1,085 research outputs found

    Nonlinear gyrokinetic PIC simulations in stellarators with the code EUTERPE

    Get PDF
    In this work, the first nonlinear particle-in-cell simulations carried out in a stellarator with the global gyrokinetic code EUTERPE using realistic plasma parameters are reported. Several studies are conducted with the aim of enabling reliable nonlinear simulations in stellarators with this code. First, EUTERPE is benchmarked against ORB5 in both linear and nonlinear settings in a tokamak configuration. Next, the use of noise control and stabilization tools, a Krook-type collision operator, markers weight smoothing and heating sources is investigated. It is studied in detail how these tools influence the linear growth rate of instabilities in both tokamak and stellarator geometries and their influence on the linear zonal flow evolution in a stellarator. Then, it is studied how these tools allow improving the quality of the results in a set of nonlinear simulations of electrostatic turbulence in a stellarator configuration. Finally, these tools are applied to a W7-X magnetic configuration using experimental plasma parameters.Comment: 24 pages, 19 figure

    On the definition of a kinetic equilibrium in global gyrokinetic simulations

    Get PDF
    Nonlinear electrostatic global gyrokinetic simulations of collisionless ion temperature gradient (ITG) turbulence and ExB zonal flows in axisymmetric toroidal plasmas are examined for different choices of the initial distribution function. Using a local Maxwellian leads to the generation of axisymmetric ExB flows that can be so strong as to prevent ITG mode growth. A method using a canonical Maxwellian is shown to avoid this spurious generation of ExB flows. In addition, a revised delta f scheme is introduced and compared to the standard delta f method. (c) 2006 American Institute of Physics

    High-order stochastic integration schemes for the Rosenbluth-Trubnikov collision operator in particle simulations

    Get PDF
    In this study, we consider a numerical implementation of the nonlinear Rosenbluth-Trubnikov collision operator for particle simulations in plasma physics in the framework of the finite element method (FEM). The relevant particle evolution equations are formulated as stochastic differential equations, both in the Stratonovich and ItĂ´ forms, and are then solved with advanced high-order stochastic numerical schemes. Due to its formulation as a stochastic differential equation, both the drift and diffusion components of the collision operator are treated on an equal footing. Our investigation focuses on assessing the accuracy of these schemes. Previous studies on this subject have used the Euler-Maruyama scheme, which, although popular, is of low order, and requires small time steps to achieve satisfactory accuracy. In this work, we compare the performance of the Euler-Maruyama method to other high-order stochastic methods known in the stochastic differential equations literature. Our study reveals advantageous features of these high-order schemes, such as better accuracy and improved conservation properties of the numerical solution. The main test case used in the numerical experiments is the thermalization of isotropic and anisotropic particle distributions

    Simulations of an ASA flow crystallizer with a coupled stochastic-deterministic approach

    Get PDF
    A coupled solver for population balance systems is presented, where the flow, temperature, and concentration equations are solved with finite element methods, and the particle size distribution is simulated with a stochastic simulation algorithm, a so-called kinetic Monte-Carlo method. This novel approach is applied for the simulation of an axisymmetric model of a tubular flow crystallizer. The numerical results are compared with experimental data
    • …
    corecore