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Abstract

In this study, we consider a numerical implementation of the nonlinear Rosenbluth-
Trubnikov collision operator for particle simulations in plasma physics in the framework
of the finite element method (FEM). The relevant particle evolution equations are
formulated as stochastic differential equations, both in the Stratonovich and Itô forms,
and are then solved with advanced high-order stochastic numerical schemes. Due to its
formulation as a stochastic differential equation, both the drift and diffusion components
of the collision operator are treated on an equal footing. Our investigation focuses on
assessing the accuracy of these schemes. Previous studies on this subject have used the
Euler-Maruyama scheme, which, although popular, is of low order, and requires small
time steps to achieve satisfactory accuracy. In this work, we compare the performance
of the Euler-Maruyama method to other high-order stochastic methods known in the
stochastic differential equations literature. Our study reveals advantageous features of
these high-order schemes, such as better accuracy and improved conservation properties
of the numerical solution. The main test case used in the numerical experiments is the
thermalization of isotropic and anisotropic particle distributions.
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1. Introduction

The collision operator in gyrokinetic/kinetic simulations takes into account impor-
tant physics such as neoclassical transport Hinton and Hazeltine (1976); Wang et al.
(2006), the damping of the zonal flow Lin et al. (1999), the evolution of the Alfvén
modes Chen and White (1997), and the collision transport in the edge plasma Chankin et al.
(2012). Up to now, most of the particle codes treat the collision operator using the
Langevin equation, and the convergence order is limited to the widely used Euler-
Maruyama scheme Xu and Rosenbluth (1991); Lin et al. (1999); Donnel et al. (2020)
or the splitting scheme Slaby et al. (2017), both with a global first-order weak conver-
gence. Even though a noise reduction scheme has been proposed Sonnendrücker et al.
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(2015), the time step size has to be very small when using the Euler-Maruyama scheme
or other low-order schemes to achieve the desired accuracy.

For particle simulations, the basic equation describing the collision process is the
Langevin equation, that is, a type of stochastic differential equation (SDE) driven by a
Wiener process. The theoretical and numerical aspects of SDEs have been extensively
studied in the last several decades, and a vast number of numerical integration tech-
niques have been proposed Itô (1944); Stratonovich (1966); Kloeden and Platen (1992),
for instance, various higher-order stochastic Runge-Kutta schemes for Stratonovich
SDEs, both strongly (Burrage and Burrage (1996, 2000)) and weakly (Rößler (2007))
convergent. Previous work related to high-order stochastic schemes for collision op-
erators is limited to the Milstein-like scheme Dimits et al. (2013). More recent work
includes the development of stochastic variational principles for collisional kinetic equa-
tions Tyranowski (2021), and variational integrators for stochastic dissipative Hamilto-
nian systems Kraus and Tyranowski (2021).

In this work, we focus on the application of high-order stochastic integration schemes
to the Langevin equation associated with the Fokker-Planck equation with a collision
operator defined by the Rosenbluth-Trubnikov potentials Trubnikov (1965); Rosenbluth et al.
(1957). The scope and goal of this paper are as follows.

1. We aim for the identification of the different features related to the particle
simulations such as the particle noise and the representation of the distribu-
tion using particles, in addition to the traditional analyses of the SDE studies
Kloeden and Platen (1992); Burrage and Burrage (1996).

2. One goal is to evaluate the role of high-order stochastic schemes in the improve-
ment of the overall accuracy of the collision operator in particle simulations,
compared with the Euler-Maruyama scheme that is widely used in the present gy-
rokinetic particle codes Slaby et al. (2017); Lanti et al. (2020); Lin et al. (1999).

3. Our main intention is for the full f particle simulations, motivated by recent
development of full f gyrokinetic code Hager et al. (2016); Lu et al. (2023). A
specific further application will be that in TRIMEG code Lu et al. (2019, 2021,
2023). In addition, high-order stochastic integration schemes for the collision
operator are also expected to bring benefits to the gyrokinetic δf particle codes
Lanti et al. (2020); Slaby et al. (2017).

