4 research outputs found

    Rulet Elektromanyetik Alan Optimizasyon (R-EFO) Algoritması

    Get PDF
    Meta-sezgisel optimizasyon algoritmalarının yerel arama performansları üzerinde etkili olan iki temel öğe seçim yöntemleri ve arama operatörleridir. Bu makale çalışmasında olasılıksal bir seçim yöntemi olan rulet tekerleğinin güncel bir meta-sezgisel arama tekniği olan elektromanyetik alan optimizasyon (electromagnetic field optimization, EFO) algoritmasının yerel arama performansı üzerindeki etkisi araştırılmaktadır. Elektromanyetik optimizasyon algoritmasında çözüm adayları topluluğu uygunluk değerlerine bağlı olarak pozitif, nötr ve negatif alanlara ayrılmaktadır. Bu üç alandan seçilen çözüm adayları ise arama sürecine rehberlik etmektedirler. Bu süreçte çözüm adayları açgözlü ve rastgele seçim yöntemleri ile belirlenmektedir. Bu makale çalışmasında ise negatif alandan çözüm adaylarının seçimi için rulet tekniği kullanılmaktadır. Deneysel çalışmalarda literatürdeki en güncel sürekli değer problemleri olan CEC17 test seti kullanılmıştır. Deneysel çalışma sonuçları istatistiksel olarak ikili karşılaştırmalarda kullanılan wilcoxon runk sum test ile analiz edilmiştir. Analiz sonuçlarına göre rulet seçim yöntemi EFO algoritmasının arama performansını kayda değer şekilde artırmaktadır

    An improved differential evolution algorithm using efficient adapted surrogate model for numerical optimization

    No full text
    Contemporary real-world optimization benchmarks are subject to many constraints and are often high-dimensional problems. Typically, such problems are expensive in terms of computational time and cost. Conventional constraint-based solvers that are used to tackle such problems require a considerable high budget of function evaluations. Such budget is not affordable in practice. In most cases, this number is considered the termination criterion in which the optimization process is stopped and then the best solution is marked. The algorithm might not converge even after consuming the pre-defined number of function evaluations, and hence it does not guarantee an optimal solution is found. Motivated by this consideration, this paper introduces an effective surrogate model to assist the differential evolution algorithm to generate competitive solutions during the search process. The proposed surrogate model uses a new adaptation scheme to adapt the theta parameter in the well-known Kriging model. This variable determines the correlation between the parameters of the optimization problem being solved. For that reason, an accurate surrogate model is crucial to have a noticeable enhancement during the search. The statistical information exploited from a covariance matrix is used to build the correlation matrix to adapt the theta variable instead of using a fixed value during the search. Hence, the surrogate model evolves over the generations to better model the basin of the search, as the population evolves. The model is implemented in the popular L-SHADE algorithm. Two benchmark sets: bound-constrained problems and real-world optimization problems are used to validate the performance of the proposed algorithm, namely iDEaSm. Also, two engineering design problems are solved: welded beam and pressure vessel. The performance of the proposed work is compared with other state-of-the-art algorithms and the simulation results indicate that the new technique can improve the performance to generate better statistical significance solutions

    Decomposition Approaches for Building Design Optimization

    Get PDF
    Building performance simulation can be integrated with optimization to achieve high-performance building design objectives such as low carbon emission and cost-effectiveness by holistically considering design variables across different disciplines. However, the complexity of the design problem increases greatly with increasing dimensionality. In some cases, solving high-dimension problems is not technically feasible nor time-efficient. Decomposition is one way to reduce the complexity and dimensionality of optimization problems. However, the decomposed optimization might achieve local optimum. Therefore, deploying appropriate decomposition strategies to achieve global optimum is paramount. This study investigates the deployment of hierarchical and parallel decomposition for building design optimization problems to ensure identification of global optimum. The feasibility of combining sensitivity analysis and decomposition is also explored. At the end of this study, some recommendations are given to help select an appropriate approach in practice. First, this thesis proposes a hierarchical decomposition. Hierarchical decomposition divides an optimization problem into several interconnected subproblems solved sequentially. The proposed approach is applied to the multi-objective optimization problem that minimizes buildings' operating costs and carbon emissions. The results show that the hierarchical decomposition approach can reduce the number of simulations while achieving global optimums. Second, this thesis proposes a parallel decomposition. Parallel decomposition divides the original problem into several smaller subproblems to be solved separately, and potentially, concurrently. The proposed parallel decomposition approach is applied to solve the single-objective optimization problems of a benchmark function and a low-rise office building. The results show that the proposed approach finds the global optimum and takes less computation time than optimization without decomposition. Third, this thesis explores the feasibility of combining sensitivity analysis with decomposition for dimensionality reduction. The efficiency and accuracy of different methods are compared through three case studies. The proposed hierarchical and parallel decomposition approaches can be applied individually or combined into a hybrid decomposition approach. This thesis concludes with some recommendations to help choose a decomposition approach to solve building design optimization problems

    Passive localization model in wireless sensor networks based on adaptive hybrid heuristic algorithms

    Get PDF
    Предмет истраживања ове докторске дисертације је проблем пасивног лоцирања заснован на мерењу времена пропагације сигнала (Time of Arrival, ТОА), или временске разлике пропагације сигнала (Time Difference of Arrival, TDOA) ради одређивања непознате локације неког објекта. За постављене моделе лоцирања формирана је функција максималне веродостојности (Maximum Likelihood, ML) са Гаусовом случајном расподелом за грешку мерења. Разматрани естимациони модел описан је нелинеарном, неконвексном функцијом циља, односно мултимодалном функцијом. При томе, за формирану функцију циља, глобално оптимално решење не може се нумерички одредити класичним методама оптимизације...The research in this dissertation is focused on the problem of passive target localization based on the noisy time of arrival (TOA) or time Difference of Arrival (TDOA) measurements, with the aim to accurately estimate the unknown passive target location. The maximum likelihood (ML) estimation problem is formulated for the considered localization problem, with measurement errors modelled as Gaussian distributed random variables. However, the ML objective function of the considered estimation problem is nonlinear and multimodal function, and in this case, the global optimal solution cannot be determined numerically by classical optimization methods..
    corecore