteristics
of the studied problems (e.g. McCormick’s envelopes, piecewise-linear underesti-
mators, etc.). Furthermore, the application of these deterministic techniques can
be computationally expensive to obtain the rigorous global solution of large-scale
problems.

In that context, metaheuristics, and especially evolutionary algorithms (EAs), have
been proposed as alternative methods to address highly non-convex optimization
problems. Some representative examples of EAs are Evolutionary Strategies (ES), Ge-
netic Algorithms (GA), Particle Swarm Optimization (PSO) and Differential Evolution
(DE), among others (Bozorg-Haddad et al., 2017). Even if these techniques lack of
any theoretical convergence proof, it has been empirically demonstrated that they are
able to identify good quality solutions and several advantages can be highlighted :
(i) these population-based algorithms do not require any mathematical property for
the treated problem as they only use the evaluation of the objective function; (ii) due
to their population-based nature, EAs are particularly suited to tackle problems in
which more than one objective is to be optimized (which will be more relevant in
the following chapters). This property is important in PSE for which several kinds
of objectives (for instance, environmental or social impacts) need to be minimized
simultaneously with an economic criterion. However, as EAs have been designed as
directed search engines to work over unconstrained spaces, a drawback appears when
tackling constrained problems. Thus, in their canonical version, the applicability of
EAs is limited by a deficiency of general techniques to manage constraints. Conse-
quently, much effort has been made to efficiently incorporate constraint-handling
techniques into EAs. The next section provides a literature review on this subject.

2.3 Literature review

Evolutionary computation researchers have proposed a number of approaches for
handling constraints, beginning, as in mathematical programming, by penalty func-
tions. Nevertheless, though penalty functions may work well in some problems, they
involve the tuning of some parameters that may affect significantly the quality of
the final solutions found. For this reason, in Michalewicz and Janikow (1996), the
authors proposed a co-evolutionary algorithm for ensuring feasibility of individuals
in problems containing only linear constraints. Equality constraints are eliminated
by substituting an equal number of decision variables, the feasible space being then
a convex set defined by linear inequalities. Thanks to this property, the genetic
operators consist of linear combinations of individuals, which ensure the feasibility
of the solutions thus created. Maintaining feasibility can also be obtained through
“decoders”, i.e. instructions contained in the chromosome that dictate a process to
build feasible solutions. In Arnold and Porter (2015), an approach for handling
inequality constraints in (1+1)-ES uses an augmented Lagrangian technique (which
involves additional quadratic penalty terms) and the performance of the algorithm
is evaluated on sphere and ellipsoid functions with a single linear constraint. This
approach was then extended by Atamna et al. (2016) to work with an adaptive co-
variance matrix evolution strategy (CMA-ES); the performance of the algorithm was
explored over a set of linearly constrained functions that include convex, quadratic
and ill-conditioned objective functions, observing a linear convergence to the op-
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timum. In another work, Deb (2000) proposed the well-known feasibility rules to
direct the search towards feasible search spaces. As its name suggests, this technique
consists on three simple rules that promote the preservation of feasible solutions
in the population. Though this technique can be suitable for addressing problems
containing inequality constraints, poor results are typically obtained for problems
with equality constraints, because the exploration is hindered in early generations.
Then, in order to overcome the parameter-setting drawback when using penalty meth-
ods, stochastic ranking was proposed in Runarsson and Yao (2000), as an attempt to
balance the priority between the objective function and constraint violation without
the need of tuning any penalty factor. This method showed promising results when
solving benchmark problems, in particular when several constraints are active at the
optimal solution. Later, the same authors introduced in Runarsson and Yao (2005) an
extension of stochastic ranking for multiobjective optimization problems, conducting
to a parameter bias-free search. Another classical approach consists in allowing
constraint relaxation at some extent at early generations, and then to stress the search
to feasible regions in later generations. The ε-constraint method (Takahama and
Sakai, 2005) stands in this framework, in which a polynomial function is employed
for decreasing the relaxation level throughout the evolutionary process. The same
authors also proposed some extensions of this method (Takahama and Sakai, 2006,
2010), suggesting the preservation of elite solutions and the reparation of infeasible
ones by using the constraint gradient information. In Zhang and Rangaiah (2012),
another relaxation method is proposed, in which the relaxation level is computed at
each generation considering the fraction of feasible solutions in the population and
the median of the total violation of constraints. The authors considered in conjunction
a self-adaptive differential evolution algorithm with tabu search, and employed a
gradient-based local optimizer at the end of the search for ensuring convergence
to the feasible region. Nevertheless, exploiting the constraint gradient information
for solving constrained problems within EAs, was presented for the first time in
Chootinan and Chen (2006); the obtained results indicated a slight superiority of
the method over stochastic ranking. In Kheawhom (2010), the constraint gradient
information is employed for repairing solutions that violate only equality constraints.
The basic idea explored in this method is that, for a given infeasible solution, some
variables can be set to a fixed value, while a number of variables equals to the number
of equality constraints are repaired, by solving the system of equations (constraints).

Surprisingly enough, even if EAs have been widely used in literature for the
solution of PSE optimization problems, the static penalty function and the feasibility
rules are the two constraint-handling techniques almost always considered, whereas
the performance of more recent methods has not been investigated in the PSE
framework, at least not in a systematic manner. Further, in order to improve the
performance of EAs in constrained problems, a reformulation of the problem is
often carried out to reduce the number of decision variables and to remove, as many
as possible, equality constraints. However, despite its efficiency, such an approach
may not work properly for large-scale real-world problems that usually contain a
important number of constraints. In addition, these constraints may be nonlinear,
making it difficult the solution of the corresponding equation system. In Cardoso
et al. (1997), authors tackled the solution of chemical engineering MINLP problems
using an algorithm combining simulated annealing (for treating discrete variables)
and the nonlinear simplex method (for treating continuous variables); for constraint
handling, the authors employed a dynamic penalizing scheme that considers the
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maximum extent of constraint violation in such a way that no penalty parameter
needs to be tuned. Results showed that this method, though efficient for most of the
treated problems, experiences difficulties for finding the global optimum in highly
constrained problems. In Costa and Oliveira (2001), the authors studied the solution
of seven chemical engineering optimization problems, comparing the performance of
both genetic algorithms and evolution strategies. In this work, equality constraints
were eliminated, therefore reducing the number of independent decision variables,
whereas inequality constraints were treated using feasibility rules. It is noteworthy
that only small problems (containing up to 10 variables) were studied. A similar
study was carried out in Babu and Angira (2006), where authors employed differential
evolution as a search engine, while constraints were handled using Deb’s feasibility
rules and, for problems presenting equality constraints, the model was reformulated
in order to eliminate equality constraints and set some variables as dependent from the
others. However, conclusions about the efficiency of this methodology for the solution
of real-world problems are not clear, since only small instances were studied (the
largest one involves only 7 continuous variables, 3 binary variables and no equality
constraints). In Srinivas and Rangaiah (2007), the authors treated an important
number of problems, implementing DE with tabu search to enhance the search. All
the equality constraints were removed through model reformulation and the static
penalty function was employed for handling inequality constraints. Actually, the
authors used a high value of the penalty factor for all problems, which can be viewed
as equivalent to using feasibility rules. In Yiqing et al. (2007), an enhanced version
of the PSO algorithm was proposed, in which constraint handling was performed in
two steps: (1) problem reformulation (reduction of independent decision variables)
to remove all the equality constraints, and (2) Deb’s feasibility rules for inequality
constraints, pushing the search towards feasible regions. Also, as mentioned earlier, in
Kheawhom (2010), a gradient-based reparation procedure was proposed to efficiently
treat equality constraints without the need of reformulating the model, however,
the results obtained seem to indicate that this method needs an important number
of function evaluations for converging (approx. 106 for a problem containing 22
variables). Finally, the optimization of dynamic chemical processes was addressed
in Chen et al. (2016) using DE with a modification in the mutation process, while
constraints (both equality and inequality) are handled through Deb’s feasibility rules.

Taking into account the above considerations, the scientific objective and the main
contributions of this chapter are therefore to explore and compare the performance of
some state-of-the art constraint-handling techniques, embedded in a metaheuristic
search engine, for the solution of a selection of problems drawn from the process
engineering framework. In particular, five constraint-handling techniques are in-
vestigated, namely penalty functions, stochastic ranking (Runarsson and Yao, 2000),
feasibility rules (Deb, 2000), ε-constraint method (Takahama and Sakai, 2005) and
gradient-based repair (Chootinan and Chen, 2006). It is worth mentioning that this
diversity of methods is representative, by their respective working mode, of those that
are typically used in most works found in the specialized literature. Since the aim is
to provide a fair basis for constraint-handling methods comparison, the same search
engine was used in all cases, i.e. a self-adaptive variant of DE (Brest et al., 2006), both
because of its simplicity (it does not introduce any sophisticated operator nor any
non-uniform probability distribution) and its claimed superiority over GAs and PSO
in terms of its computational efficiency (Ponsich and Coello Coello, 2011; Vesterstrom
and Thomsen, 2004). The aforementioned constraint-handling strategies have thus
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been incorporated within DE for the solution of 14 well-known chemical engineering
problems, highlighting the superiority of the gradient-based repair strategy for most
of the treated examples.

2.4 Constraint-handling techniques

In this section, five popular techniques for handling constraints in evolutionary com-
putation are presented, namely, penalty functions, Deb’s feasibility rules, stochastic
ranking, ε-constraint method and gradient-based repair. As indicated in the introduc-
tion section, many other techniques exist in the specialized literature (Coello Coello,
2016; Mezura-Montes and Coello Coello, 2011), but there is no evidence that they
significantly outperform the techniques tackled here and, in addition, these more
sophisticated techniques usually involve the setting of several control parameters
(Mallipeddi and Suganthan, 2010; Mezura-Montes and Coello Coello, 2005; Padhye et
al., 2015; Samanipour and Jelovica, 2020; Yang et al., 2020). Therefore, only these five
constraints handling methods, which might be defined as state-of-the-art techniques,
are tackled in this study.

2.4.1 Penalty functions

Historically, the most common approach to incorporate constraints (both in evolution-
ary algorithms and in mathematical programming) involves penalty functions, which
were originally proposed in the 1940s and later expanded in many research studies,
mainly for their simplicity and efficiency. With this method, the fitness landscape is
modified as some penalty is added to the objective value of each infeasible individual.
In their general form, penalty functions can be represented as:

ψ(x) = f (x) +
p

∑
i=1

ri ·max{0, gi(x)}α +
q

∑
j=1

cj ·
∣∣hj(x)

∣∣α (2.1)

where ψ(x) is the new fitness function to be minimized, ri and cj are positive constants
called penalty factors, and α normally takes values of 1 or 2.

As can be noted, this implementation, though quite simple, requires the use of a
number of parameters to be tuned (equal to the number of constraints) which might
be impractical in highly constrained problems. For this reason, the static penalty
function, the simplest form of penalty function, has remained as the most popular
one:

ψ(x) = f (x) + r · φ(x) (2.2)

where r is the penalty coefficient and φ(x) is the overall constraint violation:

φ(x) =
p

∑
i=1

max{0, gi(x)}α +
q

∑
j=1

∣∣hj(x)
∣∣α (2.3)

Although the static penalty function only needs the tuning of one parameter, this
task is not straightforward. On the one hand, if r is too small, the search will be
directed towards regions where the objective function is minimized, but the final
obtained solutions are likely to be infeasible. On the other hand, if r is too high,
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the minimization of the overall constraint violation will be prioritized, obtaining a
feasible solution in early generations with the disadvantage that, if the search space
is disconnected or highly constrained, it will be very difficult to escape from the first
feasible region found and the process thus may get stuck in a local optimum. Ideally,
the penalty should be kept as low as possible, just above the limit where the solutions
found are infeasible, this strategy is called the minimum penalty rule.

Furthermore, dynamic penalty functions, in which the coefficient r varies through-
out the evolutionary process, have been proposed (Coello Coello, 2000; Nanakorn
and Meesomklin, 2001; Tessema and Yen, 2006). The underlying idea in dynamic
penalty functions is that allowing low values of r at early generations enables to
explore the regions where the objective function is minimized, whereas a high value
of r is desired at final generations in order to push the search towards the feasible
region. Such an idea would work well for problems in which the unconstrained
global optimum is close to the constrained one, but there is no guarantee that this
strategy will be efficient in all cases. Besides, the additional parameters needed to
define the penalty coefficient increasing schedule make this method less attractive
than the simple static penalty function.

Finally, since a good choice of the penalty coefficient is necessary to enable a
good balance between the objective function and the overall constraint violation
minimization, adaptive strategies have been suggested where information gathered
from the search process is used to control the amount of penalty added to infeasible
individuals. Adaptive penalty functions are not difficult to implement and they
usually do not require user-defined parameters. Nevertheless, the results available in
the literature are not very encouraging as adaptive penalty methods usually need a
lot of iterations to find the optimal solution as illustrated in Tessema and Yen (2006).
For a more complete review of adaptive penalty techniques the reader is referred to
Barbosa et al. (2015).

2.4.2 Stochastic ranking

Stochastic ranking (SR) has been proposed by Runarsson and Yao (2000) as an attempt
to balance the relative weights of the objective function and constraint violation
components that compete within penalty functions. In this method, the population is
sorted following a probabilistic procedure: two individuals are compared according
to their objective function with a probability Pf , otherwise, the overall constraint
violation is used for the comparison as indicated in the pseudocode presented in
Algorithm 4. Once the population has been sorted by SR, a part of the population as-
signed with highest rank is selected for recombination, thus sharing its characteristics
to the next generation. In this way, the search is directed by the minimization of the
objective function and by feasibility concepts at the same time.

Since stochastic ranking was originally designed to work with Evolution Strategies
(ES), which indeed requires a ranking process in its replacement mechanism, its
implementation within other search paradigms is not straightforward, even if some
studies have extended its use to other EAs (Ali et al., 2012; Fan et al., 2009; Zhang
et al., 2008a). Considering DE, SR could be used in two different ways: for selecting a
part of the population that would participate in the mutation process, or for selecting
the individuals that would survive to the next generation (after the mutation and
crossover processes). In Fan et al. (2009), the authors proposed to rank the population
according to the SR procedure before the mutation process: they divide the population
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Algorithm 4 Stochastic ranking procedure

1: for all i ∈ {1, . . . , µ} do
2: for all j ∈ {1, . . . , µ− 1} do
3: sample u ∼ U(0, 1)
4: if φ(x(j)) = φ(x(j+1)) = 0 or u < Pf then
5: if f (x(j)) > f (x(j+1)) then
6: swap(x(j), x(j+1))
7: end if
8: else
9: if φ(x(j)) > φ(x(j+1)) then

10: swap(x(j), x(j+1))
11: end if
12: end if
13: end for
14: if no swap done then
15: break
16: end if
17: end for

into two parts (that they call higher and lower parts), the upper part containing the
best individuals, i.e., the individuals ranked highest after SR. Then, for every trial
vector, v(i), the upper part contributes with two good individuals, while the lower part
provides only one less good individual. This procedure was initially considered in
this study, but since the obtained results were not satisfactory, SR was implemented
within the selection process as follows: the new population is generated normally by
the DE operator, i.e., using the entire population, and then both populations (parents
and offspring) are ranked according to SR. Finally, each new individual is compared
with his parent, and that with a higher rank survives to the next generation.

2.4.3 Feasibility rules

This constraint handling technique establishes the superiority of feasible solutions
over infeasible ones, that is, as opposite to the penalty functions, feasibility rules
do not merge information from both constraint violation and objective function, but
consider them separately. Proposed in Deb (2000), the feasibility rules (also called
lexicographical order) consist in a binary tournament selection that uses the following
criteria:

1. Any feasible solution is preferred to any infeasible solution.

2. Among two feasible solutions, that with a better objective function value is
preferred.

3. Among two infeasible solutions, that with a smaller constraint violation is
preferred.

Feasibility rules represent an easy-to-implement, parameter-free technique to
handle constraints. Further, due to its simplicity and its overall good performance,
feasibility rules are usually the first constraint-handling technique tested for treating
a given problem with EAs. However, one of the main drawbacks of this method
appears when dealing with problems with a reduced and/or disconnected feasible
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region (e.g., problems with one or several equality constraints). Because any feasible
solution is preferred over an infeasible one, once the algorithm has converged to
some feasible region, it may be very difficult to escape from there in order to explore
other regions, i.e., once the constraints are fulfilled, the algorithm is very likely to get
trapped prematurely in some subregion of the search space. Moreover, considering
that there are high probabilities that the optimum lies close to the feasibility boundary,
slightly infeasible solutions might be more useful to the search process than solutions
wide inside the feasible region. However, the feasibility rules would prefer the latter
solution to the former one. In fact, feasibility rules can be seen as a limiting case
of static penalty function when the penalty value takes a very high value, in this
way, when comparing two solutions, that with a lesser amount of overall constraint
violation will be always preferred.

2.4.4 ε-constraint method

In order to tackle the above-mentioned issues related to feasibility rules in severely
constrained problems, the ε-constraint method for evolutionary algorithms has been
proposed by Takahama and Sakai (2005), where a relaxation of constraints is permitted
to explore constrained regions. A tolerance level over the constraint violation, called
the ε level, indicates the limit under which solutions are considered as feasible, that
is, a solution x such that gi(x) ≤ ε and |hj(x)| ≤ ε ∀i, j is viewed as feasible. Once the
feasibility of solutions has been identified by means of the ε level, the lexicographical
order (i.e. feasibility rules) is used for selecting the surviving individuals for the next
generation. This technique has proven to be especially efficient in highly constrained
problems, such as those involving equality constraints, because the relaxation allowed
at the early generations, i.e. with a relatively high ε level, promotes the exploration of
regions that would be impossible to reach by simple feasibility rules.

The main drawback of this method is the difficulty for setting the ε parameter. It
has been remarked that ε level enables a good exploration of the search space in early
generations but also it is clear that ε must be zero at some point of the evolutionary
process in order to obtain feasible solutions. In Takahama and Sakai (2006), the
authors proposed a dynamic control of ε level, according to:

ε(0) = φ(xθ) (2.4)

ε(t) =

{
ε(0)(1− t

Tc
)cp, 0 < t < Tc,

0, t ≥ Tc
(2.5)

where xθ is the best θ-th individual (in terms of constraint violation) in the first
generation, cp is a parameter to control the decrease speed of the ε level and Tc
represents the generation after which the ε level is set to 0 (after that generation, Deb’s
feasibility rules are considered). According to the authors, the following parameter
setting works well in many problems: θ = 0.2µ, cp = 5, Tc ∈ 0.2Tmax. Despite these
general guidelines, the tuning of these three parameters still constitutes a drawback,
as it might become a harsh task. Additionally, it is important to recall that the use of
the ε level according to equation (2.5) is only recommended for highly constrained
problems in which the feasibility rules do not work properly, otherwise ε-constraint
method may get worse results than the feasibility rules in terms of efficiency and
efficacy.
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It should be underlined that the ε-constraint method obtained the first place
in the competition on constrained optimization of the Congress of Evolutionary
Computation (CEC 2006) and very competitive results in CEC 2010 (Takahama
and Sakai, 2006, 2010). Due to this success, the ε-constraint method has also been
embedded in a number of algorithms for multiobjective optimization (Fan et al., 2016,
2017; Yang et al., 2014). However, the excellent results obtained by this method in
the two above-mentioned competitions did not only depend on the ε level relaxation
strategy, but also on the use of an additional operator, based on a gradient-based
repair process (presented in the next section). It is difficult to determine which of both
methods contribute the most in obtaining the excellent results published at CEC’2006
and CEC’2010. In this study, the ε-constraint method has been implemented with and
without the gradient-based repair, so that the relative performance of both algorithms
can be evaluated and compared.

2.4.5 Gradient-based repair

The gradient-based repair method, proposed by Chootinan and Chen (2006) is a
constraint-handling technique that uses the gradient information derived from the
constraint set to systematically repair infeasible solutions. Basically, the gradient of
constraint violation is used to direct infeasible solutions toward the feasible region.
The vector of constraint violations ∆C(x) is defined as:

∆C(x) = [∆g1(x), . . . , ∆gm(x), ∆h1(x), . . . , ∆hp(x)]T (2.6)

where ∆gi(x) = max{0, gi(x)} and ∆hj(x) = hj(x). This information, in addition to
the gradient of constraints ∇C(x), is used to determine the step ∆x to be added to
the solution x, according to:

∇C(x)∆x = −∆C(x) (2.7)

∆x = −∇C(x)−1∆C(x) (2.8)

Although the gradient matrix ∇C is not invertible in general, the Moore-Penrose
inverse or pseudoinverse ∇C(x)+ (Campbell and Meyer, 2009), which gives an
approximate or best (least square) solution to a system of linear equations, can be
used instead in (2.8). Thus, once the step ∆x has been computed, the infeasible point
x is moved to a less infeasible point x + ∆x. This repair operation is performed with
a probability Pg and repeated Rg times while the point is infeasible.

In this work, the computation of the gradient ∇C(x) is done numerically using
forward finite differences for all problems. Also, it is worth noting that in the original
article (Chootinan and Chen, 2006) only non-zero elements of ∆C(x) are repaired,
i.e., the gradient is only computed for constraints that are indeed violated. On
the contrary, in Takahama and Sakai (2006) all constraints are considered in the
repair process, even those that are already satisfied. The former approach has the
disadvantage that a given constraint may be fulfilled at one iteration but violated in
the next on. Nevertheless, it was empirically observed in this work that the former
approach is usually more efficient than the latter one, in terms of number of iterations
needed to get to the feasible region. So, in this study, only non-zero elements of ∆C(x)
are taken into account within the repair process. Note that this procedure can also
produce situations where some variables lie outside their allowed variation range,
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so that two inequality constraints may be added for each variable, accounting for
their bounds. Due to the associated computational burden in real-world optimization
problems, where the number of variables may be high, these additional constraints
are not considered here. Instead, an additional repair process, performed at each
iteration, sets the variable value to the violated bound if necessary. The pseudocode
of the gradient-based repair procedure used in this study is presented in Algorithm 5.

Algorithm 5 Gradient-based repair procedure

1: for all i ∈ {1, . . . , µ} do
2: t = 0
3: sample u ∼ U(0, 1)
4: while t < Rg and φ(x(i)) > 0 and u < Pg do
5: compute ∇C(x) of violating constraints
6: compute ∇C(x)+

7: compute ∆x
8: x(i) ← x(i) + ∆x
9: repair x(i) to its bounds

10: compute ∆C(x)
11: t← t + 1
12: end while
13: end for

Even if the gradient-based repair can be considered as a constraint-handling
technique by itself, using it alone would be computationally expensive, since, in highly
constrained spaces, this procedure might require many iterations to reach the feasible
region, and in extreme cases, it might be impossible to reach a feasible solution.
Therefore, this technique is usually coupled with any other constraint-handling
technique. In this work, gradient-based repair is coupled with the ε-constraint method
because, by its working mode, it presents advantages over feasibility rules when
dealing with equality constraints and, in addition, methods like penalty functions
or stochastic ranking might spoil the efforts made to repair infeasible solutions, due
to a bad-tuned penalty factor or to the stochastic ranking sorting procedure itself.
Nevertheless, for illustrative purposes, a preliminary test experiment is carried out
for one instance (defined in the next section), by applying the gradient-based repair
method to each of the four constraint-handling techniques. The results are shown in
Table 2.1, in terms of the number of function evaluations (NFEs). It can be observed
that every constraint-handling technique, when coupled with gradient-based repair,
performed equally good. Since no significant differences are observed, it seems
reasonable to use the constraint gradient-based repair procedure in combination with
only one of the remaining techniques. Note that the identical results observed for
feasibility rules and ε-constraint methods are due to the ε level, which, in this case, is
zero at the first generation.
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Table 2.1: Gradient-based repair coupled with each constraint-handling method.
Experimental results for problem 1 in terms of NFEs needed to achieve convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

1 St. penalty fcn. 211 1884 4665 1943 1009 100 100 2.6
SR 211 2063 6151 2295 1419 100 100 3.3
Feas. rules 211 2142 5490 2176 1226 100 100 2.9
ε-constraint 211 2142 5490 2176 1226 100 100 2.9

2.5 Computational experiments

To illustrate the benefits of the above-mentioned constraint-handling techniques in
process engineering applications, 14 PSE problems have been selected as represen-
tative in the specialized literature. These problems present distinct mathematical
characteristics typically found in process engineering, e.g., nonlinearities, equality
and inequality constraints, binary and continuous variables. Some relevant features
of these examples are provided in Table 2.2. In Appendix A, the complete formulation
of these problems is presented in details and additional information concerning local
and global optimal solutions is also given.

Table 2.2: Brief description of example problems

Problem
Decision variables Constraints (active

at optimal solution)
Description

Binary Continuous

1 0 6 5(5) Reactor network design
2 0 10 6(6) Flowsheeting
3 1 1 2(1) Process synthesis
4 1 2 2(2) Process synthesis
5 1 2 3(2) Process synthesis
6 3 2 5(3) Process synthesis
7 2 6 8(6) Reactor network design
8 4 3 9(5) Process synthesis
9 3 8 9(7) Planning problem

10 5 7 13(7) Batch plant design
11 5 7 13(8) Batch plant design
12 12 16 61(15) Batch plant design
13 14 19 85(18) Batch plant design
14 16 20 97(16) Batch plant design

The algorithms previously presented were implemented with MATLAB R2017b
and all the following computational experiments were carried out with a processor
Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go RAM.

Parameters settings

In order to perform a fair comparison of the different constraint-handling methods,
the parameters tuning has been set constant for each method over all the test problems,
so that the overall performance without specific adjustments is assessed for each
technique. Obviously, the only exception is the static penalty function, for which the
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tuning of the penalization parameter r for each problem is intrinsic to the method.
The actual parameters used are:

• Static penalty function. Parameter r is tuned following the minimum penalty rule,
that is, r takes the lowest possible values so as to obtain feasible solutions. The
precision of the parameter is set according to r = x× 10y, where x and y are
non-negative integer numbers.

• Stochastic ranking. Pf = 0.45.

• ε-constraint method. θ = 0.2µ, cp = 5, Tc = 0.2Tmax.

• Gradient-based repair. Identical parameters as for the ε-constraint and addition-
ally, Pg = 1, Rg = 3. Besides, each computation of the gradient of constraints
counts as 1 function evaluation.

Regarding the DE algorithm, the only parameter to be tuned is the population size
(µ), as the scaling factor (F) and crossover rate (CR) are adjusted by the auto-adaptive
algorithm. The population size is calculated as µ = min(100, 10n) where n is the
number of decision variables. The algorithm stops if the current best solution is as
close as 0.0001% or 0.0001 to the reported global optimal solution or if the number
of function evaluations (NFEs) exceeds 200 000. Due to the stochastic nature of
evolutionary algorithms, 50 independent executions are carried out for each problem
and each method.

2.6 Results and discussion

The results obtained for the 14 optimization test problems are summarized in Ta-
bles 2.3 to 2.6. (please note that all problems are minimization problems). The
results are analyzed through the best, median and worst objective function values, “−”
means that no feasible solution was found. Feasibility and success rates represent the
rates of executions respectively finding at least one feasible solution and the optimal
solution over the 50 independent runs. Please note that the computational times in
Tables 2.4 and 2.6 represent the overall elapsed time for the 50 runs. In Tables 2.3 and
2.4 the results for problems 1 to 9 are shown. In Table 2.3 better results according
to the best, median and worst solution found are represented in boldface. Similarly,
better results according to the NFEs, and feasibility and success rates are presented
in boldface in Table 2.4. Since problems 10 to 14 are different size instances of the
same problem (the optimal design of a multi-product batch plant), their results are
shown together in Tables 2.5 and 2.6.

Problem 1 addresses the optimal design of a sequence of two CSTR reactors. It can
be considered as a small size problem, however, from Table 2.4 it can be appreciated
that only the gradient-based repair technique achieved to find the optimum in each
single run. Further, the low NFEs needed to converge is to be highlighted. Note that
the numerical differences observed in Table 2.3, corresponding to the gradient-based
repair method are not significant, considering that the optimal stopping criterion is
reached for every solution, i.e., each solution is as close as 0.0001 from the reported
optimum. This problem was studied in Babu and Angira (2006) and Srinivas and
Rangaiah (2007), through the reformulation consisting in removing all equality con-
straints and eliminating dependent variables, and the use of a static penalty function.
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Table 2.3: Experimental results in terms of objective function values.

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. −0.38881 −0.38871 −0.38802 −0.38870 1.42e-04
1 SR −0.38881 −0.38871 −0.37867 −0.38813 1.87e-03

(-0.38881) Feas. rules −0.38881 −0.38871 −0.38377 −0.38854 7.77e-04
ε-constraint −0.38881 −0.38871 −0.38720 −0.38848 4.24e-04
Grad-based repair −0.38881 −0.38876 −0.38872 −0.38878 3.92e-05

St. penalty fcn. 10 041 455 12 562 687 16 932 972 12 626 104 1.32e+06
2 SR — — — — —

(9490593) Feas. rules 10 148 136 12 421 765 18 043 019 12 667 483 1.40e+06
ε-constraint 10 603 444 — — 13 457 709 1.88e+06
Grad-based repair 9 490 594 9 490 600 9 490 603 9 490 600 2.51e+00

St. penalty fcn. 2.000 2.000 2.236 2.005 3.34e-02
3 SR 2.000 2.000 2.000 2.000 3.00e-05

(2.000) Feas. rules 2.000 2.000 2.236 2.019 6.47e-02
ε-constraint 2.000 2.000 2.236 2.014 5.66e-02
Grad-based repair 2.000 2.000 2.000 2.000 3.03e-05

St. penalty fcn. 2.124 2.124 2.558 2.168 1.31e-01
4 SR 2.124 2.124 2.558 2.142 8.58e-02

(2.124) Feas. rules 2.124 2.558 2.558 2.549 6.13e-02
ε-constraint 2.124 2.124 2.558 2.150 1.04e-01
Grad-based repair 2.124 2.124 2.124 2.124 1.71e-05

St. penalty fcn. 1.0766 1.0766 1.2500 1.0801 2.45e-02
5 SR 1.0766 1.0766 1.2500 1.0835 3.43e-02

(1.0765) Feas. rules 1.0766 1.0766 1.2500 1.0880 4.19e-02
ε-constraint 1.0766 1.0766 1.0766 1.0766 1.80e-05
Grad-based repair 1.0765 1.0766 1.0766 1.0766 3.14e-05

St. penalty fcn. 7.667 7.667 7.931 7.688 7.22e-02
6 SR 7.667 7.667 7.931 7.693 7.99e-02

(7.667) Feas. rules 7.667 7.931 8.240 7.928 1.07e-01
ε-constraint 7.667 7.931 7.931 7.846 1.24e-01
Grad-based repair 7.667 7.667 7.667 7.667 1.49e-05

St. penalty fcn. 99.238 99.240 107.374 101.355 3.60e+00
7 SR 99.238 99.239 107.374 100.703 3.16e+00

(99.238) Feas. rules 99.238 107.374 — 111.974 2.30e+01
ε-constraint 99.238 107.374 107.374 103.795 4.08e+00
Grad-based repair 99.238 99.240 99.240 99.239 2.69e-04

St. penalty fcn. 4.57958 4.57962 4.57968 4.57962 3.18e-05
8 SR 4.57958 4.57967 4.57968 4.57966 1.69e-05

(4.57958) Feas. rules 4.57958 4.57966 4.57968 4.57966 1.86e-05
ε-constraint 4.57958 4.57966 4.57968 4.57966 2.14e-05
Grad-based repair 4.57958 4.57958 4.57964 4.57958 8.95e-06

St. penalty fcn. −1.9231 −1.7236 −1.4125 −1.6925 1.95e-01
9 SR −1.9231 −1.7235 −0.2202 −1.5924 4.51e-01

(-1.9231) Feas. rules −1.4125 −1.2138 0.7607 −0.8621 6.70e-01
ε-constraint −1.4099 −0.0011 0.7431 −0.0370 3.71e-01
Grad-based repair −1.9231 −1.9231 −1.9230 −1.9230 1.31e-04
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Table 2.4: Experimental results in terms of NFEs needed to achieve convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

1 St. penalty fcn. 14 340 64 230 200 000 88 734 73 334 100 90 10.1
SR 45 480 156 840 200 000 153 434 44 795 100 70 91.6
Feas. rules 27 660 149 490 200 000 136 008 53 187 100 86 15.6
ε-constraint 32 700 193 320 200 000 156 421 61 826 100 54 19.1
Grad-based repair 211 2142 5490 2176 1226 100 100 2.9

2 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 19.8
SR 200 000 200 000 200 000 200 000 0 0 0 142.2
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 19.3
ε-constraint 200 000 200 000 200 000 200 000 0 20 0 21.0
Grad-based repair 15 300 19 100 22 800 19 094 1366 100 100 90.3

3 St. penalty fcn. 500 870 200 000 4851 28 162 100 98 1.2
SR 640 1350 2640 1423 444 100 100 1.2
Feas. rules 520 1110 200 000 17 006 54 511 100 92 4.3
ε-constraint 420 1550 200 000 13 583 47 582 100 94 3.8
Grad-based repair 33 203 387 226 89 100 100 0.3

4 St. penalty fcn. 1680 2775 200 000 22 441 59 792 100 90 3.6
SR 3540 6825 200 000 14 887 38 229 100 96 6.6
Feas. rules 10 200 200 000 200 000 196 214 26 843 100 2 31.2
ε-constraint 24 090 28 245 200 000 38 545 41 240 100 94 7.4
Grad-based repair 100 108 676 197 151 100 100 0.2

5 St. penalty fcn. 1830 2895 200 000 6804 27 885 100 98 1.2
SR 4620 6465 200 000 14 212 38 332 100 96 6.0
Feas. rules 2610 4065 200 000 19 623 53 738 100 92 3.2
ε-constraint 22 800 28 575 31 200 27 988 2182 100 100 6.0
Grad-based repair 93 175 1046 244 173 100 100 0.3

6 St. penalty fcn. 2400 4125 200 000 19 780 53 686 100 92 2.5
SR 10 150 14 500 200 000 33 204 56 229 100 90 15.8
Feas. rules 3900 200 000 200 000 184 422 53 365 100 8 22.2
ε-constraint 14 550 200 000 200 000 143 018 83 935 100 32 18.2
Grad-based repair 195 198 360 207 37 100 100 0.3

7 St. penalty fcn. 16 880 22 280 200 000 68 891 78 739 100 74 6.1
SR 39 120 69 600 200 000 92 301 52 791 100 82 60.9
Feas. rules 92 720 200 000 200 000 190 869 23 914 86 22 16.4
ε-constraint 35 280 200 000 200 000 128 550 81 429 100 44 11.8
Grad-based repair 3761 9591 20 639 10 082 3574 100 100 10.3

8 St. penalty fcn. 5810 6720 8540 6891 714 100 100 0.9
SR 8330 11 480 14 770 11 739 1485 100 100 8.2
Feas. rules 7840 9415 11 270 9362 785 100 100 1.3
ε-constraint 8120 25 760 30 730 23 408 6563 100 100 3.3
Grad-based repair 407 2133 9879 3691 3276 100 100 3.3

9 St. penalty fcn. 47 800 200 000 200 000 159 822 65 129 100 28 16.0
SR 149 200 200 000 200 000 197 052 9930 100 18 149.5
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 20.8
ε-constraint 200 000 200 000 200 000 200 000 0 100 0 20.9
Grad-based repair 16 197 41 450 77 610 41 982 10 260 100 100 66.3
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In contrast, the results obtained by the gradient-based repair method suggest that
this reformulation is not necessary since this method finds the global optimum in
short CPU times (lower than 0.1 second per run).

Problem 2 constitutes a difficult case, containing 6 nonlinear equality constraints
that involve all decision variables. Not any one of the tested constraint-handling
techniques, excepting the gradient-based repair, was able to found the optimum in
any run. It is observed, however, that the computational time required for computing
the gradient is considerable higher that those of simple techniques, e.g., static penalty
function, even if less functions evaluations are carried out. In Rangaiah (2009),
this problem was also addressed by DE considering the constraints as a system of
nonlinear equations which is solved by an exact algorithm, so that the original problem
is transformed into an unconstrained one. However, such strategy is computationally
expensive, as it is performed for every individual at each generation. In this study,
the same approach has been carried out for comparison purposes. The system
of nonlinear equations has been solved using the Levenberg-Marquardt algorithm
embedded in the MATLAB software. This approach took approximately 40 seconds
per run, i.e., about 20 times more than the gradient-based repair procedure.

Problems 3 and 5 consist in small and rather simple MINLP examples. All
constraint-handling methods obtained an overall good performance in terms of
success rate. Notwithstanding, the gradient-based repair is significantly more efficient
both in terms of NFEs and CPU time.

Problem 4 is modeled as a MINLP involving one nonlinear equality constraint
and one binary variable, which together yield a rather high difficulty for the solution
by feasibility rules, since this technique gets trapped in an “easy-to-access” local
optimum, explaining its low success rate. Reversely, all the other techniques obtain
a very good performance, in particular the gradient-based repair, which yielded
the optimum in every run employing an insignificant computational time. It is
noteworthy that in Costa and Oliveira (2001) and Yiqing et al. (2007) the problem is
reformulated by reducing one continuous variable and thus eliminating the equality
constraint. This approach, although efficient, is problem-devoted and may not be
practical in highly constrained real-world problems.

Problem 6 takes into account a MINLP problem with 3 binary variables and 2
equality constraints. Although this problem can be considered as a small one (in
terms of the number of variables), its characteristics are not easy to overcome by
feasibility rules, meaning that the first feasible solution found is likely to be far from
the global minimum region. Further, the relaxation done by ε-constraint method
does not manage to obtain acceptable success rates, at least not with the parameters
used here. Regarding stochastic ranking, static penalty function and gradient-based
repair, they solve the problem efficiently, with a better success rate and much lower
CPU times reported for the gradient-based repair technique. In Cardoso et al. (1997)
and Srinivas and Rangaiah (2007), the same problem was tackled, but the model
was simplified by eliminating the continuous variables by means of the equality
constraints.

For problem 7, feasibility rules and ε-constraint method present a poor perfor-
mance due to the existence of 2 binary variables and 4 equality constraints. Stochastic
ranking and static penalty function present a fairly good performance. On the con-
trary, gradient-based repair method enables the algorithm to search in the whole
search space before converging to an optimum. Again, this example was addressed
in previous works (Cardoso et al., 1997; Costa and Oliveira, 2001; Srinivas and Ran-
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gaiah, 2007; Yiqing et al., 2007) by reformulating the problem in order to eliminate
equality constraints, thus reducing the number of decision variables. The remaining
constraints was handled by the static penalty function.

For problem 8 all constraint-handling techniques performed excellently, finding
the global optimum in all runs. For this problem the first feasible region found
coincides with the region where the global optimal solution lies, even though the
problem presents some difficulties regarding its mathematical properties (4 binary
variables with 9 constraints). It is observed that the gradient-based repair is the most
efficient in terms of NFEs, whereas the penalty function is the most efficient in terms
of computational time.

Problem 9 represents a planning problem in which several alternatives are pro-
posed for obtaining one desired product. Since it contains 3 binary variables and 5
equality constraints involving all the continuous variables, determining the global
optimum is a difficult task. For SR, the balance between feasible and infeasible
solutions is not enough to reach the global optimum region in most cases. With
respect to Deb’s feasibility rules, convergence to the global optimum is highly un-
likely, since this technique always prefers feasible solutions over the infeasible ones,
whatever the quality of the objective function value. For the ε-constraint method, the
relaxation conducted on the equality constraints seems not to be sufficient to reach
the global optimum. On the other hand, when this relaxation is combined with the
gradient-based repair, the algorithm is able to search over the entire space so that the
global optimum is found for each execution, with a low NFEs.

Problems 10–14 consider the optimal design of a multi-product batch plant con-
sisting of a given number of processing stages M through which N different products
have to be manufactured. The objective is to minimize the investment cost and then,
for each processing stage j, the number of parallel units Nj and their size Vj need
to be determined, as well as the batch sizes Bi and cycle times TLi for each product
i. Thus, increasing the number of stages M, the number of products N and the
possible number of parallel units Nu

j , results in a large non-convex MINLP. Note that
the mathematical formulation of the problem implemented in this study presents
multiple non-convexities in the objective function and in several inequality constraints
(see Appendix A). Hence, problems 10–12 are drawn from Kocis and Grossmann
(1988) and only differ by their size (in terms of the number of products and processing
stage). Also, in order to explore the scalability of the studied constraint-handling
techniques, problems 13 and 14 have been artificially created increasing the size of
problem 12, both in number of variables and in number of constraints. Thus, since
no global optimum is reported in the literature for these problems, a convexified
formulation of the problem was solved using the BARON solver within the GAMS
environment, the corresponding solutions are reported in Table 2.5.

Problem 10 and 11 are equivalent in size, their only difference is the quantity Qi
of product i that needs to be manufactured. Nevertheless, performance of constraints-
handling techniques like ε-constraint, feasibility rules and SR are significantly different
for both problems. It seems that this slight modification makes problem 11 much
more difficult for these techniques, the feasible region has been modified in such a
way that the global optimum lies now in a region that is difficult to reach. Besides,
the consistency of the static penalty function and gradient-based repair methods is
observed in both problems, as their performance remained unchanged in terms of
success rate.
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Table 2.5: Experimental results for problems 10–14 in terms of objective function
values.

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. 38 499.5 38 500.1 38 500.2 38 500.1 5.33e-02
10 SR 38 499.5 38 499.8 38 499.8 38 499.8 2.39e-02

(38499.5) Feas. rules 38 499.5 38 500.1 38 500.2 38 500.1 5.84e-02
ε-constraint 38 499.5 38 500.2 40 977.5 38 747.9 7.51e+02
Grad-based repair 38 499.5 38 499.7 38 499.8 38 499.7 8.77e-02

St. penalty fcn. 106 755.8 106 756.8 106 756.9 106 756.8 8.69e-02
11 SR 106 755.8 106 755.9 112 947.6 107 009.4 1.23e+03

(106755.8) Feas. rules 106 755.8 112 947.2 122 607.8 110 739.1 4.28e+03
ε-constraint 106 755.8 122 607.8 136 009.7 126 123.0 1.02e+04
Grad-based repair 106 755.8 106 755.8 106 755.9 106 755.8 1.67e-02

St. penalty fcn. 304 660.5 310 155.0 311 349.9 308 282.6 2.66e+03
12 SR 286 826.0 308 092.0 — 313 469.9 1.54e+04

(285506.5) Feas. rules 310 350.1 322 711.5 332 793.1 322 466.2 7.04e+03
ε-constraint 305 311.9 330 042.1 370 131.6 330 407.5 1.48e+04
Grad-based repair 285 550.6 285 868.6 286 497.8 285 911.8 2.41e+02

St. penalty fcn. 431 403.9 455 438.4 — 452 197.8 9.27e+03
13 SR 450 347.2 — — 476 650.0 3.40e+04

(430324.5) Feas. rules 457 559.5 461 764.5 479 289.1 463 844.8 5.35e+03
ε-constraint 444 914.7 467 524.0 576 092.0 470 245.2 1.99e+04
Grad-based repair 430 418.2 431 809.4 444 650.7 432 786.3 2.99e+03

St. penalty fcn. 550 965.5 564 520.4 — 564 746.7 3.72e+03
14 SR — — — — —

(546998.6) Feas. rules 563 508.1 574 875.2 592 240.3 574 459.7 7.68e+03
ε-constraint 562 878.8 584 552.9 663 862.1 585 503.9 1.64e+04
Grad-based repair 549 496.6 553 317.3 562 335.7 555 301.5 4.53e+03
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Table 2.6: Experimental results for problems 10–14 in terms of NFEs needed to achieve
convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

10 St. penalty fcn. 41 600 47 300 59 100 48 120 3810 100 100 5.8
SR 66 000 76 900 105 000 79 904 9492 100 100 66.1
Feas. rules 54 900 62 650 84 600 63 884 5679 100 100 7.9
ε-constraint 68 400 85 850 200 000 95 892 35 719 100 90 12.3
Grad-based repair 31 684 48 641 63 401 47 392 7172 100 100 61.9

11 St. penalty fcn. 43 100 48 150 58 500 48 542 3222 100 100 6.2
SR 136 000 183 700 200 000 178 034 21 151 100 68 153.1
Feas. rules 69 000 200 000 200 000 144 760 60 730 100 46 17.6
ε-constraint 87 900 200 000 200 000 191 724 28 443 100 8 24.2
Grad-based repair 2744 18 337 32 626 18 142 9130 100 100 27.3

12 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 84.4
SR 200 000 200 000 200 000 200 000 0 62 0 177.2
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 72.5
ε-constraint 200 000 200 000 200 000 200 000 0 100 0 88.1
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 1136.7

13 St. penalty fcn. 200 000 200 000 200 000 200 000 0 96 0 72.4
SR 200 000 200 000 200 000 200 000 0 10 0 268.5
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 67.0
ε-constraint 200 000 200 000 200 000 200 000 0 100 0 71.1
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 944.3

14 St. penalty fcn. 200 000 200 000 200 000 200 000 0 88 0 70.6
SR 200 000 200 000 200 000 200 000 0 0 0 269.3
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 76.3
ε-constraint 200 000 200 000 200 000 200 000 0 100 0 74.4
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 994.2
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Problem 12 can be viewed as a medium size instance, it contains 6 integer variables
(processing stages) with 4 possible values each (the equivalent to 12 binary variables),
so the problem size is equivalent to solving 4 096 NLP subproblems. Additionally,
it has 16 continuous variables and 61 inequality constraints. The global optimum
corresponds to an ill-conditioned point, since variations as small as 0.01% in any of
the 16 continuous variables produce infeasibility. For this problem, no constraint-
handling technique could obtain the reported optimal solution. However, stochastic
ranking and gradient-based repair were able to locate the global optimum region:
SR in 20% of the runs and 100% of the runs for gradient-based repair. It seems that
once the global optimal region has been identified, new solutions generated by DE
operator are very likely to be infeasible, and even if the repair process acts upon them,
the direction in which constraint violation is minimized is not necessarily the same
as the direction in which the objective function decreases, so that the optimization
process gets very slow.

For problem 13, an additional processing stage and an additional product are
considered with respect to problem 12. The performance pattern observed in the
previous problem is highlighted here since, this time, 26 additional constraints need
to be fulfilled and one integer variable has been added. Table 2.6 shows that no
constraint-handling technique achieves the optimum in any run. However, in can be
appreciated in Table 2.5 that the static penalty function and gradient-based repair
found near-optimal solutions. Besides, according to the median solution obtained for
each constraint-handling technique, at least half of those obtained with the gradient-
based repair can be considered as good quality solutions, the objective function lying
at most at 3.3 % of the optimum value.