The rest of the paper is organized as follows. In Sec. 2, the physics model for the
collision operator is given. In Sec. 3, the time integration schemes are listed. In Sec. 4,
the application of various schemes to the collision operator is presented, accompanied
by the numerical results. The conclusion and outlook are given in Sec. 5.

2. Models and Equations

2.1. General equations of collision operator

We adopt the Rosenbluth-Trubnikov collision operator Trubnikov (1965); Rosenbluth et al.
(1957). The kinematics of the collision between a particle of type a with velocity v and
a particle of type b with velocity v′ are discussed. The Fokker-Planck equation with
collisions, accounting for particles of type a with distribution function fa, can be written
as follows,

(

∂fa
∂t

)

coll

= C(fa, fb) , (1)
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where C(fa, fb) is the collision operator. In this work, we use the Rosenbluth-Trubnikov
potentials when calculating the collisions, namely,

C(fa, fb) = −Γa\b ∂

∂v
·
[

fa
∂

∂v
ĥ(v)

]

+
Γa\b

2

∂

∂v
· ∂

∂v
·
[

fa
∂

∂v

∂

∂v
ĝ(v)

]

, (2)

where ĝ and ĥ are the Rosenbluth-Trubnikov potentials Rosenbluth et al. (1957), Γa\b =
4πλabe

2
ae

2
b/m

2
a in CGS units or Γa\b = λabe

2
ae

2
b/(4πε

2
0m

2
a) in SI units, ε0 is the vacuum

permittivity, λab is the Coulomb logarithm, ea and eb are the electric charges, and ma

and mb are the masses of the particles of species a and b, respectively. The Rosenbluth-
Trubnikov potentials are as follows,

ĥ =
ma +mb

mb
h , (3)

ĝ = g , (4)

h(v) =

∫

dv′ fb(v
′)

|v − v′| , (5)

g(v) =

∫

dv′fb(v
′)|v− v′| . (6)

The elliptic equations are satisfied as follows,

∂

∂v
· ∂

∂v
h(v) = −4πfb(v) , (7)

∂

∂v
· ∂

∂v
g(v) = 2h(v) . (8)

In the following, the subscript ‘a’ is omitted when no ambiguity is introduced.

2.2. Discretization of the distribution function

The particle distribution f is represented by the so-called markers which are the
numerical particles in simulations. Take the phase space coordinates z, and the marker
distribution is given by fmark(z) using the Klimontovich representation,

fKlim
mark (z) =

Np
∑

i=1

δ(z− zi)

Jz

, (9)

where δ(x) is a Dirac delta function, Jz is the Jacobian of the coordinates z, z = (R,v),
R is the configuration space coordinate and v is the velocity. The physical distribution
function is represented by the markers whose coordinates are zp and given by

fKlim(z) = Cp2g

Np
∑

i=1

pi
δ(z− zi)

Jz
, (10)

where pi = f(zi)/[fmark(zi)Cp2g], Cp2g = Nphy/Np, Np is the number of markers, Nphy

is the number of physical particles, pi is the full f weight of marker ‘i’. The variable
Cp2g is defined so that pi = 1 if the marker distribution is chosen to be proportional to
the physical particle distribution.
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Since the noise exists due to finite marker number, Eq. 10 is not exactly the desired
analytically given distribution function fA(z). The relative error can be defined to
describe the deviation of the numerical distribution f and the analytical distribution
fA. One possible definition is as follows. A complete orthonormal set of functions BI(z)
is chosen to represent any functions in the phase space z,

∫

dzBI(z)BI′(z) = δI,I′ , (11)

where δI,I′ = 0 if I 6= I′ and δI,I′ = 1 if I = I′. Then the discretized distribution f(z)
and the analytical distribution fA(z) are expressed as follows,

f(z) =
∑

I

fIBI(z) , (12)

fA(z) =
∑

I

fA,IBI(z) , (13)

The coefficients fI can be obtained from the weak form of Eq. 12,

∑

I

∫

dzBIBI′fI =

∫

dzBI′(z)f(z) , (14)

whose solution is readily obtained considering Eq. 11,

fI =

∫

dzBI(z)f(z) . (15)

Similarly,

fA,I =

∫

dzBI(z)fA(z) . (16)

The relative error is

ǫf ≡
√

∫

dz[f(z)− fA(z)]2
∫

dzf 2
A(z)

=

√

∑

I(fI − fA,I)2
∑

I f
2
A,I

. (17)

A more convenient way as we adopted in the numerical studies is to calculate the
relative error of the kinetic energy,

ǫE =
Cp2g

∑Np

i=1 piv
2
i

∫

dzfA(z)v2
− 1 . (18)

For Maxwellian distribution fA = [n/(π2T/m)3/2] exp{−mv2/(2T )}, we can readily get
∫

dzfA(z)v
2 = 3nT/m = (3/2)nv2t , where vt =

√

2T/m is the thermal velocity.

2.3. Drag and diffusion coefficients in the Langevin equation

In the following work, we adopt the drift kinetic model for which magnetically con-
fined plasmas are considered. In velocity space, (v‖, v⊥, α) is adopted where v‖, v⊥ are
the components of velocity in the directions parallel and perpendicular to the magnetic
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field, and α is the gyro angle. The Jacobian of (v‖, v⊥, α) is Jv = v⊥. It is assumed
that the distribution and the Rosenbluth-Trubnikov potentials are independent of α.

The Langevin equation is solved in (v‖, y) coordinates, where y = v2⊥, instead of
(v‖, v⊥) so that most of the singular terms 1/v⊥ can be eliminated. Specifically, the
collision operator is applied by modifying the markers’ (v‖, y). Note that the diffusion
coefficients are still calculated in (v‖, v⊥) coordinates since the Rosenbluth-Trubnikov
potentials are solved in (v‖, v⊥) coordinates, for the sake of simplicity. Specifically, in
solving the Rosenbluth-Trubnikov potentials using particles of arbitrary distribution,
the Neumann boundary condition can be applied at v⊥ = 0.

The collision operator is written as

∂tf |c = Γ
[

∂x(Dxf) + ∂y(Dyf) + ∂2
xx(Dxxf) + ∂2

xy(Dxyf) + ∂2
yy(Dyyf)

]

(19)

Dx = −ma

mb
∂‖h ,Dy = −2

ma

mb
v⊥∂⊥h− ∂2

⊥⊥g −
1

v⊥
∂⊥g , (20)

Dxx =
1

2
∂2
‖‖g , Dxy = Dyx = v⊥∂

2
‖⊥g , Dyy = 2v2⊥∂

2
⊥⊥g , (21)

where the subscripts ‘‖’ and ‘⊥’ indicate the directions parallel and perpendicular to
the magnetic field respectively, ∂⊥ ≡ ∂/∂v⊥, ∂‖ ≡ ∂/∂v‖, h, g and their derivatives
are calculated in (v‖, v⊥) coordinates but the diffusion operator is written in (x, y)
coordinates, where x = v‖, y = v2⊥. It can be shown that Eqs. 19–21 are equivalent to
those in the continuum code KIPP Chankin et al. (2012) implemented completely in
(v‖, v⊥).

Since Eq. 1 is a Fokker-Planck equation, the particle density function f can be
interpreted as the probability density for a d-dimensional stochastic process v(t) which
satisfies the Itô SDE Kloeden and Platen (1992)

dv = FItodt+G · dW , (22)

driven by the standard m-dimensional Wiener process W(t), where FIto is the drag (or

drift) function, and G is the d × m diffusion matrix. The dimensions of the v(t) and
W(t) processes are in our case d = 2 and m = 2, respectively. We further have

FIto = −
[

Dx

Dy

]

, (23)

G ·G
T

= 2D = 2

[

Dxx Dxy

Dyx Dyy

]

, (24)

and with the choice G12 = 0, we can calculate the diffusion matrix as

G =
√
2

[√
Dxx 0
Dyx√
Dxx

√

Dyy − D2
xy

Dxx

]

. (25)

Independent realizations (or sample paths) of the stochastic process v(t) can be inter-
preted as the trajectories of the markers in the discretization Eq. (10).