Finally, problem 14 is the largest instance considered here. It considers 6 different
products to be manufactured in 8 processing stages, the resulting problem involves
97 inequality constraints and is equivalent to solving 65 536 NLP subproblems (216).
Considering the results from Table 2.5, it can be observed that SR was unable to
find any single feasible solution in any run; considering both the best and median
solutions obtained using the feasibility rules, it can be concluded that this technique
does not allow to obtain near-optimal solutions. Besides, the performance of the
ε-constraint method is quite similar to that of feasibility rules, and even more, if
their mean solutions are compared, it is observed that ε-constraint worsens the
performance of feasibility rules. The static penalty function presents an overall good
performance, even if the global optimum was not found in any run. Nevertheless,
since, according to the minimum penalty rule, the best quality solutions are obtained
using the lowest possible value for the penalty factor, this also implies that infeasible
solutions are more likely to be obtained, as it was the case for this problem in 12% of
the executions. Again, the gradient-based repair yields the best results according to
the feasibility and quality of solutions obtained (comparing for example the median
solution in Table 2.5). However, due to the high number of constraints in the problem,
the computation of the gradient pseudoinverse matrix is very expensive, requiring
approximately twice more computational time than a classical constraint-handling
technique.

As it has been pointed out above, problems 12, 13 and 14 constitute difficult
problems, in particular because of the high number of variables and constraints. For
these problems, not one constraint-handling technique was able to find the global
optimum in any run. However, some techniques obtained good-quality solutions,
which are presumably located in the global optimum region. Thus, in order to
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Table 2.7: Experimental results for problems 10–14 in terms of objective function
values using a local search (SQP).

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. 285 506.5 300 301.8 310 130.8 295 823.4 9.30e+03
SR 285 506.5 285 506.5 — 288 383.8 1.41e+04

12 Feas. rules 285 506.5 304 660.0 329 222.0 308 645.8 1.03e+04
(285506.5) ε-constraint 285 506.5 315 532.8 — 314 852.7 1.23e+04

Grad-based repair 285 506.5 285 506.5 300 804.9 285 812.5 2.16e+03

St. penalty fcn. 430 324.5 430 324.5 — 433 012.9 5.18e+03
SR 430 324.5 430 324.5 575 159.2 443 431.2 2.64e+04

13 Feas. rules 430 324.5 454 395.7 458 842.3 452 870.8 7.67e+03
(430324.5) ε-constraint 430 324.5 454 395.7 466 127.0 449 351.8 1.02e+04

Grad-based repair 430 324.5 430 324.5 441 482.2 430 547.7 1.58e+03

St. penalty fcn. 546 998.6 547 468.5 561 584.7 551 817.9 5.74e+03
SR 546 998.6 — — 617 325.4 7.46e+04

14 Feas. rules 558 256.9 563 403.0 576 658.5 563 573.9 4.04e+03
(546998.6) ε-constraint 547 468.5 563 403.0 611 740.9 564 695.0 9.35e+03

Grad-based repair 546 998.6 547 468.5 558 256.9 549 355.9 3.83e+03

Table 2.8: Experimental results for problems 10–14 in terms of NFEs needed to achieve
convergence using a local search (SQP).

Problem Constr-hand. Best Median Worst Mean Std
Feas.
rate

Succ.
rate

SQP
calls

CPU
time(s)

12 St. penalty fcn. 31 165 200 000 200 000 153 508 60 053 100 42 128.5 148.0
SR 4660 96 226 200 000 100 980 45 765 98 94 84.9 278.9
Feas. rules 158 731 200 000 200 000 198 708 6665 100 6 162.8 198.4
ε-constraint 135 830 200 000 200 000 198 782 9085 98 2 133.8 162.5
Grad-based rep. 42 565 60 063 119 588 63 144 19 097 100 98 6.1 217.0

13 St. penalty fcn. 2140 84 187 200 123 98 076 64 780 100 78 76.0 198.8
SR 130 502 200 000 200 000 195 854 14 052 36 10 167.0 1201.2
Feas. rules 130 979 200 000 200 000 197 779 10 963 100 6 152.6 332.3
ε-constraint 101 029 200 000 200 000 193 700 19 877 100 12 151.7 576.8
Grad-based rep. 43 794 63 815 200 000 75 436 31 327 100 98 8.9 429.3

14 St. penalty fcn. 54 784 200 000 200 000 178 757 43 890 100 28 122.7 452.0
SR 162 276 200 000 200 000 199 317 5346 14 2 171.1 1422.8
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 140.2 368.8
ε-constraint 200 000 200 000 200 000 200 000 0 100 0 146.4 524.3
Grad-based rep. 91 052 200 000 200 000 188 084 30 139 100 20 35.9 979.1
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further investigate the performance of these techniques and to evaluate their ability
to identify sub-optimal solutions lying in the region of the global optimum, the use
of an additional local search is explored. The local optimizer Successive Quadratic
Programming (SQP) is applied with a probability 0.1/µ to each individual, where
µ is the population size, in this way, one individual in the population is improved,
on average, every 10 generations. For the ε-constraint and gradient-based repair, this
local search procedure is carried out only after the ε level is equal to zero, i.e., once
the algorithm has presumably identified a promising feasible region. The obtained
results are displayed in Tables 2.7 and 2.8. The NFEs reported in Table 2.8 take into
account the evaluations of the objective function performed by both DE and SQP. The
column “SQP calls" represents the average number of individuals on which the local
search is carried out before the algorithm stops. For example in problem 12, using
the gradient-based repair, the SQP solver was applied on average to 6.1 individuals
before finding the global optimum, whereas for feasibility rules, SQP was called on
average 162.8 times before the algorithm attains the maximum NFEs (more likely
than finding the optimum, from Table 2.8).

Outstanding results for problem 12 are obtained by the stochastic ranking and
gradient-based repair strategies, obtaining success rates of 94% and 100%, respectively.
Conversely, a poor performance considering the success rate is still observed for static
penalty, feasibility rules and ε-constraint methods. These results are in agreement
with those of Table 2.5 where no local search is employed, that is, the local search is
beneficial only if the global region has been identified. This feature is also observed
for problems 13 and 14. For problem 13, those constraint-handling techniques
that showed a poor performance before the use of SQP (SR, feasibility rules and
ε-constraint) present a similar trend, with a significant additional CPU time, due
to the use of the local optimizer. In addition, the static penalty function obtains an
acceptable success rate (78%) and gradient-based repair solved to optimality this
problem in all runs except one. On the contrary, problem 14 still constitutes a difficult
problem, even if local search is applied. The high number of binary variables suggests
that using a higher number of function evaluations might be necessary to solve this
problem to optimality.

With respect to the use of the local search, it can be concluded that it shows
indisputable advantages when the population-based algorithm succeeds to find
promising regions. Otherwise, it is probable that no significant improvements could
be observed. Further, the computational costs associated to the use of a local search
must also be taken into account.

Summarizing, the above empirical study highlighted the importance of using an
efficient constraint-handling technique when solving single-objective PSE optimiza-
tion problems, which are in general highly constrained problems. The numerical
results obtained point out that gradient-based repair method is the most robust and
thus promising method among the techniques studied here.

Additional example: Biobjective case study

This problem, presented in Rangaiah (2009), considers the maximization of two
objectives: the profit before taxes (PBT) and the net present value (NPW) for the
Williams & Otto process problem. Here, the NSGA-II algorithm coupled with gradient-
based repair as constraint-handling technique is used as a solution technique. Also,
for comparison purposes, the constraint-handling strategy presented in Rangaiah
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Figure 2.1: Final Pareto front approximations of the biobjective Williams-Otto problem
using NSGA-II with gradient-based repair method and the reformulation approach.

(ibid.), in which all the equality constraints are eliminated by means of solving a
system of nonlinear equations, is implemented here. The obtained approximations to
the Pareto front of this problem are presented in Figure 2.1.

The non-dominated solutions are obtained in one single run, unlike mathematical
programming techniques in which multiple runs are needed to produce an approxima-
tion of the Pareto front. The importance of an efficient constraint-handling technique
is also to be highlighted: no other constraint-handling technique studied in this work
was able to find a non-dominated solution in the real Pareto front, actually no feasible
solutions could be found except with the gradient-based repair procedure. Besides,
the reformulation approach proposed in Rangaiah (ibid.) was time-consuming, taking
approximately 45 seconds per run (since the solution of the system of nonlinear
equations has to be performed for every evaluation of the objective function) while,
in contrast, the gradient-based repair approach takes approximately 1.5 seconds per
run. Also, it is worth mentioning that the Pareto front approximations obtained by
both approaches are comparable, i.e., no approach visually outperforms the other.

2.7 Conclusions

In this chapter, the performance of several constraint-handling techniques for EAs has
been compared for the solution of a set of 14 benchmark problems from the PSE area.
The empirical analysis conducted showed that the results’ quality greatly depends
on the constraint-handling technique used for the solution of problems with high
number of constraints or binary variables.

The analysis of the dedicated literature has shown that the most widely used
approach within EAs considers the reformulation of the model and the use of static
penalty functions or feasibility rules as constraint-handling techniques. However,
the results obtained here highlighted that the performance of this strategy, though
acceptable in some cases, proved to be poor in others. Besides, among the constraint-
handling techniques considered in this study, the gradient-based repair method
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deserves a special attention, as this constraint-handling technique was the only one
that can find the global optimum region in almost all the test problems. Coupled
with the ε-constraint method, the search algorithm promotes the exploration of
promising regions over the entire search space instead of getting trapped into a
local optimum. It is worth emphasizing that, even if this method needs additional
information (computation of constraints’ gradient), its excellent results both in terms
of computational time and solution quality encourage its use. In addition, the use of
gradient-based repair method in highly constrained mixed-integer problems seems to
be not only adequate, but necessary in order to obtain satisfactory results. Finally,
this work highlighted the unquestionable benefits obtained using this constraint-
handling method, usually under-estimated in the devoted literature. Therefore, these
conclusions allow reconsidering evolutionary algorithms as a serious approach for
solving highly-constrained real-world optimization problems.

Besides, the good performance exhibited in the solution of the biobjective case
study allows to consider the solution of bigger instances of PSE multiobjective prob-
lems. As the gradient-based repair method can be coupled with any multiobjective
evolutionary algorithm (MOEA), the solution of multiobjective MINLP problems
related to PSE using more sophisticated MOEAs, is the subject of the next chapters.
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3.1 Introduction

In this chapter, we study the effect of repairing infeasible solutions using the gradient
information, that is, the most promising constraint-handling technique investigated
in the previous chapter, in a multiobjective framework. As mentioned before, the
need for studying diverse constraint-handling mechanisms in MOEAs arises when
considering real-world process engineering problems, which usually contain a signifi-
cant number of active constraints, involving an important quantity of variables. In

The content of this chapter has been published in the form of chapter in a book. Victor H Cantú,
Antonin Ponsich, and Catherine Azzaro-Pantel (Apr. 2021). “Constraint Handling in Metaheuristics and
Applications”. In: ed. by Anand J Kulkarni, Efrén Mezura-Montes, Yong Wang, Amir H Gandomi, and
Ganesh Krishnasamy. 1st ed. Springer Singapore. Chap. On the use of gradient-based repair method
for solving constrained multiobjective optimization problems – A comparative study, pp. 119–149. doi:
10.1007/978-981-33-6710-4
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their canonical form, MOEAs lack of sophisticated mechanisms for evolving properly
a population over constrained search spaces. As a consequence, unless appropriate
constraint-handling mechanisms are used, the applicability of novel MOEAs into PSE
area might be lessen to only a narrow range of problems, those containing reduced
constrained search spaces.

In this perspective, in this chapter the gradient-based repair method is embed-
ded in six classical constraint-handling techniques: constraint dominance principle,
adaptive threshold penalty, C-MOEA/D, stochastic ranking, ε-constraint and im-
proved ε-constraint. The performance of these techniques is explored on NSGA-II and
MOEA/D algorithms, and the test functions include classical benchmark problems
with inequality constraints, as well as recent problems with equality constraints.

This chapter is organized as follows. Section 3.2 presents a literature review on
constrained multiobjective optimization. Section 3.3 develops and briefly discusses
the six constraint-handling techniques studied in this work. The experimental method-
ology and the computational results are described in Sections 3.4 and 3.5, respectively.
Finally, conclusions and perspectives for future work are drawn in Section 3.6.

3.2 Related work

In the last decade, the development of constraint-handling strategies for the solution
of CMOPs has drawn considerable interest from the evolutionary multiobjective
optimization (EMO) community. It must be emphasized that, commonly, most
MOEAs are adapted for treating CMOPs through the constraint-dominance principle
(CDP, which is an extension to multiobjective optimization of Deb’s feasibility rules,
based on the dominance operator when comparing two feasible solutions; see next
section for a detailed definition and explanations) (Deb et al., 2002). However, the
drawbacks of this strategy, well-known for single-objective optimization, are also
evident in multiobjective optimization, in particular because diversity preservation
among solutions is a critical issue in order to achieve a good approximation to the
true Pareto front.

Consequently, alternative constraint-handling strategies adapted to the multiob-
jective framework have been developed in the two last decades. For instance, with
the purpose of tackling the drawbacks of CDP for NSGA-II, the Infeasibility Driven
Evolutionary Algorithm (IDEA) (Singh et al., 2009) proposes the use of a parameter
α standing for the ratio of infeasible solutions to survive in the population. A con-
straint violation function is used as an additional objective and then, non-dominated
ranking is applied to infeasible and feasible individuals separately. In this way, the
new population (containing µ individuals) has, at most, α · µ best-ranked infeasible
solutions. Besides, in a dominance-based framework too, a parameterless adaptive
penalty function has been proposed in Woldesenbet et al. (2009), in which a modified
objective function is computed to be used in the nondomination sorting so that
the search is guided towards feasible regions first, and then, infeasible individuals
information is used to explore promising infeasible regions.

In addition, in Jan and Khanum (2013), the authors propose adaptations of the
CDP and Stochastic Ranking (SR) methods for working in MOEA/D. The proposed
SR-based multiobjective version selects a solution according to the utility function
value with probability p f , otherwise the constraint violation is used as a comparison
criterion. Results show that MOEA/D-CDP consistenly outperforms MOEA/D-SR for
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several test functions. Another decomposition-based algorithm adapted for solving
CMOPs is proposed in Asafuddoula et al. (2012), by means of a function that combines
the overall constraint violation and the number of active constraints. The mean value
of this function, weighted by the ratio of feasible individuals in the population, allows
computing a threshold on the allowed constraint violation. Solutions below this
threshold are considered as feasible and compared in terms of their utility function.

In Zapotecas-Martinez and Coello Coello (2014), the ε-constraint method (Taka-
hama and Sakai, 2005) within MOEA/D is explored, in which the ε level is defined
using a normalized constraint violation and an additional ε-comparison rule is
proposed accounting for slightly-infeasible promising solutions. This approach was
extended in Zapotecas-Martínez and Ponsich (2020) by using an additional scalarizing
function to determine the balance between the constraint violation and the objective
values, represented within the MOEA/D scalarizing function. Another adaptation of
the ε-constraint method is introduced in Fan et al. (2019b), where the original function
defining the ε level is modified, so that this latter increases or decreases depending
on the ratio of feasible solutions in the population, in order to strengthen the search
in both feasible and infeasible regions throughout the optimization.

More recently, a two-stage procedure (called, Push and Pull) was proposed in (Fan
et al., 2019c). In the first stage (push stage), the algorithm explores the unconstrained
search space, which allows the population to get across infeasible regions, and then,
in the pull stage, original constraints are considered along with the improved ε-
constraint to gradually pull the population towards feasible regions. The stagnation
of the identified ideal and nadir points determines the switching mechanism between
the “push” and “pull” phases. Nevertheless, this constraint-handling method has
been tested for a problem test suite (LIRCMOP, Fan et al., 2019b) that contains only
inequality constraints and some true Pareto fronts are identical to their counterparts
in the unconstrained problems.

In Fan et al. (2019a), diversity preservation in the population is explicitly handled
through a modification of MOEA/D-CDP. When two solutions are compared, if
at least one of them is infeasible, a similarity measure is computed based on the
angle of their corresponding objective vectors with respect to the ideal point. Similar
solutions are compared according to their overall constraint violation, otherwise
the scalarizing function value is used as the comparison criterion. In Peng et al.
(2017), the original CMOP is modified considering the overall constraint violation
as an additional objective. Two weight vector sets are generated, accounting for
infeasible and feasible solutions, respectively, in order that infeasible individuals
are well distributed along the Pareto front and may lead the search to promising
regions. In Yang et al. (2020), authors use a modified ε-constraint strategy in a
decomposition-based framework. The feasibility ratio and the minimum constraint
violation value of the current population are employed in order to compute the ε level
at each generation. Also, the scaling factor F within DE is adjusted dynamically in
order to promote local search in late generations.

Finally, MOEA/D is modified in Ishibuchi et al. (2018) so that two solutions (one
feasible and one infeasible) are assigned to each weight vector. This strategy is used to
consider an individual on each side of the feasibility boundary. During the selection
phase, an offspring solution is compared with two solutions of each neighboring
weight vector, considering the scalarizing function and the overall constraint violation.
For the bi-objective case, dominance is used to select two surviving individuals among
the three (i.e., one offspring and two existing solutions for each weight vector). When
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all three solutions are non-dominated with respect to their scalarizing function values,
the solution with high constraint value is discarded.

In this study, six representative constraint-handling techniques are to be used.
These techniques are chosen because they are easy-to-implement and their operating
mode is relatively straightforward, which explains that they have been widely used
in the devoted specialized literature and that they may be qualified as state-of-the-art
methods.

3.3 A portfolio of constraint-handling strategies

The selected constraint-handling techniques are presented and discussed in detail in
the following. Note that even if some of these methods have been originally proposed
to tackle only problems with inequality constraints, they can be easily adjusted for
considering equality constraints as well (please note that each equality constraint can
be converted into two inequalities by using a small tolerance on equality satisfaction).

3.3.1 Constraint dominance principle

This constraint handling technique establishes the superiority of feasible solutions
over infeasible ones. Proposed by Deb (2000), the feasibility rules consist in a
binary tournament selection according to the three criteria presented in the previous
chapter. Their extension to CMOPs, called the constraint dominance principle (CDP),
reformulates condition 2 by a dominance-based comparison, and thus is stated
as “among two feasible solutions, that which dominates the other is preferred”,
and a diversity operator is used if no solution dominates the other. Note that, for
decomposition-based MOEAs, the utility function is used for condition 2.

Due to its simplicity and its overall good performance, the CDP is usually the
first constraint-handling technique tested for treating a given problem with MOEAs.
However, the main drawback of this method appears when dealing with problems
with a reduced and disconnected feasible region: since any feasible solution is
preferred over an infeasible one, once the algorithm has converged to a feasible
region, it might be difficult to escape from there to explore the rest of the search
space, i.e., once the constraints are fulfilled, the algorithm is likely to get trapped
prematurely in some subregion of the search space. Besides, in the multiobjective
context, this aspect may result in a bad distribution of the obtained approximation
set if highly-constrained problems are tackled, that is, solutions populate only some
parts of the true PF and thus the optimization goals respecting diversity cannot be
achieved.

3.3.2 Adaptive threshold penalty

The adaptive threshold penalty function (ATP) (Jan and Zhang, 2010) is particularly
adapted to be used within MOEA/D. This penalty function uses a threshold value, τ,
for dynamically controlling the amount of penalty. The threshold value τ is defined
as:

τ = Vmin + 0.3(Vmax −Vmin) (3.1)
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with Vmin = min{φ(x(i))}, ∀i ∈ T and Vmax = max{φ(x(i))}, ∀i ∈ T, where T repre-
sents a given neighborhood in MOEA/D. Then, according to ATP method, the fitness
function F of a solution x is defined as:

F(f′(x); w) =

{
u(f′(x); w) + s1φ2(x), if φ(x) < τ,
u(f′(x); w) + s1τ2 + s2(φ(x)− τ), otherwise

(3.2)

where s1 and s2 are two scaling parameters. The authors obtained good results by
setting s1 = 0.01 and s2 = 20.

In this work, when the ATP technique is implemented within a dominance-based
MOEA (for instance, NSGA-II), every objective function is augmented by the above-
described penalty terms, before the ranking procedure. In this case, P represents the
whole population.

3.3.3 C-MOEA/D

This constraint-handling method separates the objective function and the violation of
constraints, and proposes a violation threshold allowing for a relaxation of constraints
under which solutions are considered as feasible (Asafuddoula et al., 2012). Once the
relaxation is carried out and feasible and infeasible solutions have been identified
accordingly, the constraint dominance principle is employed for the selection step.
The violation threshold ϕ proposed by the authors is calculated as follows:

ϕ =

|Pt|
∑

i=1
φ(x(i))

|Pt|
· It(Pt). (3.3)

where the first term denotes the average overall constraint violation over the current
population Pt and It is the feasibility ratio (i.e. the proportion of feasible solutions
in the population) at generation t of the evolutionary algorithm. Although it was
introduced within the MOEA/D framework, this constraint-handling technique
can be easily adapted within MOEAs using different paradigms different from the
decomposition one (in this work, its implementation within NSGA-II is simply labeled
as C-NSGA-II).

3.3.4 Stochastic ranking

Stochastic ranking (SR) (Runarsson and Yao, 2000) was proposed as an attempt
to balance the relative weights of the objective and the constraint violation that
occurs in penalty functions. In this method, the population is sorted following
a probabilistic procedure (see Subsection 2.4.2 for further details). Since it was
designed for a single-objective framework, its generalization to a multiobjective
problem is not straightforward, even when aggregation functions are considered
as in decomposition-based algorithms. One attempt of using SR for multiobjective
optimization is introduced in Jan and Khanum (2013) for a decomposition-based
algorithm (MOEA/D). In the present study, the same implementation is employed.
Nevertheless, it must be emphasized that no actual ranking of the population is
performed, but instead a stochastic comparison between the parent and the offspring:
the comparison is performed, first, according to their respective scalarizing function
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with a probability p f , otherwise, the constraint dominance principle is used. Besides,
please note that, in this work, SR is only explored with MOEA/D, since it cannot
be implemented within NSGA-II because of its working mode (individual ranking
is based on a dominance sorting procedure, which cannot be biased by constraint
violation).

3.3.5 ε-constraint method

This method integrates a relaxation of constraints up to a so-called ε level, under which
solutions are regarded as feasible (Takahama and Sakai, 2005). Its implementation
in multiobjective optimization differs from that presented in the previous chapter
only by the fact that the CDP is used instead of the feasibility rules. In order that the
reader may easily compare this method with the one presented next, the dynamic
control of ε level is presented here again, it is computed as:

ε(0) = φ(xθ) (3.4)

ε(t) =

{
ε(0)(1− t

Tc
)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the best θ-th individual in terms of constraint violation in the first
generation, cp is a parameter to control the decreasing speed of the ε level and
Tc represents the generation after which the ε level is set to 0, after which CDP is
considered.

3.3.6 Improved ε-constraint method

In Fan et al. (2019b), another function for controlling the ε level is proposed, aiming
to fix some drawbacks observed in the canonical ε-constraint method. Namely, the
fact that the dynamic control of the ε level is a monotonically decreasing function,
which prohibits the exploration of promising disconnected regions once the ε takes
small values. Besides, in problems with large feasible regions, all population might
be feasible in early generations and thus ε(0) becomes zero prematurely. This would
be equivalent to using CDP (with its drawbacks) all along the evolutionary process.
Therefore, the proposed function for ε level permits increasing its value if the feasible
ratio is above a given threshold (α parameter), according to:

ε(0) = φ(xθ) (3.5)

ε(t) =


ε(t− 1)(1− ρ), if It(Pt) < α and t < Tc,
φmax(1 + ρ), if It(Pt) ≥ α and t < Tc,
0, t ≥ Tc

where xθ has the same meaning as in equation (3.4), It(Pt) is the ratio of feasible
individuals of the population at generation t, parameter ρ is to control the speed of
reducing the ε level (it ranges between 0 and 1), parameter α controls the searching
preference between the feasible and infeasible regions and φmax is the maximum
overall constraint violation found so far.
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3.4 Experimental methodology

3.4.1 Test Problems

We investigate the performance of the six above-mentioned constraint-handling tech-
niques, and particularly, the effect of embedding the gradient-based repair method
within each of these techniques. For this purpose, we carried out a comprehensive
study over 35 test problems which include inequality constraints: ten constrained
function (CF) test problems (Zhang et al., 2008b), fourteen CMOPs with large in-
feasible regions (LIRCMOPs) (Fan et al., 2019b) and eleven problems with equality
constraints (Cuate et al., 2020a,b; Das and Dennis, 1998; Rangaiah, 2009).

The reason for the choice of CF and LIRCMOP test suites is related to the inter-
esting features they present (numerous local optima, disconnected Pareto fronts and
inequality constraints that are difficult to satisfy). Regarding the problems containing
equality constraints, they are rarely found in the evolutionary computation literature:
first, because the corresponding problems have been proposed quite recently and,
on the other hand, because they entail solution difficulties for classical constraint-
handling techniques, according to the preliminary experiments carried out by the
authors.

3.4.2 Performance indicators

To assess the performance of the different algorithms, we use the inverted generational
distance indicator (IGD) (Bosman and Thierens, 2003) as well as the hypervolume
indicator (HV) (Zitzler and Thiele, 1998). As mentioned in Chapter 1, the IGD
indicates how far the discretized Pareto optimal front is from the approximation set.
This non-Pareto compliant indicator measures both convergence and diversity. A
smaller value of IGD indicates a better performance of the algorithm. To generate
the reference set for CF, LIRCMOP, Eq-DTLZ and Eq-IDTLZ test suites, 1 000 points
are sampled uniformly from the true PF for two-objective problems; whereas 10 000
points are sampled uniformly from the true PF for three-objective problems. With
respect to the EQC test suite, the number of points sampled from the true PF varies
for each problem, depending on the data available.

Concerning the HV, it is the only performance indicator known to be Pareto-
compliant. A large HV value shows that a given solution set approximates the Pareto
optimal front well in terms of both convergence and diversity in the objective space.
The k-dimensional reference vector for the HV computation is set to [1.1, 1.1, . . . , 1.1]T

in the normalized objective space [0, 1]k, for all problems. To obtain the ideal and
nadir points for problem EQC6, five independent runs using jDE with ε-constraint
method coupled with gradient-based repair were performed for each single-objective
problem, setting the number of function evaluations to 500 000, in order to obtain the
extreme points.

3.4.3 Experimental settings

The detailed parameter settings for the experiments carried out here are summarized
below.

1. MOEA/D parameters. Scalarizing function: augmented achievement (AASF),
probability of choosing parents locally: δ = 0.9, neighborhood size: T = 0.1µ,
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maximum number of replacements nr = 2. The crowding distance (from NSGA-
II) is used if the external archive exceeds a predefined size limit (the population
size).

2. Parameters of the evolutionary variation operators:

• DE parameters for MOEA/D. CR = 1, F = 0.5. Except for Eq-DTLZ and
Eq-IDTLZ, where DE parameters are that used on the original reference,
i.e., CR = 0.2, F = 0.2.

• SBX parameters for NSGA-II. pc = 1, ηc = 20.

Both algorithms also use a polynomial mutation with parameters: pm =
1/n, ηm = 20.

3. Population size (µ). For all problems with three objectives, µ = 300. For two-
objective problems: for the CF test suite, µ = 200; for the LIRCMOP test suite,
µ = 200; for the EQC test suite, µ = 100.

4. Number of function evaluations (NFE). For the CF test suite, NFE = 1e5 for
two-objective problems, NFE = 1.5e5 for three-objective problems. For the
LIRCMOP test suite, NFE = 1.5e5. For the EQC problems suite, NFE = 1e5 for
two-objective functions, NFE = 1.5e5 for EQC4 and NFE = 0.5e5 for EQC5. For
Eq-DTLZ and Eq-IDTLZ, NFE = 1.5e5. Concerning the gradient-based repair
method, each computation of the gradient of constraints counts as 1 function
evaluation.

5. Parameter settings of constraint handling techniques: they were not tuned, but
rather set to the values proposed in the original articles:

– ATP: s1 = 0.01, s2 = 20.

– Stochastic ranking: p f = 0.05.

– ε-constraint: θ = 0.2µ, cp = 5, Tc = 0.2Tmax.

– Improved ε-constraint: θ = 0.05µ, ρ = 0.1, α = 0.95, Tc = 0.8Tmax.

– Gradient-based repair: Pg = 1, Rg = 3, step size for finite differences:
10−6.

For each problem, 31 independent runs were performed (an odd number is chosen
in order to be able to present median results). The algorithms previously presented
were implemented in MATLAB R2019a and the computational experiments were
performed with a processor Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go RAM.

3.5 Results and discussion

The results obtained with the six above-mentioned constraint handling techniques
(CDP-MOEA/D, ATP-MOEA/D, C-MOEA/D, SR-MOEA/D, ε-MOEA/D and Im-
proved ε-MOEA/D), without and with the gradient-based repair, are presented and
analyzed in Sections 3.5.1, 3.5.2 and 3.5.3 for the CF functions, the LIRCMOP test suite
and the equality-constrained problems, respectively. In particular, in Tables 3.1 to 3.12,
the mean and standard deviation values of each considered performance indicator
are provided for both the MOEAs employed here (MOEA/D and NSGA-II). Also, the
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overall computational time (in seconds) for performing the 31 runs is displayed in
each table presenting the IGD values.

For each instance and constraint handling technique, binary comparisons are
carried out in order to highlight the effect of repairing infeasible solutions using
the gradient information. In this perspective, a Wilcoxon rank sum test (with a
significance level of 95%) is performed for each comparison, using the results for the
considered indicators over the 31 executions. When the null hypothesis is rejected
(i.e., there is no statistical difference between the indicator values obtained with
and without the gradient-based repair), significantly better results are represented
in boldface. At the bottom of each table, a summary of these statistical tests is
displayed, where I, D and S respectively represent the number of instances for which
the gradient-based repair process achieves statistically inferior (I), equivalent (no
significant difference, D) or statistically superior (S) results when compared with the
original technique without repair.

Finally, the results regarding the feasibility ratio indicator of the current population
at the last generation (IF) (i.e., different from the external archive) are presented in
Tables 3.11 and 3.12 for problems containing equality constraints. IF is presented
only for these problems because some canonical algorithms experience difficulties
for obtaining feasible solutions when tackling problems with equality constraints,
which is not the case for the other test functions. Note that no statistical tests are
computed for this indicator, as a high value of this indicator does not necessarily
mean a good approximation to PF . In all figures, the Pareto front approximations
shown correspond to the median run with respect to the hypervolume indicator.

3.5.1 CF test problems

Tables 3.1 to 3.4 show that the overall performance of the gradient-based repair is
satisfying for the CF test problems, i.e., globally, combining it with another constraint-
handling technique produces at least as good solutions as the canonical method.
More precisely, considering the statistical results for MOEA/D presented in Tables 3.1
and 3.3 as a whole (combining the IGD and HV results), it can be stated that the
use of the gradient-based repair significantly improves the canonical algorithm in
37.5% of the instances, and significantly deteriorates the canonical algorithm only
in 5.8% of the cases when using MOEA/D. Regarding the use of the repair method
within NSGA-II, (Tables 3.2 and 3.4), it improves significantly the original techniques
in 43% of the instances, while a significant deterioration is observed for only one test
problem (CF10), which may suggest that this is an unusual case.

Besides, with respect to the computational times, it can be observed from Tables 3.1
and 3.2 that no additional cost is to be paid for using this gradient-based repair.
Actually, for many instances, using the gradient-based repair leads to shorter CPU
times. So, the computation of the gradient pseudoinverse, which is a priori time-
consuming, is offset by the fact that less generations are needed (since the algorithm
termination condition is the number of function evaluations). Consequently, it is
noteworthy that when repairing infeasible solutions, the evolutionary process is
somewhat accelerated, in regards to the number of generations needed to converge to
PF .

However, it should be emphasized that most CF functions constitute difficult
problems for all the studied techniques, even when the gradient-based repair is
included. The reason of these difficulties arise not only from the constraints but also
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Figure 3.1: Final Pareto front approximations for CF5 function. C-MOEA/D without
(left) and with (right) gradient-based repair.
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Table 3.1: IGD values and CPU time (in seconds) obtained on CF test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

CF1 mean 5.68e-03 2.34e-05 5.68e-03 1.89e-05 4.99e-04 1.99e-05 6.94e-03 2.66e-05 5.68e-03 2.34e-05 5.68e-03 2.61e-04
std 1.39e-03 3.12e-05 1.89e-03 3.39e-05 3.68e-04 3.35e-05 1.52e-03 2.77e-05 1.39e-03 3.12e-05 1.39e-03 8.31e-05

CPU time 4.78e+01 4.25e+01 5.17e+01 3.73e+01 4.67e+01 4.44e+01 4.96e+01 3.50e+01 4.85e+01 4.23e+01 4.60e+01 3.98e+01

CF2 mean 4.10e-03 4.53e-03 4.24e-03 4.14e-03 5.71e-03 3.88e-03 7.17e-03 8.93e-03 4.10e-03 4.53e-03 3.76e-03 4.37e-03
std 2.86e-03 3.29e-03 2.64e-03 2.54e-03 3.63e-03 2.07e-03 1.19e-02 1.78e-02 2.86e-03 3.29e-03 2.68e-03 2.22e-03

CPU time 5.22e+01 6.36e+01 5.18e+01 5.13e+01 5.02e+01 6.77e+01 4.87e+01 4.57e+01 4.68e+01 6.22e+01 4.81e+01 6.00e+01

CF3 mean 2.22e-01 2.07e-01 2.14e-01 2.09e-01 2.07e-01 2.05e-01 2.32e-01 2.46e-01 2.22e-01 2.07e-01 2.03e-01 2.06e-01
std 1.05e-01 9.29e-02 7.88e-02 8.79e-02 8.77e-02 9.46e-02 1.20e-01 1.18e-01 1.05e-01 9.29e-02 8.73e-02 8.91e-02

CPU time 4.45e+01 5.97e+01 5.11e+01 4.45e+01 4.84e+01 5.96e+01 4.88e+01 4.31e+01 4.84e+01 6.46e+01 4.54e+01 6.44e+01

CF4 mean 5.31e-02 4.58e-02 5.27e-02 4.60e-02 6.73e-02 4.51e-02 4.69e-02 4.78e-02 5.31e-02 4.58e-02 6.01e-02 4.72e-02
std 3.22e-02 3.18e-02 2.83e-02 1.60e-02 5.39e-02 1.96e-02 2.78e-02 1.99e-02 3.22e-02 3.18e-02 4.27e-02 2.79e-02

CPU time 4.99e+01 5.40e+01 4.97e+01 4.32e+01 4.70e+01 5.94e+01 4.69e+01 3.99e+01 4.63e+01 5.49e+01 4.81e+01 5.28e+01

CF5 mean 2.64e-01 2.59e-01 2.27e-01 2.14e-01 2.50e-01 2.70e-01 2.59e-01 2.10e-01 2.64e-01 2.59e-01 2.56e-01 2.42e-01
std 9.77e-02 1.23e-01 8.54e-02 9.86e-02 1.12e-01 1.17e-01 1.11e-01 9.16e-02 9.77e-02 1.23e-01 1.02e-01 1.23e-01

CPU time 4.62e+01 6.15e+01 5.29e+01 4.81e+01 4.56e+01 5.86e+01 4.68e+01 3.61e+01 4.54e+01 5.64e+01 4.92e+01 5.29e+01

CF6 mean 1.07e-01 7.42e-02 6.26e-02 3.53e-02 1.13e-01 5.02e-02 1.16e-01 7.71e-02 1.07e-01 7.42e-02 9.92e-02 5.95e-02
std 3.39e-02 4.20e-02 3.99e-02 2.97e-02 3.68e-02 3.21e-02 2.64e-02 4.60e-02 3.39e-02 4.20e-02 3.78e-02 4.85e-02

CPU time 4.80e+01 6.24e+01 5.24e+01 4.43e+01 5.53e+01 6.37e+01 5.27e+01 4.17e+01 5.29e+01 6.09e+01 5.38e+01 5.84e+01

CF7 mean 2.49e-01 2.38e-01 2.24e-01 1.99e-01 2.51e-01 2.00e-01 2.80e-01 2.08e-01 2.49e-01 2.38e-01 2.68e-01 2.28e-01
std 1.11e-01 1.26e-01 9.42e-02 8.72e-02 9.89e-02 9.55e-02 1.29e-01 8.49e-02 1.11e-01 1.26e-01 1.09e-01 1.13e-01

CPU time 4.87e+01 5.90e+01 4.71e+01 7.28e+01 4.49e+01 7.01e+01 4.45e+01 4.64e+01 4.55e+01 6.33e+01 5.00e+01 6.29e+01

CF8 mean 5.59e+08 3.77e-01 1.06e-01 1.13e-01 5.59e+08 1.35e-01 4.27e-01 3.81e-01 6.74e-01 3.65e-01 4.64e-01 2.23e-01
std 3.11e+09 7.33e-02 2.50e-02 1.39e-02 3.11e+09 2.73e-02 4.97e-02 5.96e-02 1.06e+00 6.68e-02 9.15e-02 1.20e-01

CPU time 8.38e+01 5.56e+01 1.17e+02 7.28e+01 7.66e+01 6.23e+01 7.40e+01 4.98e+01 8.44e+01 5.42e+01 8.54e+01 6.32e+01

CF9 mean 5.41e-02 5.33e-02 4.66e-02 5.33e-02 6.05e-02 5.50e-02 6.38e-02 5.71e-02 5.35e-02 5.33e-02 5.41e-02 5.33e-02
std 6.26e-03 4.85e-03 3.78e-03 6.13e-03 6.20e-03 6.38e-03 8.89e-03 4.58e-03 6.29e-03 4.85e-03 6.26e-03 4.85e-03

CPU time 1.47e+02 9.31e+01 1.43e+02 9.15e+01 1.35e+02 8.90e+01 1.37e+02 8.76e+01 1.45e+02 9.84e+01 1.44e+02 1.02e+02

CF10 mean 3.71e+09 1.33e+09 3.04e-01 5.00e-01 3.71e+09 1.33e+09 3.85e+09 1.99e+09 2.12e+09 2.94e+00 3.18e+09 1.19e+09
std 1.24e+09 1.95e+09 1.48e-01 8.67e-01 1.24e+09 1.95e+09 1.03e+09 2.09e+09 2.09e+09 1.11e+01 1.75e+09 1.90e+09

CPU time 7.31e+01 4.38e+01 9.41e+01 5.64e+01 7.07e+01 3.93e+01 7.78e+01 4.15e+01 8.18e+01 4.62e+01 7.18e+01 4.32e+01

Wilc. test (I-D-S) 0–6–4 2–6–2 0–3–7 0–5–5 0–6–4 0–6–4
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Table 3.2: IGD values and CPU time (in seconds) obtained on CF test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

CF1 mean 2.20e-02 6.65e-04 1.97e-01 2.77e-03 6.24e-02 1.01e-03 2.20e-02 6.65e-04 2.20e-02 2.64e-03
std 2.91e-03 1.32e-04 3.97e-02 1.39e-03 3.00e-02 1.02e-03 2.91e-03 1.32e-04 2.91e-03 1.91e-03

CPU time 1.21e+01 2.03e+01 9.30e+00 1.97e+01 9.81e+00 1.84e+01 8.74e+00 1.87e+01 8.48e+00 1.91e+01

CF2 mean 4.74e-02 3.98e-02 4.66e-02 4.26e-02 4.31e-02 4.25e-02 4.74e-02 3.98e-02 4.14e-02 4.21e-02
std 2.00e-02 1.76e-02 1.55e-02 1.62e-02 1.64e-02 1.81e-02 2.00e-02 1.76e-02 1.43e-02 1.31e-02

CPU time 9.24e+00 1.57e+01 8.56e+00 1.52e+01 9.02e+00 1.49e+01 9.80e+00 1.46e+01 1.00e+01 1.52e+01

CF3 mean 2.53e-01 2.50e-01 2.62e-01 2.62e-01 2.44e-01 2.61e-01 2.53e-01 2.50e-01 2.71e-01 2.66e-01
std 9.82e-02 7.84e-02 9.60e-02 1.04e-01 8.48e-02 9.14e-02 9.82e-02 7.84e-02 9.16e-02 1.07e-01

CPU time 8.68e+00 1.41e+01 1.12e+01 1.42e+01 8.95e+00 1.32e+01 8.55e+00 1.34e+01 9.39e+00 1.34e+01

CF4 mean 9.30e-02 7.49e-02 1.21e-01 7.19e-02 1.07e-01 8.01e-02 9.30e-02 7.49e-02 1.07e-01 7.70e-02
std 4.02e-02 1.33e-02 3.76e-02 1.36e-02 3.02e-02 1.15e-02 4.02e-02 1.33e-02 3.52e-02 1.31e-02

CPU time 9.97e+00 1.30e+01 9.34e+00 1.22e+01 9.66e+00 1.22e+01 9.81e+00 1.22e+01 9.00e+00 1.22e+01

CF5 mean 2.90e-01 3.01e-01 3.10e-01 3.27e-01 3.08e-01 3.08e-01 2.90e-01 3.01e-01 3.38e-01 2.41e-01
std 1.20e-01 1.40e-01 1.21e-01 1.55e-01 1.16e-01 1.50e-01 1.20e-01 1.40e-01 1.27e-01 8.65e-02

CPU time 1.02e+01 1.20e+01 1.00e+01 1.17e+01 1.03e+01 1.17e+01 1.03e+01 1.15e+01 9.92e+00 1.18e+01

CF6 mean 8.80e-02 1.33e+00 1.34e-01 3.57e-02 1.09e-01 5.73e-01 8.80e-02 1.33e+00 1.11e-01 4.14e-02
std 3.03e-02 1.59e+00 3.14e-02 9.35e-03 2.70e-02 1.13e+00 3.03e-02 1.59e+00 4.08e-02 4.80e-03

CPU time 1.11e+01 3.81e+01 1.08e+01 1.71e+01 1.08e+01 2.51e+01 1.12e+01 3.50e+01 1.07e+01 1.71e+01

CF7 mean 2.53e-01 2.58e-01 6.11e-01 1.58e-01 3.52e-01 2.10e-01 2.53e-01 2.58e-01 3.08e-01 1.79e-01
std 1.22e-01 1.25e-01 2.08e+00 5.48e-02 1.53e-01 9.94e-02 1.22e-01 1.25e-01 1.35e-01 5.74e-02

CPU time 1.10e+01 1.74e+01 1.16e+01 1.84e+01 1.11e+01 1.61e+01 1.04e+01 1.52e+01 9.43e+00 1.69e+01

CF8 mean 2.23e+09 2.37e-01 1.66e-01 1.43e-01 2.23e+09 1.76e-01 1.68e+09 1.91e-01 2.23e+09 2.16e-01
std 5.90e+09 9.06e-02 2.54e-02 2.63e-02 5.90e+09 7.77e-02 5.21e+09 8.36e-02 5.90e+09 9.60e-02

CPU time 5.46e+01 5.13e+01 3.47e+01 4.31e+01 5.90e+01 5.24e+01 5.21e+01 4.70e+01 7.82e+01 5.18e+01

CF9 mean 7.11e-02 7.12e-02 7.51e-02 7.76e-02 7.17e-02 7.67e-02 7.42e-02 7.12e-02 7.11e-02 7.12e-02
std 7.07e-03 4.78e-03 6.84e-03 8.22e-03 5.36e-03 9.97e-03 1.03e-02 4.78e-03 7.07e-03 4.78e-03

CPU time 5.77e+01 5.49e+01 6.12e+01 6.11e+01 6.15e+01 6.07e+01 5.33e+01 5.17e+01 5.41e+01 5.32e+01

CF10 mean 2.42e-01 6.63e+08 2.42e-01 3.19e-01 2.42e-01 6.63e+08 2.42e-01 2.95e-01 2.42e-01 1.33e+08
std 5.52e-02 1.54e+09 5.52e-02 6.53e-02 5.52e-02 1.54e+09 5.52e-02 6.79e-02 5.52e-02 7.38e+08

CPU time 6.37e+01 9.00e+01 6.32e+01 6.53e+01 6.33e+01 9.68e+01 6.39e+01 6.15e+01 6.18e+01 7.94e+01

Wilc. test (I-D-S) 1–7–2 1–4–5 1–4–5 1–7–2 1–3–6
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Table 3.3: HV values obtained on CF test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

CF1 mean 6.76e-01 6.85e-01 6.76e-01 6.85e-01 6.84e-01 6.85e-01 6.74e-01 6.85e-01 6.76e-01 6.85e-01 6.76e-01 6.85e-01
std 2.24e-03 4.69e-05 2.83e-03 7.33e-05 6.13e-04 7.02e-05 2.38e-03 4.11e-05 2.24e-03 4.69e-05 2.24e-03 1.45e-04

CF2 mean 8.14e-01 8.16e-01 8.13e-01 8.17e-01 8.13e-01 8.17e-01 8.13e-01 8.14e-01 8.14e-01 8.16e-01 8.16e-01 8.15e-01
std 8.31e-03 6.09e-03 7.43e-03 7.43e-03 6.28e-03 4.70e-03 9.56e-03 1.14e-02 8.31e-03 6.09e-03 3.52e-03 5.33e-03

CF3 mean 2.25e-01 2.33e-01 2.25e-01 2.32e-01 2.31e-01 2.33e-01 2.24e-01 2.13e-01 2.25e-01 2.33e-01 2.33e-01 2.33e-01
std 5.56e-02 4.75e-02 4.22e-02 4.94e-02 4.64e-02 4.98e-02 5.51e-02 5.43e-02 5.56e-02 4.75e-02 4.42e-02 4.93e-02

CF4 mean 6.35e-01 6.42e-01 6.35e-01 6.38e-01 6.21e-01 6.42e-01 6.43e-01 6.37e-01 6.35e-01 6.42e-01 6.26e-01 6.37e-01
std 3.61e-02 2.87e-02 3.54e-02 2.51e-02 5.24e-02 1.80e-02 3.60e-02 2.64e-02 3.61e-02 2.87e-02 4.04e-02 2.96e-02