The Itô SDE Eq. (22) can also be recast in the Stratonovich form
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dv = FStrdt+G ◦ dW , (26)

where the drag function FStr is related to FIto through the Stratonovich correction
formula

F i
Str = F i

Ito −
1

2

m
∑

j=1

d
∑

k=1

Gkj ∂G
ij

∂vk
, (27)

for i = 1, . . . , d. Substituting Eqs. (23) and (25) into Eq. (27), we get

FStr =





−Dx − 1

2

(

∂xDxx +
Dxy

Dxx
∂yDxx

)

−Dy − 1

2

(

−Dxy

Dxx
∂xDxx + 2∂xDxy + ∂yDyy

)



 , (28)

where

∂xDxx =
1

2
∂3
‖‖‖g , (29)

∂yDxx =
1

4v⊥
∂3
‖‖⊥g , (30)

∂xDxy = v⊥∂
3
‖‖⊥g , (31)

∂yDxy =
1

2
∂3
‖⊥⊥g +

1

2v⊥
∂2
‖⊥g , (32)

∂xDyy = 2v2⊥∂
3
‖⊥⊥g , (33)

∂yDyy = v⊥∂
3
⊥⊥⊥g + 2∂2

⊥⊥g . (34)

Depending on the choice of Itô or Stratonovich forms, the equations to be solved
are listed in Table 1, where the numerical integrators adopted in the numerical studies
in Section 3 are also listed.

Representation Drag Diffusion Integrator
Itô Eqs. 23, 20 Eqs. 25, 21 Euler-Maruyama, Splitting

Stratonovich Eqs. 28, 20 Eqs. 25, 21 Heun, PL, CL, E1, G5

Table 1: Equations for the Itô and Stratonovich representations.

We say that the noise driving an SDE is commutative, when the diffusion matrix
satisfies the condition Kloeden and Platen (1992)

d
∑

k=1

Gkj
∂

∂vk
Gri =

d
∑

k=1

Gki
∂

∂vk
Grj , (35)

for all i, j = 1, . . . , m, and r = 1, . . . , d. It can be easily verified that the diffusion
matrix (25) does not satisfy this condition, therefore the noise in Eqs. 22 and (26) is
non-commutative.
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2.4. The mixed-MC-FEM solution for the Rosenbluth-Trubnikov potentials

In the interior regime of (v‖, v⊥) space, the Rosenbluth-Trubnikov potentials are
solved from the elliptic equations. Let us consider a piecewise smooth regularization f
of the particle distribution fKlim in Eq. 10, represented by the cubic spline using the
finite element method (FEM),

f(R, v‖, v⊥, α) =
∑

i‖,i⊥

fi‖,i⊥(R)Ni‖(v‖)Ni⊥(v⊥) , (36)

where Ni‖ , Ni⊥ are the basis functions, and symmetry in the α direction is assumed.
We only treat the distribution in velocity space and omit the configuration coordinates
in the following studies for the sake of simplicity. The dependency on the configuration
space can be taken into account readily when it is needed in further studies. The weak
form for the coarse distribution is obtained as follows,

∫

dv‖dv⊥dαJvfNi‖(v‖)Ni⊥(v⊥) =

∫

dv‖dv⊥dαJvf
KlimNi‖(v‖)Ni⊥(v⊥) , (37)

which yields,

M p2g,i‖,i⊥,j‖,j⊥fj‖,j⊥ =

Np
∑

i=1

piNi‖(v‖,i)Ni⊥(v⊥,i) , (38)

M p2g,i‖,i⊥,j‖,j⊥ = 2π

∫

dv‖dv⊥JvNi‖(v‖)Ni⊥(v⊥)Nj‖(v‖)Nj⊥(v⊥) . (39)

In our approach, the coefficients fi‖,i⊥ are not computed when calculating the Rosenbluth-
Trubnilov potentials. Thus the matrix inversion in Eq. 38 is not needed unless fj‖,j⊥ is
needed for other purposes such as diagnostics. In this sense, our approach differs from
the mixed-particle-grid schemes whose collision is based on f representation using grids
Hager et al. (2016).