CF5 mean 4.14e-01 4.13e-01 4.46e-01 4.56e-01 4.26e-01 4.14e-01 4.17e-01 4.41e-01 4.14e-01 4.13e-01 4.20e-01 4.25e-01
std 7.54e-02 9.93e-02 6.25e-02 7.70e-02 1.00e-01 9.43e-02 9.83e-02 8.22e-02 7.54e-02 9.93e-02 8.72e-02 1.06e-01

CF6 mean 7.66e-01 7.86e-01 7.98e-01 8.10e-01 7.71e-01 8.01e-01 7.64e-01 7.86e-01 7.66e-01 7.86e-01 7.75e-01 7.98e-01
std 1.62e-02 2.45e-02 2.23e-02 1.97e-02 1.92e-02 2.01e-02 9.18e-03 2.72e-02 1.62e-02 2.45e-02 1.81e-02 2.80e-02

CF7 mean 5.59e-01 5.59e-01 5.77e-01 5.91e-01 5.74e-01 5.91e-01 5.56e-01 5.98e-01 5.59e-01 5.59e-01 5.67e-01 5.72e-01
std 1.05e-01 1.19e-01 1.02e-01 7.64e-02 7.80e-02 8.33e-02 1.03e-01 6.97e-02 1.05e-01 1.19e-01 8.26e-02 1.03e-01

CF8 mean 3.64e-01 4.34e-01 5.94e-01 5.97e-01 4.83e-01 5.73e-01 3.56e-01 4.27e-01 3.57e-01 4.34e-01 3.81e-01 5.29e-01
std 6.90e-02 3.56e-02 3.46e-02 1.83e-02 9.62e-02 2.78e-02 2.00e-02 2.31e-02 9.65e-02 2.34e-02 2.21e-02 7.64e-02

CF9 mean 6.72e-01 6.58e-01 6.83e-01 6.59e-01 6.46e-01 6.50e-01 6.55e-01 6.48e-01 6.75e-01 6.58e-01 6.72e-01 6.58e-01
std 2.07e-02 2.29e-02 1.87e-02 2.03e-02 1.82e-02 2.32e-02 2.78e-02 1.63e-02 1.87e-02 2.29e-02 2.07e-02 2.29e-02

CF10 mean 2.03e-02 3.24e-02 2.47e-01 2.87e-01 8.94e-03 0.00e+00 1.67e-02 1.63e-02 9.49e-02 8.70e-02 3.35e-02 3.94e-02
std 7.45e-02 6.03e-02 9.64e-02 1.90e-01 3.52e-02 0.00e+00 7.26e-02 5.26e-02 1.29e-01 5.82e-02 6.49e-02 6.24e-02

Wilc. test (I-D-S) 1–6–3 1–6–3 0–6–4 1–6–3 1–6–3 1–6–3
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Table 3.4: HV values obtained on CF test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

CF1 mean 6.52e-01 6.84e-01 3.95e-01 6.81e-01 6.01e-01 6.84e-01 6.52e-01 6.84e-01 6.52e-01 6.81e-01
std 4.52e-03 2.07e-04 6.07e-02 2.08e-03 4.20e-02 1.49e-03 4.52e-03 2.07e-04 4.52e-03 2.79e-03

CF2 mean 7.38e-01 7.56e-01 7.37e-01 7.51e-01 7.37e-01 7.53e-01 7.38e-01 7.56e-01 7.47e-01 7.51e-01
std 3.27e-02 3.04e-02 3.31e-02 2.42e-02 3.40e-02 3.24e-02 3.27e-02 3.04e-02 3.06e-02 2.73e-02

CF3 mean 2.26e-01 2.08e-01 2.08e-01 2.19e-01 2.20e-01 2.06e-01 2.26e-01 2.08e-01 2.11e-01 2.14e-01
std 4.44e-02 4.93e-02 5.56e-02 5.37e-02 5.14e-02 4.97e-02 4.44e-02 4.93e-02 6.01e-02 5.54e-02

CF4 mean 5.62e-01 5.94e-01 5.26e-01 5.99e-01 5.48e-01 5.86e-01 5.62e-01 5.94e-01 5.49e-01 5.92e-01
std 6.77e-02 2.13e-02 5.42e-02 2.27e-02 4.24e-02 1.65e-02 6.77e-02 2.13e-02 4.61e-02 1.78e-02

CF5 mean 3.75e-01 3.85e-01 3.69e-01 3.39e-01 3.69e-01 3.76e-01 3.75e-01 3.85e-01 3.43e-01 4.10e-01
std 9.38e-02 1.13e-01 1.03e-01 1.22e-01 9.92e-02 1.16e-01 9.38e-02 1.13e-01 1.12e-01 8.82e-02

CF6 mean 7.62e-01 4.59e-01 7.46e-01 7.98e-01 7.61e-01 6.39e-01 7.62e-01 4.59e-01 7.47e-01 7.95e-01
std 2.33e-02 3.96e-01 2.43e-02 8.30e-03 1.66e-02 3.18e-01 2.33e-02 3.96e-01 2.80e-02 6.65e-03

CF7 mean 5.76e-01 5.57e-01 5.46e-01 6.29e-01 4.89e-01 5.91e-01 5.76e-01 5.57e-01 5.38e-01 6.08e-01
std 9.66e-02 1.01e-01 1.29e-01 6.28e-02 1.35e-01 8.55e-02 9.66e-02 1.01e-01 1.10e-01 7.99e-02

CF8 mean 3.40e-01 4.79e-01 4.30e-01 5.14e-01 3.23e-01 4.87e-01 3.53e-01 4.89e-01 3.40e-01 4.79e-01
std 1.38e-01 6.21e-02 5.10e-02 3.51e-02 1.36e-01 6.54e-02 1.29e-01 8.72e-02 1.47e-01 8.32e-02

CF9 mean 5.86e-01 5.88e-01 5.81e-01 5.73e-01 5.85e-01 5.72e-01 5.84e-01 5.88e-01 5.86e-01 5.88e-01
std 1.85e-02 1.24e-02 1.40e-02 2.46e-02 1.96e-02 2.61e-02 2.01e-02 1.24e-02 1.85e-02 1.24e-02

CF10 mean 2.90e-01 2.14e-01 2.90e-01 2.15e-01 2.90e-01 1.53e-01 2.90e-01 2.37e-01 2.90e-01 2.02e-01
std 5.41e-02 1.11e-01 5.41e-02 4.97e-02 5.41e-02 9.28e-02 5.41e-02 6.22e-02 5.41e-02 7.62e-02

Wilc. test (I-D-S) 1–6–3 1–4–5 1–3–6 1–6–3 1–3–6
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from the objective functions, which involve a significant number of locally optimal
fronts. To demonstrate this point, let us consider function CF5. Figure 3.1 displays the
convergence issues observed when trying to approximate the true Pareto front using
C-MOEA/D for this problem, independently from the use of the repair procedure.
Anyway, note that all the solutions in Figure 3.1 are feasible. Now, in Figure 3.2
(left), the unconstrained version of CF5 is solved again with MOEA/D. The first
observation is that, when compared with Figure 3.1, the true Pareto front of the
constrained problem differs from the unconstrained true Pareto front only in its lower
part, i.e. for 0.5 ≤ f1 ≤ 1. In addition, the similarity with Figure 3.1 regarding
convergence tends to confirm that the poor results observed in Figure 3.1 may not be
attributable to difficulties for fulfilling the constraints, but rather for escaping from
locally optimal sub-fronts and finding the optimal one. This would also explain the
high percentage of cases for which there is no significant difference obtained by using
the gradient-based repair method (56.7% for MOEA/D, 47% for NSGA-II). Figure 3.2
(right) illustrates the same convergence issues for problem CF3.
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Figure 3.2: Final Pareto front approximation of unconstrained functions CF5 (left)
and CF3 (right).

3.5.2 LIRCMOP test problems

As mentioned previously, these test problems were built in such a way that the
search space contains large infeasible regions, as well as disconnected feasible regions
(islands), involving difficulties for the search algorithm, which might be stuck in
a suboptimal island enclosed by infeasible regions (Fan et al., 2019b). The results
obtained with the different constraint handling techniques, without and with the
gradient-based repair, are presented in Tables 3.5 to 3.8. For this test suite, it can
be appreciated that the use of the gradient-based repair significantly improves the
performance of the six constraint-handling techniques, with the exception of the
improved ε-constraint technique with NSGA-II, which shows divided results. Besides,
from a global perspective, it can be observed that MOEA/D outperforms NSGA-II on
this benchmark, considering for example the HV values for both algorithms using
CDP, MOEA/D obtains higher values on all problems.

More accurately, problems LIRCMOP1-4 present large infeasible regions and their
PF are located on the feasible region boundaries. For these problems, the original
techniques are able to find at least a part of the true PFs. However, because of the
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Figure 3.3: Final Pareto front approximation of LIRCMOP4 function. SR-MOEA/D
without (left) and with (right) gradient-based repair.
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Table 3.5: IGD values and CPU time (in seconds) obtained on LIRCMOP test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

LIRCMOP1 mean 2.11e-01 4.99e-02 7.98e+07 5.25e-02 1.51e-01 1.23e-02 2.07e-01 3.16e-02 5.65e-02 7.94e-03 7.84e-02 4.24e-02
std 4.86e-02 2.15e-02 9.05e+07 3.47e-02 6.23e-02 1.12e-02 5.36e-02 2.53e-02 4.52e-02 1.76e-03 4.69e-02 1.79e-02
CPU time 6.92e+01 4.81e+01 7.68e+01 4.65e+01 7.02e+01 5.36e+01 7.70e+01 5.58e+01 7.90e+01 5.24e+01 7.68e+01 5.02e+01

LIRCMOP2 mean 1.61e-01 8.85e-02 1.48e+08 3.71e-02 1.13e-01 3.71e-02 1.27e-01 5.82e-02 5.89e-02 1.37e-02 7.09e-02 2.21e-02
std 4.46e-02 3.45e-02 1.62e+08 2.03e-02 4.76e-02 2.80e-02 5.66e-02 3.45e-02 3.85e-02 1.25e-02 4.35e-02 1.99e-02
CPU time 7.65e+01 5.29e+01 7.49e+01 4.62e+01 6.89e+01 4.53e+01 6.65e+01 4.93e+01 6.88e+01 4.48e+01 6.85e+01 4.80e+01

LIRCMOP3 mean 2.08e-01 1.03e-02 3.38e+09 1.90e-01 1.95e-01 7.08e-03 1.83e-01 9.70e-03 1.34e-01 5.41e-03 1.66e-01 3.47e-03
std 3.38e-02 9.14e-03 2.87e+09 1.54e-01 4.56e-02 8.84e-04 5.61e-02 1.09e-02 7.98e-02 2.56e-03 6.65e-02 5.65e-04
CPU time 6.69e+01 5.46e+01 7.51e+01 5.29e+01 7.71e+01 5.82e+01 8.07e+01 6.21e+01 7.78e+01 5.85e+01 7.37e+01 5.29e+01

LIRCMOP4 mean 1.99e-01 9.08e-03 4.30e+09 1.27e-01 1.83e-01 8.00e-03 1.73e-01 6.72e-03 1.71e-01 4.81e-03 1.77e-01 3.26e-03
std 3.16e-02 6.78e-03 2.83e+09 8.10e-02 3.74e-02 3.30e-03 4.49e-02 3.83e-03 6.13e-02 1.79e-03 5.05e-02 4.73e-04
CPU time 7.04e+01 5.46e+01 7.78e+01 5.56e+01 6.91e+01 5.33e+01 6.82e+01 5.33e+01 7.13e+01 5.12e+01 6.97e+01 6.00e+01

LIRCMOP5 mean 1.22e+00 3.39e-02 7.43e-01 2.76e-03 1.20e+00 5.28e-03 1.25e+00 2.88e-02 1.22e+00 3.39e-02 1.00e-02 2.90e-03
std 6.15e-02 7.04e-02 5.11e-01 3.48e-04 1.49e-02 3.30e-03 2.46e-01 1.30e-02 6.15e-02 7.04e-02 1.21e-02 4.13e-04
CPU time 7.97e+01 7.59e+01 7.90e+01 7.71e+01 7.28e+01 7.31e+01 7.94e+01 7.63e+01 7.77e+01 7.94e+01 8.04e+01 8.31e+01

LIRCMOP6 mean 1.35e+00 3.04e-02 1.35e+00 2.88e-03 1.35e+00 4.30e-03 1.35e+00 3.75e-02 1.35e+00 3.04e-02 6.93e-03 2.90e-03
std 1.79e-04 6.32e-02 2.74e-04 2.63e-04 1.54e-04 1.38e-03 2.20e-04 4.16e-02 1.79e-04 6.32e-02 1.08e-02 3.02e-04
CPU time 6.51e+01 7.23e+01 7.73e+01 7.78e+01 7.10e+01 7.00e+01 6.76e+01 6.86e+01 6.37e+01 6.95e+01 7.42e+01 7.62e+01

LIRCMOP7 mean 1.53e+00 6.64e-03 6.59e-01 2.88e-03 1.48e+00 3.12e-03 1.53e+00 5.77e-03 1.53e+00 6.64e-03 9.38e-03 2.99e-03
std 4.76e-01 1.26e-02 7.73e-01 1.53e-03 5.37e-01 2.86e-03 4.75e-01 9.84e-03 4.76e-01 1.26e-02 1.06e-02 6.12e-04
CPU time 7.65e+01 8.44e+01 8.91e+01 8.72e+01 8.35e+01 8.35e+01 7.42e+01 7.47e+01 6.90e+01 7.14e+01 6.98e+01 6.87e+01

LIRCMOP8 mean 1.56e+00 3.19e-03 1.26e+00 2.47e-03 1.64e+00 2.51e-03 1.63e+00 2.48e-03 1.56e+00 3.19e-03 7.80e-03 2.67e-03
std 3.72e-01 2.95e-03 6.82e-01 1.50e-04 2.36e-01 2.98e-04 2.11e-01 2.12e-04 3.72e-01 2.95e-03 3.52e-03 1.71e-04
CPU time 6.76e+01 7.38e+01 7.73e+01 7.73e+01 7.06e+01 7.26e+01 7.18e+01 7.17e+01 6.80e+01 7.08e+01 7.12e+01 7.22e+01

LIRCMOP9 mean 5.84e-01 3.72e-01 2.75e-01 3.64e-01 4.28e-01 3.65e-01 6.93e-01 3.73e-01 5.84e-01 3.72e-01 2.20e-01 1.00e-02
std 8.51e-02 5.83e-03 1.17e-01 6.77e-02 6.08e-02 6.41e-02 7.93e-02 6.63e-03 8.51e-02 5.83e-03 1.14e-01 3.32e-03
CPU time 7.65e+01 7.67e+01 8.91e+01 8.06e+01 7.87e+01 7.60e+01 8.19e+01 6.65e+01 6.68e+01 6.69e+01 6.74e+01 6.60e+01

LIRCMOP10 mean 5.28e-01 2.34e-01 4.43e-03 6.20e-03 1.33e-01 2.54e-02 4.88e-01 2.54e-01 5.28e-01 2.34e-01 3.71e-03 5.50e-03
std 1.85e-01 8.60e-02 9.55e-04 2.25e-03 8.10e-02 1.71e-02 1.45e-01 8.39e-02 1.85e-01 8.60e-02 5.16e-04 7.23e-04
CPU time 7.30e+01 7.15e+01 8.90e+01 8.03e+01 7.43e+01 7.31e+01 7.34e+01 7.39e+01 7.02e+01 7.18e+01 8.66e+01 7.79e+01

LIRCMOP11 mean 6.12e-01 2.54e-01 7.06e-03 2.27e-02 1.43e-01 7.97e-02 6.28e-01 2.43e-01 6.12e-01 2.54e-01 3.33e-03 8.18e-03
std 1.58e-01 1.12e-01 2.02e-03 2.81e-02 4.77e-02 4.80e-02 1.15e-01 8.73e-02 1.58e-01 1.12e-01 1.49e-03 2.83e-03
CPU time 7.30e+01 8.10e+01 8.85e+01 7.49e+01 8.01e+01 7.33e+01 8.08e+01 7.68e+01 7.75e+01 7.75e+01 7.73e+01 6.85e+01

LIRCMOP12 mean 4.25e-01 1.75e-01 1.28e-01 1.54e-01 2.75e-01 1.61e-01 4.76e-01 1.90e-01 4.25e-01 1.75e-01 7.14e-02 7.04e-02
std 7.50e-02 2.48e-02 4.90e-02 2.02e-02 2.81e-02 3.35e-02 9.25e-02 2.84e-02 7.50e-02 2.48e-02 5.84e-02 4.68e-02
CPU time 8.35e+01 8.16e+01 9.38e+01 7.60e+01 7.84e+01 7.05e+01 7.92e+01 7.52e+01 8.19e+01 8.03e+01 7.78e+01 6.65e+01

LIRCMOP13 mean 1.30e+00 6.40e-02 8.76e-01 6.41e-02 1.17e+00 6.38e-02 1.25e+00 6.40e-02 1.30e+00 6.40e-02 6.78e-02 6.39e-02
std 5.11e-02 1.27e-03 5.94e-01 9.31e-04 3.54e-01 1.24e-03 1.89e-01 1.04e-03 5.11e-02 1.27e-03 1.04e-03 8.75e-04
CPU time 1.13e+02 1.90e+02 1.47e+02 1.93e+02 1.43e+02 1.92e+02 1.43e+02 1.94e+02 1.11e+02 1.89e+02 1.70e+02 1.98e+02

LIRCMOP14 mean 1.25e+00 6.45e-02 8.43e-01 6.42e-02 1.13e+00 6.39e-02 1.21e+00 6.42e-02 1.25e+00 6.45e-02 6.51e-02 6.41e-02
std 4.68e-02 1.20e-03 5.79e-01 1.42e-03 3.47e-01 1.11e-03 1.85e-01 1.50e-03 4.68e-02 1.20e-03 8.47e-04 1.15e-03
CPU time 1.20e+02 1.91e+02 1.52e+02 1.82e+02 1.40e+02 1.75e+02 1.38e+02 1.61e+02 9.84e+01 1.57e+02 1.53e+02 1.54e+02

Wilc. test (I-D-S) 0–0–14 2–2–10 0–0–14 0–0–14 0–0–14 2–1–11
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Table 3.6: IGD values and CPU time (in seconds) obtained on LIRCMOP test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

LIRCMOP1 mean 2.69e-01 2.54e-01 3.70e+09 1.90e+05 3.84e+03 2.39e-01 1.83e-01 8.34e-02 2.67e-01 2.24e+05
std 2.09e-02 2.44e-02 1.28e+09 2.96e+05 1.49e+04 2.93e-02 1.53e-02 2.67e-02 7.68e-02 4.16e+05
CPU time 6.16e+01 6.88e+01 1.91e+01 3.51e+01 1.01e+02 5.33e+01 5.16e+01 5.32e+01 5.98e+01 3.46e+01

LIRCMOP2 mean 2.26e-01 2.32e-01 1.29e+09 5.03e+05 8.92e+03 2.12e-01 1.71e-01 8.44e-02 2.47e-01 8.21e+05
std 2.14e-02 1.59e-02 1.08e+09 5.94e+05 2.94e+04 1.73e-02 1.02e-02 1.65e-02 8.35e-02 9.35e+05
CPU time 6.17e+01 6.88e+01 1.76e+01 3.24e+01 9.31e+01 4.69e+01 4.62e+01 5.07e+01 6.05e+01 3.54e+01

LIRCMOP3 mean 2.67e-01 2.23e-01 2.99e+09 1.20e+07 2.74e+05 1.95e+00 1.97e-01 4.91e-02 2.38e-01 3.37e-02
std 2.86e-02 2.80e-02 1.25e+09 2.42e+07 3.99e+05 4.46e+00 2.79e-02 3.28e-02 7.95e-02 1.61e-02
CPU time 6.51e+01 7.78e+01 1.71e+01 3.98e+01 1.07e+02 7.43e+01 4.70e+01 5.43e+01 5.58e+01 4.24e+01

LIRCMOP4 mean 2.49e-01 2.08e-01 2.55e+09 1.42e+07 2.85e+05 2.28e+01 1.90e-01 3.87e-02 2.63e-01 3.20e-02
std 2.50e-02 2.27e-02 1.23e+09 1.55e+07 3.83e+05 1.06e+02 2.12e-02 2.59e-02 8.47e-02 1.75e-02
CPU time 6.23e+01 7.58e+01 2.35e+01 4.26e+01 1.19e+02 8.01e+01 5.16e+01 6.03e+01 5.54e+01 4.51e+01

LIRCMOP5 mean 1.22e+00 5.14e-01 2.09e+00 2.94e-01 1.23e+00 4.21e-01 1.22e+00 5.14e-01 3.14e-01 2.89e-01
std 5.30e-03 3.82e-01 4.90e+00 3.77e-02 8.89e-03 3.12e-01 5.30e-03 3.82e-01 5.08e-02 3.69e-02
CPU time 1.69e+01 5.19e+01 1.75e+01 4.57e+01 1.78e+01 4.84e+01 1.61e+01 4.83e+01 2.13e+01 4.77e+01

LIRCMOP6 mean 1.34e+00 3.93e-01 2.64e+00 3.16e-01 1.44e+00 3.34e-01 1.34e+00 3.93e-01 3.39e-01 3.28e-01
std 5.40e-05 1.86e-01 4.54e+00 5.97e-02 1.57e-01 6.39e-02 5.40e-05 1.86e-01 5.89e-02 6.27e-02
CPU time 1.67e+01 4.53e+01 1.73e+01 4.63e+01 1.69e+01 4.37e+01 1.57e+01 4.24e+01 2.16e+01 4.60e+01

LIRCMOP7 mean 4.18e-01 1.25e-01 6.40e+00 1.33e-01 3.44e-01 1.27e-01 4.18e-01 1.25e-01 1.42e-01 2.99e-01
std 5.70e-01 1.26e-02 8.71e+00 2.56e-02 5.55e-01 1.72e-02 5.70e-01 1.26e-02 2.43e-02 1.70e-01
CPU time 2.09e+01 6.13e+01 1.72e+01 5.08e+01 1.68e+01 5.29e+01 1.84e+01 5.19e+01 2.50e+01 4.64e+01

LIRCMOP8 mean 1.15e+00 1.99e-01 2.63e+00 1.92e-01 1.22e+00 1.99e-01 1.15e+00 1.99e-01 2.11e-01 2.54e-01
std 6.86e-01 3.21e-02 5.96e+00 3.19e-02 9.44e-01 2.70e-02 6.86e-01 3.21e-02 3.22e-02 8.33e-02
CPU time 1.66e+01 5.08e+01 1.57e+01 4.83e+01 1.54e+01 4.88e+01 1.59e+01 4.86e+01 2.28e+01 5.18e+01

LIRCMOP9 mean 1.01e+00 8.40e-01 8.64e-01 6.80e-01 1.30e+00 7.49e-01 1.01e+00 8.40e-01 7.89e-01 4.72e-01
std 5.60e-02 1.56e-01 2.87e-01 2.36e-01 2.25e+00 2.31e-01 5.60e-02 1.56e-01 2.22e-01 3.15e-01
CPU time 1.93e+01 4.68e+01 7.54e+01 5.11e+01 2.09e+01 4.43e+01 1.85e+01 4.43e+01 2.19e+01 4.55e+01

LIRCMOP10 mean 9.15e-01 6.35e-01 2.67e-01 5.03e-01 9.25e-01 5.95e-01 9.15e-01 6.35e-01 3.12e-01 4.67e-01
std 1.01e-01 2.29e-01 1.52e-01 2.92e-01 1.09e-01 2.34e-01 1.01e-01 2.29e-01 1.81e-01 3.22e-01
CPU time 1.94e+01 4.52e+01 2.43e+01 5.17e+01 1.94e+01 4.58e+01 1.97e+01 3.97e+01 2.16e+01 4.00e+01

LIRCMOP11 mean 8.34e-01 4.95e-01 3.97e-01 4.95e-01 4.93e-01 4.91e-01 8.34e-01 4.95e-01 4.09e-01 4.59e-01
std 1.04e-01 1.96e-01 1.27e-01 3.75e-01 2.87e-01 2.51e-01 1.04e-01 1.96e-01 2.08e-01 3.07e-01
CPU time 1.63e+01 4.35e+01 4.35e+01 4.69e+01 3.32e+01 4.12e+01 1.58e+01 4.03e+01 2.27e+01 4.07e+01

LIRCMOP12 mean 8.59e-01 3.75e-01 7.92e-01 6.96e-01 5.47e-01 4.52e-01 8.59e-01 3.75e-01 5.41e-01 7.13e-01
std 1.56e-01 2.13e-01 3.23e-01 3.11e-01 4.05e-01 2.66e-01 1.56e-01 2.13e-01 1.51e-01 1.67e-01
CPU time 1.79e+01 4.45e+01 6.81e+01 6.00e+01 2.09e+01 4.60e+01 1.93e+01 4.83e+01 2.07e+01 4.64e+01

LIRCMOP13 mean 1.31e+00 6.81e-02 1.33e+00 6.77e-02 1.32e+00 6.81e-02 1.31e+00 6.81e-02 1.08e-01 6.80e-02
std 7.70e-04 1.65e-03 4.13e-03 1.50e-03 2.05e-03 1.91e-03 7.70e-04 1.65e-03 2.23e-01 1.78e-03
CPU time 4.23e+01 1.71e+02 6.52e+01 1.61e+02 3.99e+01 1.59e+02 4.17e+01 1.68e+02 1.66e+02 1.67e+02

LIRCMOP14 mean 1.26e+00 6.96e-02 1.29e+00 6.95e-02 1.28e+00 6.95e-02 1.26e+00 6.96e-02 1.11e-01 7.04e-02
std 7.93e-04 1.76e-03 4.30e-03 2.02e-03 2.12e-03 2.20e-03 7.93e-04 1.76e-03 2.14e-01 2.57e-03
CPU time 4.16e+01 1.45e+02 6.19e+01 1.47e+02 4.00e+01 1.39e+02 3.83e+01 1.37e+02 1.43e+02 1.49e+02

Wilc. test (I-D-S) 0–1–13 1–2–11 0–2–12 0–0–14 5–4–5
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Table 3.7: HV values obtained on LIRCMOP test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

LIRCMOP1 mean 3.16e-01 4.65e-01 6.14e-02 4.72e-01 3.71e-01 5.20e-01 3.19e-01 4.89e-01 4.66e-01 5.30e-01 4.43e-01 4.81e-01
std 4.27e-02 2.77e-02 8.95e-02 3.81e-02 6.05e-02 2.02e-02 4.80e-02 3.43e-02 5.35e-02 4.81e-03 5.13e-02 2.36e-02

LIRCMOP2 mean 6.51e-01 7.37e-01 1.11e-01 8.23e-01 7.24e-01 8.16e-01 6.96e-01 7.78e-01 7.89e-01 8.55e-01 7.75e-01 8.42e-01
std 5.71e-02 5.01e-02 1.95e-01 2.22e-02 6.31e-02 4.51e-02 7.36e-02 5.25e-02 5.18e-02 1.59e-02 5.81e-02 2.54e-02

LIRCMOP3 mean 3.23e-01 5.06e-01 2.83e-02 3.42e-01 3.34e-01 5.12e-01 3.43e-01 5.07e-01 3.87e-01 5.15e-01 3.58e-01 5.19e-01
std 2.97e-02 1.33e-02 7.50e-02 8.62e-02 3.90e-02 2.06e-03 5.13e-02 1.54e-02 7.26e-02 2.65e-03 5.84e-02 1.19e-03

LIRCMOP4 mean 5.87e-01 8.11e-01 0.00e+00 6.59e-01 6.06e-01 8.13e-01 6.22e-01 8.15e-01 6.24e-01 8.17e-01 6.16e-01 8.20e-01
std 3.66e-02 6.56e-03 0.00e+00 8.34e-02 4.67e-02 3.48e-03 5.44e-02 3.82e-03 6.98e-02 2.06e-03 5.60e-02 1.29e-03

LIRCMOP5 mean 0.00e+00 8.12e-01 2.88e-01 8.71e-01 0.00e+00 8.67e-01 0.00e+00 8.28e-01 0.00e+00 8.12e-01 8.58e-01 8.71e-01
std 0.00e+00 1.14e-01 3.30e-01 6.08e-04 0.00e+00 6.07e-03 0.00e+00 2.41e-02 0.00e+00 1.14e-01 2.52e-02 6.52e-04

LIRCMOP6 mean 0.00e+00 5.13e-01 0.00e+00 5.38e-01 0.00e+00 5.35e-01 0.00e+00 4.97e-01 0.00e+00 5.13e-01 5.33e-01 5.38e-01
std 0.00e+00 5.60e-02 0.00e+00 5.23e-04 0.00e+00 2.41e-03 0.00e+00 2.97e-02 0.00e+00 5.60e-02 1.08e-02 6.19e-04

LIRCMOP7 mean 5.49e-02 6.22e-01 3.55e-01 6.26e-01 7.18e-02 6.26e-01 5.30e-02 6.23e-01 5.49e-02 6.22e-01 6.18e-01 6.26e-01
std 1.71e-01 1.17e-02 2.71e-01 2.28e-03 1.91e-01 2.27e-03 1.65e-01 1.05e-02 1.71e-01 1.17e-02 9.79e-03 1.26e-03

LIRCMOP8 mean 3.97e-02 6.26e-01 1.47e-01 6.27e-01 1.54e-02 6.27e-01 1.64e-02 6.27e-01 3.97e-02 6.26e-01 6.19e-01 6.27e-01
std 1.26e-01 4.15e-03 2.36e-01 5.98e-04 8.59e-02 6.22e-04 6.93e-02 5.85e-04 1.26e-01 4.15e-03 3.38e-03 3.65e-04

LIRCMOP9 mean 3.79e-01 5.20e-01 5.77e-01 5.26e-01 4.89e-01 5.17e-01 2.80e-01 5.17e-01 3.79e-01 5.20e-01 6.09e-01 6.78e-01
std 7.55e-02 1.35e-02 4.32e-02 3.11e-02 4.66e-02 3.27e-02 6.03e-02 1.29e-02 7.55e-02 1.35e-02 3.65e-02 3.50e-03

LIRCMOP10 mean 4.55e-01 8.46e-01 8.55e-01 9.49e-01 7.74e-01 9.39e-01 4.97e-01 8.35e-01 4.55e-01 8.46e-01 8.56e-01 9.49e-01
std 2.02e-01 4.36e-02 8.66e-04 1.30e-03 4.97e-02 5.74e-03 1.64e-01 4.29e-02 2.02e-01 4.36e-02 4.90e-04 4.45e-04

LIRCMOP11 mean 3.62e-01 6.43e-01 8.36e-01 8.26e-01 7.30e-01 7.84e-01 3.31e-01 6.47e-01 3.62e-01 6.43e-01 8.39e-01 8.35e-01
std 1.18e-01 9.54e-02 1.61e-03 1.61e-02 4.06e-02 3.94e-02 8.64e-02 6.82e-02 1.18e-01 9.54e-02 3.20e-04 2.09e-03

LIRCMOP12 mean 5.24e-01 6.55e-01 6.81e-01 6.69e-01 6.21e-01 6.64e-01 4.84e-01 6.46e-01 5.24e-01 6.55e-01 7.15e-01 7.11e-01
std 4.85e-02 1.25e-02 2.86e-02 1.24e-02 6.78e-03 2.00e-02 5.74e-02 1.17e-02 4.85e-02 1.25e-02 3.11e-02 2.58e-02

LIRCMOP13 mean 2.65e-03 7.49e-01 2.49e-01 7.49e-01 6.64e-02 7.49e-01 1.70e-02 7.50e-01 2.65e-03 7.49e-01 7.37e-01 7.50e-01
std 1.29e-02 2.41e-03 3.42e-01 2.41e-03 1.80e-01 2.05e-03 7.11e-02 1.65e-03 1.29e-02 2.41e-03 2.39e-03 2.02e-03

LIRCMOP14 mean 3.97e-03 7.55e-01 2.61e-01 7.55e-01 7.28e-02 7.56e-01 2.10e-02 7.55e-01 3.97e-03 7.55e-01 7.50e-01 7.55e-01
std 1.47e-02 1.52e-03 3.57e-01 1.96e-03 1.93e-01 2.24e-03 7.96e-02 1.78e-03 1.47e-02 1.52e-03 1.93e-03 1.78e-03

Wilc. test (I-D-S) 0–0–14 1–2–11 0–0–14 0–0–14 0–0–14 1–1–12
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Table 3.8: HV values obtained on LIRCMOP test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

LIRCMOP1 mean 2.75e-01 2.86e-01 4.80e-03 1.50e-02 2.33e-01 2.96e-01 3.38e-01 4.39e-01 2.68e-01 5.90e-03
std 1.80e-02 1.88e-02 2.67e-02 4.79e-02 8.35e-02 2.08e-02 1.87e-02 1.57e-02 6.04e-02 3.28e-02

LIRCMOP2 mean 5.76e-01 5.71e-01 0.00e+00 8.30e-03 4.65e-01 5.92e-01 6.54e-01 7.49e-01 5.90e-01 0.00e+00
std 2.36e-02 1.89e-02 0.00e+00 4.62e-02 1.88e-01 1.79e-02 1.42e-02 2.10e-02 7.01e-02 0.00e+00

LIRCMOP3 mean 2.78e-01 3.14e-01 0.00e+00 4.06e-03 1.09e-01 2.14e-01 3.33e-01 4.75e-01 2.95e-01 4.81e-01
std 2.63e-02 2.65e-02 0.00e+00 2.26e-02 1.24e-01 1.23e-01 2.59e-02 2.08e-02 5.96e-02 1.82e-02

LIRCMOP4 mean 5.33e-01 5.72e-01 0.00e+00 0.00e+00 2.16e-01 4.45e-01 6.13e-01 7.76e-01 5.46e-01 7.86e-01
std 2.57e-02 2.73e-02 0.00e+00 0.00e+00 2.45e-01 2.07e-01 2.50e-02 2.78e-02 7.00e-02 1.98e-02

LIRCMOP5 mean 0.00e+00 3.21e-01 1.98e-01 4.24e-01 0.00e+00 3.61e-01 0.00e+00 3.21e-01 4.18e-01 4.26e-01
std 0.00e+00 1.83e-01 1.98e-01 4.49e-02 0.00e+00 1.51e-01 0.00e+00 1.83e-01 6.00e-02 4.45e-02

LIRCMOP6 mean 0.00e+00 2.67e-01 5.70e-02 3.03e-01 0.00e+00 2.93e-01 0.00e+00 2.67e-01 2.93e-01 2.96e-01
std 0.00e+00 5.64e-02 1.07e-01 2.25e-02 0.00e+00 2.55e-02 0.00e+00 5.64e-02 2.57e-02 2.19e-02

LIRCMOP7 mean 4.19e-01 5.26e-01 1.69e-01 5.20e-01 4.36e-01 5.24e-01 4.19e-01 5.26e-01 5.14e-01 4.08e-01
std 1.92e-01 8.87e-03 1.42e-01 1.92e-02 1.19e-01 1.11e-02 1.92e-01 8.87e-03 1.57e-02 6.86e-02

LIRCMOP8 mean 1.65e-01 4.95e-01 2.40e-01 4.97e-01 2.05e-01 4.95e-01 1.65e-01 4.95e-01 4.87e-01 4.43e-01
std 2.19e-01 1.03e-02 1.49e-01 1.28e-02 2.18e-01 1.00e-02 2.19e-01 1.03e-02 1.24e-02 3.88e-02

LIRCMOP9 mean 1.34e-01 2.48e-01 3.09e-01 3.41e-01 1.99e-01 3.06e-01 1.34e-01 2.48e-01 3.41e-01 4.57e-01
std 3.29e-02 1.08e-01 8.58e-02 1.31e-01 1.44e-01 1.30e-01 3.29e-02 1.08e-01 6.84e-02 1.57e-01

LIRCMOP10 mean 1.05e-01 4.64e-01 6.32e-01 5.64e-01 6.41e-02 4.92e-01 1.05e-01 4.64e-01 5.85e-01 5.81e-01
std 8.73e-02 1.77e-01 1.44e-01 2.23e-01 1.05e-01 1.87e-01 8.73e-02 1.77e-01 1.72e-01 2.52e-01

LIRCMOP11 mean 2.43e-01 4.84e-01 5.74e-01 5.38e-01 5.90e-01 4.97e-01 2.43e-01 4.84e-01 5.63e-01 6.47e-01
std 4.95e-02 1.42e-01 1.02e-01 1.80e-01 1.35e-01 1.92e-01 4.95e-02 1.42e-01 1.26e-01 1.55e-01

LIRCMOP12 mean 3.49e-01 5.86e-01 3.48e-01 4.23e-01 4.89e-01 5.32e-01 3.49e-01 5.86e-01 5.38e-01 4.47e-01
std 1.16e-01 7.68e-02 1.67e-01 1.25e-01 1.48e-01 1.14e-01 1.16e-01 7.68e-02 4.67e-02 6.28e-02

LIRCMOP13 mean 3.89e-04 7.47e-01 1.10e-04 7.47e-01 2.40e-04 7.47e-01 3.89e-04 7.47e-01 7.21e-01 7.47e-01
std 2.41e-04 2.92e-03 1.63e-04 2.44e-03 1.85e-04 3.56e-03 2.41e-04 2.92e-03 1.34e-01 2.25e-03

LIRCMOP14 mean 1.42e-03 7.48e-01 4.81e-04 7.48e-01 1.08e-03 7.48e-01 1.42e-03 7.48e-01 7.19e-01 7.46e-01
std 4.54e-04 2.63e-03 4.65e-04 2.78e-03 3.98e-04 2.47e-03 4.54e-04 2.63e-03 1.33e-01 3.39e-03

Wilc. test (I-D-S) 0–1–13 0–8–6 1–1–12 0–0–14 5–4–5
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constrained search spaces, they cannot identify the whole PF . That is, the search
is stressed in some parts of the Pareto front, in particular those that are found first
and from which the search algorithm does not manage to move away. On the other
hand, when the gradient-based repair is incorporated, the MOEA is encouraged to
continue searching promising regions even once some Pareto optimal solutions have
been found. Indeed, since the true Pareto fronts are surrounded by infeasible regions,
the new solutions produced from Pareto optimal solutions found so far (either by
mating or mutation) are likely to be slightly infeasible and are thus easily repaired
using the constraints’ gradient information. Figure 3.3 illustrates this phenomenon
for LIRCMOP4 function. It can be observed from Tables 3.5 and 3.7, that the repair
process significantly improves every canonical constraint handling technique for all
the problems under study when using MOEA/D.

Problems LIRCMOP5-8 have infeasible regions that may be difficult to cross
when approaching the true PFs. These problems are particularly difficult for all the
constraint-handling techniques studied here (with the exception of the improved
ε-constraint), none of them is able to reach PF , as they get stuck in sub-optimal fronts
which are bounded by constraints. Conversely, when the gradient-based repair is
used, every algorithm approximates the true Pareto fronts efficiently. Figures 3.4 and
3.5 show clearly how the gradient-based repair permits the individuals to pass over
the infeasible region to attain the true PF . Note that the regions dividing the true
Pareto Fronts and the obtained approximations (Figures 3.4 and 3.5, left) are infeasible
regions. Similar to problems LICRMOP1-4, the gradient-based repair significantly
improves every canonical constraint-handling method for all these problems (except
for the combination of NSGA-II with the improved ε constraint, for which the repair
strategy slightly deteriorates the results). Furthermore, even the improved ε-constraint
method, which was actually designed to be suited for this kind of problems, exhibits
a significant enhancement by using the repair technique within MOEA/D.

Problems LIRCMOP9-12 contain, in addition to large infeasible regions, constraints
that divide the PF into a number of disconnected segments. Once more, the results
show that the repair of constraints presents overall good performance for these
problems. Finally, functions LIRCMOP13 and LIRCMOP14 consist of three-objective
problems, where the true Pareto fronts are located at the boundaries of the feasible
region. The numerical results show that each algorithm with the gradient-based
repair embedded obtains a good approximation of the PF . Indeed, all the techniques
reach the virtually highest possible hypervolume value for these problems, in every
execution (for LIRCMOP13 AND 14: ≈ 7.50e-01 and ≈ 7.55e-01, respectively). It
must be highlighted that, even the canonical methods showing poor performances
(e.g., ATP, SR or CDP) achieve an excellent performance (better than that of canonical
improved ε-method) once infeasible solutions are repaired.

3.5.3 EQC, Eq-DTLZ and Eq-IDTLZ test problems

The results obtained for problems containing equality constraints are presented in
Tables 3.9 to 3.12. For problem EQC6 in Tables 3.9 and 3.10, the “—” means that no
information is available regarding the true Pareto front, so that a reference set cannot
be built to compute the IGD indicator. The results according to the IGD and HV
metrics show that incorporating the gradient-based repair significantly outperforms
the canonical constraint-handling methods for almost all problems. Besides, repairing
infeasible solutions for problems with equality constraints seems to be necessary in
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Figure 3.4: Final Pareto front approximation of LIRCMOP5 function. CDP-MOEA/D
and ATP-MOEA/D without (left) and with (right) gradient-based repair.
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Figure 3.5: Final Pareto front approximation of LIRCMOP7 function. ε-MOEA/D
without (left) and with (right) gradient-based repair.
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Figure 3.6: Final Pareto front approximation of EQC1 function. CDP-MOEA/D and
ε-MOEA/D without (left) and with (right) gradient-based repair.

order to obtain acceptable quality solutions, or even feasible solutions (see the mean
feasibility ratio of the final population over the 31 runs, presented in Tables 3.11 and
3.12).

Problem EQC1 (Das and Dennis, 1998) has only two equality constraints, however,
none of the six constraint-handling techniques studied here is capable of approaching
the whole Pareto front. For these canonical techniques, it seems that the exploration is
stopped to some extent once a feasible non-dominated solution is found, due to their
inability of escaping from a subregion defined by equality constraints. In contrast,
when infeasible solutions are repaired with the constraints’ gradient, the exploration
is pursued all along the evolutionary process and, in this way, all the techniques
approximate the Pareto front obtaining the maximum HV value (≈ 9.09e-01). It must
be emphasized that even the ATP method, which was unable to find a single feasible
solution in its canonical form, now converges to the true PF. Figure 3.6 plots the
Pareto front of the median run according to the HV indicator for CDP and ε-constraint
methods with MOEA/D, without and with the implementation of the gradient-based
repair.