The elliptic equations in (v‖, v⊥, α) coordinates are as follows,
[

∂2

∂v2‖
+

1

v⊥

∂

∂v⊥
v⊥

∂

∂v⊥

]

h(v‖, v⊥) = −4πf(v‖, v⊥) , (40)

[

∂2

∂v2‖
+

1

v⊥

∂

∂v⊥
v⊥

∂

∂v⊥

]

g(v‖, v⊥) = 2h(v‖, v⊥) . (41)

With the scalar product
∫

dv‖dv⊥dαJvNi‖(v‖)Ni⊥(v⊥) . . ., we obtain the weak form

Mh,i‖,i⊥,j‖,j⊥hj‖,j⊥ = −4π

Np
∑

i=1

piNi‖(v‖,i)Ni⊥(v⊥,i) , (42)

Mh,i‖,i⊥,j‖,j⊥ = −2π

∫

dv‖dv⊥v⊥

[

∂Ni‖

∂v‖
Ni⊥

∂Nj‖

∂v‖
Nj⊥ +Ni‖

∂Ni⊥

∂v‖
Nj‖

∂Nj⊥

∂v⊥

]

.(43)

The weak form equation for g is as follows,

M
L

g,i‖,i⊥,j‖,j⊥
gj‖,j⊥ = M

R

g,i‖,i⊥,j‖,j⊥
hj‖,j⊥ , (44)

M
L

g,i‖,i⊥,j‖,j⊥
= Mh,i‖,i⊥,j‖,j⊥ , (45)

M
R

g,i‖,i⊥,j‖,j⊥
= 2

∫

dv‖dv⊥v⊥Ni‖Ni⊥Nj‖Nj⊥ . (46)
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The Monte-Carlo (MC) integration is adopted for the calculation of the values of h
and g along the boundaries, using the markers as the samplers. There are fours edges
in (v‖, v⊥) space as the boundary, namely,

• v⊥ = v⊥,min, v‖ ∈ [v‖,min, v‖,max] ,

• v⊥ = v⊥,max, v‖ ∈ [v‖,min, v‖,max] ,

• v‖ = v‖,min, v⊥ ∈ [v⊥,min, v⊥,max] ,

• v‖ = v‖,max, v⊥ ∈ [v⊥,min, v⊥,max] ,

where v⊥,min = 0, v‖,min = −v‖,max, v⊥,max and v‖,max are at least 3 times of the thermal
velocity. It can be readily proved that in (v‖, v⊥) coordinates, the boundary condition
at v⊥ = v⊥,min for the Rosenbluth-Trubnikov potentials is

∂v⊥h(v⊥ = v⊥,min) = 0 , (47)

∂v⊥g(v⊥ = v⊥,min) = 0 . (48)

As a result, the Neumann boundary condition is adopted at v⊥ = v⊥,min. The Dirichlet
boundary condition is adopted in the other three edges where the values of g and h
are calculated from the integral form in Eqs. 5 and 6. Along the boundary where the
Dirichlet boundary condition is applied, the direct calculation of h and g is adopted,

h(v) = 4

∫ ∫

dv′‖dy
′Jy

1

u
f(v′‖, y

′)K(k) ,

=
2

π

∫ ∫

dv′‖dy
′
∫

dα′Jy
1

u
f(v′‖, y

′)K(k) ,

=
2

π

Np
∑

i=1

pi

[

1

u
K(k)

]

i

, (49)

g(v) =
2

π

Np
∑

i=1

pi [uE(k)]i , (50)

u =
√

(v‖ − v′‖)
2 + (v⊥ + v′⊥)

2 , (51)

k = 2

√

v⊥v′⊥
u

, (52)

where [. . .]i indicates that the value is evaluated at the location of marker ‘i’, Jy =
1/2, K(k), and E(k) are the complete elliptic integrals of the first and second kinds,
respectively. In deriving Eqs. 49 and 50, the representation of f in Eq. 10 using the
markers is adopted.

2.5. Test particle collisions due to Maxwellian background

While the general form of the Rosenbluth-Trubnikov potentials can be obtained as
formulated in Section 2.4, the collision operator due to the Maxwellian background
particles is widely used in studies of energetic particle Meng et al. (2024) and elec-
tron neoclassical transport Lin et al. (1995). Since the dimensions of g and h are nv
and n/v respectively, in the following, g and h are normalized to nbvt,b and nb/vt,b
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respectively, where vt,b =
√

2Tb/mb is the background particle thermal velocity. For
Maxwellian background, the Rosenbluth-Trubnikov potentials can be calculated ana-
lytically Dimits et al. (2013),

h(u) =
Φ

u
, (53)

g(u) =
1

2

[

Φ(2u+
1

u
) + Φ′

]

, (54)

Φ = erf(u) =

∫ u

0

dξ
2√
π
e−ξ2 , (55)

where u ≡ v/vt,b, v = |~v|, ~v is the velocity vector.
The following identities are used for the calculation of the drag/diffusion coefficients.

∂uh =

(

−Φ

u
+

2√
π
e−u2

)

1

u
, (56)

∂2
uuh = 2

Φ

u3
− 4e−u2

√
πu2

− 4√
π
e−u2

, (57)

∂ug =
1

2

[

Φ

(

2− 1

u2

)

+
2√
πu

e−u2

]

, (58)

∂2
uug =

Φ

u3
− 2√

πu2
e−u2

, (59)

∂3
uuug =

[

(

−3

u
Φ +

6√
π
e−u2

)

1

u2
+

4e−u2

√
π

]

1

u
. (60)

Since g and h are functions of u, the calculation of Eq. 21 can be simplified considering

∂2
‖‖g =

v2‖
v2

∂2
uug +

v2⊥
v3

∂ug , (61)

∂2
⊥⊥g =

v2⊥
v2

∂2
uug +

v2‖
v3

∂ug , (62)

∂2
‖⊥g =

v‖v⊥

v2
∂2
uug −

v‖v⊥

v3
∂ug , (63)

For the drag coefficients in Itô’s form in Eqs. 29–34, the third derivatives of g are
needed,

∂3
‖‖‖g =

v3‖
v3

∂3
uuug +

3v‖v
2
⊥

v4
∂2
uug −

3v‖v
2
⊥

v5
∂ug , (64)

∂3
⊥⊥⊥g =

v3⊥
v3

∂3
uuug +

3v2‖v⊥

v4
∂2
uug −

3v2‖v⊥

v5
∂ug , (65)

∂3
‖⊥⊥g =

v‖v
2
⊥

v3
∂3
uuug +

v3‖ − 2v‖v
2
⊥

v4
∂2
uug +

2v‖v
2
⊥ − v3‖
v5

∂ug , (66)

∂3
‖‖⊥g =

v2‖v⊥

v3
∂3
uuug +

v3⊥ − 2v2‖v⊥

v4
∂2
uug +

2v2‖v⊥ − v3⊥

v5
∂ug , (67)

where v‖, v⊥ and v are normalized to vt,b.
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3. High-order integrators for stochastic differential equations (SDE)