Problems EQC2-3 (Cuate et al., 2020a) are modifications of the classical ZDT1
problem (Zitzler et al., 2000), including only one equality (quadratic) constraint, which
involves only 2 out of the 30 decision variables. Problem EQC2 is solved by every
algorithm when employing the gradient-based repair strategy, obtaining approxima-
tions of PF that show a good convergence and a uniform distribution. According
to the numerical results of the IGD/HV indicators, the use of the constraints’ gradi-
ent information seems more important than the base constraint-handling technique.
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Figure 3.7: Final Pareto front approximation of EQC3 function. CDP-MOEA/D and
CDP-NSGA-II without (left) and with (right) gradient-based repair.
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Figure 3.8: Final Pareto front approximation of EQC5 function. SR-MOEA/D without
(left) and with (right) gradient-based repair.
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Table 3.9: IGD values and CPU time (in seconds) obtained on EQC test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

EQC1 mean 4.80e+00 4.29e-02 9.56e+09 4.09e-02 2.63e+00 4.16e-02 4.19e+00 4.30e-02 1.66e+00 4.29e-02 3.08e+00 4.87e-02
std 2.03e+00 2.52e-03 3.76e+09 3.73e-03 9.19e-01 2.91e-03 1.63e+00 3.50e-03 1.18e+00 2.52e-03 1.34e+00 7.16e-03
CPU time 6.38e+01 4.71e+01 6.78e+01 4.27e+01 5.55e+01 4.25e+01 5.69e+01 4.30e+01 6.98e+01 4.22e+01 5.88e+01 3.75e+01

EQC2 mean 7.24e-01 6.34e-03 2.27e-02 6.38e-03 6.25e-01 6.34e-03 6.44e-01 6.48e-03 5.81e-01 6.34e-03 1.16e-01 6.33e-03
std 6.43e-01 3.98e-04 7.65e-03 3.99e-04 2.26e-01 4.69e-04 4.58e-01 4.59e-04 1.34e-01 3.98e-04 2.45e-02 4.48e-04
CPU time 5.81e+01 3.88e+01 6.05e+01 4.04e+01 5.34e+01 3.56e+01 5.40e+01 3.45e+01 5.14e+01 3.73e+01 5.58e+01 4.14e+01

EQC3 mean 5.87e-01 2.84e-01 8.00e-02 9.29e-02 4.58e-01 2.99e-01 4.46e-01 3.38e-01 6.61e-01 2.84e-01 1.36e-01 9.58e-02
std 9.18e-01 1.39e-01 1.70e-02 8.82e-02 3.26e-01 1.23e-01 5.82e-01 7.80e-02 1.69e-01 1.39e-01 3.23e-02 1.04e-01
CPU time 6.07e+01 4.47e+01 6.49e+01 4.09e+01 5.53e+01 3.98e+01 5.55e+01 4.03e+01 5.46e+01 3.98e+01 5.34e+01 2.99e+01

EQC4 mean 2.68e-01 1.17e-01 5.22e+05 1.22e-01 2.36e-01 1.16e-01 2.85e-01 1.17e-01 2.25e-01 1.17e-01 2.25e-01 1.18e-01
std 4.45e-02 3.33e-03 2.05e+06 4.11e-03 3.71e-02 3.61e-03 3.82e-02 3.44e-03 3.60e-02 3.94e-03 3.68e-02 4.08e-03
CPU time 1.99e+02 1.19e+02 8.17e+01 1.55e+02 1.45e+02 1.79e+02 1.46e+02 1.26e+02 1.55e+02 1.37e+02 1.51e+02 1.21e+02

EQC5 mean 1.06e+00 7.86e-03 1.87e+08 1.02e-02 1.03e+00 8.15e-03 2.03e+06 7.93e-03 1.11e+00 7.94e-03 1.05e+00 7.88e-03
std 7.24e-01 2.62e-04 1.25e+08 1.22e-03 6.76e-01 2.77e-04 4.76e+06 2.08e-04 6.77e-01 2.67e-04 7.02e-01 2.41e-04
CPU time 2.59e+02 1.44e+02 3.00e+01 1.53e+02 1.34e+02 1.46e+02 5.84e+01 1.57e+02 2.77e+02 1.49e+02 2.55e+02 1.42e+02

EQC6 mean — — — — — — — — — — — —
std — — — — — — — — — — — —
CPU time 4.55e+01 3.89e+01 5.00e+01 3.61e+01 4.27e+01 3.57e+01 4.28e+01 3.92e+01 4.57e+01 3.68e+01 4.46e+01 3.61e+01

Eq-DTLZ1 mean 1.15e-01 1.90e-03 8.92e-02 1.96e-03 7.85e-02 1.90e-03 1.25e-01 1.92e-03 1.05e-01 1.90e-03 1.19e-01 1.93e-03
std 3.33e-02 8.87e-05 3.73e-02 7.71e-05 2.87e-02 8.86e-05 4.19e-02 1.03e-04 3.70e-02 8.87e-05 5.87e-02 9.37e-05
CPU time 2.07e+02 1.06e+02 4.99e+01 1.08e+02 1.02e+02 9.91e+01 1.49e+02 1.05e+02 1.72e+02 1.15e+02 3.01e+02 1.49e+02

Eq-DTLZ2 mean 2.06e-01 5.59e-03 1.13e-01 5.66e-03 3.58e-02 5.59e-03 2.39e-01 5.59e-03 4.36e-02 5.59e-03 1.60e-01 5.59e-03
std 1.38e-01 3.42e-04 3.26e-02 4.66e-04 4.67e-02 3.42e-04 1.20e-01 3.03e-04 1.33e-02 3.42e-04 7.67e-02 2.77e-04
CPU time 1.92e+02 8.94e+01 4.57e+01 9.64e+01 1.22e+02 1.02e+02 1.52e+02 8.91e+01 2.05e+02 9.76e+01 1.98e+02 9.29e+01

Eq-DTLZ3 mean 3.23e-01 5.88e-03 1.91e-01 5.85e-03 2.62e-01 5.88e-03 4.10e-01 5.98e-03 3.13e-01 5.88e-03 3.19e-01 5.86e-03
std 1.17e-01 4.59e-04 7.09e-02 2.92e-04 8.72e-02 4.59e-04 1.19e-01 4.49e-04 8.85e-02 4.59e-04 1.13e-01 4.18e-04
CPU time 1.99e+02 1.40e+02 6.61e+01 1.40e+02 1.25e+02 1.30e+02 1.43e+02 1.24e+02 1.18e+02 9.22e+01 1.25e+02 9.31e+01

Eq-IDTLZ1 mean 1.39e-01 2.15e-03 1.29e-01 2.20e-03 6.82e-02 2.15e-03 1.49e-01 2.07e-03 1.30e-01 2.15e-03 1.26e-01 2.18e-03
std 5.98e-02 1.16e-04 4.80e-02 1.40e-04 2.82e-02 1.16e-04 6.74e-02 1.53e-04 3.96e-02 1.16e-04 5.07e-02 1.82e-04
CPU time 2.67e+02 1.96e+02 9.22e+01 1.90e+02 1.52e+02 1.81e+02 2.45e+02 1.69e+02 1.93e+02 1.93e+02 2.00e+02 1.73e+02

Eq-IDTLZ2 mean 3.00e-01 7.19e-03 2.35e-01 7.39e-03 5.05e-02 7.19e-03 3.12e-01 7.32e-03 9.54e-02 7.19e-03 1.67e-01 7.25e-03
std 1.39e-01 8.51e-04 7.79e-02 7.82e-04 4.48e-02 8.51e-04 1.27e-01 4.30e-04 3.23e-02 8.51e-04 6.26e-02 6.31e-04
CPU time 2.31e+02 2.04e+02 9.25e+01 2.12e+02 1.07e+02 1.73e+02 2.46e+02 2.15e+02 2.25e+02 1.83e+02 2.49e+02 2.06e+02

Eq-IDTLZ3 mean 3.57e-01 8.54e-03 5.04e-01 1.02e-02 1.93e-01 8.54e-03 3.99e-01 8.51e-03 2.53e-01 8.54e-03 2.66e-01 9.92e-03
std 1.36e-01 1.87e-03 6.62e-01 5.48e-03 8.91e-02 1.87e-03 1.29e-01 1.28e-03 9.14e-02 1.87e-03 8.99e-02 7.80e-03
CPU time 1.69e+02 1.73e+02 8.10e+01 1.84e+02 1.05e+02 1.93e+02 1.62e+02 1.78e+02 1.39e+02 1.68e+02 1.60e+02 1.71e+02

Wilc. test (I-D-S) 0–1–10 0–0–11 0–0–11 1–0–10 0–0–11 0–0–11
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Table 3.10: IGD values and CPU time (in seconds) obtained on EQC test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

EQC1 mean 1.54e+05 4.48e-02 9.70e+09 1.04e-01 2.14e+06 5.63e-02 1.42e+05 4.48e-02 1.22e+05 3.68e-01
std 6.37e+05 3.81e-03 5.97e+09 2.48e-02 1.76e+06 5.36e-03 5.75e+05 3.81e-03 4.76e+05 2.21e-01
CPU time 2.14e+01 2.45e+01 9.40e+00 2.27e+01 2.50e+01 2.32e+01 1.36e+01 2.22e+01 1.48e+01 2.26e+01

EQC2 mean 4.70e-01 4.96e-03 6.71e+06 5.03e-03 4.42e-01 4.93e-03 1.97e-01 4.96e-03 2.37e-01 5.04e-03
std 1.90e-01 1.30e-04 7.35e+06 1.28e-04 1.68e-01 1.17e-04 1.27e-01 1.30e-04 1.12e-01 2.16e-04
CPU time 1.79e+01 2.39e+01 2.31e+01 2.31e+01 1.73e+01 2.31e+01 1.50e+01 2.32e+01 1.78e+01 2.31e+01

EQC3 mean 3.94e-01 2.48e-02 3.07e+06 3.69e-02 4.62e+04 2.08e-02 2.92e-01 2.48e-02 3.12e-01 6.76e-02
std 2.20e-01 3.02e-02 2.47e+06 3.15e-02 2.57e+05 2.87e-02 1.56e-01 3.02e-02 1.70e-01 8.09e-04
CPU time 1.98e+01 2.53e+01 2.46e+01 2.56e+01 1.86e+01 2.46e+01 1.59e+01 2.49e+01 1.92e+01 2.30e+01

EQC4 mean 3.30e-01 1.22e-01 1.00e+07 1.23e-01 4.52e-01 1.23e-01 3.21e-01 1.21e-01 3.05e-01 1.32e-01
std 6.67e-02 4.50e-03 1.23e+07 3.87e-03 3.56e-02 4.74e-03 2.61e-02 4.57e-03 2.70e-02 5.71e-03
CPU time 1.39e+02 1.17e+02 1.35e+02 1.17e+02 6.43e+01 1.23e+02 1.56e+02 1.22e+02 1.35e+02 1.03e+02

EQC5 mean 2.80e+00 8.45e-03 2.82e+08 9.41e-02 2.40e+00 2.96e-02 2.89e+00 8.46e-03 1.30e+05 8.52e-03
std 5.31e-01 4.07e-04 1.60e+08 4.41e-02 8.28e-01 6.34e-03 8.01e-01 3.44e-04 7.26e+05 4.82e-04
CPU time 2.96e+01 3.11e+01 5.06e+01 3.88e+01 4.63e+01 6.09e+01 3.08e+01 3.45e+01 2.24e+01 3.32e+01

EQC6 mean — — — — — — — — — —
std — — — — — — — — — —
CPU time 2.85e+01 3.03e+01 2.75e+01 2.76e+01 2.82e+01 2.72e+01 2.72e+01 2.82e+01 2.70e+01 2.70e+01

Eq-DTLZ1 mean 7.99e-02 4.37e-03 2.18e+06 3.23e-03 5.36e-02 4.54e-03 5.93e-02 4.37e-03 6.27e-02 3.18e-03
std 3.91e-02 1.34e-03 2.44e+06 9.63e-04 2.69e-02 1.22e-03 2.14e-02 1.34e-03 2.72e-02 7.77e-04
CPU time 4.98e+01 5.59e+01 6.32e+01 4.86e+01 3.18e+01 6.57e+01 4.74e+01 5.67e+01 5.95e+01 4.92e+01

Eq-DTLZ2 mean 1.23e-01 1.53e-02 1.43e+06 1.11e-02 8.47e-02 1.52e-02 7.27e-02 1.53e-02 7.32e-02 1.10e-02
std 6.35e-02 3.46e-03 1.85e+06 3.58e-03 3.06e-02 4.86e-03 2.13e-02 3.46e-03 3.69e-02 3.13e-03
CPU time 6.28e+01 6.08e+01 5.96e+01 6.11e+01 3.83e+01 6.54e+01 5.35e+01 5.55e+01 4.93e+01 5.35e+01

Eq-DTLZ3 mean 2.28e-01 2.87e-02 1.88e+06 2.44e-02 1.89e-01 2.71e-02 1.95e-01 2.87e-02 1.66e-01 2.02e-02
std 8.73e-02 4.20e-03 2.47e+06 7.28e-03 7.60e-02 4.29e-03 5.79e-02 4.20e-03 4.69e-02 5.32e-03
CPU time 3.86e+01 3.76e+01 4.97e+01 4.44e+01 2.88e+01 4.74e+01 4.02e+01 4.89e+01 4.71e+01 5.44e+01

Eq-IDTLZ1 mean 1.17e-01 4.62e-03 1.39e+06 3.70e-03 8.05e-02 4.49e-03 8.19e-02 4.62e-03 9.94e-02 3.74e-03
std 4.59e-02 1.21e-03 2.54e+06 8.39e-04 3.29e-02 1.28e-03 3.03e-02 1.21e-03 4.04e-02 9.57e-04
CPU time 2.23e+02 1.67e+02 5.39e+01 1.65e+02 3.59e+01 1.76e+02 2.37e+02 1.85e+02 1.96e+02 1.57e+02

Eq-IDTLZ2 mean 1.10e-01 1.13e-02 1.94e+06 9.42e-03 6.89e-02 1.03e-02 4.76e-02 1.13e-02 5.57e-02 1.10e-02
std 5.38e-02 3.92e-03 2.09e+06 2.46e-03 1.42e-02 3.44e-03 1.48e-02 3.92e-03 2.39e-02 3.05e-03
CPU time 1.60e+02 1.96e+02 1.05e+02 1.86e+02 2.82e+01 2.04e+02 1.78e+02 2.14e+02 1.62e+02 2.12e+02

Eq-IDTLZ3 mean 1.76e-01 2.47e-02 1.94e+06 2.15e-02 1.42e-01 2.36e-02 1.15e-01 2.47e-02 1.34e-01 2.07e-02
std 7.11e-02 6.52e-03 2.38e+06 6.09e-03 4.51e-02 5.44e-03 2.98e-02 6.52e-03 7.16e-02 5.53e-03
CPU time 1.29e+02 1.91e+02 4.96e+01 1.70e+02 2.69e+01 1.89e+02 1.41e+02 1.71e+02 1.40e+02 1.80e+02

Wilc. test (I-D-S) 0–0–11 0–0–11 0–0–11 0–0–11 0–0–11
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Table 3.11: HV values and IF mean values obtained on EQC test problems with MOEA/D.

CDP-MOEA/D ATP-MOEA/D C-MOEA/D SR-MOEA/D ε-MOEA/D Imp ε-MOEA/D
— w/grad — w/grad — w/grad — w/grad — w/grad — w/grad

EQC1 mean 3.41e-01 9.09e-01 0.00e+00 9.09e-01 5.04e-01 9.09e-01 3.65e-01 9.09e-01 7.65e-01 9.09e-01 6.32e-01 9.08e-01
std 2.21e-01 1.17e-04 0.00e+00 2.20e-04 1.53e-01 1.60e-04 2.15e-01 1.28e-04 7.73e-02 1.17e-04 1.04e-01 5.77e-04
IF 1.0000 1.0000 0.0000 0.9242 0.0865 0.9497 0.9687 1.0000 1.0000 1.0000 1.0000 0.4539

EQC2 mean 1.68e-01 9.08e-01 8.97e-01 9.08e-01 2.08e-01 9.08e-01 1.71e-01 9.07e-01 3.40e-01 9.08e-01 7.32e-01 9.08e-01
std 1.06e-01 5.46e-04 3.58e-03 6.96e-04 1.50e-01 6.25e-04 1.19e-01 6.62e-04 1.41e-01 5.46e-04 4.89e-02 5.62e-04
IF 1.0000 1.0000 0.0535 1.0000 0.4297 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000

EQC3 mean 2.25e-01 6.71e-01 7.51e-01 7.57e-01 3.54e-01 6.67e-01 2.37e-01 6.49e-01 1.81e-01 6.71e-01 6.93e-01 7.43e-01
std 1.25e-01 5.54e-02 7.55e-03 3.84e-02 2.64e-01 5.10e-02 1.12e-01 3.21e-02 1.20e-01 5.54e-02 8.30e-02 4.03e-02
IF 1.0000 1.0000 0.0119 0.8035 0.4926 0.9552 0.9984 1.0000 1.0000 1.0000 1.0000 0.4410

EQC4 mean 7.71e-01 8.30e-01 3.76e-01 8.30e-01 7.84e-01 8.30e-01 7.65e-01 8.30e-01 7.95e-01 8.30e-01 7.95e-01 8.30e-01
std 2.12e-02 4.16e-04 1.47e-01 5.99e-04 1.18e-02 7.48e-04 1.71e-02 5.81e-04 9.65e-03 6.67e-04 7.95e-03 4.67e-04
IF 1.0000 1.0000 0.0013 0.8053 0.2989 0.9931 0.3395 1.0000 1.0000 1.0000 1.0000 0.9725

EQC5 mean 5.75e-01 7.77e-01 0.00e+00 7.77e-01 5.91e-01 7.77e-01 3.12e-01 7.77e-01 5.78e-01 7.77e-01 5.88e-01 7.77e-01
std 1.13e-01 4.86e-05 0.00e+00 2.79e-04 1.03e-01 3.43e-05 1.99e-01 3.51e-05 8.43e-02 4.41e-05 8.89e-02 4.79e-05
IF 1.0000 1.0000 0.0000 0.2027 0.1068 0.3392 0.1591 0.9920 1.0000 1.0000 1.0000 1.0000

EQC6 mean 0.00e+00 1.04e+00 0.00e+00 1.04e+00 0.00e+00 1.04e+00 0.00e+00 1.04e+00 0.00e+00 1.04e+00 0.00e+00 7.62e-01
std 0.00e+00 6.23e-04 0.00e+00 1.12e-03 0.00e+00 4.48e-04 0.00e+00 2.79e-04 0.00e+00 1.50e-04 0.00e+00 2.88e-01
IF 0.0000 1.0000 0.0000 0.5568 0.0000 0.5623 0.0000 0.9990 0.0000 1.0000 0.0000 0.1613

Eq-DTLZ1 mean 4.17e-01 8.41e-01 4.76e-01 8.41e-01 5.78e-01 8.41e-01 4.01e-01 8.41e-01 4.86e-01 8.41e-01 4.48e-01 8.41e-01
std 1.25e-01 2.43e-04 1.24e-01 2.74e-04 1.09e-01 2.43e-04 1.25e-01 5.04e-04 1.02e-01 2.43e-04 1.05e-01 3.14e-04
IF 1.0000 1.0000 0.0011 0.9911 0.1206 1.0000 0.9990 1.0000 1.0000 1.0000 1.0000 0.9873

Eq-DTLZ2 mean 3.58e-01 6.60e-01 4.21e-01 6.60e-01 5.77e-01 6.60e-01 3.47e-01 6.60e-01 5.44e-01 6.60e-01 4.43e-01 6.60e-01
std 9.96e-02 3.86e-04 6.93e-02 4.63e-04 5.68e-02 3.86e-04 8.20e-02 3.34e-04 2.64e-02 3.86e-04 6.30e-02 4.45e-04
IF 1.0000 1.0000 0.0013 0.9828 0.1170 1.0000 0.9983 1.0000 1.0000 1.0000 1.0000 0.9780

Eq-DTLZ3 mean 2.89e-01 6.57e-01 2.94e-01 6.58e-01 3.51e-01 6.57e-01 2.57e-01 6.51e-01 3.22e-01 6.57e-01 3.18e-01 6.55e-01
std 8.33e-02 2.17e-03 8.41e-02 1.75e-03 9.42e-02 2.17e-03 8.31e-02 2.47e-02 6.40e-02 2.17e-03 6.16e-02 1.26e-02
IF 1.0000 1.0000 0.0015 0.9977 0.1368 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000 0.9972

Eq-IDTLZ1 mean 1.34e-01 3.72e-01 1.30e-01 3.72e-01 2.24e-01 3.72e-01 1.25e-01 3.72e-01 1.36e-01 3.72e-01 1.43e-01 3.72e-01
std 5.74e-02 4.30e-04 4.50e-02 4.41e-04 3.85e-02 4.30e-04 5.51e-02 4.93e-04 4.50e-02 4.30e-04 4.35e-02 4.18e-04
IF 1.0000 1.0000 0.0003 0.9717 0.1200 1.0000 0.9995 1.0000 1.0000 1.0000 1.0000 0.9723

Eq-IDTLZ2 mean 2.07e-01 4.94e-01 2.54e-01 4.95e-01 4.42e-01 4.94e-01 1.98e-01 4.95e-01 3.77e-01 4.94e-01 3.04e-01 4.95e-01
std 8.96e-02 3.16e-04 5.16e-02 3.44e-04 5.90e-02 3.16e-04 7.19e-02 3.61e-04 3.22e-02 3.16e-04 5.84e-02 2.74e-04
IF 1.0000 1.0000 0.0004 0.9325 0.1265 1.0000 0.9983 1.0000 1.0000 1.0000 1.0000 0.9323

Eq-IDTLZ3 mean 1.64e-01 4.90e-01 1.51e-01 4.85e-01 2.69e-01 4.90e-01 1.38e-01 4.90e-01 2.26e-01 4.90e-01 2.23e-01 4.86e-01
std 7.36e-02 5.21e-03 7.38e-02 1.54e-02 7.34e-02 5.21e-03 5.48e-02 3.93e-03 4.71e-02 5.21e-03 6.50e-02 2.14e-02
IF 1.0000 1.0000 0.0004 0.9888 0.1327 1.0000 0.9996 1.0000 1.0000 1.0000 1.0000 0.9888

Wilc. test (I-D-S) 0–0–12 0–0–12 0–0–12 0–0–12 0–0–12 0–0–12
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Table 3.12: HV values and IF mean values obtained on EQC test problems with NSGA-II.

CDP-NSGA-II ATP-NSGA-II C-NSGA-II ε-NSGA-II Imp ε-NSGA-II
— w/grad — w/grad — w/grad — w/grad — w/grad

EQC1 mean 1.16e-01 9.07e-01 0.00e+00 9.02e-01 1.59e-02 9.06e-01 4.67e-01 9.07e-01 3.32e-01 8.82e-01
std 1.67e-01 3.00e-04 0.00e+00 2.34e-03 6.67e-02 5.13e-04 1.50e-01 3.00e-04 1.51e-01 1.27e-02
IF 0.9355 1.0000 0.0000 0.7348 0.0039 0.9277 0.9355 1.0000 0.9355 0.5639

EQC2 mean 3.64e-01 9.10e-01 7.02e-02 9.10e-01 4.57e-01 9.10e-01 7.33e-01 9.10e-01 5.85e-01 9.10e-01
std 1.74e-01 1.72e-04 1.71e-01 2.73e-04 1.99e-01 2.28e-04 1.21e-01 1.72e-04 1.32e-01 3.30e-04
IF 1.0000 1.0000 0.0019 0.9890 0.3342 0.9997 1.0000 1.0000 1.0000 0.9835

EQC3 mean 3.36e-01 7.76e-01 5.53e-02 7.72e-01 3.31e-01 7.76e-01 5.68e-01 7.76e-01 4.64e-01 7.63e-01
std 1.62e-01 3.42e-03 1.42e-01 2.86e-03 1.20e-01 3.11e-03 9.38e-02 3.42e-03 1.43e-01 3.81e-03
IF 1.0000 1.0000 0.0016 0.9894 0.3384 0.9994 1.0000 1.0000 1.0000 0.4981

EQC4 mean 7.38e-01 8.22e-01 3.76e-02 8.22e-01 7.07e-01 8.21e-01 7.45e-01 8.22e-01 7.51e-01 8.21e-01
std 4.56e-02 2.32e-03 9.41e-02 2.31e-03 1.04e-02 2.60e-03 1.17e-02 2.06e-03 9.80e-03 2.15e-03
IF 1.0000 1.0000 0.0006 0.9409 0.1333 0.986 1.0000 1.0000 1.0000 0.8506

EQC5 mean 3.00e-01 7.77e-01 0.00e+00 7.43e-01 3.52e-01 7.70e-01 2.40e-01 7.77e-01 2.52e-01 7.77e-01
std 1.43e-01 6.86e-05 0.00e+00 1.65e-02 1.68e-01 2.03e-03 1.74e-01 7.87e-05 1.78e-01 9.08e-05
IF 1.0000 1.0000 0.0000 0.2889 0.0765 0.5703 0.9798 1.0000 0.9677 1.0000

EQC6 mean 0.00e+00 1.03e+00 0.00e+00 0.00e+00 0.00e+00 9.90e-01 0.00e+00 1.04e+00 0.00e+00 2.01e-01
std 0.00e+00 1.32e-02 0.00e+00 0.00e+00 0.00e+00 4.29e-02 0.00e+00 8.26e-04 0.00e+00 4.17e-01
IF 0.0000 1.0000 0.0000 0.0000 0.0000 0.5400 0.0000 1.0000 0.0000 0.1935

Eq-DTLZ1 mean 5.28e-01 8.36e-01 5.24e-02 8.37e-01 6.67e-01 8.35e-01 6.03e-01 8.36e-01 5.85e-01 8.37e-01
std 1.09e-01 3.17e-03 1.07e-01 2.75e-03 1.01e-01 2.60e-03 8.85e-02 3.17e-03 1.01e-01 2.30e-03
IF 1.0000 1.0000 0.0013 0.9851 0.1691 1.0000 1.0000 1.0000 1.0000 0.9684

Eq-DTLZ2 mean 5.13e-01 6.52e-01 5.50e-02 6.55e-01 5.62e-01 6.52e-01 6.00e-01 6.52e-01 5.85e-01 6.55e-01
std 5.84e-02 3.12e-03 7.37e-02 2.75e-03 3.24e-02 4.93e-03 1.78e-02 3.12e-03 3.86e-02 2.54e-03
IF 1.0000 1.0000 0.0019 0.9770 0.1459 1.0000 1.0000 1.0000 1.0000 0.9633

Eq-DTLZ3 mean 3.73e-01 6.33e-01 7.43e-02 6.36e-01 4.52e-01 6.36e-01 4.01e-01 6.33e-01 4.28e-01 6.39e-01
std 7.50e-02 7.36e-03 9.14e-02 8.69e-03 7.19e-02 5.95e-03 7.33e-02 7.36e-03 5.33e-02 7.57e-03
IF 1.0000 1.0000 0.0019 0.9828 0.1477 1.0000 1.0000 1.0000 1.0000 0.9690

Eq-IDTLZ1 mean 1.48e-01 3.68e-01 4.82e-02 3.69e-01 2.10e-01 3.68e-01 1.76e-01 3.68e-01 1.65e-01 3.68e-01
std 4.81e-02 2.50e-03 5.20e-02 2.09e-03 3.77e-02 2.72e-03 3.62e-02 2.50e-03 5.24e-02 2.72e-03
IF 1.0000 1.0000 0.0028 0.9881 0.1691 0.1912 1.0000 1.0000 1.0000 0.9694

Eq-IDTLZ2 mean 3.51e-01 4.95e-01 2.80e-02 4.95e-01 4.32e-01 4.95e-01 4.34e-01 4.95e-01 4.16e-01 4.95e-01
std 4.91e-02 8.11e-04 4.39e-02 3.86e-04 1.44e-02 6.80e-04 2.54e-02 8.11e-04 3.58e-02 7.18e-04
IF 1.0000 1.0000 0.0013 0.9815 0.1476 1.0000 1.0000 1.0000 1.0000 0.9720

Eq-IDTLZ3 mean 2.73e-01 4.74e-01 3.43e-02 4.78e-01 3.21e-01 4.77e-01 3.22e-01 4.74e-01 3.05e-01 4.78e-01
std 4.36e-02 1.39e-02 5.31e-02 7.94e-03 4.01e-02 9.26e-03 3.20e-02 1.39e-02 4.84e-02 1.11e-02
IF 1.0000 1.0000 0.0014 0.9874 0.1531 1.0000 1.0000 1.0000 1.0000 0.9789

Wilc. test (I-D-S) 0–0–12 0–1–11 0–0–12 0–0–12 0–0–12
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Concerning problem EQC3, it constitutes a more difficult problem as the true Pareto
front is disconnected. For the MOEA/D algorithm, it is quite difficult to consistently
determine the disconnected segment of PF , even though the gradient-based repair
method improves the performance of the original algorithms.

Problems EQC4-5 (Cuate et al., 2020a) involve three-objective functions, with
only three decision variables and one and two equality constraints, respectively. For
these problems, the same diversity issue as for problems EQC1-3 is observed: the
canonical constraint-handling techniques lack the capacity of continuing exploring
regions different from those found first, corresponding to a reduced part of the true
PF. The search process gets trapped in equality-constrained search space regions. This
phenomenon is displayed in Figure 3.8 (left) for problem EQC5, clearly illustrating
how the Stochastic Ranking without repair barely identifies a few points on PF ,
while incorporating the repair strategy allows to find the complete front. Therefore,
the effect of the gradient-based repair strategy is that new individuals may survive
and explore in a smooth way these equality-constrained search spaces, with the
possibility of visiting promising regions, as observed in Figure 3.8 (right) for the same
problem. The numerical results shown in Tables 3.9 to 3.12 highlight the ability of
the gradient-based repair to achieve the best possible approximation of the true PF,
for the population size and diversity criterion used. As previously, even the methods
that exhibited a poor performance in their canonical form, like ATP or SR, have now
an excellent performance once the repair process is carried out.

Problem EQC6 (Pintaric and Kravanja, 2006; Rangaiah, 2009) is the so-called
Williams-Otto process optimization problem. It has ten decision variables and six
equality constraints, and thus can be considered as the most difficult problem treated
here (with respect of constraint satisfaction). The formulation considered involves
the maximization of two objectives: the net present value (NPW) and the profit
before taxes (PBT). As observed in Table 3.11, none of the canonical constraint-
handling method is able to find any single feasible solution in any run, not even
the CDP method, whose priority is yet the search for feasible solutions, all along
the evolutionary process. The satisfaction of six equality constraints involving ten
decision variables seems to be a very difficult task for these algorithms. But once
again, the gradient information of constraints permits to find the Pareto optimal front.
A revisited formulation of this problem was used elsewhere for problem solution
(Ouattara, 2011; Rangaiah, 2009): at each evaluation of the objective function, all
equality constraints are satisfied by solving a system of nonlinear equations. This
methodology, although computationally intensive, has proven to be efficient for
solving the problem. For comparison purposes, we have implemented this solution
strategy and it showed CPU times approximately 30 times higher than those reported
with the repair performed here. Besides, that reformulation methodology cannot be
applied as a general-purpose method.

Benchmark problems Eq-DTLZ and Eq-IDTLZ are scalable in the number of
decision variables, objectives functions and equality constraints (Cuate et al., 2020b).
They are built from the DTLZ problems (Deb et al., 2005) and hyper-spheres are
added as equality constraints. We only considered here the three objective problems,
involving one equality constraint that forms a circle in the search space of the variables
x1 and x2. The Eq-DTLZ1 and Eq-IDTLZ1 contain seven decision variables, whereas
the rest contain twelve decision variables. According to the results, the canonical
techniques present difficulties for preserving diversity in the objective space, i.e.,
offspring solutions, as a product of recombination operators, are likely to be infeasible
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Figure 3.9: Final Pareto front approximation of EQC6 function. ε-MOEA/D without
(left; no feasible solution found) and with (right) gradient-based repair.
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Figure 3.10: Final Pareto front approximation of Eq-DTLZ1 function. CDP-MOEA/D
and CDP-NSGA-II without (left) and with (right) gradient-based repair.
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because of the narrow feasible region. Thus, the evolutionary process is stopped at
early generations once parents converge to only some regions of the PF . Conversely,
the gradient-based repair enable the population to preserve diversity by repairing
offspring solutions that might be at the vicinity of the Pareto front but still being
infeasible. In this way, promising but infeasible solutions are now repaired and
properly evaluated by the MOEA in the selection step. Numerical and graphical
results (see Table 3.9 to 3.12 and Figure 3.10) consistently indicate the superiority of
the methods employing the gradient-based repair of solutions.

3.6 Conclusions

This chapter presented a comparative study highlighting the benefits of using the con-
straints’ gradient information to repair infeasible solutions when solving CMOPs. This
strategy was embedded and combined with six state-of-the-art constraint-handling
schemes, classically used within MOEA/D and NSGA-II: constraint dominance
principle, penalty function (ATP), C-MOEA/D, stochastic ranking, ε-constraint and
improved ε-constraint. The use of the constraints’ gradient-based repair strategy
significantly enhances the canonical algorithms over the test suites studied here (CF,
LIRCMOP, EQC, Eq-DTLZ and Eq-IDTLZ). These instances allowed to evaluate and
analyze the performance of these techniques for different problem features. Indeed,
some functions contain a significant number of local optima (both in the objective
space and in the constrained search space), that may be bounded by inequality con-
strained regions producing islands in the search space or disconnected true Pareto
fronts enclosed by infeasible regions. Also, equality constrained problems are con-
sidered (which is rather unusal in the study of CMOPs), which generate particular
difficulties to reach the whole PF .

The obtained results have shown that the information of constraints’ gradient
can make the canonical constraint-handling methods much more robust, enabling
the population to get across infeasible regions and promoting the diversity during
the construction of the Pareto front approximation. Besides, the results observed in
the test problems containing equality constraints allow to conclude that repairing
infeasible individuals is particularly useful for problems with narrow feasible spaces,
as those produced by equality constraints, in which canonical methods do not work
properly. The repair procedure considered here repairs those promising solutions
that are infeasible, so that the MOEA can continue searching for a well-distributed
approximation of the Pareto front. Moreover, when the computation of the gradient
is performed, the computational time does not significantly increase compared to that
of canonical algorithms, at least for problems containing up to 30 decision variables.

Additionally, the work carried out in this chapter promote the research on the
use of mathematical properties (like the gradient) that can be exploited in order to
enhance the search process and guide the MOEA population towards promising
regions. The encouraging results obtained with the gradient-based repair strategy
on the academic benchmarks tackled here thus lead to apply a similar methodology
for the solution of complex PSE problems. Therefore, the following chapters are
devoted to the extension of the present study to a real-world engineering problem,
the optimal design of hydrogen supply chains (HSC), that encompasses both equality
and inequality constraints.
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After a first part devoted to the empirical evaluation of computational techniques
adapted to the solution of constrained multiobjective optimization problems, the
lessons learned from this numerical study are now applied in this second part to a
real-world PSE problem, namely the sustainable design of hydrogen supply chains.
This chapter provides the general background regarding this topic, setting the basis
for the proper understanding of the subsequent chapters, offering the reader related
information about the challenges of hydrogen deployment. First, the relevance of
hydrogen for providing clean solutions in the energy transition context is discussed
in Section 4.1. Then, in Section 4.2, the application to the mobility sector is described
and the main features of the hydrogen supply chain are presented. A brief description
of the design problem, highlighting the specific issues that arise for designing the
optimal hydrogen supply chains is developed in Section 4.3. Finally, the conclusions
and the work orientation are presented in Section 4.4.

4.1 Hydrogen context

4.1.1 The role of hydrogen for global decarbonization

The growing general concern about the depletion of conventional energy sources,
such as oil and gas, as well as the degradation of the environment caused by the
combustion of these fossil fuels, have motivated the search for a more sustainable
energy model based on renewable energy systems. In this context, hydrogen stands
as a potential low-carbon alternative because it can play multiple roles in the energy
transition (see Figure 4.1). These can be summarized in the following points:
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• Hydrogen can be produced from renewable sources like biomass, wind or solar
energy, or from a variety of fossil fuels coupled with processes that capture,
utilize or storage the by-product CO2.

• It can be used in multiple sectors such as industry, building and transportation,
providing meaningful reductions of CO2 emissions.

• Hydrogen can hence store surplus power from renewable sources when the grid
cannot absorb it (IEA, 2019).

According to the Hydrogen Council (2017), hydrogen is expected to cover 18%
of global energy demand by 2050. These long-term estimates are in part established
considering the government policies to limit the global greenhouse gases (GHG)
emissions, in line with the 2015 Paris Climate Agreement. Besides, in 2019, the
European Green Deal set up a framework of regulation and legislation with targets to
reach net zero global warming emissions by 2050. Within this agreement, hydrogen is
considered a key instrument for meeting the Green Deal objectives. Further, energy
storage is often viewed as an electrical power storage through mechanical, electrical
and electrochemical storage systems. In the current energy system, grid-scale energy
storage is typically short-term and used to maintain stability, in order to address peaks
(i.e., on the minute and hour scale) up to daily imbalances. Seasonal storage may be
needed in the future for high levels of renewable penetration based mainly on solar
and wind generation, and can be achieved at terawatt (TW) level through hydrogen or
synthetic methane (Davies et al., 2020). This is why hydrogen is mentioned as one of
the best options to store electrical energy, even better than pumped hydro, compressed
air or batteries. Beyond its potential role in providing chemical storage of electricity,
hydrogen can also act as an energy carrier for energy and industrial applications
where it is difficult to replace fossil fuels, thus contributing to the decarbonization of
transportation, buildings or industry. Hydrogen can thus be viewed as a “coupling
sector” technology (Brey, 2020).

Act as a buffer
to increase 
system resilience

Distribute
energy across 
sectors and 
regions

Enable large-scale
renewables 
integration and
power generation
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3

Help decarbonize 
transportation

Help decarbonize
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Serve as renewable 
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4

7
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SOURCE: Hydrogen Council

Enable the renewable energy system Decarbonize end uses

Figure 4.1: Hydrogen can play 7 roles in the energy transition. Taken from Hydrogen
Council (2017).
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4.1.2 Hydrogen as a driver for the transport decarbonization

In this respect, the transportation sector is of high importance because it is responsible
for 26% of GHG emissions in EU, 28% in U.S., and 23% worldwide in recent years
(European Environment Agency, 2018; Sims et al., 2014), which is in part explained
by the fact that this sector relies almost completely on oil (Hydrogen Council, 2017).
Consequently, several technologies have been proposed with the aim to decarbonize
this sector, and particularly, the road transportation sector, including hybrid electric
vehicles, battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs). Re-
garding BEVs, on the one hand, they are at present in the market mainly because
the electric grid is already available in most areas where cars typically need to be
charged. Nevertheless, they present primarily two drawbacks, namely, high charging
times, and for medium-to-large size vehicles, the need for heavy batteries. On the
other hand, it is widely recognized that FCEVs are a necessary complement to BEVs,
as FCEVs typically permit users longer ranges and fast fueling times, in comparison
to BEVs (Lin et al., 2018), with the drawback that little or none fueling stations are yet
available in most areas. Several studies have been conducted showing that BEV and
FECV can provide climate benefits, though results depend strongly on several factors
including the electrical mix used for battery charging and hydrogen production, the
lifetime distance traveled by the vehicle, and the vehicle energy consumption. A Life
Cycle Assessment is thus necessary to have a global overview of all the steps involved
from well-to-wheel (see Cox et al., 2020).

Hence, even if the potential environmental and technological benefits of hydrogen
in the transportation sector are encouraging, the shift to a hydrogen-based economy
is still a challenge. Much of the future expansion of hydrogen utilization depends not
only on technological developments and energy policies, but also on the hydrogen
supply chain (HSC) deployment.

4.2 Hydrogen supply chain for mobility

As a general definition, a supply chain is an integrated network of facilities and
transportation options for the supply, manufacture, storage, and distribution of
materials and products (Garcia and You, 2015). An optimally designed supply chain
should, through one or a variety of metrics, reflect the “best” configuration and
operation of all of these elements (ibid.). In this sense, the optimal design of the
hydrogen supply chain is defined as the infrastructure required to manufacture, store
and deliver hydrogen to the consumer, so that one or multiple criteria are minimized.
In this way, production processes are required to convert primary energy resources
into hydrogen; storage units and terminals are needed to compensate for fluctuations
in demand; distribution systems are essential for transporting hydrogen from the
production facilities to the point of sale; and finally, dispensing or refueling stations
allow the transfer of hydrogen to users at forecourt retail stations (Almaraz et al.,
2013; Almaraz et al., 2015; Hugo et al., 2005; IEAGHG, 2017).

At each of the stages along the supply chain, a wide variety of potential technolog-
ical options exist, as represented in Figure 1 in page 5. Thus, not only can hydrogen
be manufactured from a variety of primary energy feedstocks, but it can also be
distributed in a variety of physical forms using different technologies. Each one of
the technological pathway options has its own unique advantages and disadvantages,
and it must be emphasized that the degree of maturity is not the same among the
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technologies. In what follows, the some technological options are explained in more
details, they will be used in the case studies treated in the subsequent chapters.

4.2.1 Hydrogen production

The local market conditions and availability of regional primary energy feedstock have
a large impact on the selection of supply chains pathways. As previously explained,
hydrogen has the benefits of improving security of fuel supplies since it can be
produced from diverse primary energy sources, such as fossil fuels and renewable
energy sources, i.e., wind, biomass, or solar energy (Almaraz et al., 2014a; Valente
et al., 2020). In the following, two important hydrogen production technologies are
presented, namely, steam methane reforming and water electrolysis.

4.2.1.1 Steam reforming

Steam methane reforming (SMR) is the most widespread technology for hydrogen
production from natural gas at large scale, since it has the lowest capital costs of the
hydrogen production. This production process uses a catalyzer (typically nickel) to
facilitate the thermochemical reaction of natural gas and water at temperatures of
around 850◦C and a pressure of 2.5 MPa (Sørensen and Spazzafumo, 2018; Velazquez
Abad and Dodds, 2017). The methane found in natural gas reacts with steam to
produce a synthesis gas consisting of hydrogen and carbon monoxide, represented as
follows:

CH4(g) + H2O(g)→ CO(g) + 3H2(g), ∆H = 206 kJ mol−1 (4.1)

In order to obtain a high conversion efficiency, the syngas is saturated with further
steam which yields additional hydrogen as the CO is converted to CO2:

CO(g) + H2O(g)→ CO2(g) + H2(g), ∆H = −41 kJ mol−1 (4.2)

The heat required in equation (4.1) is obtained from the heat surplus produced
in reaction described in equation (4.2) and by burning a proportion of the methane
feedstock (typically 30–40% of it) (IEA, 2019; IEAGHG, 2017). The global SMR
reaction is thus endothermic (165 kJ mol−1) and it yields 4 mol of H2 and 1 mol of
CO2 for each one of methane (see equations 4.1 and 4.2). Hydrogen produced through
SMR has an average carbon intensity of 328 gCO2-eq/kWh (National Academy of
Engineering, 2004). This fossil type of hydrogen is commonly referred to as “grey
hydrogen”. Nevertheless, significant reductions of these carbon emissions could be
achieved using CCUS technologies.

The production cost of hydrogen from natural gas is influenced by various tech-
nical and economic factors, with gas prices and capital expenditure (CAPEX) being
the two most important. The data used in this work regarding SMR production
technology is provided in Appendix B.

Low-carbon alternative: CCUS

Given the fact that SMR processes entail significant CO2 emissions, a promising
option is the integration of carbon capture, utilization and storage (CCUS). This
can be carried out in several ways. For instance, CO2 can be separated from the
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Figure 4.2: Basic water electrolysis process. Taken from Electrolysers (n.d.).

high-pressure syngas stream, reducing emissions by up to 60%. CO2 can also be
captured from the more diluted furnace flue gas. This can boost the level of overall
emission reduction to 90% or more (Dodds, 2015; IEA, 2019; IEAGHG, 2017).

Adding CCUS to SMR plants leads, in average, to cost increases of about 50%
for investment costs and about 10% for fuel, the exact amounts depending on the
design. It also leads on average to a doubling of operational cost as a result of CO2
transportation and storage costs (IEA, 2019). The data used in this work regarding
SMR w/CCUS production technology is presented in Appendix B.

4.2.1.2 Water electrolysis

Water electrolysis is a process that consists in splitting water into hydrogen and
oxygen. In its basic form, electrolyzers are composed of an anode, a cathode and a
conductive medium (electrolyte), as represented in Figure 4.2.

An electric current generates a flow of positive-charged ions (such as hydrogen) to
the cathode where these electrons are reduced. Conversely, negatively charged ions
move to the anode losing electrons and oxidizing. In the process, the water breaks
down, generating hydrogen and oxygen (Dodds, 2015; Sørensen and Spazzafumo,
2018). The overall process is represented by the following chemical equation:

H2O(l) −⇀↽− H2(g) +
1
2

O2(g), ∆H = 286 kJ mol−1 (4.3)

A key advantage of electrolysis over fossil-based technologies is the high purity
of the produced hydrogen (greater than 99.999%), which is suitable for powering fuel
cells without further purification. Besides, as electricity generation from solar, wind
and wave is intermittent, the deployment of high levels of these technologies might
lead to significant disparities between electricity supply and demand at different times.
One option is to integrate electrolysis technologies into national energy systems, so
that excess electricity is converted into hydrogen through power-to-gas processes
(Carrera Guilarte and Azzaro-Pantel, 2020). In this vein, electrolyzers can offer a
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flexible load that providing low-cost balancing services to the power system while
producing hydrogen for mobility applications, industrial uses, or injection to the
gas grid. Two main electrolyzer technologies that are mature today are alkaline
electrolysis and proton exchange membrane electrolysis. Their main technical and
economic characteristics are described in the following.

Alkaline electrolysis

Alkaline electrolysis (AEL) is a mature technology for H2 production up to the MW
scale, and represents the most widely used electrolytic technology on a commercial
level worldwide. In alkaline electrolyzers a direct current is applied between an anode
and a cathode submerged in an electrolyte (an alkaline solution such as sodium or
potassium hydroxide), which causes hydrogen to form in the cathode and oxygen in
the anode (see Figure 4.4). The hydrogen production rate is proportional to the current
passing through the electrodes. The reaction is endothermic and reversible at ambient
temperature (Velazquez Abad and Dodds, 2017), since the diffusion of oxygen into
the cathode compartment reduces the efficiency of the electrolyzer, reacting with the
hydrogen present on the cathode side to form water (Miller et al., 2020).

Commercial electrolyzers have a hydrogen production efficiency of 68%–80%,
which depends on the cell voltage (typically 1.9–2.2 V), temperature (343–363 K),
electrolyte flow conditions, and the operating pressure (Hanke-Rauschenbach et
al., 2015). AEL cannot work below specific loads (typically below 30%) for safety
reasons because the O2 production rate decreases, thus increasing the H2 cross-over
concentration to dangerous levels (lower explosion limit >4 mol% H2) (Miller et al.,
2020; Taibi et al., 2018).
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Figure 4.3: Comparison of water electrolysis cells and chemistries using either an
AEL (left) or a PEM (right). Taken from Cummins Inc. (n.d.).

Proton exchange membrane electrolysis

Proton exchange membrane (PEM) are electrolyzers smaller than AEL as the elec-
trolyte is a solid polymer material rather than a liquid. Oxygen from the water
molecules and positively charged hydrogen ions are formed in the anode. The elec-
trons flow through an external circuit and the hydrogen ions move to the cathode
through the membrane, where they combine with the electrons to form hydrogen gas
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Blue hydrogenGrey hydrogen Green hydrogen

Figure 4.4: Comparison of different hydrogen production pathways and their corre-
sponding color labels. Taken from theworldofhydrogen (n.d.).

(Velazquez Abad and Dodds, 2017), see Figure 4.4. PEM electrolyzers have a faster
dynamic response and wider load ranges than alkaline electrolyzers; however, they
have higher capital costs as they require expensive catalysts (IEA, 2019). Systems can
be maintained in stand-by mode with minimal power consumption and are able to
operate for a short time period (10–30 minutes) at higher capacities than the nominal
load, i.e., beyond 100%, and up to 200% (Eichman and Flores-Espino, 2016; Taibi et al.,
2018).

4.2.1.3 On hydrogen colors

In recent years, colors have been used to refer to different sources of hydrogen
production. “Black”, “grey” or “brown” refer to the production of hydrogen from
coal, natural gas and lignite respectively. “Blue” is commonly used for the production
of hydrogen from fossil fuels with CO2 emissions reduced by the use of CCUS. “Green”
is a term applied to production of hydrogen from electrolysis powered by renewable
electricity. In general, there are no established colors for hydrogen from biomass,
nuclear or different varieties of grid electricity. Nevertheless, color terminology is to
be used carefully as the environmental impacts of each of these production routes can
vary considerably by energy source, region and type of CCUS applied; they range
from 328 gCO2-eq/kWh for hydrogen produced from natural gas, and can be as low
as 32 gCO2-eq/kWh for hydrogen produced by wind-powered electrolysis (Bhandari
et al., 2014).

4.2.1.4 Centralized and distributed hydrogen production

Besides, unlike most other fuel infrastructures, hydrogen can be produced either
centrally or in a distributed manner. A centralized production option would be analo-
gous to current gasoline supply chains, where the economy of scale are capitalized
upon within an industrial context and large quantities are produced at a central
site and then distributed. Centralized plants promise higher hydrogen production
efficiency but require more capital investment and a substantial hydrogen transport
and delivery infrastructure.

Alternatively, through the use of electrolyzers, hydrogen can be produced closer
to the point of use, i.e. on-site, in smaller quantities. Such a scenario would exploit
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the production of hydrogen at the forecourt refueling stations, thereby alleviating
the significant transportation cost (Hugo et al., 2005; Hydrogen Council, 2020; IEA,
2019). However, a decentralized approach often results in higher costs as production
efficiencies are generally lower and because on-site production facilities are often
dimensioned to cover peak demand, especially when no storage is foreseen or possible
(Haeseldonckx and D’haeseleer, 2011).

4.2.2 Hydrogen transportation

As hydrogen is to play a meaningful role in clean and flexible energy systems, delivery
infrastructure choices and costs are thus critically important. Three main options
exist for hydrogen distribution: 1) trucking of compressed hydrogen, 2) trucking of
liquefied hydrogen, and 3) use of pipelines. Choosing the best option depends on
different parameters such as the distance of the demand center from the production
site, the amount of transferred hydrogen and the existing infrastructure (Almaraz
et al., 2015; Hydrogen Council, 2020; IEA, 2019).

Besides, hydrogen can be transported in gas or liquid form, but compressed
hydrogen (at 700 bar pressure) has only 15% of the energy density of gasoline, so
transporting the equivalent amount of energy would require nearly seven times the
same space. Liquid hydrogen tanker trucks are often used instead where there is
reliable demand and the liquefaction costs can be offset by the lower unit costs of
hydrogen transport (IEA, 2019). Highly insulated cryogenic tanker trucks can carry
up to 4 000 kg of liquefied hydrogen, and are commonly used today for local journeys
and up to 4 000 km. According to IEA (ibid.), it is reasonable to expect that, over the
next decade, compressed gas tube trailers and liquid hydrogen tanks will remain the
main distribution modes, just as distribution of gasoline and diesel to geographically
dispersed refueling stations is mostly carried out using trucks today.

In many countries there is an extensive natural gas pipeline network that could
be used to transport and distribute hydrogen. Also, new infrastructures could also be
developed with dedicated pipeline network, potentially allowing large-scale overseas
hydrogen transport (Hydrogen Council, 2017; IEA, 2019). In this work, hydrogen
transport through pipelines is not considered because of the size (relatively small) of
the geographic region studied.

4.2.3 Hydrogen storage and distribution

Today hydrogen is most commonly stored as a gas or liquid in tanks for small-scale
mobile and stationary applications. The most appropriate storage medium depends
on the volume to be stored, the duration of storage, the required speed of discharge,
and the geographic availability of different options. Tanks storing compressed or
liquefied hydrogen have high discharge rates and efficiencies of around 99%, making
them appropriate for smaller-scale applications where a local stock of fuel or feedstock
needs to be readily available (IEA, 2019; Taibi et al., 2018).

4.3 The problem of hydrogen supply chain design

Accounting for the framework in the previous sections, the HSC design problem
consists of a four-echelon supply chain for transportation sector (energy source–
production–transportation–storage and distribution). The network considers several
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Figure 4.5: Hydrogen supply chain technologies considered in this work.

energy sources as feedstock to different production technologies, each production
technology having different possible sizes with corresponding capacity bounds,
capital costs and product unit costs. A set of options is available for transportation
from production sites to storage facilities. Before and after transportation, it can be
necessary to condition hydrogen to a suitable physical form for transportation and
then, for storage. Depending on this final physical form, several storage technologies
are available with different capacity sizes. The supply chain describing the options
considered in this work is represented in Figure 4.5.

Besides, the optimal design of the hydrogen supply chain has to take into account
not only the economic aspects but also the environmental impacts of each potential
alternative in the network, so that a realistic evaluation of the HSC can be done.
In this context, the scientific objective of this work is to provide an answer to the
following questions:

• Where hydrogen production plants, storage units should be located to meet
a demand for hydrogen in specific time periods by minimizing costs and/or
environmental impacts?

• How does the electricity from renewable sources impact the selection of grids
for hydrogen production?

In the next chapters, these questions will be addressed by appropriate mathemati-
cal modeling and optimization tools.

4.4 Conclusions

In this chapter, the concept of the hydrogen supply chain (HSC) has been introduced
with a particular focus on mobility applications. This information highlighted the fact
that the hydrogen supply chain for mobility application results in a more complex
network than that for on-site industrial applications. A hydrogen supply chain
involves technological bricks for energy sources, production, transportation and
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storage, and refueling stations. All these activities need to be integrated in a systematic
modeling framework that will be the core of the next chapters.
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5.1 Introduction

After the general presentation describing, in the previous chapter, the framework
of HSC for the mobility sector, this chapter is devoted to the corresponding design
problem, formulated as a constrained multiobjective optimization problem. Such a
problem has to take into account the different sources of energy from which hydrogen
can be produced, the different production and storage technologies available, the
location of hydrogen plants and storage facilities, their respective production and
storage capacities and the mode and rate of transportation between production units
and storage facilities in the network. Besides, the design of a cost-efficient hydrogen
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infrastructure has to consider the varying demand over time, so that a multi-period
model has to be employed.

Due to the aforementioned characteristics, the HSC design problem is often
formulated as a difficult optimization problem (NP-hard problem) (Yoo et al., 2010),
involving both discrete and continuous variables: the former account for the existence
and location of production and storage facilities of a specific capacity, while the
latter represent the hydrogen flow rates from production to storage units in order
to satisfy a given demand. Moreover, from a perspective of sustainability, not only
cost minimization but also environmentally-friendly production modes need to be
accounted for, leading to a multiobjective formulation of the problem.

This chapter is organized as follows. In Section 5.2, an extensive literature review
of related works is presented, with a particular focus on solution approaches. In
Section 5.3, the main characteristics and assumptions of the problem under study are
described, along with a mathematical model representing the sustainable HSC design
problem. Note that this model is drawn from previous studies and that the main
contribution of this chapter is the development of a metaheuristic-based solution
technique. Therefore, the research is devoted to investigate the performance of a
multiobjective evolutionary algorithm to tackle this real-world problem. Particularly,
the performance of the canonical version of MOEA/D, coupled with the gradient-
based repair as a constraint handling technique, is examined. The obtained results are
presented and discussed in Section 5.6. Finally, the conclusions drawn in Section 5.7
point the way to the design of a hybrid approach, developed in the next chapter.

5.2 Literature review

5.2.1 Mathematical programming for mono- and multiobjective optimiza-
tion

Several approaches have been proposed for the design of hydrogen supply chains
in multiple works, each one considering different assumptions and characteristics of
the supply chain. One of the first studies proposing mathematical modeling tools
in this area is found in Heever and Grossmann (2003). This work focused on the
integration of production planning and reactive scheduling for the optimization of
a refinery hydrogen network. It addressed only the operational level of an existing
network, so that the hydrogen supply chain design is out of the scope. The problem
is formulated as a multi-period mixed-integer nonlinear program (MINLP) devoted
to minimization of costs and solved through exact techniques (DICOPT++, Brooke
et al. (1998)).

Later on, in a pioneering work, Hugo et al. (2005) proposed a generic mathematical
model, including different primary energy feedstocks, different production and
storage technologies, distribution types, potential sites for location of production
units, and the dynamic change of hydrogen demand over time. The resulting mixed
integer linear programming (MILP) model considered two conflicting objectives
(economic and environmental). The authors do not specify the solution approach
employed, but it is presumably an exact one.

In Almansoori and Shah (2006), the authors provided a formal model encompass-
ing every echelon of the supply chain with an illustrative case study in UK. Initially,
the model only considered a constant deterministic demand with the minimization of
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the total cost of the hydrogen infrastructure as the objective function. Subsequently,
in Almansoori and Shah (2009), the original model was modified to account for
multiple periods, each one with a different hydrogen demand, and then, uncertainty
on demand was taken into consideration in Almansoori and Shah (2012). Besides,
this model has been extended in several works to consider multiple objectives si-
multaneously, namely, the greenhouse gas emissions (GHG) and safety, with case
studies in Germany (Almansoori and Betancourt-Torcat, 2016), France (Almaraz et al.,
2015; Almaraz et al., 2014b), Korea (Kim and Moon, 2008) and Portugal (Câmara
et al., 2019). It must be highlighted that, regarding the handling of multiple objec-
tives, the solution approach adopted in all these works is always the same one, i.e.,
ε-constraint method. Therefore, because of the combinatorial aspect of the problem
that involves prohibitive computational times, large-scale instances cannot be treated
or the accuracy of the Pareto front approximations are generally neglected.

5.2.2 Bilevel decomposition

With the aim of alleviating the numerical difficulties associated to the solution
of multiobjective large-scale instances, two significant strategies based on bilevel
decomposition have been proposed in Guillén-Gosálbez et al. (2010) and Sabio et
al. (2010). In Guillén-Gosálbez et al. (2010), the authors minimize the total cost
and an environmental criterion according to the principles of life cycle assessment,
related to the supply chain. The original problem is reformulated into a bilevel
(master-slave) optimization problem. In the master problem, the integer variables
representing the existence of production plants and storage facilities are removed,
those associated to the number of transportation units are relaxed (considered as
continuous), and auxiliary binary variables are added to represent the selection of each
type of production unit, storage facility and transportation mode. The master problem
provides as an output the type of production, storage and transport technologies
that should be used in the supply chain (it does not indicate their optimal sizes ,
but only if they will be used or not). Regarding the lower level, it is constituted by
the original MILP model, but this latter is solved only for the subset of technologies
predicted at the upper level. In this manner, the master and slave problems are solved
iteratively until the bounds of each subproblem converge within a specified tolerance.
It is important to note that the multiobjective aspect of the original problem remains,
in both master and slave subproblems, tackled via the ε-constraint method in both
levels. So, in order to speed up the solution process, the authors propose the use of
integer and logic cuts in the upper level.

In another notable work (Sabio et al., 2010), the authors considered the total cost
and financial risks of the HSC as the two objectives to be minimized. They also
proposed a master-slave decomposition approach, based on the assumption that, in
practical problems, the continuous relaxation of the integer variables of the full-space
model provides tight lower bounds. Consequently, the master subproblem solves the
relaxed original model by reformulating all the integer variables as continuous, while
the slave problem solves the original problem but considers the relaxed variables in
the master problem as parameters once they have been rounded to the next integer.
This decomposition strategy allows obtaining lower and upper bounds of the original
problem efficiently. It must be emphasized that both master and slave problems are
still modeled as bi-objective MILP problems that exhibit a reduced complexity in
comparison to the original model. The multiobjective aspect in both subproblems is
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addressed again using the ε-constraint method.
More recently, in Woo and Kim (2019), the authors employed genetic algorithms

coupled with exact techniques to solve the optimal design of the HSC with replenish-
ment cycles, modeled as a mixed-integer nonlinear programming problem (MINLP).
A bilevel approach is proposed as a solution strategy, the upper-level being solved
by a binary-coded genetic algorithm that handles some variables, in such a way that
the lower level solves a linearized model resulting from the upper level variables,
considered as parameters. For solving the MILP problem in the lower level, the
CPLEX solver is employed. However, the work only addresses a single-objective
problem (economic criterion) and several characteristics of the supply chain are not
modeled, e.g., availability of different energy feedstock and facility sizes.

Similar approaches to that introduced in Woo and Kim (ibid.) have been proposed
in other areas of engineering. The integration of biomass technologies is investi-
gated in a systematic way in Fazlollahi and Maréchal (2013), taking into account
the multi-period and multi-criteria features of the problem. The resulting MINLP
model considers three objectives to be minimized: the annual investment cost, the
operating cost and the overall CO2 emissions of the system. The solution methodology
decomposes the original problem according to a master-slave structure. The upper
level is solved using a dominance-based MOEA (named QMOO, Leyland (2002)) that
considers the type of district conversion technologies as well as their corresponding
maximum sizes (continuous and discrete variables). The lower level, formulated as a
MILP problem, optimizes the utilization rate and the operation strategy of district
conversion technologies. It is solved using a branch-and-bound technique.

In addition, in Setak et al. (2019), a three-echelon generic supply chain is modeled
considering manufacturing plants, distribution centers and multiple retailers with
an application dedicated to a pharmaceutical company. The problem, modeled as a
Stackelberg game, is formulated as a mixed-integer nonlinear bilevel optimization
problem with an objective targeted on distribution centers in the upper level and
one devoted to retailers in the lower level. The authors proposed the use of a hybrid
algorithm as the solution method as follows: the upper level is solved by a genetic
algorithm, which handles all integer and some continuous variables, whereas the
lower level solves a quadratic programming problem for each upper-level candidate
solution using a deterministic local optimizer.

5.2.3 Main guidelines

Most of the multiobjective models proposed in the literature are solved using de-
terministic techniques, namely ε-constraint, or by means of utility functions, e.g.,
weighted sum. It is noteworthy that these methods can guarantee the optimality of the
solutions found, and even more, some of them can find any Pareto optimal solution
by using appropriate parameters. However, they present two main drawbacks, (1)
multiple runs must be performed in order to obtain a set of trade-off solutions, which
might be computationally prohibitive and (2) the obtained approximation of the
Pareto front is not necessarily uniformly distributed, and thus some regions in the
Pareto front might not be adequately explored.

Therefore, several works have been proposed in the literature with the aim of
mitigating the computational difficulties evidenced when solving medium-to-large
size instances of the multiobjective HSC design problem by a classical approach.
These works propose to transform the original problem using a bilevel decomposition.
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Nevertheless, since the resulting subproblems are still MILP problems, the ε-constraint
method remains being computational prohibitive if more objectives or instances of
larger size are to be considered. Other works in other areas of application perform
similar model decomposition but use metaheuristic techniques for constructing the
Pareto front approximation, and exact methods for solving the MILP lower problem.
Regarding the use of MOEAs, most works rely on Pareto dominance-based algorithm,
such as NSGA-II.

In this framework, the motivation of this work is to explore an alternative solution
approach to the multiobjective HSC problem, with the purpose of efficiently providing
the decision maker with a set of well-distributed solutions along the optimal Pareto
front. In this chapter, as a first attempt to develop an appropriate solution tool, the
MOEA/D algorithm (see Chapter 1 in page 34) is adapted for the solution of the
HSC problem. The choice of this specific algorithm is motivated by the conclusions
drawn in Part I, suggesting a slight superiority of MOEA/D over NSGA-II, in most
of the academic problems studied. In particular, the adapted version of MOEA/D
to work on constrained search spaces, i.e., ε-MOEA/D with gradient-based repair,
which obtained promising results in Chapter 3, is accounted for in this chapter. But
first, the statement of the HSC design problem and a mathematical representation,
recognized in the devoted literature, are presented in the next sections.

5.3 Problem statement

In this work, the problem of hydrogen supply chains design is represented through
the mathematical model proposed in Almaraz et al. (2015) and Almaraz et al. (2014b),
extending the work of Almansoori and Shah (2009). This model represents the
hydrogen supply chain considering a time-dependent demand over a geographical
area of study, and consists of a five-echelon supply chain for the transportation sector
(energy source–production–transportation–storage and distribution). The total daily
cost and the global warming potential are to be minimized simultaneously, that
is, the objective is to provide decision-makers with a number of different trade-off
configurations among the cost efficiency of the supply chain and the associated CO2
emissions. Within this model, the whole system is designed to provide hydrogen
supply over a given territory, which is divided into grids (nodes). Each grid has a
hydrogen demand for a given time period (input data) and is considered as a node
for potential production and storage locations. Figure 5.1 shows an example of the
grid-wise division of a geographical area.

The model is established under the following assumptions:

1. The model is demand-driven and operates at steady-state conditions, contrary
to a more realistic dynamic supply-demand model. This clearly implies that the
optimal configuration of the network is one that minimizes both the objectives
accounted for, subject to demand satisfaction in each grid for each time period.

2. Only some sizes of fixed capacities for production and storage facilities are
available.

The HSC problem can therefore be stated as: given a geographical area divided
into grids, each grid having an explicit hydrogen demand at each period that must be
satisfied, investment and operational cost for production and storage facilities as well
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as their capacity constraints, costs and availability of energy sources, transportation
costs and environmental information related to the network operation and installation;
the objective is to determine the structure of the HSC and the transportation flows
within the hydrogen supply chain that minimize its total costs and environmental
impact. Such a supply chain is determined by the location, type, capacity and number
of production and storage facilities in each grid (nodes); the transportation links
(directed arcs) between grids, as well as the type and number of transportation units;
production rates for each production plant as well as inventory amounts for storage
units. This is depicted in Figure 5.2.
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Figure 5.2: Methodological framework.

5.4 Mathematical model

In the mathematical model used as a basis in this work (Almaraz et al. (2015) and
Almaraz et al. (2014b)), the total daily cost (TDC) of the supply chain is considered
as the first objective and the global warming potential (GWP) as the second one.
Obviously, both objectives are to be minimized and it is fair to anticipate that these
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objectives are conflicting, since the cheapest configurations are generally also those
with the highest environmental impact. The model includes appropriate equations
accounting for investment costs related to plant installation and transportation routes,
operational costs for production, storage and transportation, and also constraints for
plant capacity, mass balance between grids and demand satisfaction.

5.4.1 Economic objective function

The TDC objective function, accounting for |T| time periods, is calculated as the sum
of the total daily cost over all periods as:

TDC = ∑
t∈T

TDCt (5.1)

The total daily cost for each period t takes into account investment costs related to
plant installation (FCC) and transportation (TCC), as well as operational costs related
to production and storage (FOC), transportation (TOC) and use of energy source
(ESC). It is computed as:

TDCt =
FCCt + TCCt

αCCF
+ FOCt + TOCt + ESCt ∀t ∈ T (5.2)

where FCCt represents the facility capital cost at each period t and thus considers
only the cost associated to the installation of new production plants (IPpjigt) and new
storing facilities (ISsjigt) at a given period as:

FCCt =
1

LRt
∑
j∈J

∑
i∈I

∑
g∈G

(
∑
p∈P

PCCpji IPpjigt + ∑
s∈S

SCCsji ISsjigt

)
∀t ∈ T (5.3)

where LRt represents the learning rate, that is, a cost reduction associated to acquired
experience over time by technology manufacturers. The decision variables corre-
sponding to the number of production and storage facilities, NPpjigt and NSsjigt, are
related to IPpjigt and ISsjigt by the following two equations, respectively, as:

NPpjigt =
t

∑
t=1

IPpjigt ∀p ∈ P, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.4)

NSsjigt =
t

∑
t=1

ISsjigt ∀s ∈ S, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.5)

The transportation capital cost (TCCt) considers the flow rate of hydrogen among
grids (Qilgg′t), the transportation mode availability (TMAl), the capacity of the trans-
portation container (TCapil), the average distance connecting two grids (Llgg′), the
average speed (SPl) as well as the loading/unloading time (LUTl). Also, a factor ac-
counting for establishing a given transportation mode is used (TMCil). It is calculated
as:

TCCt = TMCil ∑
i∈I

∑
l∈L

∑
g∈G,g′ 6=g

Qilgg′t

TMAlTCapil

(
2Llgg′

SPl
+ LUTl

)
∀t ∈ T (5.6)

The facility operating cost (FOCt) considers the efficient operation of each produc-
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tion plant and storage facility. It is directly related to the amount of production and
storage as:

FOCt = ∑
j∈J

∑
i∈I

∑
g∈G

(
∑
p∈P

UPCpjiPpjigt + ∑
s∈S

USCsjiST
igt

)
∀t ∈ T (5.7)

where UPCpji and USCsji are the unit costs of production and storage, respectively.
The transportation operating cost (TOCt) consists of fuel, maintenance, labor and

general costs, as formulated in the following equation:

TOCt = ∑
i∈I

∑
l∈L

∑
g∈G,g′ 6=g

2Llgg′Qilgg′t

TCapil

(
FPl

FEl
+ MEl

+

(
DWl +

GEl

TMAl

)(
1

SPl
+

LUTl

2Llgg′

))
∀t ∈ T

(5.8)

where the terms inside the parenthesis accounts for the fuel costs (FPl , FEl), main-
tenance expenses (MEt), driver wages (DWl) and general maintenance costs (GEl ,
TMAt), which depends on the working time (related to the speed SPl , the distance
Llgg′ and the loading/unloading times LUTl).

The cost associated to the transportation of primary energy sources is computed
as:

ESCt = ∑
e∈E

∑
g∈G

UICe IPESegt ∀t ∈ T (5.9)

where UICe is the unit import cost of energy source and IPESegt is the corresponding
amount of imported energy source, which depends on the production rate and the
availability of energy sources (Aegt) for a given grid g, at each period t, according to:

IPESegt = max

(
0, SSF ∑

p∈P
∑
j∈J

∑
i∈I

γepjPpjigt − Aegt

)
∀e ∈ E,

∀g ∈ G, ∀t ∈ T

(5.10)

where SSF is a safety stock factor for storing a small inventory of energy source,
while γepj represents the utilization rate of primary energy sources.

5.4.2 Environmental objective function

Regarding the second objective, the overall effects of greenhouse gases (GHG) of
the network (production, storage and transportation) are accounted according to the
following equation:

GWP = ∑
t∈T

(PGWPt + SGWPt + TGWPt) (5.11)

where PGWPt is computed as the production rate of each production plant in the
network, times a global warming potential factor associated:

PGWPt = ∑
p∈P

∑
j∈J

∑
i∈I

∑
g∈G

GWprod
p Ppjigt ∀t ∈ T (5.12)
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Similarly, the global warming potential due to hydrogen storage is expressed as
the production rate of each production plant in the network times a global warming
potential factor:

SGWPt = ∑
p∈P

∑
j∈J

∑
i∈I

∑
g∈G

GWstock
i Ppjigt ∀t ∈ T (5.13)

The third term in equation (5.11) refers to the global warming potential due to
transportation, it considers the average distance and the hydrogen flow rate between
grids, the capacity of the transportation mode employed, its weight (Wl) and a
transportation global warming potential factor. It is computed as:

TGWPt = ∑
i∈I

∑
l∈L

∑
g∈G,g′ 6=g

(
2Llgg′Qilgg′t

TCapil

)
GWtransp

i Wl ∀t ∈ T (5.14)

5.4.3 Model constraints

Capacity constraints

The installed production plants in the network (NPpjigt) must allow to exactly satisfy
the total hydrogen demand, for each type of hydrogen physical form i and for each
period t. This is enforced by constraints (5.15) and (5.16), as follows:

∑
p∈P

∑
j∈J

∑
g∈G

PCapmin
pji NPpjigt − ∑

g∈G
Digt ≤ 0 ∀i ∈ I, ∀t ∈ T (5.15)

∑
g∈G

Digt − ∑
p∈P

∑
j∈J

∑
g∈G

PCapmax
pji NPpjigt ≤ 0 ∀i ∈ I, ∀t ∈ T (5.16)

Similarly, constraints (5.17) and (5.18) ensure that the installed storage facilities
(NSsjigt) will guarantee the total inventory within certain limits, for each storing
product form i, each grid g and each period t:

∑
s∈S

∑
j∈J

SCapmin
sji NSsjigt − ST

igt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.17)

ST
igt −∑

s∈S
∑
j∈J

SCapmax
sji NSsjigt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.18)

Constraints (5.19) and (5.20) force the production rate of a given plant (Ppjigt) to
be within the allowed (minimum and maximum) production capacities:

PCapmin
pji NPpjigt − Ppjigt ≤ 0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.19)

Ppjigt − PCapmax
pji NPpjigt ≤ 0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.20)

Mass balance constraints

Hydrogen demand must be satisfied exactly (that is, overproduction is not allowed),
through local production and/or importation/exportation from/to other grid (Qilgg′t).
This mass balance needs to be fulfilled for each product physical form i, each grid g
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and each period t, as stated in the following equation:

∑
p∈P

∑
j∈J

Ppjigt −∑
l∈L

∑
g′∈G,g′ 6=g

(
Qilgg′t −Qilg′gt

)
− Digt = 0

∀i ∈ I, ∀g ∈ G, ∀t ∈ T
(5.21)

Bounds on decision variables

Constraints (5.22) and (5.23) define the decision variables type for the production and
storage facilities (integer) and for production and flow rates (real non-negative).

NPpjigt, NSsjigt ∈N ∀p ∈ P, ∀s ∈ S, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (5.22)

Ppjigt, Qilgg′ ∈ R≥0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I, ∀l ∈ L, ∀g ∈ G, ∀t ∈ T (5.23)

5.4.4 Overall formulation

Therefore, the bi-objective HSC optimization problem can be represented mathemati-
cally as:

min
x

[TDC(x), GWP(x)]T (5.24)

s.t. constraints 5.15− 5.23 (5.25)

where x in equation (5.24) represents the vector of decision variables, i.e., x = [NPpjigt,
NSsjigt, Ppjigt, Qilgg′t]

T. The exhaustive model nomenclature is available in Appendix
B.

5.5 Solution strategy

The purpose of this chapter is to explore an alternative approach for the solution of the
HSC problem, represented through the previous model. To this end, the multiobjective
evolutionary algorithm based on decomposition (MOEA/D) is used. The constraint-
handling technique adopted is the ε-constraint method (see Section 3.3.5 in Chapter 3)
with the repair of infeasible solutions using the constraints’ gradient information.
The decision variables are NPpjigt, NSsjigt, Ppjigt, Qilgg′t. These are all encoded as
continuous variables, and variables NPpjigt, NSsjigt are rounded to the next integer
only in the evaluation module. Therefore, constraints (5.22-5.23) about the nature of
the variables are automatically fulfilled by the MOEA. With respect to the capacity
constraints (5.15-5.18), they are not difficult to satisfy by stochastic operators, since
these inequality constraints bound a large feasible region. Regarding constraints
(5.19-5.21), these are more difficult to fulfill because multiple decision variables are
involved simultaneously (NPpjigt and Ppjigt in constraints 5.19-5.19, and Ppjigt and
Qilgg′t in constraint 5.21). In particular, the mass balance constraint is the most
difficult constraint to satisfy, represented by only one equality but that might involve
a considerable number of decision variables.

Considering the repair of infeasible individuals, this is carried out only on the
continuous variables genotype of each individual, i.e., on variables Ppjigt and Qilgg′t.
It is worth noting that, even if variables repair could be performed also for integer
variables (because they are encoded as continuous ones), this is not done because this



5.6. Computational experiments 117

would entail higher computational times and no improvement in the algorithm was
observed, according to a preliminary analysis.

5.6 Computational experiments

To investigate the performance level of the specific MOEA/D implementation de-
scribed above, three instances of small-to-medium sizes are studied. The obtained
results are compared with those produced by a mathematical programming technique,
taken as a reference since it is the classical approach proposed in the literature.

5.6.1 Case study 1

For these computational experiments, three increasing size instances are considered
that correspond to the data for the Great Britain case study (Almansoori and Shah,
2006). Note that this case study is taken only for numerical purposes as it constitutes a
simplified or reduced instance. Only one time period is considered, the importation of
energy feedstock is neglected as well as appropriate energy sources for the sustainable
evaluation of the HSC. Instances 1 and 2 represent a part of the entire geographic area
of Instance 3; they contain 6, 12 and 34 grids, respectively. The main characteristics of
these instances are:

• Two different production technologies considered: steam methane reforming
(SMR) and biomass gasification.

• One size for production and storage is available.

• Only one physical form of hydrogen (liquid) and one distribution type (tanker
truck).

• Only one period of time (snapshot model).

5.6.2 Parameter settings

The parameter settings for the experiments carried out are summarized as follows.
MOEA/D has a population size (µ) equal to 51 for all three instances. The weighted
Tchebycheff scalarizing function (see page 28) is used within MOEA/D. The probabil-
ity of choosing parents locally is δ = 0, the neighborhood size is T = 0.1µ and the
maximum number of replacements allowed (in the selection step of the algorithm)
is nr = 2. An external archive is employed to store the non-dominated solutions
found in the optimization process. The external archive has no size limit, however,
at the end of an execution, the external archive may be reduced to contain at most
51 individuals (i.e., the same number of scalar problems as for the exact approach,
as explained hereafter) to compute the quality of the obtained approximation, using
the hypervolume as the selection criterion. Regarding the variation operator, jDE
with polynomial mutation is employed with parameters: pm = 1/n, ηm = 20. The
number of function evaluations, NFE, is equal to 1e6 for all instances, so that similar
CPU times to those required by the exact approach are employed. The ε-constraint
method with gradient-based repair is used as a constraint handling technique. The
parameter settings are θ = 0.2µ, cp = 5, Tc = 0.2Tmax, Pg = 1, Rg = 3, step size for
finite differences: 10−6.
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For the evolutionary algorithm, 11 independent runs were performed for each
instance (in order to be able to analyze some median run). With respect to the
exact approach, it consists in the CPLEX solver with the weighted Tchebycheff utility
function (just like MOEA/D). Accordingly, the bi-objective optimization problem
is decomposed into a number of scalar subproblems, in this case the number of
weight vectors (equivalent to the number of scalar subproblems) is set to 51, equal to
the population size for MOEA/D. The stopping criteria for each CPLEX execution
are the optimality gap (lower than 0.01%) or the resource time limit (100 seconds
p/point). The obtained results are compared in terms of the hypervolume indicator.
As mentioned previously, a higher value of this indicator is preferred as it is correlated
to both convergence and diversity of the solution set. The reference point to compute
the hypervolume is located at [1.1, 1.1]T in the normalized objective space [0, 1]2, for
all instances. The MOEA/D algorithm was coded in MATLAB R2019a and the exact
approach was implemented in GAMS environment (v23.9.5) using the solver CPLEX
v12.4.0.1. All the computational experiments presented here were carried out with a
processor Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go RAM.

5.6.3 Results and discussion

The obtained results are summed up in Table 5.1. Please note that the column
referring to the optimality gap is only for the exact approach. The computational
times (in seconds) are presented in the table; for the exact approach (“exact” column)
the time corresponds the solution of the 51 scalar subproblems, corresponding to the
production of one Pareto set; for the evolutionary algorithm (“MOEA” column) the
time corresponds to each execution (i.e., also producing a complete Pareto set). The
table also presents the performance of both approaches in terms of the hypervolume
indicator. Note that the data corresponding to MOEA/D represent the mean and
the standard deviation (in parenthesis) values of the hypervolume. Clearly, the exact
approach strongly outperforms MOEA/D in all three instances, mainly because
MOEA/D experiences difficulties for exploring adequately the feasible search space.

Table 5.1: Numerical results of both approaches for case study 1.

Instance
CPU time(s) Optimality

gap (%)
HV(CPLEX

Tcheb.)
HV(ε-MOEA/D

w/grad)exact MOEA

HSC06g 49.1 120.6 0.01 0.9812 0.8161 (0.0353)
HSC12g 558.6 294.5 0.01 1.0018 0.7437 (0.0310)
HSC34g 1 223.3 1 637.4 0.01 0.8896 0.6102 (0.0024)

In Figure 5.3, the Pareto front approximations of both approaches are provided
for each instance. Please note that, in the figure, both TDC and GWP objectives are
presented per unit of H2 produced, this is done by dividing the original objectives by
the total hydrogen demand. This is done throughout this thesis. Also, in the figure,
the Pareto front approximations related to MOEA/D correspond to the median run
with respect to the hypervolume. It is worth mentioning that all the corresponding
solutions shown in the figure are feasible. It can be observed that the evolutionary
algorithm exhibits a poor convergence, i.e., most solutions are far away from the front
approximated by CPLEX (which is likely to be a discretization of the true Pareto front).
The reason for this trend is that the exploration capacity of the MOEA is conditioned
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by the constraints satisfaction. In other words, the search cannot progress towards
optimal regions because (1) new offspring generated by the variation operators are
likely to be infeasible, i.e. they do not represent valid supply chains, and (2) the
constraint-handling strategy does not efficiently make use of those infeasible offspring,
even if some solutions are repaired. In this respect, it is important to recall that the
feasible region is composed of disconnected subregions (due to the discrete nature of
the problem) and the gradient-based repair has an effect only on continuous variables.
Therefore, the population might get trapped in some feasible subregions, from which
it cannot escape even if the constraints’ gradient is used for repairing infeasible
offspring. This phenomenon is observed in each of the three instances. Besides,
with respect to the largest instance (HSC34g), MOEA/D not only shows convergence
difficulties but, in addition, it is not capable of exploring the entire objective space
range for both the TDC and GWP criteria.
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Figure 5.3: Final Pareto front approximations for case study 1.
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5.7 Conclusions: strengths and weaknesses of a matheuristic
approach

In this chapter, the first experiments carried out using a MOEA as a solution technique
for the optimal design of hydrogen supply chains were presented. This optimiza-
tion problem presents combinatorial aspects that can entail difficulties to classical
optimization methods, but also features related to constraint satisfaction that make it
difficult to treat by canonical MOEAs.

In particular, the performance of ε-MOEA/D, using the gradient-based repair as
the constraint-handling technique, was investigated. According to the obtained results,
this strategy experiences difficulties for determining the optimal configurations of
the hydrogen supply chain. Thus, due to the fact that only continuous variables are
repaired, solutions might get trapped in some feasible subregions and thus the search
cannot progress properly towards the true Pareto front.

Nevertheless, these first experiments allowed to identify the main difficulties
experienced by both exact and metaheuristic approaches, namely, the combinatorial
and multiobjective aspects for the exact approach (evidenced mainly in multi-period
instances) and the constraint-handling for the evolutionary algorithm. Therefore,
accounting for the bilevel formulations proposed in previous studies on similar
problems (see Section 5.2), a novel strategy for the solution of the HSC problem is
introduced in the next chapter. This strategy decomposes the problem in such a
way that some advantages can be taken of the strengths of every single approach,
mitigating simultaneously their weaknesses.
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6.1 Introduction

In the previous chapter, a metaheuristic-based solution technique was explored for the
solution of the problem of sustainable design hydrogen supply chains, considering
both economic and environmental criteria. However, the obtained results were
rather disappointing, in particular a lack of convergence to the true Pareto front was
observed, mainly due to the high number of constraints and continuous variables
involved. Thus, this chapter presents a novel methodology based on a reformulation
of the original problem into a bilevel optimization problem. More precisely, the upper-
level problem tackles the installation problem (location and sizing the production
plants and storage facilities), whereas the lower-level problem addresses the operation
problem associated to the production and transportation aspects. This reformulation
allows to employ a multiobjective evolutionary algorithm for the solution of the
upper-level problem, while the lower level is solved using a linear programming
solver. The proposed methodology is validated and compared with the Pareto front
approximations obtained by CPLEX over nine increasing size instances.

The content of this chapter has been accepted for publication in the form of journal article. Victor H
Cantú, Catherine Azzaro-Pantel, and Antonin Ponsich (accepted). “A novel matheuristic based on
bi-level optimization for the multi-objective design of hydrogen supply chains”. In: Computers & Chemical
Engineering, p. 107370. doi: https://doi.org/10.1016/j.compchemeng.2021.107370
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The chapter is organized in the following way. Section 6.2 presents the motivation
for this new solution strategy, as well as its core innovations and contributions. In
the subsequent section, the proposed methodology for solving the HSC problem is
presented with the bilevel reformulation, the main aspects of the hybrid solution
strategy and some specific features of the tools proposed at each level. The empirical
validation of the proposed methodology is provided in Section 6.4, where the results
obtained for nine growing-size instances corresponding to the case of Great Britain
and the Midi-Pyrénées region (France) are compared with those obtained using a
classical approach. Finally, conclusions are drawn in Section 6.5.

6.2 Motivation for a hybrid strategy

As stated in the previous chapter, most of the related works proposed in the literature
employ exact techniques for tackling the HSC problem. These classical techniques
turn out to be computationally prohibitive for evaluating large-size instances of the
problem. Besides, it is noteworthy that, even though strategies based on bilevel
decomposition have been proposed (see Guillén-Gosálbez et al., 2010; Sabio et al.,
2010), the multiobjective feature of the problem is invariably handled by the ε-
constraint method, which might be inappropriate when considering more than two
objectives or for attaining an accurate approximation of the Pareto front. In addition,
similar decomposition approaches have been developed in other areas of application
(see Fazlollahi and Maréchal, 2013), but they differ in the solution method: they
employ metaheuristic techniques for approximating the Pareto front in the master
problem, and exact methods for solving the MILP lower-level problem. Based on
these guidelines, a hybrid methodology is proposed here as a solution tool for the
HSC design problem.

The core innovations and contributions of this proposal are described in more
details as follows:

1. A novel methodology is designed for the solution of the HSC design problem,
in which the mathematical structure of the problem can be exploited. In this
manner, the multiobjective, combinatorial and linear aspects of the problem can
be tackled by appropriate solution methods.

2. Consequently, the original problem is reformulated as a bilevel multiobjective
optimization problem, through a master-slave decomposition strategy. The
upper-level (master) problem considers the installation of production and stor-
age facilities (multiobjective combinatorial problem), while the lower level
examines the problem associated to transportation and production rates (linear
programming problem of low complexity).

3. A hybrid solution tool based on both evolutionary algorithms and linear pro-
gramming (matheuristic) is developed for the solution of the resulting bilevel
optimization problem, able to efficiently achieve a good approximation of the
Pareto front in terms of convergence, distribution and number of Pareto solu-
tions. More precisely, the solution of the master problem is performed by a
multiobjective evolutionary algorithm (MOEA), taking full advantage of the
ability of such techniques for dealing with the multiobjective and combina-
torial features of the problem. Then, for each individual (partial solution)
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proposed by the evolutionary algorithm, the slave problem is treated by a linear
programming (LP) solver. Please note that the lower-level problem is also a
multiobjective one, so that a scalarizing function is embedded within the LP
formulation. In this way, the multiobjective bilevel problem is solved in an
iteratively manner, in one single run.

4. Finally, the performance of the proposed methodology is evaluated over nine
increasing size instances of the HSC design problem, inspired from Almaraz
et al., 2014a. To this end, the performance of both deterministic and hybrid
approaches is presented in terms of the hypervolume indicator, for the first time
in the HSC literature. The results, analyzed through this indicator, show that the
proposed hybrid approach outperforms the classical one (exact algorithm), i.e.,
the set of non-dominated solutions obtained by the hybrid approach are better
distributed along the Pareto front, offering the decision makers a better picture
of all the possible trade-off solutions. Moreover, the proposed methodology can
provide approximation sets with a controllable number of efficient solutions, in
reasonable computational times.

6.3 An efficient solution strategy

The complexity of the HSC problem, due to its combinatorial and multiobjective
nature, deserves the development of an adapted solution strategy. To this end, the
original problem (A)1 is reformulated into a bilevel optimization problem. The idea
behind this reformulation is to decompose the original problem into two subproblems
of lower complexity, in such a way that each aspect of the original problem can be
tackled by appropriate solution approaches. The two main parts of problem (A) are
(1) the combinatorial problem related to facility installation and (2) the continuous
problem associated to production and transportation operation. Then, in such a
decomposition, the combinatorial problem can be tackled apart by a population-based
metaheuristic, so that good-quality solutions can be obtained even for large-size
instances in controllable computational times. Additionally, the multiobjective nature
of this subproblem can be accounted for by the metaheuristic, in particular, using
a MOEA. Now, regarding the continuous problem, it can be easily transformed
into a canonical transportation problem applying a simple heuristic (detailed in
Subsection 6.3.4), so that it can be solved efficiently by exact methods.

In what follows, the reformulation of problem (A) into a bilevel problem is
formally provided. Then, the solution methodology is discussed with a specific focus
on each level.

6.3.1 Bilevel formulation

In order to propose an efficient strategy to solve the optimization problem (A), a
decomposition of the problem is proposed in this subsection. The resulting bilevel
optimization problem is represented as follows:

min
x

[TDC(x), GWP(x)]T (6.1)

1For the sake of readability, in this chapter the problem represented by equations (5.1-5.25) is named
problem (A), it constitutes the original or classical formulation of the HSC problem, according to the
models of Almansoori and Shah, 2009; Almaraz et al., 2015; Almaraz et al., 2014a.
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s.t. ∑
p∈P

∑
j∈J

∑
g∈G

PCapmin
pji NPpjigt − ∑

g∈G
Digt ≤ 0 ∀i ∈ I, ∀t ∈ T (6.2)

∑
g∈G

Digt − ∑
p∈P

∑
j∈J

∑
g∈G

PCapmax
pji NPpjigt ≤ 0 ∀i ∈ I, ∀t ∈ T (6.3)

∑
s∈S

∑
j∈J

SCapmin
sji NSsjigt − ST

igt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (6.4)

ST
igt −∑

s∈S
∑
j∈J

SCapmax
sji NSsjigt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (6.5)

NPpjigt, NSsjigt ∈N ∀p ∈ P, ∀s ∈ S, ∀j ∈ J, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (6.6)

min
y

[TDC(y), GWP(y)]T (6.7)

s.t. PCapmin
pji NPpjigt − Ppjigt ≤ 0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I,

∀g ∈ G, ∀t ∈ T
(6.8)

Ppjigt − PCapmax
pji NPpjigt ≤ 0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I,

∀g ∈ G, ∀t ∈ T
(6.9)

∑
p∈P

∑
j∈J

Ppjigt −∑
l∈L

∑
g′∈G,g′ 6=g

(
Qilgg′t −Qilg′gt

)
− Digt = 0

∀i ∈ I, ∀g ∈ G, ∀t ∈ T
(6.10)

Ppjigt, Qilgg′ ∈ R≥0 ∀p ∈ P, ∀j ∈ J, ∀i ∈ I, ∀l ∈ L,

∀g ∈ G, ∀t ∈ T
(6.11)

where x in equation (6.1) represents the vector of decision variables in the upper
level, i.e., x = [NPpjigt, NSsjigt]

T, and y is the vector of decision variables in the lower
level, i.e., y = [Ppjigt, Qilgg′ ]

T. Equations (6.1-6.6) refer to the upper-level problem,
whereas equations (6.7-6.11) describe the lower-level problem. In addition to equations
(6.1-6.11), the complete formulation of the bilevel problem also includes equations
(5.1-5.14), which refer to the computation of TDC and GWP objective functions. This
constitutes problem (B).

The upper-level (master) problem addresses the combinatorial problem associated
to the structure of the supply chain, that is, it addresses the optimal location, sizing
and selection of the technology type of production and storage facilities. Concerning
the lower-level (slave) problem, it consists in finding the optimal production rates
and transportation flows between grids for the network configuration predicted by
the upper level.

6.3.2 Global description of the strategy

As stated previously, the proposed solution strategy to the optimization problem
(B) consists in a hybrid approach, more precisely, a MOEA coupled with a linear
programming solver. In this way, the upper-level integer variables NPpjigt and NSsjigt
are handled by the evolutionary algorithm. Since these variables are generated
through stochastic operators, they might require a repair mechanism in order to fulfill
constraints (6.2-6.5), which state that production and storage facilities must satisfy
the total demand in the network. Then, for each feasible (partial) solution, that is,
for each feasible structure of the HSC provided by the evolutionary algorithm, the
corresponding optimal continuous variables Ppjigt and Qilgg′t are computed by solving
the multi-period operation problem, at the lower-level (see Figure 6.1).
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Figure 6.1: Simplified diagram of the hybrid (master-slave) approach. In black color
the upper-level variables, whereas in blue color, the lower-level variables.

At this point, it is important to note that, even if the lower-level subproblem
constitutes a bi-objective problem, only one solution is required to evaluate a given
upper-level candidate solution. To this end, a utility function with a random weight
vector is used (this is discussed in more details in Subsection 6.3.4). Moreover, in
order to speed up the solution of the slave problem, only grids for which the installed
production units can satisfy local demand are considered as potential exporting grids
(sources), otherwise they are considered as demand grids (sinks). This heuristic
rule reduces the complexity of the linear programming problem, by decreasing the
number of potential edges among grids.

Once the slave problem has been solved for every master problem’s candidate
solution, the MOEA recovers the continuous variables (Ppjigt, Qilgg′t) from the LP
solver, in order to compute the upper-level objective functions. Then, each individual
in the population has a fitness function value assigned by the MOEA, which evolves
the population to the next generation according to its working mode, e.g., according
to the selection paradigm used (Pareto dominance, decomposition or indicator-based).
Finally, the process is repeated iteratively until a stopping criterion is reached. The
proposed methodology is presented in the pseudocode of Algorithm 6. Please note
that all lines correspond to the solution of the master subproblem, excepting lines 7
and 8, which refer to the slave subproblem treatment.

6.3.3 Upper-level problem solution approach

In this chapter, SMS-EMOA and MOEA/D (Emmerich et al., 2005; Zhang et al., 2009),
described in Chapter 1, are considered for the solution of the bi-objective master
problem. In what follows, some relevant aspects of the implementation of both
MOEAs in our framework are discussed.

Line 1: Initialization The initialization step consists in defining the initial param-
eters for the given algorithm (see their pseudocode in pages 35, 37). The initial
population is created in such a way that production and storage facilities are added
randomly into the grids in the network, one by one, until a feasible solution is
obtained (which ensures the respect of constraints 6.2-6.5).
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Algorithm 6 Hybrid strategy procedure
1: initialize MOEA
2: while not terminate do
3: generate offspring through variation operators
4: for all individuals in population do
5: for all t ∈ T do {for each period}
6: if offspring solution violates equations (6.2-6.5) then
7: repair infeasible solution
8: end if
9: build transportation problem (identify sink and source grids)

10: solve transportation problem (LP solver)
11: end for
12: compute master problem’s objective functions
13: assign fitness value according to MOEA’s working paradigm
14: evolve population according to MOEA’s working paradigm
15: end for
16: end while
17: return current Pareto set approximation

Line 3: Generation of offspring Offspring solutions are generated by means of
stochastic operators, namely, SBX for SMS-EMOA and DE for MOEA/D, both with
polynomial mutation. The integer decision variables NPpjigt, NSsjigt are encoded as
continuous variables and are rounded to the next integer only in the evaluation steps.

Lines 6-8: Repair If the offspring violates constraints (6.2-6.5, i.e., the installed
capacity is either greater or lower than the total network demand), it is repaired by
randomly adding or removing production and storage units accordingly. Note that
(6.2-6.5) are inequality constraints which define large feasible regions, and thus are
not difficult to fulfill following this procedure.

Line 12: Evaluation The optimal variables Ppjigt, Qilgg′t are recovered from the LP
solver in order to compute the master problem’s objective functions. Note that these
variables are not encoded as decision variables in any individual, at any step of the
evolutionary algorithm.

Line 13: Fitness assignment A fitness is assigned to each offspring solution accord-
ing to each MOEA (utility function for MOEA/D or contribution to the hypervolume
for SMS-EMOA).

Line 14: Selection/Evolution The best µ individuals are chosen to survive to the
next generation, according to the MOEA’s working paradigm.

Lines 16-17: Evolution/Termination If the termination criterion is not met (number
of function evaluations), offspring solutions are generated and the process is repeated,
otherwise, the MOEA gives as an output the current population (or the external
archive for MOEA/D).
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6.3.4 Lower-level problem solution approach

A first key point for the solution of the slave problem is the construction of a feasible
transportation problem using the integer variables provided by the evolutionary
module. To this end, an heuristic method is designed in this work. All grids in the
network are considered as potential importing grids, that is, as potential “sinks” or
“demand” nodes. Then, for each period t, a set of potential exporting grids GE

t is
determined, depending on the number and size of production plants installed, as
follows: if, for a given grid g, the sum of the maximum production capacities of all
plants installed is greater than its hydrogen demand, the grid g is considered as a
potential “source” node and then g ∈ GE

t . This can be mathematically formulated as:

Digt ≤ ∑
p∈P

∑
j∈J

PCapmax
pji NPpjigt =⇒ g ∈ GE

t ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (6.12)

In this way, the complexity of the resulting LP problem is considerably reduced,
since only transportation links can occur from sources to sinks nodes. As it can be
noted, this heuristic relies on the fact that grids that cannot produce enough hydrogen
to satisfy their own demands (even if the installed facilities operate at their maximum
capacity) are unlikely to export hydrogen to other grids, since this would require
more transportation units, resulting in a more expensive solution.

Now, regarding the multiobjective aspect of the LP subproblems, this is tack-
led employing a utility function. In this work, the weighted Tchebycheff and the
augmented achievement scalarizing function (AASF) are chosen, the former when
MOEA/D is employed (in the upper level), whereas the latter is used when SMS-
EMOA is applied to the solution of the upper-level problem. These two scalarizing
functions are chosen, due to their ability to deal with non-convex front shapes and
weakly dominated solutions (see equations 1.10 and 1.13 in Chapter 1). Moreover,
since only one solution (not a set solutions) is needed to evaluate the upper-level
problem, it is solved only once with a weight vector randomly generated such that
w ∈ Rk

+ and ∑k
j=1 wj = 1, with k = 2 for this problem. It is worth mentioning that the

random generation of weight vectors might seem inappropriate to deal consistently
with the lower-level subproblem. However, the experimental results validate this
strategy for the studied problem. Anyway, a smart weight vector tuning mechanism
is under the scope of future work.

6.4 Computational experiments

The efficiency of the proposed methodology for solving the bi-objective HSC problem
is validated through a performance comparison with an exact technique (CPLEX
with the weighted Tchebycheff scalarizing function). First, the case study 1 (Great
Britain) from the previous chapter is addressed in the next subsection. Then, in
Subsection 6.4.2 a more complex application related to the former Midi-Pyrénées
region (now Occitanie region, France) is analyzed.

6.4.1 Case study 1

The performance of the proposed approach was first explored for the case study
presented in the previous chapter, corresponding to the HSC deployment in Great
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Britain. For further details concerning this application, the reader is referred to
Section 5.6.1 of the previous chapter.

Parameter settings The experiments carried out used the same settings as in the
previous chapter (see page 117), in order to highlight the benefits of using the
matheuristic proposed in this chapter with respect to the canonical MOEA/D. There-
fore, the evolutionary algorithm used as upper-level search engine is also MOEA/D
with the weighted Tchebycheff scalarizing function. The population size (µ) is equal
to 51 for all three instances. The external archive stores non-dominated solutions
found in the optimization process and has no size limit. Nevertheless, for computing
the quality of the obtained approximation, the external archive may be reduced at the
end of an execution to contain at most 51 individuals, using the (least) contribution
to the global hypervolume as a pruning criterion. Of course, this time MOEA/D
does not use any constraint-handling technique, since the upper level, tackled by
the MOEA, uses the simple above-mentioned repair mechanism to fulfill constraints
(6.2-6.5). The lower-level subproblem is addressed through a scalarizing function
(weighted Tchebycheff) with random weight vectors. The scalar problem is then
solved using CPLEX solver v12.8.0, called from MATLAB.

As previously, 11 independent runs were performed for the evolutionary algorithm
for each instance. With respect to the exact approach, its working mode and parameter
settings are identical with those of the previous chapter. The obtained results are
again compared in terms of the hypervolume indicator (with a reference point
located at [1.1, 1.1]T in the normalized objective space). The hybrid algorithm was
implemented in MATLAB R2019a, while the exact approach was solved within the
GAMS environment (v23.9.5) with CPLEX v12.4.0.1. The computational experiments
were carried out with a processor Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go
RAM.

Results and discussion The numerical results obtained are presented in Table 6.1.
In what respect the computational times, please note that the differences observed
between the exact and hybrid techniques are the result of different stopping criteria
for each approach, that is, the optimality gap (0.01%) for the exact approach and the
number of function evaluations (1× 106) for the hybrid approach. However, the CPU
times used by both techniques have similar magnitude orders and the differences
observed do not necessarily involve significant impact in algorithmic performance,
as will be showed in the case study 2. Besides, in the column corresponding to
the hybrid approach, the results represent the mean hypervolume values out of the
11 runs and in parenthesis the standard deviation. For the first two instances, the
hypervolume indicator suggests that the hybrid approach slightly outperforms the
classical one. This is displayed in Figure 6.2, which presents the final Pareto front
approximations of both classical and hybrid approaches (that of the median run in
terms of the found hypervolume for the matheuristic).

The first observation is that the hybrid technique produces more non-dominated
solutions than the exact one, indeed the approximated sets provided by CPLEX
contain less than 51 solutions, because the solver sometimes outputs the same solution
for two scalar problems with similar weight vectors. As a consequence, if some parts
of the front (the upper part for the two first instances) are identically described by
both approaches, the matheuristic proposes a much finer discretization of some other
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Table 6.1: Numerical results of both approaches for case study 1.

Instance
CPU time(s) Optimality

gap (%)
HV(CPLEX

Tcheb.)
HV(hybrid)

exact hybrid

HSC06g 49.1 164.6 0.01 0.9812 0.9844 (0.0023)
HSC12g 558.6 226.1 0.01 1.0018 1.0048 (0.0113)
HSC34g 1 223.3 1 909.0 0.01 0.8896 0.8848 (0.0032)
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Figure 6.2: Pareto front approximations for case study 1.
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segments of the front. As an example, consider the HSC12g instance: in the segment
of the front corresponding to solutions entailing a global warming potential ranging
from 13 to 15 kg CO2/kg H2, the classical approach found 5 efficient solutions,
whereas the hybrid approach in the same segment provided 12 non-dominated
solutions. For the HSC34g instance, the hypervolume indicates a slight superiority of
the classical approach. This is corroborated in Figure 6.2, where the hybrid algorithm
shows some difficulties to cover the whole range of the Pareto front, in particular the
region corresponding to low TDC values.

Therefore, two conclusions can be drawn from this first case study. First, the
hybrid approach proposed in this chapter strongly outperforms the solution strategy
based on metaheuristics only (it is clear that the approximation sets and their cor-
responding hypervolume are much better now than when using MOEA/D in the
previous chapter). On the other hand, there is no significant differences between the
performance level of the matheuristic and the exact solution technique. This appears
as a validation of the good behavior showed by the hybrid algorithm on this first
case study involving a single period. So, in the following, a more complex case study,
which considers multi-period instances and, thus, a greater combinatorial effect, is
tackled next.

6.4.2 Case study 2

The instances for the HSC problem considered next correspond to the data for the case
study of the Midi-Pyrénées region in France (Almaraz et al., 2014a), see Figure 6.3.
Accordingly, the characteristics of the HSC considered are:

• Five primary energy sources are available, namely, solar photovoltaic, wind,
hydro, French electrical mix (electricity from the grid) and natural gas.

• Three different production technologies: steam methane reforming (SMR),
central and distributed electrolysis. Renewable energies can only serve as
feedstock to electrolysis plants, while natural gas is exclusively destined to SMR
technology.

• Three different production scales: small, medium and large. The large-scale size
plant is only available for central electrolysis and SMR technologies.

• Once hydrogen is produced, it will be delivered to storage facilities via tanker
trucks in liquid form.

• As for production plants, a four-size discrete range for storage facilities is
available: mini, small, medium and large.

• The learning rate cost reductions due the accumulated experience is taken equal
to 2% per period.

The detailed input data is presented in Appendix B. To validate the solution
strategy, different size instances of the problem are generated, varying the number
of grids and time periods. The network is divided into 8 or 22 grids, corresponding
to administrative territories and departments, respectively. The planning horizon is
set to year 2050, with three different periods divisions: 1 (2050), 4 (2020, 2030, 2040,
2050) and 7 periods (2020, 2025, 2030, 2035, 2040, 2045, 2050). The combination of
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Figure 6.3: Midi-Pyrénées region case study. At the left, departments’ names for
8-grid instances. At the right, territories’ names for 22-grid instances.

these two aspects yields the six different instances studied here. The nomenclature
used for instance names indicates the number of grids and periods, as an example,
the instance HSC22g04p considers 22 demand grids and 4 time periods.

Parameter settings The performance of the proposed solution approach is compared
to that of the exact technique usually considered in the literature (CPLEX with
ε-constraint). To this end, the original MILP model, defined by equations (5.1-
5.25), was implemented and solved within the GAMS environment. As before, the
performance comparisons of solution sets of both approaches are carried out using
the hypervolume indicator. Thus, solution sets of equal size are necessary to perform
a fair comparison. For the exact approach, an approximation set containing 21
solutions is computed for each instance. We considered this arbitrary size (21) for
the approximation set as adequate to display the shape of the true Pareto front and,
at the same time, in order to avoid an intractable computational burden to the exact
method. The stopping criteria for each CPLEX execution (21 executions for each
instance) are (1) the solution found so far has an optimality gap lower than 0.01%,
or (2) the computational time exceeds a given limit: the time limit per point is set to
1 000 seconds, but also, in order to track the any-time performance of each solution
approach, setting the time limit per point at 100 seconds is also investigated.

Regarding the hybrid algorithm, in this case the SMS-EMOA is used, as it is
particularly efficient to treat two-objective problems. The population size of the
MOEA is set to 200 for 8-grid instances and 800 for 22-grid instances, according to a
previous sensitivity analysis. The stopping criterion (number of function evaluations)
is set so that similar computational times to those of the exact method are employed.
The variation operators use the following (standard) parameters: SBX operator’s
probability and distribution pc = 1 and ηc = 20, respectively; polynomial mutation’s
probability and distribution pm = 1/n and ηm = 20, respectively, where n is the
number of decision variables. Also, since the Pareto set approximation provided by
the MOEA typically contains more than 21 solutions, the final population is pruned
(by removing sequentially the solutions showing the least contribution to the total
hypervolume of the 200 solutions) so that only 21 well-distributed solutions are
considered to calculate the HV. Finally, in order to perform appropriate comparison
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Table 6.2: Numerical results of both approaches for case study 2.

Instance
Time limit
p/point (s)

CPU time(s) Optimality
gap (%)

HV(ε-constr.) HV(hybrid)
exact hybrid

HSC08g01p 100 142.5 165.7 0.01 0.9552 0.9834 (0.0003)

HSC08g04p 100 1 711.7 1 872.1 0.06 0.8008 0.8099 (0.0002)
HSC08g04p 1 000 7 852.3 7 617.6 0.02 0.8008 0.8100 (0.0002)

HSC08g07p 100 2 056.8 1 945.1 0.23 0.7639 0.7680 (0.0004)
HSC08g07p 1 000 14 629.5 12 585.1 0.03 0.7639 0.7690 (0.0008)

HSC22g01p 100 1 674.7 1 809.2 0.41 0.9616 0.9794 (0.0022)
HSC22g01p 1 000 12 526.4 14 935.0 0.09 0.9618 0.9822 (0.0013)

HSC22g04p 100 2 432.3 2 156.1 2.31 0.7736 0.7776 (0.0035)
HSC22g04p 1 000 22 416.8 22 814.5 0.71 0.7908 0.7934 (0.0023)

HSC22g07p 100 2 425.4 2 366.3 – Infeasible 0.7394 (0.0027)
HSC22g07p 1 000 22 950.4 24 088.0 0.95 0.7555 0.7563 (0.0014)

of results, the hybrid approach is run 11 times for each instance. In all figures, the
obtained Pareto front approximations with the hybrid algorithm corresponds to the
median run with respect to the hypervolume value.

The exact method was implemented in GAMS environment (v23.9.5) using CPLEX
solver v12.4.0.1. For the hybrid approach, SMS-EMOA was implemented in MATLAB
language (vR2019a) and the solution of the LP subproblems is performed using
CPLEX solver v12.8.0, called from MATLAB. The computational experiments with
both (deterministic and hybrid) approaches were carried out with the same computer
hardware, i.e. a processor Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go RAM.

Results and discussion The obtained numerical results are displayed in Table 6.2.
The column indicating the optimality gap refers to the average optimality gap over
the 21 CPLEX executions required to produce an approximation set. Besides, Table 6.2
presents also intermediate results setting the time limit per point at 100 seconds.
For the hybrid approach (last column), the results represent the mean hypervolume
value and, in parentheses, the corresponding standard deviation over 11 runs. As
mentioned previously, only 21 solutions from the last population are considered for
the hypervolume computation.

First, small size instances were studied for a further validation of the hybrid
solution method. The Midi-Pyrénées region is thus divided into its 8 main depart-
ments. From Table 6.2, it can be observed that the first instance, which considers a
constant demand (i.e., one period), required less than 3 minutes for both approaches
to obtain the Pareto front approximation. The final Pareto front approximations are
displayed in Figure 6.4. It can be observed that the hybrid approach reproduces
the non-dominated solutions found by CPLEX (red squares), and, additionally, it
provides a much more detailed Pareto front approximation (blue points), with 200
non-dominated solutions.

From these 200 points, 21 are selected for the hypervolume computation in order to
carry out a fair comparison with the output of the exact method (see Figure 6.4 right).
However, it should be clear to the reader that, without pruning the final population
for the above-mentioned purpose (of fair comparison between the hypervolumes of
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Figure 6.4: Final Pareto front approximations for HSC08g01p instance.

both approaches), the hypervolume corresponding to the complete approximation
produced by the hybrid algorithm would drastically outperform those shown in the
table for 21 points. From the numerical results in the table, it can be concluded
that the 21-point approximation set proposed by the hybrid approach (HV 0.9834)
is a better representation of the true Pareto front than that of the exact method (HV
0.9552), because solutions are better distributed along the Pareto front. Also, since the
standard deviation is not significant (0.0003), it can be inferred that the matheuristic
performance is consistent over all the executions.

Varying the number of periods

Then, a 4-period instance of the 8-grid network is considered. This time, some points
solved by CPLEX with ε-constraint exceeded the time limit of 100 and 1 000 seconds,
since the solutions found have average optimality gap equal to 0.06% and 0.02%,
respectively. Thus, CPLEX already experiences convergence troubles for this small
size case. Also, from the intermediate results (time limit per point equals to 100
seconds) shown in Table 6.2, it can be appreciated that both approximation sets
obtained by the exact method present the same value of the hypervolume (0.8008),
which may indicate that that both sets contain optimal solutions, even if convergence
is not achieved (see their corresponding values of optimality gap).

With respect to the hybrid approach, the mean hypervolume values at both instants
of the optimization (0.8099 and 0.8100, respectively) indicate a good performance
for finding trade-off solutions of the HSC problem in all runs (standard deviation
0.0002). Note that at both instants, that is, at approximately 1 872 and 7 617 seconds,
the hybrid approach outperforms the classical one because the solution set has a
better distribution in the objective space. Moreover, it is important to emphasize
that the evolutionary algorithm provides an approximation of the Pareto front that,
if evaluated visually, could be considered as continuous (it contains 200 efficient
solutions). This can be appreciated in Figure 6.5. In comparison with the single-period
instance, the TDC objective for the HSC08g04p instance is significantly lower, which
is explained by the learning rate factor that reduces capital costs in the subsequent
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Figure 6.5: Final Pareto front approximations for HSC08g04p instance.

time periods, accounting for gained experience by technology manufacturers over
time.

Now, regarding the 8-grid 7-period instance, the numerical results in Table 6.2
are once again in favor of the hybrid strategy. For the exact method, the optimality
gap decreases between 100 and 1 000 seconds while the hypervolume remains steady,
leading to the same conclusions as previously: the feasible solutions found might be
optimal, but convergence cannot be guaranteed in a reasonable time. Moreover, due
to the fact that the ε-constraint method performs an even partition of the objective
space with respect to a given objective, the obtained efficient solutions, despite the
possibility of being proven as optimal, might not be well distributed along the Pareto
front. This explains the superiority of the hybrid approach, reflected by the values
of the hypervolume indicator, which is signiicantly better for the matheuristic than
for CPLEX (since the differences are much greater than the standard deviation of the
hybrid hypervolume values).

Varying the grid number

The influence of the number of grids, associated to the spatial granularity of the
territory partition, has also been studied. Thus, instances considering each main
territory in the Midi-Pyrénées region are now discussed (22 grids). Regarding
the HSC22g01p instance, the single time-period makes its combinatorial complexity
similar to that of HSC08g07p. This can be confirmed by comparing the CPU times and
optimality gaps for both instances in Table 6.2. Besides, the hypervolume indicator
demonstrates a better performance of the hybrid approach for this instance, at both
instants. The standard deviation values of the 11 runs performed by the MOEA are
higher for the 22-grid instances than for those of 8 grids, but anyway, these values are
much lower than the differences between the CPLEX and matheuristic approaches,
suggesting that their difference is significant. Indeed, the hypervolume standard
deviation is not significant considering the mean values, meaning that even the worst
execution of the hybrid algorithm outperforms the exact method.

For the HSC22g04p instance, the required computational times increase consid-
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Figure 6.6: Final Pareto front approximations for HSC22g04p instance.

erably as well as the optimality gap for CPLEX. There is a significant difference
between the obtained HV values at each instant, for both approaches: approximately
0.77 and 0.79, at 2 432 and 22 416 seconds, respectively. The mean HV values of
the hybrid approach are greater than that of CPLEX with the ε-constraint method,
however its standard deviation values do not allow to prove a significant superiority,
when comparing equal number of solutions. Nevertheless, it is worth highlighting
that the SMS-EMOA algorithm is able to provide 800 non-dominated solutions to
decision-makers. The median solution according to the hypervolume obtained by the
stochastic approach is plotted in Figure 6.6 together with the obtained solution by the
deterministic method.

Finally, the largest instance, HSC22g07p describes the more realistic case study,
with a forecast of hydrogen demand over 30 years split into 7 five-year periods
considering the different territories in the Midi-Pyrénées region. Obtaining the
proven optimal solution for every point in the Pareto approximation set using an
exact approach would take prohibitive computational times, because of the large
size of the search space. Table 6.2 highlights that for short CPU times the exact
method does not find any feasible solution, contrary to the hybrid approach. For
higher computational times (1 000 s. per point), the average optimality gap of the
exact method’s solution set is lower than 1%. The mean hypervolume value of the
11 runs performed by the hybrid approach is slightly superior to that of ε-constraint
method. However, if the 800 non-dominated solutions identified by the matheuristic
were accounted for in the hypervolume computation, a value of 0.7771 (not presented
in Table 6.2) would be obtained, which is far superior to that of the exact technique
(0.7555). The obtained Pareto fronts are shown in Figure 6.7. It can be observed
that the “poor” distribution of the solution set obtained by CPLEX is located in the
lower part of the Pareto front (high TDC values), where this method fails to identify
accurately the knee-point of the front (as appreciated also for the other instances).
Note that missing the knee part of the Pareto front (which encompasses the most
interesting trade-off solutions) might be critical for the subsequent decision-making
process.
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Figure 6.7: Final Pareto front approximations for HSC22g07p instance.

6.5 Conclusions

The optimal design of the hydrogen supply chain constitutes a current challenge
to society, since it gives the basis for the evaluation of a cost-efficient hydrogen-
based economy. Its design is far from being a trivial task, in particular when both
economical and environmental aspects are considered. The mathematical model of the
HSC involves combinatorial aspects that could make classical optimization methods
inefficient for solving large-size instances of the problem, that is, for providing an
accurate Pareto front approximation to decision-makers. Therefore, in this chapter a
novel methodology for solving the HSC problem has been presented.

The hybrid solution methodology proposed is a matheuristic combining the bene-
fits of multiobjective evolutionary algorithms and linear programming. This methodol-
ogy efficiently solves the multiobjective HSC problem, providing the decision-makers
with a set of efficient solutions well distributed along the Pareto front. Besides, this
hybrid approach has proven to explore regions of the Pareto front that might be
ignored when using exact techniques with the ε-constraint method, because this clas-
sical strategy can be constrained by the computational burden associated to the need
for multiple executions to produce an approximation of the Pareto front. Moreover,
according to the obtained results, the methodological framework is able to find good-
quality solutions in short computational times even for large-size instances, contrary
to ε-constraint method, which rapidly can become computationally prohibitive.

The computational efficiency exhibited by the proposed approach is based on the
following aspects:

1. The decomposition of the original model into a bilevel optimization problem,
such that combinatorial and linear aspects of the problem are treated separately.
This allows the efficient solution of each subproblem (level) by appropriate
solution methods.

2. The use of a MOEA for solving the multiobjective installation problem. Contrary
to the ε-constraint method, the population-based algorithm solves the problem
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in a collaborative way, i.e., information among the population is shared to evolve
towards the true Pareto front.

3. The heuristic employed to construct the linear transportation problem. This
reduces the complexity of the lower-level subproblem, as it reduces the number
of potential exporting grids.

The solution strategy proposed here for the HSC design problem yet presents
some limitations, thus providing potential improvement features. The first limitation
regards the possibility of taking into account additional objectives: although the
general structure of the hybrid algorithm can be maintained unchanged, SMS-EMOA
might not be suited anymore, mainly because of the computational cost corresponding
to the hypervolume calculation, which drastically increases with the number of
objectives considered (Knowles and Corne, 2002). As a consequence, other paradigms
for handling multiple objectives should be considered, for instance, decomposition-
based MOEAs (see MOEA/D, Zhang and Li, 2007). Besides, the plant installation
costs involve, in many practical contexts, nonlinear terms. Therefore, an extension
of the present work to deal with nonlinear formulations constitutes a scope for
improvement that will be tackled in the following chapter.
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7.1 Introduction

In the previous chapter, a matheuristic solution method was introduced for the
efficient design of sustainable hydrogen supply chains (HSC). The numerical results
highlighted the efficiency of the hybrid approach in comparison with a classical
approach, namely, weighted Tchebycheff function and ε-constraint method, on 9
increasing size instances. More precisely, the hybrid algorithm proposed a significant
number of non-dominated solutions, and thus a more accurate approximation of the
Pareto front was obtained, in reasonable computational times.

The aim of this chapter is to provide a more complete evaluation of the HSC by
proposing some improvements to the previous model. The innovations of this chapter
can be summarized in three main aspects, as follows:
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1. The economy of scale for production and storage facilities are accounted for
more appropriately through the sizing-up of a nominal facility.

2. The potential of cost reductions associated to technological learning, which is
particularly important for low maturity technologies, is considered based on a
recent work (Böhm et al., 2020).

3. Two alternative production technologies, namely, steam methane reforming
with carbon capture, use and storage (SMR w/CCUS), and proton-exchange
membrane water electrolysis (PEM) coupled with renewable electricity have
been introduced in the set of technological options.

This chapter is organized as follows. The next section introduces the key inno-
vations of this chapter. Section 7.3 presents the sizing-cost relationships used in the
model. These changes to the base model are now analyzed from a global optimization
perspective, identifying the sources of nonlinearities in Subsections 7.3.1 and 7.3.2.
In Section 7.4, the solution of the proposed model by the matheuristic approach is
briefly discussed, from the viewpoint of the efficient handling of nonlinearities by the
MOEA. This solution methodology is validated in Section 7.5 through the study of
eight increasing-size instances. The obtained results are analyzed and discussed in
detail in Section 7.5.3 and, finally, conclusions are drawn in Section 7.6.

7.2 Key innovations

7.2.1 Economy of scale

The model considered so far (Almansoori and Shah, 2009; Almaraz et al., 2014a) only
consider a range of discrete values for the sizing of production units, represented by
index j in the former model. In that model, each one of the different sizes available has
its corresponding capital and operating cost (CAPEX and OPEX, respectively). This
formulation has the advantage of being of MILP type; however, the main drawback
is that unit sizes are chosen from a set of possibilities, which can be restrictive (the
|J| available options). The facility sizing can be modeled in a simple and classical
way following the power relationships typically used in chemical engineering (Peters
et al., 2003). As a consequence, the size of the production and storage facilities are to
be considered as continuous variables.

7.2.2 Learning rate

With respect to the cost reduction associated to the experience acquired over time
by technology manufacturers, i.e., the learning rate, the previous model does not
consider it as a technology-dependent factor, but only as a time-varying parameter.
Based on the work of Böhm et al. (2020), in this chapter different learning rates for
different production technologies are introduced. For example, the learning rate used
for electrolysis-based technologies should allow for a more important cost reduction
over time than that for steam reforming technology, which is an already mature
technology. Moreover, the cost of energy feedstock is modeled in a similar manner:
the levelized cost of energy (LCOE) for renewable energy sources, like wind onshore
or solar photo-voltaic, is a time-varying parameter, considering that these renewable
energies are expected to grow under the studied horizon time (Haeusler et al., 2020).
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7.2.3 Additional process alternatives

Additionally, two additional low-carbon hydrogen production technologies, namely,
SMR w/CCUS and PEM, which represent relevant production pathways from both
economic and environmental perspectives, will be considered as process alternatives.
The hydrogen produced by SMR w/CCUS consists in a low-carbon pathway because
CO2 can be captured before or after it is emitted (directly from the air), followed
by a permanent geological storage or uses of CO2 (IEA, 2019). This hydrogen,
produced from fossil fuels with CO2 emissions reduced, is commonly labelled as
“blue” hydrogen. Concerning PEM electrolyzers, they are based on solid polymer
membranes technologies. The main advantages they present, compared to alkaline
electrolyzers (AEL), include faster cold start and higher flexibility, thus representing
a better option for intermittent systems (Götz et al., 2016). Even if this technology
is currently more expensive than AEL systems, forecasts estimate that the PEM
technology will overtake AEL in a near future, then becoming the cheapest solution
(Böhm et al., 2020).

7.2.4 Impact on problem formulation

From an optimization perspective, the extended methodology will now involve addi-
tional decision variables representing the plant and storage capacities and equations
correlating sizing and cost of these facilities. Typically, these sizing-cost relations
use a scale factor as an exponent of the ratio between a given size equipment and
the questioned size equipment. Therefore, the resulting HSC problem becomes of
MINLP type and its solution is more complex than the base MILP model. The
matheuristic approach introduced in the previous chapter is particularly relevant for
solving this type of problems, mainly because the changes made to the base model
only involve upper-level variables treated by the evolutionary algorithm, that is well
suited for managing nonlinearities, whereas the lower-level problem (production and
transportation problem) will remain almost of the same complexity.

7.3 Modeling of scaling and learning effects

According to Peters et al. (2003, p. 242) the equipment cost of a particular size or
capacity can be estimated by using the relationship known as the six-tenths factor rule,
providing that the size and cost data of a similar equipment is available. According
to this rule, the cost of a new equipment item is approximated as the cost of a known
equipment item times the ratio of their capacities with an exponent f , as formulated
in the following equation:

Cb = Ca

(
Sb

Sa

) f

(7.1)

where Cb is the cost of the considered equipment and Sb is its respective size, while
Ca and Sa represent the cost and size of the known reference, respectively.

In Böhm et al. (2020) the relationship in equation 7.1 is applied to the estimation
of electrolysis-based technologies. The authors indicated that the scale factor values
depend on the system size and may vary from one technology to another, for alkaline
technology, for instance, f can take values ranging from 0.51-0.96, whereas for
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costs from offshore generation are stated significantly higher, at about
75–138 €/MWh. These costs are expected to decline in the medium
term, reaching 35–71 €/MWh (onshore) and 57–101 €/MWh (off-
shore), respectively, until year 2035. Another study executed by Agora
Energiewende [95] expects even lower costs for electricity from on-
shore wind farms estimating 30–60 €/MWh by 2030 to 25–50 €/MWh
by 2050, for plants located in Germany. Assuming a more optimistic
scenario with a higher potential for cost reduction, these costs could
also decline to 25–45 €/MWh (2030) and 20–35 €/MWh (2050). The
LCoE from open space PV power plants in Germany currently (2018)
reach costs of about 37–68 €/MWh, depending on the location. These
costs are expected to decline to 21–39 €/MWh by 2035 [94]. An ex-
tended study by Fraunhofer ISE [96] estimated potential long–term
LCoE of about 25–44 €/MWh for southern Germany, and 18–31 €/MWh
in southern Spain by 2050, based on a proposed learning curve and
scaling effects. For international regions the IEA states current LCoE
from 55 €/MWh (United States) to 95 €/MWh (EU) for onshore wind
and 50 €/MWh (India) to 105 €/MWh (EU) for PV in their Stated Po-
licies Scenario. Perspectives for 2040 are at 55–90 €/MWh for onshore
wind and 50–90 €/MWh for PV, respectively [86]. However, these
values are expected to be lower in a Sustainable Development Scenario.
Hence, PtG product costs will, independent of CAPEX development, be
highly dependent on to location of implementation. The electricity costs
presumed for wind and PV in the techno-economic assessment in dif-
ferent periods of observation are presented in Appendix A.

In addition to the direct supply from renewable energy sources, we
assessed production costs for PtG products based on the participation in
the electricity green spot market, which would be reasonable in terms
of constant production for industrial utilization of PtG products.
However, to ensure an economic advantage of PtG over fossil produc-
tion of hydrogen, the global warming potential (GWP) of the utilized
electricity must not exceed 190 g CO₂ per kWh. For SNG production by
methanation, the GWP limit further decreases to about 70–120 g CO₂
per kWh, depending CO₂ separation effort is included, due to efficiency
impacts [97,98]. This has to be considered in the assessment for dif-
ferent electricity markets. The calculations on spot market electricity
presume that the PtG plant is operated at times with the lowest elec-
tricity prices, and thus mean costs for electric power supply are de-
pendent on the annual full load hours (FLH) of operation. The price
curves used for the evaluation of electricity supply costs are based on
the Austrian spot market data for the year 2017, at a time periods of
60 min [99].

3. Results and discussion

3.1. Resulting investment costs

Based on the evaluated demand potentials for PtG production ca-
pacities, we calculated learning curves related to the year of installa-
tion, presuming that cumulative production matched the demand po-
tential by year 2050. For annual interim values a logistic growth
function was assumed for the overall production capacities. Following
boundary conditions were presumed:

• Current cumulative capacities are at 21.1 GWel for electrolysis, ac-
cording to [10,11], and at about 33 GWSNG for methanation, ac-
cording to [20].
• Recent surveys indicate that electrolyzer industry could ramp up
production to 2 GW/year by 2020 (from 100 MW/year in 2018) [4].
This value was used as a reference for production scale-up to be
reached by 2025 from current perspective.
• The total annual productions for electrolysis and methanation ca-
pacities were then subdivided into the individual technologies. For
electrolysis these production shares were presumed based on the
estimations given in [47], targeting about 40% each for PEMEC and
SOEC and around 20% for AEC technology by 2050. For methana-
tion an initial division of 90% vs. 10% (catalytic vs. biological me-
thanation) was presumed, changing to 60% vs. 40% by 2050 (see
Appendix A).

The results show that under presumed conditions, CAPEX are ex-
pected to decline significantly for all investigated technologies due to
technological learning (see Figs. 4 and 5). Solid-oxide electrolysis is
about to compete with alkaline cells in terms of capital costs in the long-
term, while PEMEC are about to undercut AEC in near future and es-
tablish the lowest cost solution. This is in line with the findings in [11]
at an increase of relative cumulative production by a factor of 5 · 102,
considering the difference in initial costs based on the literature review.
Under consideration of developing efficiencies based on Smolinka et al.
[47] (cf. Fig. 4, right), SOEC are expected to become economically
competitive to alkaline cells even sooner based on hydrogen output.
Especially in PtM processes synergies could be used, considering opti-
mized thermal integration of the exothermal methanation process and
therefore maximizing overall efficiency of the PtG system [100–102].

For methanation, bio-based technologies are expected to reach
lower cost levels compared to its chemical counterpart at the referenced
size of installation. Despite continuously higher production shares for

Fig. 4. Estimated ranges for technological learning of electrolysis related to the defined deployment scenarios (left. based on electric power; right. based on hydrogen
output with developing efficiencies).
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Figure 7.1: Estimated ranges for technological learning of electrolysis (left: based on
electric power; right: based on hydrogen output with developing efficiencies). Taken
from Böhm et al. (2020).

proton exchange technologies, f typically ranges from 0.53-0.97. Therefore, using the
nomenclature used in the previous chapters, the CAPEX of establishing a production
plant, PCCpigt, of a given capacity, PCappigt, can be estimated as:

PCCpigt = PCCref
pit

(
PCappigt

PCapref
pit

)rp

∀p ∈ P, i ∈ I, ∀g ∈ G, ∀t ∈ T (7.2)

where PCapref
pit and PCCref

pit are, respectively, the production capacity of a reference
plant and its associated capital cost, and rp is the scaling parameter. In this work, the
CAPEX is considered in euros (EUR), the capacity of an electrolyzer in MW (electrical
input), whereas the capacity of a SMR plant is given in kg of H2 per day.

From equation (7.2), it can be observed that different installation costs can be
estimated depending on the period of time t at which a given plant is installed, with
the condition that the corresponding data of a reference plant is available. In Böhm
et al. (2020), the authors investigated the dynamic installation costs for electrolysis
technologies considering potential demands of power-to-gas systems. The obtained
results indicated significant CAPEX reductions in the studied time horizon (2020-2050)
considering a nominal power plant of 5 MWel, see Figure 7.1. It can be noted that the
estimates show that PEM (or PEMEC in the figure) electrolysis is about to undercut
AEL (AEC in the figure) in the near future (before 2025). In this respect, this work
adopted the profile of the learning rates for AEL and PEM technologies proposed by
(ibid.). The data related to steam reforming, in particular for production capacity and
cost of a reference plant was taken from NREL (2018). For this technology, no cost
reduction associated to technological learning was considered, since it is an already
mature technology.

Now, considering the operational costs (OPEX) associated to a production plant
of a given size, this latter is usually estimated as a function of the capital cost, more
precisely, expressed as a percentage of the CAPEX per year (E&E Consultant et al.,
2014). Thus, the unit production cost UPCpigt, which is the cost of producing one
unit (kg) of hydrogen, involves the operational cost as well as the cost associated to
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the energy and material feedstock. It can be calculated as:

UPCpigt = βpigt
PCCpigt

αPCappigt
+ γpigtECpigt ∀p ∈ P, i ∈ I, ∀g ∈ G, ∀t ∈ T (7.3)

where βpigt is the OPEX parameter ranging from 0.03 for PEM electrolysis (ibid.),
to 0.15 for SMR w/CCUS (NREL, 2018), α is the network operating period, in days
per year, γpigt is a conversion factor representing the energy and material feedstock
needed for producing a unit of hydrogen, and ECpigt is the corresponding unit cost.

Regarding the installation and operation costs of storage facilities, they can be
estimated using the six-tenths factor rule, similarly to the calculation for production
plants. In this sense, the capital cost of establishing a storage facility, SCCsigt, is
computed as a function of the storage unit’s capacity, SCapsigt, considering the
nominal capacity of a reference storage facility, SCapref

sit , and its related capital cost,
SCCref

sit , as:

SCCsigt = SCCref
sit

(
SCapsigt

SCapref
sit

)rs

∀p ∈ P, i ∈ I, ∀g ∈ G, ∀t ∈ T (7.4)

where adequate values for parameters SCapref
sit , SCCref

sit and rs, can be found in the
literature, see for example Beccali et al. (2013).

Also, the unit storage cost (USCsigt) is computed as a function of the storage
capacity (E&E Consultant et al., 2014), i.e., as a function of its capital cost (SCCsigt), so
that the bigger the storage facility, the lower the unit storage cost. It is calculated as:

USCsigt = βsigt
SCCsigt

αSCapsigt
∀s ∈ S, i ∈ I, ∀g ∈ G, ∀t ∈ T (7.5)

where βsigt is the OPEX parameter.

7.3.1 Sources of nonlinearities

In the proposed model, equations (7.2-7.5) are now used to correlate installation and
operation costs to production and storage capacities. In this way, the facility capacities,
PCappigt and SCapsigt, are considered as continuous decision variables. Therefore,
equations (7.2) and (7.4) are nonlinear and non-convex because of the exponent of the
scale parameter (taking positive values inferior to 1). Further, equations (7.3) and (7.5)
are also nonlinear, not only because the sizing variables appear in the denominator,
but also because the variables associated to installation costs, PCCpigt and SCCsigt,
are now considered as (dependent) decision variables. Besides, the modifications
carried out give rise to nonlinearities elsewhere in the original model, namely, the
facility capital cost of the entire network FCCt, which was calculated according
to equation (5.3) in page 113, and involves now bilinear terms, and equation (5.3)
becomes:

FCCt = ∑
i∈I

∑
g∈G

(
∑
p∈P

PCCpigt IPpigt + ∑
s∈S

SCCsigt ISsigt

)
∀t ∈ T (7.6)
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Note that both the first and second terms in equation (7.6) are nonlinear and non-
convex, since variables IPpigt and ISsigt are discrete.

Additionally, the facility operating cost (see equation 5.7 in page 114), which
considers the cost associated to the operation of each production plant and storage
facility, involves also product bilinear terms. Thus:

FOCt = ∑
i∈I

∑
g∈G

(
∑
p∈P

UPCpigtPpigt + ∑
s∈S

USCsigtST
igt

)
∀t ∈ T (7.7)

In this case, only the first term inside the brackets represents a nonlinear term because,
in the second term, ST

igt is not a decision variable but a parameter.

7.3.2 Mathematical model

The novel mathematical representation of the bi-objective hydrogen supply chain
design (HSC) proposed i this chapter is as follows:

min
x

[TDC(x), GWP(x)]T (7.8)

s.t. ∑
p∈P

∑
g∈G

PCapmin
pigtNPpigt − ∑

g∈G
Digt ≤ 0 ∀i ∈ I, ∀t ∈ T (7.9)

∑
g∈G

Digt − ∑
p∈P

∑
g∈G

PCapmax
pigt NPpigt ≤ 0 ∀i ∈ I, ∀t ∈ T (7.10)

∑
s∈S

SCapmin
sigt NSsigt − ST

igt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.11)

ST
igt −∑

s∈S
SCapmax

sigt NSsigt ≤ 0 ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.12)

PCapmin
pigtNPpigt − Ppigt ≤ 0 ∀p ∈ P, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.13)

Ppigt − PCapmax
pigt NPpigt ≤ 0 ∀p ∈ P, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.14)

∑
p∈P

Ppigt −∑
l∈L

∑
g′∈G,g′ 6=g

(
Qilgg′t −Qilg′gt

)
− Digt = 0

∀i ∈ I, ∀g ∈ G, ∀t ∈ T
(7.15)

PCaplo
pigt ≤ PCappigt ≤ PCapup

pigt ∀p ∈ P, ∀i ∈ I, ∀g ∈ G,

∀t ∈ T
(7.16)

SCaplo
sigt ≤ SCapsigt ≤ SCapup

sigt ∀s ∈ S, ∀i ∈ I, ∀g ∈ G,

∀t ∈ T
(7.17)

NPpigt, NSsigt ∈N ∀p ∈ P, ∀s ∈ S, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.18)

PCappigt, SCapsigt ∈ R≥0 ∀p ∈ P, ∀s ∈ S, ∀i ∈ I, ∀g ∈ G, ∀t ∈ T (7.19)

Ppigt, Qilgg′ ∈ R≥0 ∀p ∈ P, ∀i ∈ I, ∀l ∈ L, ∀g ∈ G, ∀t ∈ T (7.20)

x =
[
PCappigt, SCapsigt, NPpigt, NSsigt, Ppigt, Qilgg′t

]T (7.21)

where x in equation (7.8) represents the vector of decision variables, i.e., x = [PCappigt,
SCapsigt, NPpigt, NSsigt, Ppigt, Qilgg′t]

T, as stated in equation (7.21). For readability
purposes, the complete model is not presented here, nevertheless, the reader can
easily hint the missing equations, presented in Chapter 5. These are equations (5.1-
5.14), with the exception of equations (5.3) and (5.7), and the addition of (7.2-7.7).
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Also, the assumption is made that production plants installed in the same grid,
in the same period of time and with the same technology type, have necessarily the
same capacity PCappigt. In this way, for instance, the variable NPpigt indicates the
number of production plants with identical specifications in each grid and in each
period. This reduces the problem complexity, yet constituting a realistic assumption,
e.g., the installation of two facilities in the same grid and in the same period are
expected not to have significant differences in sizing, since both facilities have to
satisfy the same hydrogen demand.

Again, regarding sources of nonlinearities in the model, note that constraints (7.9-
7.14) involve nonlinear and non-convex bi-linear product terms, because the operating
conditions limits of the facilities depend on their actual sizes, PCappigt and SCapsigt.
More precisely, the facility operating conditions are dictated for each given technology,
for example, considering an alkaline electrolysis, it can operate at least at 20% of its
nominal capacity to a maximum operating condition of 110% of its nominal capacity
(E&E Consultant et al., 2014). The constraints (7.16) and (7.17) impose realistic bounds,
in terms of capacity, for establishing production and storage facilities, respectively.

7.4 Solution strategy

7.4.1 Handling nonlinearities at the upper level

The idea behind the bilevel decomposition is to transform the original problem into
two subproblems of tractable complexity, such that each aspect of the original problem
can be tackled by appropriate solution approaches. As for the previous chapter, the
HSC design problem can be decomposed into (1) the problem related to facility
installation (upper level) and (2) the continuous problem associated to production
and transportation rates (lower level). Here, equations (7.8-7.12) and (7.16-7.19) are
involved in the upper-level problem, with decision variables PCappigt, SCapsigt, NPpigt
and NSsigt; whereas the lower-level is described by equations (7.8), (7.13-7.15) and
(7.20), with decision variables Ppigt and Qilgg′t. Within the matheuristic strategy, as
previously, the upper-level problem is tackled by a MOEA and, with respect to
the lower-level problem, it is transformed into a canonical transportation problem
applying the (already described) heuristic, to be solved efficiently by an exact LP
solver.

Yet, from the analysis of the sources of nonlinearities presented in Subsec-
tion 7.3.1,the decision variables involved in nonlinear equations (7.2-7.7) are PCappigt,
SCapsigt, NPpigt and NSsigt, which all belong to the upper level. With regards to the
other constraints containing nonlinear terms (7.13-7.15), they are at the lower-level,
but they become linear once some variables (PCappigt) are set to some value by the
upper-level algorithm. Thus, every nonlinear function can be easily handled by the
evolutionary algorithm.

7.4.2 Impact on the lower-level problem

The changes to the base model have also an impact on the transportation and pro-
duction problem. As mentioned before, the lower-level problem is described by
equations (7.8), (7.13-7.15) and (7.20), with decision variables Ppigt and Qilgg′t. There-
fore, if compared to the previous linear model (see Section 6.10), it is clear that the
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Figure 7.2: Simplified diagram of the hybrid (master-slave) approach for the improved
HSC model. Upper-level variables in black and lower-level variables in blue.

mathematical representation of the lower level has not changed, i.e., equations (7.13-
7.15) match almost exactly with equations (6.8-6.10).

The only difference is the subindex j associated to the size type of the production
facility in variable Ppjigt in equations(6.8-6.10). Although this might seem an insignifi-
cant difference, it might entail important effects on computational times, in particular
for instances with a high number of periods. To better explain this, let us consider
the installation of production facilities in the previous MILP model. The number of
production variables, of the same physical form type i, at each grid g, at each period t,
can be at most |P| × |J|. Then, assuming the worst case in which production plants of
all types are installed in every grid, the overall number of production variables impli-
cated in the evaluation of an upper-level partial solution is |P| × |J| × |I| × |G| × |T|.
On the contrary, in the proposed model, the number of production variables with the
same physical form type i, at each grid g, at each period t, has a nonlinear relationship
with the number of periods considered. For instance, in each grid, in the first period,
there are at most |P| production variables (production levels are to be determined
for one period); in the second period, there are at most |P| × 2 production variables
(production levels are to be determined for two periods); in the n-th period, there
are at most |P| × n production variables (production levels are to be determined for
n periods). Therefore, the overall number of production variables involved in the
lower-level operation subproblem is at most |P| × |I| × |G| × |T| × (|T|+ 1)/2.

7.5 Computational experiments

The efficiency of the proposed matheuristic methodology for solving the bi-objective
HSC problem is validated through the solution of eight growing size instances of the
problem. Contrary to the experiments on the previous linear formulation, in which
a performance comparison of both hybrid and classical approaches was performed,
no computation through exact techniques based on mathematical programming was
carried in this non-linear case. Indeed, in the present chapter, the aim is to apply
the hybrid solution strategy developed earlier, without major changes, to the new
formulation, in order to propose practical solutions for this case study. Moreover,
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some preliminary experiments using GAMS solvers showed that the determination of
an initial feasible solution is a difficult task, so that it did not seem justified to devote
additional efforts for this class of methods that, as shown in the previous chapter, is
outperformed by our matheuristic approach.

7.5.1 Case study 3

The instances for the HSC problem considered in this work correspond to the data
for the case study of Midi-Pyrénées territory in France (Almaraz et al., 2014a). In
Figure 7.3, a summary of the case study data is shown. This time, four different
periods of time are studied for each 8 and 22-grid instances, that is, the entire planning
horizon is set to year 2050, with different periods divisions: 1 period (2050), 2 periods
(2020, 2050), 4 periods (2020, 2030, 2040, 2050), and 7 periods (2020, 2025, 2030, 2035,
2040, 2045, 2050). The data used for different production technologies as well as the
data employed for energy sources is provided in Appendix B.

Production technologies
• SMR
• SMR w/CCUS
• AEL electrolysis
• PEM electrolysis

Energy sources
• Natural gas
• Solar photo-voltaic
• Onshore wind
• Grid

Facility capacity size
• Continuous variable

Transportation mode
• Tanker truck liquid H2

Figure 7.3: Midi-Pyrénées region case study. Names in capitals indicate departments
(grids) for 8-grid instances. Color points correspond to grid cities (in lower case) for
22-grid instances.

7.5.2 Parameter settings

Regarding the operating parameters of the matheuristic used as a solution tool, the
population size of the MOEA is set to 1 000 for all instances according to a preliminary
sensitivity analysis; the stopping criterion (number of function evaluations) is set
to 2× 106 for all instances. The variation operators use the following (standard)
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Table 7.1: Numerical results of the hybrid solution approach for case study 3.

Instance
UL variables HV CPU

time(s)Discr. Cont. best median worst mean std

nHSC08g01p 72 72 0.4790 0.4692 0.4606 0.4693 0.0051 642.4
nHSC08g02p 144 144 0.9226 0.9215 0.9200 0.9213 0.0019 1 397.6
nHSC08g04p 288 288 0.9354 0.9321 0.9311 0.9326 0.0014 5 542.3
nHSC08g07p 504 504 0.9724 0.9717 0.9673 0.9707 0.0022 22 640.2

nHSC22g01p 198 198 0.3854 0.3569 0.3380 0.3608 0.0163 3 324.5
nHSC22g02p 396 396 0.8746 0.8695 0.8645 0.8689 0.0029 8 552.3
nHSC22g04p 792 792 0.8825 0.8816 0.8806 0.8815 0.0013 41 527.9
nHSC22g07p 1386 1386 0.9139 0.9114 0.9097 0.9122 0.0035 164 310.1

parameters: SBX operator’s probability and distribution are pc = 1 and ηc = 20,
respectively; polynomial mutation’s probability and distribution are equal to pm =
1/n and ηm = 20, respectively, where n is the number of decision variables. The
reference point for the hypervolume indicator (HV) computation is set at [3.3, 12.1]T

in the objective space, for all instances.
As for the linear case, SMS-EMOA was implemented in MATLAB language

(vR2019a) and the solution of the LP subproblem is performed using the CPLEX
solver v12.8.0, called from MATLAB. Also, all the computational experiments were
carried out with a processor Intel Xeon E3-1505M v6 at 3.00 GHz and 32 Go RAM.

7.5.3 Results and discussion

The obtained numerical results are presented in Table 7.1. It can be appreciated that,
in the upper-level subproblem, the number of discrete and continuous variables are
equal for each instance, because of the hypothesis made about the equal capacities
of installed facilities of the same type in the same grid and in the same period.
That is, these upper-level variables represent the number and size of each different
production/storage technology (p/s), at each potential location grid (g), in each
period (t). Also, the column presenting the CPU times (for each execution) in Table 7.1
suggests that the solution of the proposed model requires higher computational times
than those required for the linear model (see Table 6.2 at page 132). This trend is
particularly obvious for medium-to-large size instance, like nHSC08g07p or those
containing 22 grids, because the multi-period aspect of the problem echoes in the
lower-level subproblems, as discussed in Section 7.4. Indeed, for the largest instance,
more than 45 hours are required for one single execution. The statistical results
regarding the hypervolume indicator are provided in Table 7.1. The low values of the
standard deviation indicates the robustness of the algorithm, which allows to infer
that convergence has been reached.

However, apart from an evaluation of the numerical results obtained over all
instances and rather than an assessment of the optimization technique performance
levels, a focus is proposed in what follows on the particular solutions obtained
and their practical interpretation, in the framework of the tackled case study. For
this purpose, instance nHSC08g07p is analyzed here, because it provides general
guidelines for the optimal design of the HSC over time (it contains seven 5-years
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Figure 7.4: Final Pareto front approximation of nHSC08g07p instance.

time periods), but it does not constitute a large instance (only 8 grids), for which a
detailed representation would be too complex to present here. Figure 7.4 presents the
Pareto front approximation obtained for this instance is shown (corrsponding to the
median solution set, with respect to hypervolume). It includes 1 000 non-dominated
solutions, each one describing a specific HSC design and its evolution over the time
horizon considered (2020-2050), which includes: the strategic decisions about size,
type, location and operation of production and storage technologies, as well as the
logistics features defining the transportation of hydrogen among grids, for each time
period. Besides, please note that both TDC and GWP objectives are presented per
unit of H2 produced, this is done by dividing the original objectives by the total
hydrogen demand. It can be observed that the non-dominated solutions found lie
in the range 1.64 - 2.86 USD/kgH2 for the TDC objective, with a global warming
potential of 10.89 - 1.75 kgCO2-eq/kgH2, respectively. The shape of the resulting
Pareto front is worth being analyzed: for low TDC values, it is composed of two
linear segments with different slopes. Then, as TDC increases, a disconnection in the
front is observed, followed by nonlinear segments corresponding to the lowest GWP
values.

In order to analyze some candidate solutions, the Pareto front approximation is
divided into five segments for further analysis. As mentioned above, the partition is
carried out according to the Pareto front shape. In this way,

• segment 1 comprises non-dominated solutions with a TDC objective ranging
from 1.64 - 1.90 USD/kgH2 TDC;

• segment 2 has non-dominated solutions with a TDC objective ranging from
1.90 - 1.95 USD/kgH2 TDC;

• segment 3 with a TDC objective ranging from 1.95 - 2.13 USD/kgH2 TDC;

• segment 4 with a TDC objective ranging from 2.13 - 2.49 USD/kgH2 TDC;
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Figure 7.5: Final Pareto front approximation of nHSC08g07p instance. Colors indicate
the majority of production technology used for hydrogen demand satisfaction.

• and segment 5 with a TDC objective ranging from 2.49 - 2.86 USD/kgH2 TDC.

In Figure 7.5, this division into segments can be appreciated visually. Besides,
each solution is assigned a color depending on the major production technology
used for satisfying the hydrogen demand over the whole time horizon. Accordingly,
the solutions in the left part of the front (low TDC values) mostly employ the SMR
technology for satisfying hydrogen demand, whereas the solutions in the right part
of the front (low GWP values) mainly promote the use of PEM electrolysis powered
by wind energy. Now, with the aim of presenting the evolution of the HSC design
in further details, one solution is selected from each one of the five segments. To
this end, the AASF scalarazing function (Pescador-Rojas et al., 2017) is employed in
order to determine the most relevant solution of each segment, that is, a solution
with a balanced trade-off for both objectives. In this perspective, each objective is
normalized within each segment and equal weights are used for each objective.

Analysis of the AASF solution from segment 1

The AASF solution shown in Figure 7.6 corresponds to a 1.76 USD/kgH2 averaged
total daily cost (i.e., the averaged cost over all periods) and it produces 8.46 kgCO2-
eq/kgH2. Most of the hydrogen (considering all time periods) is produced from the
steam methane reforming technology. In Figure 7.6, the deployment of the HSC in
the studied region is displayed for every period. The arrows indicate transporta-
tion between grids, while the pie chart in each period indicates the percentage of
hydrogen demand satisfied by each production technology. Also, the colored squares
in each grid represent production units, depending on the employed technology;
the corresponding number indicates the cumulative number (over past periods) of
installed production plants. The storage facilities are not shown in the chart.

It can be observed that, for this solution, only two different technologies are
used: SMR and PEM electrolysis powered by solar photo-voltaic. However, the PEM
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technology does not appear before the sixth period, that is, when it constitutes a
technology mature enough to constitute a good option from an economic point of
view (according to the data employed). Also, it is worth mentioning that only one
production plant is able to satisfy the hydrogen demand for the first five periods,
because SMR plants can exhibit relatively large production capacities, in comparison
to the low demand in these periods. The next plant installation is indeed carried out
in the 6th period only (i.e., 35 years later). The only SMR production unit installed is
located at the grid corresponding to the Haute-Garonne department (where hydrogen
demand is the most important). In this way, the transportation costs are minimized.

Analysis of the AASF solution from segment 2

As observed in Figure 7.5, segment 2 contains only solutions that produce a majority of
“blue” hydrogen for satisfying the network demand. The details of the solution chosen
through the ASSF are shown in Figure 7.7. The corresponding objective values are
1.93 USD/kgH2 for the averaged total daily cost and 5.36 kgCO2-eq/kgH2 produced
for the GWP. This solution presents the singularity that plant installation only occurs
in the first period: one SMR w/o CCUS and one SMR w/CCUS production plants.
Besides, the proportion of the hydrogen demand satisfaction for these two plants is
the same in every period, 21% for SMR and 79% for SMR w/CCUS. Note that this
does not necessarily mean that the production rates for these two plants are the same
in each period, because the hydrogen demand increases over time. Regarding the
logistics features, the transportation routes remain logically the same over all periods,
since no plant is installed apart from the first period. Again, the installation of
production plants takes place in the department with the highest population density
and, thus, with the highest hydrogen demand expectation.

Analysis of the AASF solution from segment 3

With respect to the third segment, the selected solution produces mostly either “blue”
or “green” hydrogen (see segment 3 in Figure 7.5). This solution is detailed in
Figure 7.8, with an averaged TDC of 2.03 USD/kgH2 and a GWP equal to 3.27 kgCO2-
eq/kgH2. In the first period, blue hydrogen (from SMR w/CCUS) is produced, in
one production site to satisfy the demand in the whole network. It can be appreciated
that the plant installed in the first period has a capacity size sufficient to satisfy
the demand in the next four periods. In the sixth period, PEM water electrolysis
then represents the major technology, producing 63% of the total hydrogen demand
in the network. Contrary to SMR production plants, which have the potential to
produce large amounts of hydrogen, electrolysis is constrained by the technology in
itself and also by the intermittent availability of the energy source, described by the
charge factor. Thus, in the sixth period, 11 electrolyzers are installed to satisfy the
hydrogen demand and, in the last period, one more is finally installed. It is important
to highlight that, as mentioned before, the installation and operational costs for
electrolyzers are time-varying parameters. This explains in part the installation of
electrolyzers in later periods, when the technology has become competitive, or even
more, the cheapest option for hydrogen production.
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Figure 7.6: Detailed chosen solution on segment 1 for nHSC08g07p instance. Squares
indicate the cumulative number of production units; arrows between grids indicate
transport flows; pie charts indicate demand satisfaction by production type.
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Figure 7.7: Detailed chosen solution on segment 2 for nHSC08g07p instance. Squares
indicate the cumulative number of production units; arrows between grids indicate
transport flows; pie charts indicate demand satisfaction by production type.
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Figure 7.8: Detailed chosen solution on segment 3 for nHSC08g07p instance. Squares
indicate the cumulative number of production units; arrows between grids indicate
transport flows; pie charts indicate demand satisfaction by production type.
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Analysis of the AASF solution from segment 4

The solution selected in segment 4 is detailed in Figure 7.5. This solution produces
the majority of hydrogen by PEM electrolysis employing electricity generated by
solar photo-voltaic systems. The averaged TDC is of 2.30 USD/kgH2 and entails 2.44
kgCO2-eq/kgH2. In the first two periods (first ten years), blue hydrogen is produced
in one single production site, located at the grid corresponding to the Haute-Garonne
department. In the third period, an electrolysis of type PEM, powered by wind energy,
is installed in the grid corresponding to the Haute-Pyrénées department and produces
17% of the overall hydrogen demand in the network. From that production site, hydro-
gen is transported towards two other grids (Auch and Ariège). In the fourth period,
three additional PEM/wind electrolyzers are installed, with hydrogen distribution to
Aveyron, Tarn et Haute-Garonne departments. In that period PEM/wind technology
becomes the most important production technology, covering 61% of the network
demand. In the fifth period, three different production technologies interact, namely,
SMR w/CCUS, PEM/wind and PEM/PV. It is important to recall that, according
to the data used, from period 3, electricity generated by solar PV technology is less
expensive than wind onshore, but has a higher GWP than wind energy, according
to a LCA analysis (Mehmeti et al., 2018; Muteri et al., 2020). This explains why
PEM/PV does not appear before period 5: in periods 3 and 4, the cost of electricity
from wind energy is slightly higher than that from PV energy, but the benefits in the
environmental objective are more important than those of the economic criterion. In
contrast, this trend begins to change in period 5. Periods 6 and 7 show a significant
installation of PEM/PV electrolysis, satisfying more than 85% of the network demand.
Besides, it is observed that, contrary to the detailed solutions from segments 1-3, the
installation of electrolyzers is carried out progressively, accounting for the fact that
low capital costs are attained in late periods of time.

Analysis of the AASF solution from segment 5

Segment 5 comprises non-dominated solutions that only employ water electroly-
sis technology to satisfy the growing hydrogen demand. On the one hand, these
solutions can be considered as the most expensive alternatives for deploying the
hydrogen supply chain, and, on the other hand, they involve the best green roadmaps
for the HSC. The AASF solution from this part of the approximation front is dis-
played in Figure 7.10, with an averaged cost of 2.62 USD/kgH2 and producing 1.86
kgCO2-eq/kgH2. This time, alkaline technology is employed, in particular that using
electricity from wind energy. In the first period, 33% and 67% of the H2 demand is
fulfilled by AEL/wind and PEM/wind, respectively. Note that the AEL production
drops from 33% to only 6% (of the total demand), from the first to the second pe-
riod. This is because the membrane technology turns out to be less expensive than
alkaline from the second period, and thus, the former becomes the most appropriate
production technology. Also, since the mathematical model imposes constraints on
the production rate, the three AEL electrolyzers installed in the first period continue
working in the subsequent periods at their lower bound capacities. In periods five
and six, the network shows that the installation of PEM electrolysis coupled with
photo-voltaic systems. Nevertheless, the majority of hydrogen is still produced by
PEM/wind technology.



156 Chapter 7. Capturing spatial, temporal and technological detail in HSCs

Figure 7.9: Detailed chosen solution on segment 4 for nHSC08g07p instance. Squares
indicate the cumulative number of production units; arrows between grids indicate
transport flows; pie charts indicate demand satisfaction by production type.
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Figure 7.10: Detailed chosen solution on segment 5 for nHSC08g07p instance. Squares
indicate the cumulative number of production units; arrows between grids indicate
transport flows; pie charts indicate demand satisfaction by production type.
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7.6 Conclusions

An innovative formulation of the HSC problem has been proposed and solved in this
chapter, using sizing-cost relationships in order to better account for the scaling and
learning effects of production and storage facilities. Consequently, the HSC design
problem is now represented through a MINLP formulation. The hybrid solution
approach introduced in the previous chapter was adapted and investigated to tackle
this new challenging problem.

To validate this approach, the optimal design of the HSC is studied for eight
instances of different sizes, corresponding to the Midi-Pyrénées territory in France.
The obtained numerical results showed the robustness of the matheuristic algorithm,
able to handle nonlinear terms and to produce an approximation of the Pareto front in
controllable computational times. The results obtained provide valuable insights for
the optimal deployment of the HSC. The solutions involving a relatively low hydrogen
cost suggest the necessity of fossil-based production technologies in early periods
of time and, subsequently, electrolysis technologies are gradually being installed.
Further, the results obtained are in accordance with those of the devoted literature
(Hydrogen Council, 2017; IEA, 2019), which indicate the necessity of different pro-
duction technologies at different time periods, for example, a production based on
SMR w/CCUS on the first years aiming to launch the hydrogen economy, and then, a
progressive transition pathway to cleaner solutions, such as water electrolysis.

Finally, the proposed approach is particularly well-suited to capture the complexity
of hydrogen supply chains through their technological and spatial integration. Their
modeling and the optimization of their territorial integration should make them
resilient. The multi-objective issue was addressed here from a bi-objective perspective,
cost and greenhouse gas emissions. Its extension to the development of a multi-criteria
approach including other environmental criteria as well as territorial specificities
(existence of hydrogen producers, hydrogen consumers in industry and in mobility,
volumes concerned, dispersion of these consumption points), socio-economic and
regulatory objectives is an interesting perspective to explore. This framework seems
attractive to consider the prospective dimension for hydrogen deployment, since the
hydrogen infrastructure develops the needs for hydrogen evolve and the technological
maturity of the different bricks and the deployment of local renewable energies in
line with the local production of decarbonized hydrogen.



Conclusions and perspectives for
future work

The main motivation of this research was to explore alternative solution methods
for addressing complex multiobjective optimization problems related to the Process
Systems Engineering area. In particular, advantage is taken from the recent advances
in Evolutionary Computation, which is only used marginally in the framework of
PSE applications formulated as multiobjective optimization problems. However, the
adaptation of metaheuristic-based tools to this class of problems is not straightfor-
ward, mainly because these problems typically involve many equality and inequality
constraints, which represent a source of difficulties, emphasized in a multiobjective
optimization context. Therefore, this work was divided into two main parts. The
first one consisted in an empirical study, performed in the perspective of comparing
different algorithmic configurations and selecting the best one for providing accurate
approximations of Pareto sets. In a second part, the lessons learned from the first
numerical part were re-used to design a novel matheuristic solution tool, adapted
to the problem of hydrogen supply chains (HSC) design. In the following, the main
contributions of this thesis are described in more details.

First, a systematic comparison of five representative constraint-handling tech-
niques in evolutionary algorithms was carried out in a single-objective framework,
studying 14 test problems related to PSE applications. This chapter explored the
performance of constraint-handling schemes that have not been employed in this
area, which in general considers only penalty functions, feasibility rules or problem
reformulations. The numerical experiments highlighted the superiority of a repair
method based on constraint gradients, which enables the algorithm to evolve the
population across severely constrained search spaces.

In a second step, the performance of this repair technique was investigated in
the context of multiobjective optimization, notably for the first time in the literature.
To this end, six classical constraint-handling techniques were embedded within two
state-of-the-art multiobjective evolutionary algorithms (MOEAs), namely NSGA-II
and MOEA/D. Numerical experiments, performed over a benchmark including aca-
demic test problems with inequality (CF, LIR-CMOP) and equality constraints (EQC,
Eq-DTLZ and Eq-IDTLZ), demonstrated that the gradient-based repair technique
outperforms all its contenders, in particular for the solution of problems containing
equality constraints. This technique renders the MOEA capable of exploring con-
strained search spaces as it uses additional information to push infeasible individuals
towards feasible search spaces without affecting population diversity, which proved
to be a condition for obtaining a satisfactory description of the whole Pareto fronts.

In a second part, the promising results obtained on benchmark functions were
thus explored to the optimal design of hydrogen supply chains, considered as a
representative problem related to PSE. This optimization problem is of particular
importance since much of the future expansion of hydrogen utilization depends on the
HSC deployment. Its mathematical representation, implying mixed-integer variables,
a considerable number of constraints and two performance criteria (the total cost and
the environmental impact), entails difficulties to both exact and stochastic methods.
In a first attempt, ε-MOEA/D coupled with the gradient-based repair method was
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investigated as a solution approach to this problem. The results indicated a poor
performance of this algorithm for finding solutions along the true Pareto front. Indeed,
due to the number of mass balances involving multiple decision variables, the MOEA
experienced convergence difficulties, in spite of the repair of infeasible solutions.

Nevertheless, these first experiments paved the way to the design of a novel
matheuristic methodology. Within this strategy, a bilevel reformulation is adopted,
allowing for the decomposition of the original problem into master and slave subprob-
lems, each one being treated by appropriate solution methods. In this way, on the one
hand, the combinatorial and multiobjective features of the master subproblem, which
addresses the HSC structure design, are effectively handled using a MOEA. On the
other hand, the slave subproblem, which deals with the HSC operation (transporta-
tion and production) subproblem, concentrates all the problem equality constraints.
This subproblem is efficiently tackled by a LP solver, using a scalarizing function to
handle the two objectives accounted for. Performance comparisons with a classical
approach are carried out on two real case studies of HSC deployment (from UK and
from the Midi Pyrénées region in France), resulting in nine instances of increasing
size. The results obtained suggested that the matheuristic approach is an efficient
solution method for the optimal design of the HSC, able to provide decision-makers
with an accurate approximation of the Pareto front.

Finally, a modification to the problem formulation was proposed in order to
deal with a more realistic representation of the HSC, accounting for sizing-cost
relationships and, thus, for the proper modeling of scaling effects. Besides, different
learning rates for different production technologies were taken into account. The
resulting model involved additional decision variables (accounting for facility sizing)
and nonlinear terms, making the model a MINLP problem. The obtained results
provided spatial, temporal and technological details of the HSC, evidencing the
necessity of different hydrogen production pathways at different periods, closely
related to the different levels of maturity of each different technology. Concerning
the solution approach, the designed matheuristic showed robustness for handling
nonlinear terms and providing solutions in reasonable computational times.

Answers to the research questions

This dissertation investigated four research questions. After carrying out the related
substantial research, it is now possible to answer them directly.

1. What is the best solution approach to tackle current PSE problems, typically formulated
as multiobjective optimization problems?

Depending on the problem formulation, especially the number of objec-
tives and the type and number of constraints, mathematical programming
methods can be efficient for solving optimization problems related to PSE.
Nevertheless, these methods may require intractable computational times in
problems where multiple criteria and combinatorial aspects are present, mainly
because they require a transformation of the multiobjective problem into a set
of scalar subproblems. In particular, tuning the scalarizing parameters (for
instance, weight vectors or ε-levels) turns to be a harsh task for producing
efficiently a set of solutions uniformly distributed along the Pareto front. Re-
garding metaheuristics, and particularly multiobjective evolutionary algorithms,
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they are alternatives to MP techniques, able to construct an approximation
of the Pareto front in a collaborative way in one single run. The handling of
equality constraints, however, constitutes their main drawback, even more
if these constraints involve many continuous variables, since the stochastic
variation operators employed are likely to produce infeasible solutions.
Therefore, hybrid algorithms represent promising alternative techniques,
proposed to face the drawbacks encountered for each solution paradigm, and
simultaneously to take advantage of their strengths. In this work, a matheuristic
has been successfully designed to study the optimal design of hydrogen supply
chains and, according to the obtained results, it outperforms both exact and
stochastic approaches for this problem. Even though the No Free Lunch
theorem (Wolpert and Macready, 1997) does not allow to extend directly these
conclusions to any other problem, this hybridization strategy seems however
adapted to similar production and distribution problems from the PSE area.

2. Considering the recent advances in the metaheuristics field, in particular those
related to constraint-handling, do they constitute efficient techniques for treating
highly-constrained problems as those related to PSE?

In this work, only some representative (by their working mode) constraint-
handling methods were explored. Regarding the repair mechanism based
on constraints’ gradient information, it is noteworthy that it demonstrated
its efficacy and efficiency for the solution of academic benchmark problems
(studied in chapters 2 and 3), but obtained poor results when addressing
intricate and large-size PSE applications. Indeed, the MOEA employed in
Chapter 5 as a first attempt to solve the HSC design problem had convergence
troubles and did not show a satisfying robustness enough for this difficult
problem containing equality constraints involving multiple decision variables.
Thus, this difference in result quality observed when treating academic test
functions and real-world applications suggests that a significant research effort
is needed for the design of relevant test functions representing a stronger
challenge to metaheuristic techniques and reflecting the sources of complexity
appearing in engineering problems.

3. Can a matheuristic approach be designed for the solution of the HSC design problem,
so that it outperforms classical exact methods, thus providing solutions in tractable
computational times?

Regarding the satisfying results obtained by the hybrid approach devel-
oped and validated in Chapter 6, the answer is clearly “yes”. The strategy
proposed in this work follows a bilevel decomposition that promotes the design
and use of matheuristic algorithms. In particular, a MOEA was in charge of
the Pareto front construction and of the combinatorial aspect of the problem
(by handling the integer variables), and worked on a search space constrained
only by some inequality constraints that are easy to fulfill. Besides, equality
constraints were efficiently handled through a linear programming solver, for
each partial solution proposed by the MOEA. Besides, this approach allowed
the solution of a more realistic model for the design of HSC, which captures
additional features like the scaling and learning effects of each different
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production pathway and now involves nonlinear terms, also controlled by the
MOEA.

4. And finally, can a matheuristic approach be designed as a general solution tool for a
broad range of PSE problems?

The design of a matheuristic approach is problem dependent, meaning
that particular encoding is needed for each specific problem. Nevertheless, the
principles employed in this work for the matheuristic design can be replicated
to other PSE problems. Thanks to the present work, some general guidelines for
such design can be stated. First, a preliminary analysis of the different features
included in the treated system representation is required to identify substantial
aspects that explain the problem complexity, e.g., number of objectives,
types/number of constraints, types/number of decision variables, etc. Typically,
it might be appropriate to use a metaheuristic to address the combinatorial
aspects of the problem, in addition to the handling of the multiobjective aspect,
for which different algorithmic paradigms may be considered depending on the
number of objectives involved. In addition, since exact methods, due to their
working mode, efficiently deal with constraint satisfaction issues, constraints
that are difficult to satisfy by metaheuristics (particularly, equality constraints)
can be left to a MP technique. Moreover, considering the efficiency of linear
programming solvers, it might be useful to construct a linear programming
problem and to handle nonlinear terms with the metaheuristic search engine.

Perspectives for future work

Some perspectives for future work have been identified. They encompass five different
axes described as follows:

1. To investigate the proposed hybrid methodology for the optimal design of
hydrogen supply chains with more than two objectives, e.g., accounting for
social or risk objectives, or even several environmental criteria, different from the
global warming potential considered in this work. Apart from the modeling of
these criteria, this consideration of more objectives is not straightforward to carry
out using the hybrid solution approach developed here. Indeed, the SMS-EMOA
algorithm should be replaced by another MOEA for the Pareto front construction
in the upper level, for instance, MOEA/D, because the computation of the
hypervolume contribution for more than two objectives requires considerable
computational resources. Regarding the lower-level subproblem, the scalarizing
function used within the LP formulation is still valid when working with more
than two objectives, but the choice of the weight vector parametrizing the
obtained scalar problem may become a critical issue (see also point 4 at this
respect).

2. There is an interest to explore the proposed matheuristic algorithm as a solution
tool for the study of the HSC design optimization problem from the game
theory perspective. In this context, each actor of the supply chain (retailers,
factories, distributors, etc.) appears at different decision levels, and the problem
can indeed be formulated as a bilevel optimization problem, with different
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objectives at each level. Since the proposed decomposition approach performs
a problem reformulation using a bilevel decomposition, it seems particularly
suited to address this problem. This approach is currently under the scope
of the thesis of Manuel Flores Pérez, developed at the Laboratoire de Génie
Chimique at Toulouse.

3. Expanding the scope of the matheuristic solution approach proposed here to
other PSE case studies also constitutes a promising perspective. In this way, it
may be possible to propose a general solution tool for a family of problems, i.e.,
problems presenting similar characteristics. For instance, process integration
optimization problems (like heat exchanger or waste water networks design,
eco-industrial parks, etc.) are typically of high complexity, of multiobjective
nature, involve mixed-integer variables and nonlinear and non-convex terms,
thus requiring global optimization procedures that might be time-consuming.

4. The fourth axis for future work is the improvement of the matheuristic algorithm,
in order to consider more appropriately the multiobjective nature of the lower-
level subproblem. In this thesis, a single (randomly chosen) weight vector is
used for the solution of the lower-level (operation subproblem). However, it is
possible to imagine that several solutions, corresponding to the same upper-
level partial solution (HSC structure design) but obtained with different weight
vectors, participate to the Pareto optimal front. Formally, the solution of the
lower-level problem is actually a sub-front, which may be generated by using
a set of weight vectors within the scalarizing function. As a consequence, the
upper-level algorithm should be able to handle not a single solution, but rather a
set of solutions corresponding to the above-mentioned sub-front. So, the design
of a novel evolutionary algorithm would be necessary to adapt its working
mode. It is worth mentioning that such an investigation is the subject of the
M.Sc. thesis of Rubén Arguedas, currently in development at the Laboratoire
de Génie Chimique at Toulouse.

5. We would finally note that this optimization framework approach is sufficiently
general to be extended to more complex hydrogen energy supply chains (cur-
rently under the scope of Renato Luise’s thesis, Luise et al. (2021, accepted)), in-
cluding power-to-gas, power-to-heat, power-to-liquids, and power-to-ammonia.
Indeed, one of the most challenging tasks for energy system models is to capture
the full degree of variability and complexity that exists in such systems. As
more and more renewable sources such as solar and wind are introduced to
contribute to decarbonization, systems are increasingly spatially distributed,
technologically diverse, and time-varying. At the same time, new technologies
and increased interconnectivity are enabling greater interaction between differ-
ent energy sectors. To ensure that energy system models not only provide an
accurate representation of these systems but also do not miss the potential of
new technologies such as hydrogen-based ones, they must capture the requisite
level of temporal, spatial, technological, and cross-sectoral detail, thus requiring
efficient optimization strategies.

It is our hope that this research work has given valuable results in the context
of mathematical optimization, with particular applicability in the Process Systems
Engineering area with a focus on Energy Systems Engineering.





Conclusions et perspectives

La motivation principale de cette thèse était d’explorer des méthodes de résolution
alternatives pour traiter des problèmes d’optimisation multiobjectif complexes liés
au domaine des Procédés et Systèmes Industriels (PSI). En particulier, nous avons
tiré parti des progrès récents en Algorithmes Évolutionnaires, qui ne sont utilisés
que de façon marginale dans le cadre d’applications au génie des procédés formulées
comme des problèmes d’optimisation multiobjectif. Cependant, l’adaptation des
outils métaheuristiques à cette classe de problèmes n’est pas simple, principalement
parce que ces problèmes impliquent typiquement de nombreuses contraintes égalité
et inégalité, qui représentent une source de difficultés, d’autant plus dans un contexte
d’optimisation multiobjectif. Par conséquent, ce travail a été divisé en deux parties
principales. La première consiste en une étude empirique, réalisée dans la perspective
de comparer différentes configurations algorithmiques et de sélectionner la meilleure
pour fournir des approximations précises des ensembles de solutions Pareto-optimales.
Dans une deuxième partie, les leçons tirées de la première partie numérique ont
été réutilisées pour concevoir un nouvel outil de solution matheuristique, adapté au
problème de la conception des chaînes d’approvisionnement en hydrogène (HSC).
Dans ce qui suit, les principales contributions de cette thèse sont décrites plus en
détail.

Tout d’abord, une comparaison systématique de cinq techniques représentatives
de traitement des contraintes dans les algorithmes évolutionnaires a été effectuée
dans un cadre mono-objectif, à travers l’étude de 14 problèmes test, liés à des
applications en PSI. Ce chapitre a permis d’évaluer les performances de mécanismes
de gestion des contraintes qui n’ont pas été employés dans ce domaine, qui ne
prend généralement en compte que les fonctions de pénalité, les règles de faisabilité
ou la reformulation des problèmes. Les expériences numériques réalisées ont mis
en évidence la supériorité d’une méthode de réparation basée sur le gradient de
contraintes, qui permet à l’algorithme de faire évoluer la population à travers des
espaces de recherche fortement contraints.

Dans un deuxième temps, les performances de cette technique de réparation
par gradient ont été étudiées dans un contexte d’optimisation multiobjectif, pour
la première fois dans la littérature. À cette fin, six techniques classiques de gestion
des contraintes ont été intégrées à deux algorithmes évolutionnaires multiobjectif
(MOEA) de l’état-de-l’art, à savoir NSGA-II et MOEA/D. Des expériences numériques,
réalisées sur un benchmark comprenant des problèmes test académiques, incluant
des contraintes inégalité (CF, LIRCMOP) et égalité (EQC, EqDTLZ et EqIDTLZ), ont
démontré que la technique de réparation par gradient obtient de meilleurs résultats
que tous ses concurrents, en particulier pour la résolution de problèmes contenant des
contraintes égalité. Cette technique rend le MOEA capable d’explorer des espaces de
recherche contraints car elle utilise des informations supplémentaires pour pousser
les individus infaisables vers des espaces de recherche faisables, sans affecter la
diversité de la population, qui s’avère être une condition indispensable pour obtenir
une description satisfaisante du front de Pareto.

Dans une deuxième partie, les résultats prometteurs obtenus sur les fonc-
tions de référence ont ainsi été explorés pour la conception optimale des chaînes
d’approvisionnement en hydrogène, considérées comme un problème représentatif lié
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au domaine des PSI. Ce problème d’optimisation est d’une importance particulière,
car une grande partie de l’expansion future de l’utilisation de l’hydrogène dépend
du déploiement de sa chaîne d’approvisionnement. Sa représentation mathéma-
tique, qui implique des variables mixtes, un nombre considérable de contraintes et
deux critères de performance (le coût total et l’impact environnemental), pose en
pratique des difficultés aux méthodes exactes et stochastiques. Dans une première
tentative, l’algorithme ε-MOEA/D, couplée à la méthode de réparation par gradient,
est proposée pour résoudre ce problème. Les résultats ont indiqué une mauvaise
performance de cette approche, incapable pour trouver des solutions sur le front
de Pareto optimal. En effet, en raison du nombre de bilans massiques (contraintes
égalité) impliquant de nombreuses variables de décision, le MOEA a montré des
problèmes de convergence, malgré la réparation des solutions infaisables.

Néanmoins, ces premières expériences ont ouvert la voie à la conception d’une
nouvelle méthodologie matheuristique. Selon cette stratégie, une reformulation bi-
niveaux est adoptée, permettant la décomposition du problème original en deux
sous-problèmes, maître et esclave, chacun étant traité par des méthodes de réso-
lution appropriées. Ainsi, les caractéristiques combinatoire et multi-objectif du
sous-problème maître, qui concerne la conception de la structure de la HSC, sont
traitées efficacement à l’aide d’un MOEA. D’autre part, le sous-problème esclave, qui
traite le sous-problème d’opération de la HSC (transport et production), concentre
toutes les contraintes égalité du problème. Ce sous-problème est traité efficacement
par un solveur LP, au moyen d’une fonction de scalarisation pour la gestion des deux
objectifs pris en compte. Les performances de cet algorithme hybride sont comparées
avec celles d’une approche classique sur deux cas réels de déploiement de la HSC au
Royaume-Uni et dans la région Midi Pyrénées en France, dérivant en neuf instances
de taille croissante. Les résultats obtenus suggèrent que l’approche matheuristique
est une méthode de résolution efficace pour le problème de conception optimale de la
HSC, capable de fournir aux décideurs une approximation précise du front de Pareto.

Enfin, une modification de la formulation du problème a été proposée afin de
traiter une représentation plus réaliste de la HSC, en tenant compte des relations
taille-coût et, ainsi, de la modélisation appropriée des effets d’échelle. En outre,
des taux d’apprentissage différents pour les différentes technologies de production
ont été pris en compte. Le modèle résultant implique des variables de décision
supplémentaires (associées au dimensionnement des installations) et des termes non
linéaires, transformant ainsi le modèle en un problème de type MINLP. Les résultats
obtenus ont permis de fournir les détails spatiaux, temporels et technologiques
du déploiement de la HSC, mettant en évidence la nécessité de différents modes
de production d’hydrogène à différentes périodes, étroitement liés aux niveaux de
maturité de chaque technologie. En ce qui concerne la stratégie de résolution, la
matheuristique conçue a montré sa robustesse pour traiter les termes non linéaires et
fournir des solutions non-dominées en des temps de calcul raisonnables.

Réponses aux questions de recherche

Cette thèse a soulevé quatre questions de recherche. Après les travaux de recherche
correspondants effectués, il est maintenant possible d’y répondre directement.

1. Quelle est la meilleure approche pour résoudre les problèmes actuels de PSI, générale-
ment formulés comme des problèmes d’optimisation multi-objectif ?
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Selon la formulation du problème, notamment le nombre d’objectifs,
ainsi que le type et le nombre de contraintes, les méthodes de program-
mation mathématique peuvent être efficaces pour résoudre les problèmes
d’optimisation liés au domaine des PSI. Néanmoins, ces méthodes peuvent
exiger des temps de calcul prohibitifs pour les problèmes impliquant plusieurs
critères de performance et des aspects combinatoires, principalement parce
qu’elles nécessitent une transformation du problème multiobjectif en un
ensemble de sous-problèmes scalaires. En particulier, l’ajustement des
paramètres de scalarisation (par exemple, les vecteurs de poids ou les niveaux ε)
s’avère être une tâche difficile pour produire efficacement un ensemble de
solutions uniformément distribuées le long du front de Pareto. En ce qui
concerne les métaheuristiques, et en particulier les algorithmes évolutionnaires
multiobjectif, ils représentent une alternative aux techniques de Programmation
Mathématique (PM), capables de construire une approximation du front de
Pareto de manière collaborative et en une seule exécution. Le traitement des
contraintes égalité constitue cependant leur principal inconvénient, surtout
si ces contraintes impliquent de nombreuses variables continues, car les
opérateurs génétiques employés, étant stochastiques, sont susceptibles de
produire des solutions infaisables.
Par conséquent, les algorithmes hybrides représentent des techniques alterna-
tives prometteuses, développées pour faire face aux inconvénients rencontrés
par chacun des paradigme de résolution et, simultanément, pour profiter de
leurs points forts. Dans ce travail, une matheuristique a été conçue avec succès
pour étudier la conception optimale des chaînes d’approvisionnement en
hydrogène et, en accord avec les résultats obtenus, elle surpasse les approches
exactes et stochastiques pour ce problème. Bien que le théorème No Free
Lunch (Wolpert and Macready, 1997) ne permette pas d’étendre directement
ces conclusions à n’importe quel autre problème, cette stratégie d’hybridation
semble cependant adaptée à des problèmes de production et de distribution
similaires, issus du domaine des PSI.

2. Compte tenu des avancées récentes dans le domaine des métaheuristiques, en particulier
celles liées à la gestion des contraintes, ces dernières constituent-elles des techniques
efficaces pour traiter des problèmes fortement contraints comme ceux liés au domaine
des PSI ?

Dans ce travail, seules quelques méthodes de traitement des contraintes
représentatives (par leur mode de fonctionnement) ont été considérées. En ce
qui concerne le mécanisme de réparation basé sur le gradient des contraintes,
il convient de noter qu’il a démontré son efficacité, tant en termes de temps
de calcul que de qualité des solutions, pour la résolution de problèmes de
référence académiques (étudiés aux chapitres 2 et 3). Cependant, cette méthode
obtient des résultats médiocres lorsqu’il s’ agit de traiter des applications de
PSI complexes et de grande taille.
En effet, le MOEA employé dans le Chapitre 5 comme première tentative de
résolution du problème de conception de la HSC a rencontré des problèmes de
convergence et n’a pas montré une robustesse satisfaisante pour ce problème
difficile, contenant des contraintes égalité impliquant un grand nombre de
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variables de décision. Ainsi, cette différence observée entre la qualité des
résultats lors de la résolution de fonctions test académiques et des applications
du monde réel suggère qu’un effort de recherche important est nécessaire
pour la conception de fonctions test pertinentes, représentant un défi plus dur
pour les techniques métaheuristiques et reflétant les sources de complexité
apparaissant dans les problèmes d’ingénierie.

3. Une approche matheuristique peut-elle être conçue pour la résolution du problème de
conception de la HSC, de manière à améliorer les résultats obtenus par des méthodes
exactes classiques, fournissant ainsi des solutions dans des temps de calcul raisonnables ?

En ce qui concerne les résultats satisfaisants obtenus par l’approche hy-
bride développée et validée au chapitre 6, la réponse est clairement “oui”.
La stratégie proposée dans ce travail obéit à une décomposition bi-niveaux
qui favorise la conception et l’utilisation d’algorithmes matheuristiques. En
particulier, un MOEA peut se charger de la construction du front de Pareto et de
l’aspect combinatoire du problème (en traitant les variables entières), travaillant
sur un espace de recherche limité uniquement par quelques contraintes
inégalité, plus faciles à satisfaire. En outre, les contraintes égalité sont gérées
efficacement par un solveur de programmation linéaire, pour chaque solution
partielle proposée par le MOEA. Par ailleurs, cette approche a permis la
résolution d’un modèle plus réaliste pour la conception de la HSC, qui prend
en compte des caractéristiques supplémentaires comme les effets d’échelle et
d’apprentissage de chaque mode de production et implique alors des termes
non linéaires, également contrôlés par le MOEA.

4. Enfin, une approche matheuristique peut-elle être conçue comme un outil de résolution
général, adaptée à un large éventail de problèmes issus du domaine des PSI ?

La conception d’une approche matheuristique dépend largement du
problème étudié, ce qui signifie qu’un codage particulier est nécessaire pour
chaque problème spécifique. Néanmoins, les principes employés dans ce
travail pour la conception de la matheuristique peuvent être reproduits pour
d’autres problèmes en PSI. Grâce au travail réalisé dans le cadre de cette thèse,
quelques lignes directrices générales pour la conception de matheuristiques
peuvent être énoncées. Premièrement, une analyse préliminaire des différentes
caractéristiques inclues dans la représentation du système traité est nécessaire
pour identifier les aspects pertinents qui expliquent la complexité du problème,
par exemple, le nombre d’objectifs, les type/nombre de contraintes, les
type/nombre de variables de décision, etc. Typiquement, il pourrait être
approprié d’utiliser une métaheuristique pour traiter les aspects combinatoires
du problème, en plus de la gestion de l’aspect multiobjectif, pour lequel
différents paradigmes algorithmiques peuvent être considérés en fonction du
nombre d’objectifs impliqués. En outre, étant donné que les méthodes exactes,
de par leur mode de fonctionnement, traitent efficacement les problèmes
de satisfaction des contraintes, les contraintes difficiles à satisfaire par les
métaheuristiques (en particulier, les contraintes égalité) peuvent être gérées
par une technique de PM. Finalement, compte tenu de l’efficacité des solveurs
de programmation linéaire, il pourrait être utile de construire un problème de



Conclusions et perspectives 169

programmation linéaire au niveau esclave et de traiter les termes non linéaires
au moyen du moteur de recherche métaheuristique.

Perspectives pour les travaux futurs

Certaines perspectives de travaux futurs ont été identifiées. Elles englobent cinq axes
différents, décrits comme suit :

1. Étudier la méthodologie hybride proposée pour la conception optimale des
chaînes d’approvisionnement en hydrogène avec plus de deux objectifs, par
exemple, la prise en compte d’objectifs sociaux ou en relation avec le risque, ou
même plusieurs critères environnementaux, différents du potentiel de réchauf-
fement global considéré dans ce travail. Outre la modélisation de ces critères,
cette prise en compte d’un plus grand nombre d’objectifs n’est pas évidente à
réaliser en utilisant l’approche de résolution hybride développée ici. En effet,
l’algorithme SMS-EMOA devrait être remplacé par un autre MOEA pour la con-
struction du front de Pareto au niveau supérieur (par exemple MOEA/D), car le
calcul de la contribution de l’hypervolume pour plus de deux objectifs requiert
des ressources de calcul considérables. En ce qui concerne le sous-problème de
niveau inférieur, la fonction de scalarisation utilisée dans la formulation LP est
toujours valable lorsqu’on travaille avec plus de deux objectifs, mais le choix
du vecteur de poids paramétrant le problème scalaire obtenu peut devenir un
problème critique (voir également le point 4 à cet égard).

2. Il semble intéressant d’appliquer l’algorithme matheuristique proposé comme
outil de résolution pour l’étude du problème d’optimisation de la conception de
la chaîne d’approvisionnement, du point de vue de la théorie des jeux. Dans ce
contexte, chaque acteur de la chaîne logistique (détaillants, usines, distributeurs,
etc.) peut être présent à différents niveaux de décision et le problème peut être
formulé comme un problème d’optimisation à deux niveaux, avec différents
objectifs à chaque niveau. Étant donné que l’approche proposée est basée sur
une reformulation du problème au moyen d’une décomposition bi-niveaux,
elle semble particulièrement adaptée pour traiter ce problème. D’ailleurs, cette
approche fait actuellement l’objet de la thèse de Manuel Flores Pérez, développée
au Laboratoire de Génie Chimique de Toulouse.

3. L’extension du champ d’application de l’approche matheuristique de résolution
proposée ici à d’autres études de cas de PSI constitue également une perspective
prometteuse. De cette manière, il pourrait être possible de proposer un outil
de résolution général pour une famille de problèmes, présentant des carac-
téristiques similaires. Par exemple, les problèmes d’optimisation d’intégration
des procédés (comme la conception d’échangeurs de chaleur ou de réseaux
d’eaux usées, les éco-parcs industriels, etc.) sont typiquement d’une grande
complexité, de nature multi-objectif, ils impliquent des variables mixtes entières
et des termes non linéaires et non convexes, nécessitant ainsi des procédures
d’optimisation globale qui peuvent se révéler très coûteuses, sans garantie
d’optimalité.

4. Le quatrième axe de perspectives de travail est l’amélioration de l’algorithme
matheuristique afin de considérer de manière plus appropriée la nature multi-
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objectif du sous-problème de niveau inférieur. Dans cette thèse, un seul vecteur
de poids (choisi aléatoirement) est utilisé pour la résolution du PL au niveau
inférieur (sous-problème d’opération). Cependant, il est possible d’imaginer
que plusieurs solutions, correspondant à la même solution partielle de niveau
supérieur (conception de la structure HSC) mais obtenues avec des vecteurs
de poids différents, participent au front de Pareto optimal. Formellement, la
solution du problème de niveau inférieur est en fait un sous-front, qui peut
être généré en utilisant un ensemble de vecteurs de poids dans la fonction de
scalarisation. Par conséquent, l’algorithme de niveau supérieur doit être capable
de traiter non pas une solution unique, mais plutôt un ensemble de solutions
correspondant au sous-front susmentionné. Ainsi, la conception d’un nouvel
algorithme évolutionnaire serait nécessaire pour adapter son mode de fonction-
nement. Il convient de mentionner qu’une telle investigation fait l’objet de la
thèse de Master de Rubén Arguedas, actuellement en cours de développement
au Laboratoire de Génie Chimique de Toulouse.

5. Notons enfin que cette approche du cadre d’optimisation est suffisamment
générale pour être étendue à des chaînes d’approvisionnement en énergie à base
d’hydrogène plus complexes (actuellement étudiée dans le cadre de la thèse
de Renato Luise), notamment power-to-gas, power-to-heat, power-to-liquids
et power-to-ammonia. En effet, l’une des tâches les plus difficiles pour les
modèles de systèmes énergétiques est de saisir tout le degré de variabilité et de
complexité qui existe dans les systèmes énergétiques. Étant donné que de plus
en plus de sources renouvelables telles que le solaire et l’éolien sont introduites
pour contribuer à la décarbonisation, les systèmes sont de plus en plus dis-
tribués dans l’espace, technologiquement diversifiés et variables dans le temps.
Parallèlement, les nouvelles technologies et l’interconnexion accrue permettent
une plus grande interaction entre les différents secteurs énergétiques. Pour
s’assurer que les modèles de systèmes énergétiques fournissent non seulement
une représentation précise de ces systèmes mais qu’ils ne passent pas à côté du
potentiel des nouvelles technologies telles que celles basées sur l’hydrogène, ils
doivent saisir le niveau requis de détails temporels, spatiaux, technologiques et
intersectoriels qui nécessitent des stratégies d’optimisation efficaces.

Nous espérons que ce travail de recherche a donné des résultats utiles dans le
contexte de l’optimisation mathématique, avec une applicabilité particulière dans le
domaine de Procédés et Systèmes Industriels (PSI) et un accent sur l’ingénierie des
systèmes énergétiques.



Appendix A
Single-objective test problems

This appendix describes the 14 global optimization test problems considered in
Chapter 2. For all problems, the global optimum solution is reported as found in the
literature. Additional information related to local optima and active constraints is
also given.

Example 1. Reactor network design. Proposed in Ryoo and Sahinidis (1995), this
problem involves the design of a sequence of two reactors of type CSTR, where the
consecutive reactions A → B → C takes place. The objective is to maximize the
concentration of product B (x4) in the exit stream. The mathematical model is as
follows:

min f (x) = −x4

s.t. g1(x) = x0.5
5 + x0.5

6 − 4 ≤ 0
h1(x) = x1 + k1x1x5 − 1 = 0
h2(x) = x2 − x1 + k2x2x6 = 0
h3(x) = x3 + x1 + k3x3x5 − 1 = 0
h4(x) = x4 − x3 + x2 − x1 + k4x4x6 = 0

0 ≤ xi ≤ 1, i = {1, 2, 3, 4}
1e− 5 ≤ xi ≤ 16, i = {5, 6}

where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908, k4 = 0.9k3. The global optimum
is at x∗ = [0.771462, 0.516997, 0.204234, 0.388812, 3.036504, 5.096052], with f (x∗) =
−0.388812 . Constraint g1 is active. This example possesses a local minimum with
an objective function value that is very close to that of the global solution. This local
solution is at x = [1, 0.393, 0, 0.3881, 0, 16] with f = −0.3881. Interestingly, this
solution utilizes only one of the two reactors whereas the global solution makes use
of both reactors.

Example 2. Flowsheeting. This problems considers the optimization of a flow sheet
example of the Williams & Otto process (Biegler et al., 1997; Pintaric and Kravanja,
2006). Reactants A and B and the recycle stream enter the continuous-flow stirred-tank
reactor, where the main product P is produced together with one by-product E and
the waste product G, while C is an intermediate.

A + B→ C
C + B→ P + E

P + C→ G

In the decanter, component G is entirely removed from the other components.
Product P is removed from the overhead of the distillation column, but some of the
product is retained in the bottom due to the formation of an azeotrope. Part of the
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bottom stream is purged in order to avoid accumulation of the by-product, while
most of it is recycled to the reactor. The purge stream has a substantial fuel value and
can be sold on the market. The optimization variables account for the reactor volume,
the reaction temperature, the purge fraction and the mass flow for each component,
except for component P which is equal to 2 160 kg/h. The objective is to minimize
the total annual cost. The model is formulated as:

min f (x) =
1

0.453

[
168x5 + 252x1 + 2.22

[
x1 + x5 +

8

∑
i=6

(1− x4)xi + 1.1(1− x4)x9
]

+ 84x10 + 60x2ρ
]
+ 1041.6

s.t.

h1(x) = x5 + x6(1− x4)−
k1x6x7x2ρ

q2
3

− x6 = 0

h2(x) = x1 + x7(1− x4)−
(k1x6 + k2x8)x7x2ρ

q2
3

− x7 = 0

h3(x) = x8(1− x4) +
(2k1x6x7 − 2k2x7x8)x2ρ

q2
3

+
(−k3x8(2160 + 0.1x9))x2ρ

q2
3

− x8 = 0

h4(x) = x9(1− x4) +
2k2x7x8x2ρ

q2
3

− x9 = 0

h5(x) =
x9(1− x4)

10
+

(k2x7 − 0.5k3(2160 + 0.1x9))x8x2ρ

q2
3

− 2160 + 0.1x9 = 0

h6(x) =
1.5k3(2160 + 0.1x9)x8x2ρ

q2
3

− x10 = 0

1e4 ≤ x1 ≤ 1.5e4
0.85 ≤ x2 ≤ 10
322 ≤ x3 ≤ 378
0 ≤ x4 ≤ 0.99

0 ≤ xi ≤ 1e5 ∀i ∈ {5, . . . , 10}

where

q3 = x6 + x7 + x8 + 1.1x9 + x10 + 2160

k1 = 5.9755e9 · exp
(−1.2e4

x3

)
k2 = 2.5962e12 · exp

(−1.5e4
x3

)
k3 = 9.6283e15 · exp

(−2e4
x3

)
ρ = 801

The optimum lies at x∗ = [10878.60, 7.90, 342.11, 0.102, 4807.37, 11122.40, 39668.61,
2874.52, 61925.59, 1101.336] with f (x∗) = 9490592.6.
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Example 3. Process synthesis MINLP. This is a little process synthesis problem
with only two decision variables. It was proposed by Kocis and Grossmann (1988),
and also found in Ryoo and Sahinidis (1995):

min f (x) = 2x1 + x2

s.t. g1(x) = 1.25− x2
1 − x2 ≤ 0

g2(x) = x1 + x2 − 1.6 ≤ 0

0 ≤ x1 ≤ 1.6
x2 = {0, 1}

The global minimum is [0.5, 1] with f = 2. There is a local minimum at [1.118, 0]
with f = 2.236. Constraint g1 is active.

Example 4. MINLP. This example is taken from Kocis and Grossmann (1987):

min f (x) = 2x1 + x2 − x3

s.t. g1(x) = −x1 + x2 + x3 ≤ 0
h1(x) = x1 − 2 exp(−x2) = 0

0.5 ≤ x1 ≤ 1.4
0 ≤ x2 ≤ 2
x3 = {0, 1}

There is one local optimum at [0.853, 0.853, 0] with f = 2.558. The global minimum
is {x∗; f (x∗)} = {1.375, 0.375, 1; 2.124}. Constraint g1 is active.

Example 5. MINLP. Problem taken from Floudas (1995):

min f (x) = −0.7x3 + 5(x1 − 0.5)2 + 0.8
s.t. g1(x) = − exp(x1 − 0.2)− x2 ≤ 0

g2(x) = x2 + 1.1x3 + 1 ≤ 0
g3(x) = x1 − 1.2x3 − 0.2 ≤ 0

0.2 ≤ x1 ≤ 1
−2.22554 ≤ x2 ≤ −1

x3 = {0, 1}

The global minimum is at [0.94194,−2.1, 1] where f (x∗) = 1.07654. Constraints g1
and g2 are active.
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Example 6. MINLP. Proposed in Kocis and Grossmann (1988), and also reported in
Cardoso et al. (1997), Floudas et al. (1989), and Ryoo and Sahinidis (1995):

min f (x) = 2x1 + 3x2 + 1.5x3 + 2x4 − 0.5x5

s.t. g1(x) = x1 + x3 − 1.6 ≤ 0
g2(x) = 1.333x2 + x4 − 3 ≤ 0
g3(x) = −x3 − x4 + x5 ≤ 0

h1(x) = x2
1 + x3 − 1.25 = 0

h2(x) = x1.5
2 + 1.5x4 − 3 = 0

0 ≤ x1 ≤ 1.5
0 ≤ x2 ≤ 2.2

xi = {0, 1}, i = {3, 4, 5}

There are 23 different combinations of the binary variables, of these only one
combination is infeasible because it violates the pure integer constraint. The global
solution is x∗ = [1.118, 1.3310, 0, 1, 1] with f (x∗) = 7.667. Constraint g3 is active.

Example 7. Reactor network design. This problem, taken from Kocis and Gross-
mann (1989) and also studied in Cardoso et al. (1997), is a two-reactor problem, where
selection is to be made among two candidate reactors the one that minimizes the cost
of producing a desired product. The MINLP formulation is given as:

min f (x) = 7.5x5 + 5.5x6 + 7x1 + 6x2 + 5(x3 + x4)

s.t. g1(x) = x1 − 10x5 ≤ 0
g2(x) = x2 − 10x6 ≤ 0
g3(x) = x3 − 20x5 ≤ 0
g4(x) = x4 − 20x6 ≤ 0
h1(x) = x5 + x6 − 1 = 0
h2(x) = x7 − 0.9x3(1− exp(−0.5x1)) = 0
h3(x) = x8 − 0.8x4(1− exp(−0.4x2)) = 0
h4(x) = x7 + x8 − 10 = 0

xi ≥ 0, i = {1, 2, 3, 4, 7, 8}
xi = {0, 1}, i = {5, 6}

The global minimum is x∗ = [3.514, 0, 13.428, 0, 1, 0, 10, 0.0001] with f = 99.238.
Constraints g2 and g4 are active.

Example 8. Process synthesis MINLP. This example is taken from Yuan et al. (1989),
and is also found in Cardoso et al. (1997), Floudas et al. (1989), Ryoo and Sahinidis
(1995), and Yiqing et al. (2007):

min f (x) = (x4 − 1)2 + (x5 − 2)2 + (x6 − 1)2

− ln (x7 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2
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s.t. g1(x) =
6

∑
i=1

xi − 5 ≤ 0

g2(x) =
4

∑
i=1

x2
i − 5.5 ≤ 0

g3(x) = x4 + x1 − 1.2 ≤ 0
g4(x) = x5 + x2 − 1.8 ≤ 0
g5(x) = x6 + x3 − 2.5 ≤ 0
g6(x) = x7 + x1 − 1.2 ≤ 0

g7(x) = x2
5 + x2

2 − 1.64 ≤ 0

g8(x) = x2
6 + x2

3 − 4.25 ≤ 0

g9(x) = x2
5 + x2

3 − 4.64 ≤ 0

xi ≥ 0, i = {1, 2, 3}
xi = {0, 1}, i = {4, 5, 6, 7}

The global minimum is {x∗; f (x∗)} = {0.2, 0.8, 1.9079, 1, 1, 0, 1; 4.579582}. Con-
straints g3, g4, g6, g7 and g9 are active.

Example 9. Planning problem. First introduced in Kocis and Grossmann (1988),
this example represents a small planning problem, in which several alternatives are
proposed for obtaining product C. The goal is to produce the profitable product C
from B that is purchased from a market or produced from raw material A. There are
also two paths to produce B from A. The problem is modeled as a MINLP:

min f (x) = 3.5x1 + x2 + 1.5x3 + 7x5 + x6 + 1.2x7 + 1.8x8 − 11x11

s.t. g1(x) = x4 − 5x1 ≤ 0
g2(x) = x9 − 5x2 ≤ 0
g3(x) = x10 − 5x3 ≤ 0
g4(x) = x11 − 1 ≤ 0
h1(x) = x6 − ln (1 + x9) = 0
h2(x) = x7 − 1.2 ln (1 + x10) = 0
h3(x) = x11 − 0.9x4 = 0

h4(x) = −x4 +
7

∑
i=5

xi = 0

h5(x) = −x8 + x9 + x10 = 0

xi = {0, 1}, i = {1, 2, 3}
xi ≥ 0, ∀i

x6 ≤ 5
x11 ≤ 1

The model contains three binary variables and five continuous variables. The
global minimum is x∗ = [1, 0, 1, 1.11111081, 0, 0, 1.11111081, 1.5242038, 0, 1.5242038,
0.99999978] and f (x∗) = −1.9231. Constraints g2 and g4 are active. There is a local
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optimum at x = [1, 1, 1, 1.111, 0, 0.446744, 0.664156, 1.30208, 0.563058, 0.739121, 1]
with f (x) = −1.41252645.

Examples 10–14. Multi-product batch plant design. The multi-product batch plant
consists of M processing stages in series where fixed amounts Qi of N products have
to be manufactured. The objective is to determine for each stage j the number of
parallel units Nj and their sizes Vj and for each product i the corresponding batch
sizes Bi and cycle times TLi. The problem data are the horizon time H, the size factors
Sij and processing times tij of product i in stage j, the required productions Qij, and
appropriate cost functions αj and β j. The mathematical formulation of this problem
is as follows (Kocis and Grossmann, 1988):

min
M

∑
j=1

αjNjV
β j
j

s.t.
N

∑
i=1

QiTLi

Bi
− H ≤ 0

SijBi −Vj ≤ 0

tij − NjTLi ≤ 0

1 ≤ Nj ≤ Nu
j

Vl
j ≤ Vj ≤ Vu

j

Tl
Li ≤ TLi ≤ Tu

Li

Bl
j ≤ Bj ≤ Bu

j

Nj integer

The bounds Nu
j , Vl

j , Vu
j are specified by the problem and appropriate bounds for

TLi and Bi can be determined as follows:

Tl
Li = max

j

tij

Nu
j

Tu
Li = max

j
tij

Bl
i =

Qi

H
Tl

Li

Bu
i = min

(
Qi, min

j

Vu
j

Sij

)

The number of inequality constraints for each problem depends on the number
of products N and the number of processing stages M, according to 2MN + 1. The
data corresponding to these problems are presented in Table A.1. For all examples
the parameters αj, β j and H are 250, 0.6 and 6000, respectively. For problems 10 and
11, the parameters Vl

j and Vu
j take values of 250 and 2500, respectively. For problems

12 to 14, the parameters Vl
j and Vu

j are 300 and 3000, respectively.
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Table A.1: Input data for Examples 10–14.

Example M N Nu
j Sij tij Qi

10 3 2 3
[

2 3 4
4 6 3

] [
8 20 8

16 4 4

] [
40000
20000

]
11 3 2 3

[
2 3 4
4 6 3

] [
8 20 8

16 4 4

] [
200000
100000

]

12 6 5 4


7.9 2.0 5.2 4.9 6.1 4.2
0.7 0.8 0.9 3.4 2.1 2.5
0.7 2.6 1.6 3.6 3.2 2.9
4.7 2.3 1.6 2.7 1.2 2.5
1.2 3.6 2.4 4.5 1.6 2.1




6.4 4.7 8.3 3.9 2.1 1.2
6.8 6.4 6.5 4.4 2.3 3.2
1.0 6.3 5.4 11.9 5.7 6.2
3.2 3.0 3.5 3.3 2.8 3.4
2.1 2.5 4.2 3.6 3.7 2.2




250000
150000
180000
160000
120000



13 7 6 4



7.9 2.0 5.2 4.9 6.1 4.2 3.6
0.7 0.8 0.9 3.4 2.1 2.5 0.6
0.7 2.6 1.6 3.6 3.2 2.9 3.8
4.7 2.3 1.6 2.7 1.2 2.5 3.5
1.2 3.6 2.4 4.5 1.6 2.1 3.6
5.2 3.0 1.8 4.2 4.0 2.4 1.6





6.4 4.7 8.3 3.9 2.1 1.2 6.4
6.8 6.4 6.5 4.4 2.3 3.2 2.6
1.0 6.3 5.4 11.9 5.7 6.2 6.2
3.2 3.0 3.5 3.3 2.8 3.4 6.1
2.1 2.5 4.2 3.6 3.7 2.2 1.8
2.6 4.2 3.8 4.1 5.8 3.8 6.9





250000
150000
180000
160000
120000
200000



14 8 6 4



7.9 2.0 5.2 4.9 6.1 4.2 3.6 2.4
0.7 0.8 0.9 3.4 2.1 2.5 0.6 2.0
0.7 2.6 1.6 3.6 3.2 2.9 3.8 1.4
4.7 2.3 1.6 2.7 1.2 2.5 3.5 2.3
1.2 3.6 2.4 4.5 1.6 2.1 3.6 2.7
5.2 3.0 1.8 4.2 4.0 2.4 1.6 6.2





6.4 4.7 8.3 3.9 2.1 1.2 6.4 5.2
6.8 6.4 6.5 4.4 2.3 3.2 2.6 8.0
1.0 6.3 5.4 11.9 5.7 6.2 6.2 7.1
3.2 3.0 3.5 3.3 2.8 3.4 6.1 8.2
2.1 2.5 4.2 3.6 3.7 2.2 1.8 1.4
2.6 4.2 3.8 4.1 5.8 3.8 6.9 4.6





250000
150000
180000
160000
120000
200000







Appendix B
Data for HSC instances

This appendix describes the data for the HSC instances and the related nomenclature.

B.1 Model notation

Sets/Indices
E/e Primary energy sources
G/g Grid squares
I/i Product physical form
J/j Size of production plants and storage facilities
L/l Type of transportation modes
P/p Plant type with different production technologies
S/s Storage facility type with different storage facilities
T/t Time period of the planning horizon
Parameters
A0

eg Initial average availability of primary energy sources e in grid g, unit d−1.
CCF Capital charge factor – payback period of capital investment, y.
DT

igt Total demand for product form i in grid g during time period t, kg d−1.

DWl Driver wage of transportation mode l, $ h−1.
FEl Fuel economy of transportation mode l, km L−1.
FPl Fuel price of transportation mode l, $ L−1.
GEl General expenses of transportation mode l, $ L−1.
Llgg′ Average delivery distance between grids g and g′ by transportation mode

l, km.
LR Learning rate – cost reduction as technology manufacturers accumulate

experience, %.
LUTl Load/unload time of product for transportation mode l, h.
MEl Maintenance expenses of transportation mode l, $ km−1.
PCapmin

pji Minimum production capacity of plant type p and size j for product form
i, kg d−1.

PCapmax
pji Maximum production capacity of plant type p and size j for product form

i, kg d−1.
PCCpji Capital cost of establishing plant type p and size j producing product

form i, $.
Qmin

il Minimum flow rate of product form i by transportation mode l, kg d−1.
Qmax

il Maximum flow rate of product form i by transportation mode l, kg d−1.
SCapmin

sji Minimum storage capacity of storage type s and size j for product form i,
kg.
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SCapmax
pji Maximum storage capacity of storage type s and size j for product form i,

kg.
SCCsji Capital cost of establishing storage type s and size j storing product form

i, $.
SPl Average speed of transportation mode l, km h−1.
SSF Safety stock factor of primary energy sources within a grid, %.
TCapil Capacity of transportation mode l transporting product form i, kg

mode−1.
TMAl Availability of transportation mode l, h d−1.
TMCil Cost of establishing transportation mode l transporting product form i, $

mode−1.
UICe Unit cost of importing primary energy source e from overseas, $ unit−1.
UPCpji Unit production cost for product form i by plant type p and size j, $ kg−1.

USCsji Unit storage cost for product form i at storage type s and size j, $ kg−1

d−1.
α Network operating period, d y−1.
β Storage holding period – average number of days’ worth of stock, d.
γ Rate of utilization of primary energy source e by plant type p and size j,

unit resource per unit product.
Decision variables
IPpjigt Investment of plants of type p, size j, producing product form i in grid g,

during period t.
ISsjigt Investment of storage facilities of type s, size j, for product form i in grid

g, during period t.
Ppjigt Production rate of product form i produced by plant type p of size j in

grid g, during period t, kg d−1.
Qilgg′t Flow rate of product form i by transportation mode l between grids g and

g′, during period t, kg d−1.
Dependent variables
Aegt Average availability of primary energy source e in grid g during time

period t, unit d−1.
DL

igt Demand for product form i in grid g satisfied by local production during
time period t, kg d−1.

DI
igt Imported demand of product form i to grid g during time period t, kg

d−1.
ESC Primary energy source cost, $ d−1.
FC Fuel cost, $ d−1.
FCC Facility capital cost, $.
FOC Facility operating cost, $ d−1.
GC General cost, $ d−1.
Iegt Import of primary energy source e to grid g from overseas during time

period t, unit d−1.
Lave

gt Average delivery distance within grid g during time period t, km.
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LC Labor cost, $ d−1.
LTCgt Local transportation cost within grid g during time period t, $.
MC Maintenance cost, $ d−1.
PT

igt Total production rate of product form i in grid g during time period t, kg
d−1.

NPpjigt Number of plants of type p, size j, producing product form i in grid g,
during period t.

NSsjigt Number of storage facilities of type s, size j, for product form i in grid g,
during period t.

NTU Number of transport units.
QEegg′t Flow rate of primary energy source e between grids g and g′ during time

period t, unit d−1.
Ssjigt Average inventory of product form i stored in storage type s and size j in

grid g during time period t, kg.
ST

igt Total average inventory of product form i in grid g during time period t,
kg.

TCC Transportation capital cost, $.
TDC Total daily cost of the network, $ d−1.
TOC Transportation operating cost, $ d−1.

B.2 Data instances

Table B.1: Costs associated with primary energy sources.

Primary energy source, e Natural gas PV-elect Wind-elect Hydro-elect Nuclear elect

Unit cost of energy source, UECe ($/unit) 0.12 0.53 0.05 0.05 0.05

Unit import cost of energy source, UICe ($/unit) 0.012 0.005 0.005 0.005 0.005

Table B.2: Production capacities and costs of hydrogen plants.

Plant type, p Steam methane reforming Centralized electrolysis Distributed electrolysis

Plant size, j Small Medium Large Small Medium Large Small Medium
PCapmin

pji (t/d) 0.3 10 200 0.3 1.05 10 0.05 0.45
PCapmax

pji (t/d) 9.5 150 960 2.5 9.5 150 0.4 1
γ epj 4.02 3.34 3.16 52.49 52.49 52.49 52.49 52.49
PCCpji ($ ×106) 29 224 903 20.198 61 663 4.03 9.02
UPCpji ($/kg) 3.36 1.74 1.43 4.94 4.69 4.59 6.24 5.38
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Table B.3: Costs and characteristics of transportation modes.

Transportation mode, l Tanker truck

Transport unit capacity, TCapil (t/mode) 3.5
Fuel economy between grid, FEL

l (km/L) 2.30
Average speed between grid, SPL

l (km/hr) 66.8
Mode availability between grids, TMAR

l (hr/d) 18
Load/unload time, LUTl (hr) 2
Driver wage, DWl ($/hr) 14.57
Fuel price, FPl ($/L) 1.5
Maintenance expenses, MEl ($/km) 0.126
General expenses, GEl ($/d) 8.22
Transport mode cost, TMCil ($/mode) 500,000

Table B.4: Storage capacities and costs of liquid hydrogen storage facilities.

Storage type, s Liquid hydrogen storage

Storage size, j Mini Small Medium Large
Minimum storage capacity, SCapmin

sji (t) 0.05 0.5 10 200
Maximum storage capacity, SCapmax

sji (t) 0.45 9.5 150 540
Storage capital cost, SCCsji (million $) 0.802 5 33 122
Unit storage cost, USCsji ($/kg/d) 0.064 0.032 0.010 0.005

Table B.5: Global warming potential.

Type Value

GWP due to transportation (g CO2 per tonne-km) Tankertruck 62
GWP due to storage (g CO2 eq per kg H2) Liquid hydrogen 704

GWP due to production (g CO2 eq per kg H2)

SMR 10100
PV-elect 6206

Wind-elect 1034
Hydro-elect 2068

Nuclear-elect 3100

Table B.6: Local and regional delivery distances for 8 grid instances.

Grid, g 01 02 03 04 05 06 07 08

01 0 111.1 105.5 58.3 133.6 220.2 110.7 194
02 111.1 0 71.8 126.9 214.8 287.7 146.5 228.7
03 105.5 71.8 0 75.1 152.1 225 74.5 156.7
04 58.3 126.9 75.1 0 88 160.9 51 135.5
05 133.6 214.8 152.1 88 0 73.8 79.6 137.9
06 220.2 287.7 225 160.9 73.8 0 152.8 156.9
07 110.7 146.5 74.5 51 79.6 152.8 0 84.6
08 194 228.7 156.7 135.5 137.9 156.9 84.6 0
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Table B.7: Local and regional delivery distances for 22 grid instances.

Grid, g 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

01 0 63 46 97 128 197 198 175 102 139 148 191 222 306 338 297 243 174 155 222 246 240
02 63 0 70 34 65 134 146 103 133 170 220 226 293 341 373 332 278 205 186 253 277 242
03 46 70 0 59 112 173 156 133 60 97 127 148 180 264 295 254 201 132 113 180 204 198
04 97 34 59 0 53 114 111 69 76 113 192 165 197 280 312 271 218 148 131 197 220 232
05 128 65 112 53 0 70 115 71 131 208 287 230 262 309 341 300 247 177 151 216 249 234
06 197 134 173 114 70 0 135 104 186 261 339 266 300 345 377 336 289 216 187 312 292 330
07 198 146 156 111 115 135 0 43 99 140 214 157 189 226 258 217 164 94 71 124 180 141
08 175 103 133 69 71 104 43 0 75 133 187 155 186 234 266 225 172 102 75 141 174 158
09 102 133 60 76 131 186 99 75 0 23 117 88 112 206 238 197 143 73 55 123 146 140
10 139 170 97 113 208 261 140 133 23 0 83 75 100 218 250 209 156 87 68 135 159 152
11 148 220 127 192 287 339 214 187 117 83 0 43 54 102 137 125 141 135 146 188 169 205
12 191 226 148 165 230 266 157 155 88 75 43 0 24 73 108 91 86 83 80 147 124 136
13 222 293 180 197 262 300 189 186 112 100 54 24 0 49 84 68 72 92 104 135 138 145
14 306 341 264 280 309 345 226 234 206 218 102 73 49 0 35 23 66 135 158 163 111 173
15 338 373 295 312 341 377 258 266 238 250 137 108 84 35 0 35 99 168 191 196 144 206
16 297 332 254 271 300 336 217 225 197 209 125 91 68 23 35 0 58 134 150 155 103 165
17 243 278 201 218 247 289 164 172 143 156 141 86 72 66 99 58 0 72 93 100 49 102
18 174 205 132 148 177 216 94 102 73 87 135 83 92 135 168 134 72 0 23 51 75 102
19 155 186 113 131 151 187 71 75 55 68 146 80 104 158 191 150 93 23 0 70 94 87
20 222 253 180 197 216 312 124 141 123 135 188 147 135 163 196 155 100 51 70 0 55 20
21 246 277 204 220 249 292 180 174 146 159 169 124 138 111 144 103 49 75 94 55 0 44
22 240 242 198 232 234 330 141 158 140 152 205 136 145 173 206 165 110 102 87 20 44 0

Table B.8: Global warming potential for different production technologies.

Production type Energy source GWP (gCO2-eq/kgH2) References

SMR Natural gas 10 100 Strømman and Hertwich (2004)
SMR w/CCUS Natural gas 3 070 Reiter and Lindorfer (2015)

AEL/PEM electrolysis Onshore wind 1 034 Bhandari et al. (2014)
AEL/PEM electrolysis Solar phto-voltaic 1 400 Bhandari et al. (2014)
AEL/PEM electrolysis Grid 3 100 Utgikar and Thiesen (2006)
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Data for instance HSC08g01p

Table B.9: Hydrogen demand of each grid and time period (kg/d) for instance
HSC08g01p.

Grid, g Time period, t
t1(2050)

01 12610
02 21100
03 24770
04 17710
05 14610
06 16170
07 80620
08 10580

Table B.10: Initial availability of energy sources (unit/d) for instance HSC08g01p.

Grid, g Primary energy source, e
Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0

Data for instance HSC08g04p

Table B.11: Hydrogen demand of each grid and time period (kg/d) for instance
HSC08g04p.

Grid, g Time period, t
t1 (2020) t2 (2021–2030) t3 (2031–2040) t4 (2041–2050)

01 502 3780 8850 12610
02 843 6320 14750 21100
03 977 7410 17330 24770
04 709 5320 12400 17710
05 570 4420 10260 14610
06 639 4850 11310 16170
07 3221 24180 56470 80620
08 437 3150 7420 10580
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Table B.12: Initial availability of energy sources (unit/d) for instance HSC08g04p.

Time
period, t Grid, g Primary energy source, e

Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1 01 0 471278 0 557061 0
02 0 483634 2457909 285325 0
03 0 297382 2119665 550197 0
04 0 304231 1058296 1112723 51210000
05 0 526073 1058296 0 0
06 0 0 0 3281233 0
07 0 364574 840080 1914367 0
08 0 26575 0 1654163 0

2 01 0 635663 0 557061 0
02 0 477847 2922190 124022 0
03 0 406972 2804597 550197 0
04 0 413821 1743228 1112723 51210000
05 0 690458 1743228 0 0
06 0 0 0 3281233 0
07 0 474164 1182546 1914367 0
08 0 26575 0 1654163 0

3 01 0 648377 0 557061 0
02 0 660980 3555013 285325 0
03 0 415112 2860689 550197 0
04 0 422098 1778092 1112723 51210000
05 0 704268 1778092 0 0
06 0 0 0 3281233 0
07 0 483553 1206197 1914367 0
08 0 26575 0 1654163 0

4 01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0
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Data for instance HSC08g07p

Table B.13: Hydrogen demand of each grid and time period (kg/d) for instance
HSC08g07p.

Grid, g Time period, t
t1

(2020)
t2

(2021–2025)
t3

(2026–2030)
t4

(2031–2035)
t5

2036–2040)
t6

(2041–2045)
t7

(2045–2050)

01 502 2141 3780 6315 8850 10730 12610
02 843 3581.5 6320 10535 14750 17925 21100
03 977 4193.5 7410 12370 17330 21050 24770
04 709 3014.5 5320 8860 12400 15055 17710
05 570 2495 4420 7340 10260 12435 14610
06 639 2744.5 4850 8080 11310 13740 16170
07 3221 13701 24180 40325 56470 68545 80620
08 437 1793.5 3150 5285 7420 9000 10580

Table B.14: Initial availability of energy sources (unit/d) for instance HSC08g07p.

Time
period, t Grid, g Primary energy source, e

Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1 01 0 471278 0 557061 0
02 0 483634 2457909 285325 0
03 0 297382 2119665 550197 0
04 0 304231 1058296 1112723 51210000
05 0 526073 1058296 0 0
06 0 0 0 3281233 0
07 0 364574 840080 1914367 0
08 0 26575 0 1654163 0

2 01 0 553470 0 557060 0
02 0 480740 2690000 204670 0
03 0 352180 2462100 550200 0
04 0 359030 1400800 1112700 51210000
05 0 608270 1400800 0 0
06 0 0 0 3281200 0
07 0 419370 1011300 1914400 0
08 0 26575 0 1654200 0

3 01 0 635663 0 557061 0
02 0 477847 2922190 124022 0
03 0 406972 2804597 550197 0
04 0 413821 1743228 1112723 51210000
05 0 690458 1743228 0 0
06 0 0 0 3281233 0
07 0 474164 1182546 1914367 0
08 0 26575 0 1654163 0

4 01 0 642020 0 557060 0
02 0 569410 3238600 204670 0
03 0 411040 2832600 550200 0
04 0 417960 1760700 1112700 51210000
05 0 697360 1760700 0 0
06 0 0 0 3281200 0
07 0 478860 1194400 1914400 0
08 0 26575 0 1654200 0
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Table B.14 continued from previous page

5 01 0 648377 0 557061 0
02 0 660980 3555013 285325 0
03 0 415112 2860689 550197 0
04 0 422098 1778092 1112723 51210000
05 0 704268 1778092 0 0
06 0 0 0 3281233 0
07 0 483553 1206197 1914367 0
08 0 26575 0 1654163 0

6 01 0 654860 0 557060 0
02 0 667590 3590600 285330 0
03 0 419260 2889300 550200 0
04 0 426320 1795900 1112700 51210000
05 0 711310 1795900 0 0
06 0 0 0 3281200 0
07 0 488340 1218300 1914400 0
08 0 26575 0 1654200 0

7 01 0 661344 0 557061 0
02 0 674199 3626113 285325 0
03 0 423414 2917903 550197 0
04 0 430540 1813654 1112723 51210000
05 0 718353 1813654 0 0
06 0 0 0 3281233 0
07 0 493130 1230321 1914367 0
08 0 26575 0 1654163 0

Data for instance HSC22g01p
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Table B.15: Hydrogen demand of each grid and time period (kg/d) for instance
HSC22g01p.

Grid, g Time period, t
t1 (2050)

01 3050
02 3990
03 5570
04 4790
05 10810
06 5500
07 12820
08 11950
09 12170
10 5540
11 5210
12 6330
13 3070
14 10000
15 2850
16 3320
17 5010
18 12990
19 62620
20 4920
21 1990
22 3670

Table B.16: Initial availability of energy sources (unit/d) for instance HSC22g01p.

Grid, g Primary energy source, e
Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1 0 211707 0 0 0
2 0 211707 0 177275 0
3 0 237930 0 379786 0
4 0 242919 906827 189923 0
5 0 219573 1069870 95402 0
6 0 211707 1649416 0 0
7 0 211707 1859149 0 0
8 0 211707 1058754 550197 0
9 0 218833 906827 92937 0
10 0 211707 906827 1019786 51210000
11 0 294939 906827 0 0
12 0 211707 906827 0 0
13 0 211707 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 225817 0 775129 0
19 0 262587 1230321 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
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Data for instance HSC22g04p

Table B.17: Hydrogen demand of each grid and time period (kg/d) for instance
HSC22g04p.

Grid, g Time period, t
t1 (2050) t2 (2021–2030) t3 (2031–2040) t4 (2041–2050)

1 124 910 2140 3050
2 157 1200 2800 3990
3 221 1670 3910 5570
4 196 1430 3340 4790
5 428 3230 7570 10810
6 219 1660 3840 5500
7 509 3840 8970 12820
8 468 3570 8360 11950
9 480 3660 8520 12170

10 229 1660 3880 5540
11 211 1570 3660 5210
12 243 1910 4440 6330
13 116 940 2160 3070
14 398 3000 7000 10000
15 115 850 1990 2850
16 126 1000 2320 3320
17 196 1500 3520 5010
18 518 3900 9110 12990
19 2507 18780 43840 62620
20 208 1470 3450 4920
21 93 590 1400 1990
22 136 1090 2570 3670

Table B.18: Initial availability of energy sources (unit/d) for instance HSC22g04p.

Time
period, t Grid, g Primary energy source, e

Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1

01 0 148691 0 0 0
02 0 148691 0 177275 0
03 0 173896 0 379786 0
04 0 178691 529148 189923 0
05 0 156252 685860 95402 0
06 0 148691 1242901 0 0
07 0 148691 1444490 0 0
08 0 148691 675175 550197 0
09 0 155540 529148 92937 0
10 0 148691 529148 1019786 51210000
11 0 228691 529148 0 0
12 0 148691 529148 0 0
13 0 148691 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 162253 0 775129 0



190 Appendix B

Table B.18 continued from previous page
19 0 197595 840080 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

2

01 0 203486 0 0 0
02 0 203486 0 177275 0
03 0 228691 0 379786 0
04 0 211047 1028326 95402 0
05 0 63314 308497 28620 0
06 0 203486 1585367 0 0
07 0 203486 1786956 0 0
08 0 203486 1017641 550197 0
09 0 210335 871614 92937 0
10 0 203486 871614 1019786 51210000
11 0 283486 871614 0 0
12 0 203486 871614 0 0
13 0 203486 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 217048 0 775129 0
19 0 252390 1182546 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

3

01 0 207556 0 0 0
02 0 207556 0 177275 0
03 0 233265 0 379786 0
04 0 238156 889046 189923 0
05 0 215268 1048893 95402 0
06 0 207556 1617074 0 0
07 0 207556 1822695 0 0
08 0 207556 1037994 550197 0
09 0 214542 889046 92937 0
10 0 207556 889046 1019786 51210000
11 0 289156 889046 0 0
12 0 207556 889046 0 0
13 0 207556 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 221389 0 775129 0
19 0 257438 1206197 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

4

01 0 211707 0 0 0
02 0 211707 0 177275 0
03 0 237930 0 379786 0
04 0 242919 906827 189923 0
05 0 219573 1069870 95402 0
06 0 211707 1649416 0 0
07 0 211707 1859149 0 0
08 0 211707 1058754 550197 0
09 0 218833 906827 92937 0
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Table B.18 continued from previous page
10 0 211707 906827 1019786 51210000
11 0 294939 906827 0 0
12 0 211707 906827 0 0
13 0 211707 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 225817 0 775129 0
19 0 262587 1230321 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

Data for instance HSC22g07p

Table B.20: Initial availability of energy sources (unit/d) for instance HSC22g07p.

Time
period, t Grid, g Primary energy source, e

Natural gas PV-elect Wind-elect Hydro-elect Nuclear-elect

1

01 0 148691 0 0 0
02 0 148691 0 177275 0
03 0 173896 0 379786 0
04 0 178691 529148 189923 0
05 0 156252 685860 95402 0
06 0 148691 1242901 0 0
07 0 148691 1444490 0 0
08 0 148691 675175 550197 0
09 0 155540 529148 92937 0
10 0 148691 529148 1019786 51210000
11 0 228691 529148 0 0
12 0 148691 529148 0 0
13 0 148691 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 162253 0 775129 0
19 0 197595 840080 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

2

01 0 176088.5 0 0 0
02 0 176088.5 0 177275 0
03 0 201293.5 0 379786 0
04 0 194869 778737 142662.5 0
05 0 109783 497178.5 62011 0
06 0 176088.5 1414134 0 0
07 0 176088.5 1615723 0 0
08 0 176088.5 846408 550197 0
09 0 182937.5 700381 92937 0
10 0 176088.5 700381 1019786 51210000
11 0 256088.5 700381 0 0
12 0 176088.5 700381 0 0
13 0 176088.5 0 0 0



192 Appendix B

Table B.20 continued from previous page
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 189650.5 0 775129 0
19 0 224992.5 1011313 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

3

01 0 203486 0 0 0
02 0 203486 0 177275 0
03 0 228691 0 379786 0
04 0 211047 1028326 95402 0
05 0 63314 308497 28620 0
06 0 203486 1585367 0 0
07 0 203486 1786956 0 0
08 0 203486 1017641 550197 0
09 0 210335 871614 92937 0
10 0 203486 871614 1019786 51210000
11 0 283486 871614 0 0
12 0 203486 871614 0 0
13 0 203486 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 217048 0 775129 0
19 0 252390 1182546 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

4

01 0 205521 0 0 0
02 0 205521 0 177275 0
03 0 230978 0 379786 0
04 0 224601.5 958686 142662.5 0
05 0 139291 678695 62011 0
06 0 205521 1601220.5 0 0
07 0 205521 1804825.5 0 0
08 0 205521 1027817.5 550197 0
09 0 212438.5 880330 92937 0
10 0 205521 880330 1019786 51210000
11 0 286321 880330 0 0
12 0 205521 880330 0 0
13 0 205521 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 219218.5 0 775129 0
19 0 254914 1194371.5 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

5

01 0 207556 0 0 0
02 0 207556 0 177275 0
03 0 233265 0 379786 0
04 0 238156 889046 189923 0
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Table B.20 continued from previous page
05 0 215268 1048893 95402 0
06 0 207556 1617074 0 0
07 0 207556 1822695 0 0
08 0 207556 1037994 550197 0
09 0 214542 889046 92937 0
10 0 207556 889046 1019786 51210000
11 0 289156 889046 0 0
12 0 207556 889046 0 0
13 0 207556 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 221389 0 775129 0
19 0 257438 1206197 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

6

01 0 209631.5 0 0 0
02 0 209631.5 0 177275 0
03 0 235597.5 0 379786 0
04 0 240537.5 897936.5 189923 0
05 0 217420.5 1059381.5 95402 0
06 0 209631.5 1633245 0 0
07 0 209631.5 1840922 0 0
08 0 209631.5 1048374 550197 0
09 0 216687.5 897936.5 92937 0
10 0 209631.5 897936.5 1019786 51210000
11 0 292047.5 897936.5 0 0
12 0 209631.5 897936.5 0 0
13 0 209631.5 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 223603 0 775129 0
19 0 260012.5 1218259 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0

7

01 0 211707 0 0 0
02 0 211707 0 177275 0
03 0 237930 0 379786 0
04 0 242919 906827 189923 0
05 0 219573 1069870 95402 0
06 0 211707 1649416 0 0
07 0 211707 1859149 0 0
08 0 211707 1058754 550197 0
09 0 218833 906827 92937 0
10 0 211707 906827 1019786 51210000
11 0 294939 906827 0 0
12 0 211707 906827 0 0
13 0 211707 0 0 0
14 0 0 0 0 0
15 0 0 0 2281507 0
16 0 0 0 999726 0
17 0 4726 0 1019178 0
18 0 225817 0 775129 0
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Table B.20 continued from previous page
19 0 262587 1230321 120060 0
20 0 26575 0 86575 0
21 0 0 0 500164 0
22 0 0 0 1067424 0
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Table B.19: Hydrogen demand of each grid and time period (kg/d) for instance
HSC22g07p.

Grid, g Time period, t
t1

(2020)
t2

(2021–2025)
t3

(2026–2030)
t4

(2031–2035)
t5

2036–2040)
t6

(2041–2045)
t7

(2045–2050)

1 124 517 910 1525 2140 2595 3050
2 157 678.5 1200 2000 2800 3395 3990
3 221 945.5 1670 2790 3910 4740 5570
4 196 813 1430 2385 3340 4065 4790
5 428 1829 3230 5400 7570 9190 10810
6 219 939.5 1660 2750 3840 4670 5500
7 509 2174.5 3840 6405 8970 10895 12820
8 468 2019 3570 5965 8360 10155 11950
9 480 2070 3660 6090 8520 10345 12170
10 229 944.5 1660 2770 3880 4710 5540
11 211 890.5 1570 2615 3660 4435 5210
12 243 1076.5 1910 3175 4440 5385 6330
13 116 528 940 1550 2160 2615 3070
14 398 1699 3000 5000 7000 8500 10000
15 115 482.5 850 1420 1990 2420 2850
16 126 563 1000 1660 2320 2820 3320
17 196 848 1500 2510 3520 4265 5010
18 518 2209 3900 6505 9110 11050 12990
19 2507 10643.5 18780 31310 43840 53230 62620
20 208 839 1470 2460 3450 4185 4920
21 93 341.5 590 995 1400 1695 1990
22 136 613 1090 1830 2570 3120 3670
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Data instances: Nonlinear model

For steam methane reforming technology, the data for nominal design capacity, as
well as for the capital and operational expenditure, scaling factor and operating
capacity factor are taken from NREL (2018). This is also the case for SMR w/CCUS
technology. The data is summarized in tables B.21 and B.22.

Table B.21: Data for steam reforming technology.

SMR

Reference design capacity (kgH2/day) 379 387
Operating capacity factor (%) 90
Power scaling factor 0.6
CAPEX in EUR/(kgH2/day) for ref. capacity 333.73
OPEX (%CAPEX/year) 5

Table B.22: Data for steam reforming with CCUS technology.

SMR w/CCUS

Reference design capacity (kgH2/day) 379 387
Operating capacity factor (%) 90
Power scaling factor 0.6
CAPEX in EUR/(kgH2/day) for ref. capacity 764.24
OPEX (%CAPEX/year) 15

Regarding the data used for alkaline electrolysis, this is presented in Table B.23
(black color indicates available data, whereas gray color refers to estimated data). For
7-period instances, the data was obtained through numerical interpolations.

Table B.23: Data for alkaline electrolysis.

AEL 2020 2030 2040 2050 References

Max. nominal power consuption (MW) 10 50 80 100 IEA, 2019
Electrical efficiency (%) 75 78 80 82 Böhm et al., 2020
Operating conditions (% nom. cap.) 20-110 5-110 5-110 5-110 E&E Consultant et al.; Götz et al.
Power scaling factor 0.69 0.69 0.69 0.69 Böhm et al., 2020
CAPEX in EUR/kWel for 5 MWel ref. 1097 932 733 511 Böhm et al., 2020
OPEX (%CAPEX/year) 5 5 5 5 E&E Consultant et al., 2014

The data used for proton-exchange electrolysis are presented in Table B.24, with
the same color code as for Table B.23.

Table B.25 describes the data for the renewable energy sources considered for
electrolysis, that is, wind onshore and solar photo-voltaic. Note that the available
data for the Levelized Cost of Energy (LCOE) present a cost range and not a single
value. So, in this study, the mean value for each time period was considered.
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Table B.24: Data for proton exchange membrane electrolysis.

PEM 2020 2030 2040 2050 References

Max. nominal power consuption (MW) 10 50 80 100 IEA, 2019
Electrical efficiency (%) 72 76 78 80 Böhm et al., 2020
Operating conditions (% nom. cap.) 5-150 5-150 5-150 5-150 E&E Consultant et al.; Götz et al.
Power scaling factor 0.72 0.72 0.72 0.72 Böhm et al., 2020
CAPEX in EUR/kWel for 5 MWel ref. 1188 701 445 308 Böhm et al., 2020
OPEX (%CAPEX/year) 3 3 3 3 E&E Consultant et al., 2014

Table B.25: Data concerning different energy feedstock for electrolysis.

2020 2030 2040 2050 References

Charge factor for wind onshore (%) 25.5 25.5 25.5 25.5 RTE, 2020
Charge factor for solar PV (%) 14.5 14.5 14.5 14.5 RTE, 2020
LCOE for wind onshore (EUR/MWh) 50-71 32-58 26-50 24-46 Haeusler et al., 2020
LCOE for solar PV (EUR/MWh) 57-71 35-47 26-36 23-32 Haeusler et al., 2020
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Résumé — Des problèmes complexes d’optimisation apparaissent souvent dans les Procédés
et Systèmes Industriels (PSI). Les algorithmes évolutionnaires multi-objectifs (MOEAs) con-
stituent des alternatives potentielles aux méthodes d’optimisation classiques ; néanmoins,
leur performance dépend fortement de la technique employée pour traiter les contraintes.
L’objectif de ce travail est d’explorer l’applicabilité des avancées récentes en Calcul Évolution-
naire, afin de présenter des méthodes de solution alternatives à la communauté PSI.

Une première partie de la recherche a été consacrée à l’étude des techniques de traitement
des contraintes au sein d’une métaheuristique. Les résultats obtenus sur des problèmes de
référence ont indiqué une supériorité de la technique qui utilise le gradient des contraintes
pour réparer les solutions infaisables.

La deuxième partie de la thèse est consacrée à la conception optimale de chaînes
d’approvisionnement en hydrogène, en prenant en compte des critères économiques et
environnementaux. Ce problème complexe présente des caractéristiques qui posent des
difficultés aux techniques classiques et métaheuristiques. Une technique hybride (matheuris-
tique) développée à cet effet a démontré son efficacité pour générer une approximation du
front de Pareto optimal. En outre, cette approche a permis d’envisager une représentation
plus réaliste de la chaine d’approvisionnement en hydrogène, prenant en compte les aspects
technologiques, spatiaux et temporels de sa conception.

Mots clés : Algorithmes évolutionnaires multi-objectifs, techniques de gestion des con-
traintes, chaînes d’approvisionnement en hydrogène, optimisation bi-niveau, matheuristique.

Abstract — Complex optimization problems are ubiquitous in process systems engineer-
ing (PSE). Multiobjective evolutionary algorithms (MOEAs) constitute potential alternatives
to classical optimization methods. Nevertheless, their performance strongly depends on
the technique employed for handling constraints. The objective of this work is to explore
the applicability of recent advances in Evolutionary Computation to complex optimization
problems, to present alternative solution methods to the PSE community.

A first part of the research was devoted to the study of constraint-handling techniques
within metaheuristics. The obtained results obtained on test functions indicated the superior-
ity of the technique using the constraint gradient to repair infeasible solutions.

The second part of the thesis is devoted to the optimal design of sustainable hydrogen
supply chains (HSCs), considering both economic and environmental criteria. This complex
problem present features that entail difficulties to both classical and metaheuristic techniques.
A hybrid technique (matheuristic) developed in this purpose demonstrated its efficacy for
generating an approximation of the Pareto front. Besides, this approach allowed considering
a more realistic representation of the HSC, accounting for technological, spatial and temporal
aspects of its design.

Keywords: Multiobjective evolutionary algorithms, constraint-handling techniques,
hydrogen supply chains, bilevel optimization, matheuristic.
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