In this section we review a number of stochastic Runge-Kutta methods known in
the literature Kloeden and Platen (1992); Burrage and Burrage (1996). Consider a gen-
eral N -dimensional Stratonovich SDE driven by the standard M-dimensional Wiener
process (dW = [dW1, dW2, . . . , dWM ]T ),

d









v1
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. . .
vN









=









F1

F2

. . .
FN









dt+









G1,1 G1,2 . . . G1,M

G2,1 G2,2 . . . G2,M

. . .
GN,1 GN,2 . . . GN,M









◦









dW1

dW2

. . .
dWM









. (68)

A general s-stage stochastic Runge-Kutta method for Eq. (68) is defined by the formula
Burrage and Burrage (1996)

Vi = vn +∆t

s
∑

j=1

aijF (Vj) +

p
∑

l=1

s
∑

j=1

G(Vj)bij,lθl, for i = 1, . . . , s , (69)

vn+1 = vn +∆t
s

∑

j=1

αjF (Vj) +

p
∑

l=1

s
∑

j=1

G(Vj)βj,lθl , (70)

where vn ≈ v(tn) and vn+1 ≈ v(tn+1) denote the numerical solutions at times tn and
tn+1 = tn + ∆t, respectively, ∆t is the time step size, p denotes the highest order
of iterated Stratonovich integrals used in the scheme (here we consider only p = 1
or p = 2), θl is an M-dimensional Gaussian random vector, and G(Vj)θl denotes the
product of the diffusion matrix G and the vector θl. For schemes with p = 1, each
component of θ1 is generated as an independent Gaussian random variable with zero
mean and variance equal to ∆t. For schemes with p = 2, we have θ1 = R1

√
dt,

θ2 = 0.5
√
dt(R1 + R2/

√
3), where R1 and R2 are two independent M-dimensional

Gaussian random vectors with independent components of zero mean and unit variance
Holm and Tyranowski (2018). The coefficients (aij , bij , αj, βj) of the scheme are usually
compactly written in the form of a tableau Burrage and Burrage (1996)

aij bij,1 bij,2 . . . bij,p
αi βj,1 βj,2 . . . βj,p

. (71)

The tableau reduces to the well-known Butcher tableau if the diffusion matrix is zero
(G = 0). If for j ≥ i we have that aij = 0 and bij,l = 0, then the numerical scheme is
explicit; otherwise it is implicit. Stochastic Runge-Kutta methods for Itô SDEs can be
defined in a similar fashion.

The following schemes can be implemented in the integrator for the Itô form.

1. The Euler-Maruyama scheme

[

0
] [

0
]

[

1
] [

1
] . (72)
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2. The splitting scheme can be written formally as follows Strang (1968); Slaby et al.
(2017)









0 0 0 0
0.5 0 0 0
0 0 0 0
0 0 0.5 0

















0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0









[

0 0 0 1
] [

0 0 0 1
]

. (73)

The following schemes can be implemented in the integrator for the Stratonovich
form.

1. The Heun scheme (Burrage et al. (2004))

[

0 0
1 0

] [

0 0
1 0

]

[

1

2

1

2

] [

1

2

1

2

]

. (74)

2. A two-stage scheme (referred to as “PL”(Platen)) is written with s = 2, p = 1
(Eq. 27 of Burrage and Burrage (1996)) as

[

0 0
1 0

] [

0 0
1 0

]

[

1 0
] [

1

2

1

2

]

. (75)

3. A four-stage scheme (“E1”) with s = 4, p = 2 (Burrage and Burrage (2000)) as
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0 0
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6
0 0 0

















0 0 0 0
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3
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2
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6
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−1

2
0 1

2
0

















0 0 0 0
0 0 0 0
−2

3
0 0 0

1

6

1

2
0 0









[

1

4

3

4
−3

4

3

4

] [

−1

2

3

2
−3

4

3

4

] [

3

2
−3

2
0 0

]

. (76)

More high-order schemes can be found in Burrage and Burrage (1996, 2000). We have
also listed several other schemes in Appendix A

4. Higher order integrators for the collision operator

4.1. Numerical tests using analytical solutions

4.1.1. Strong and weak convergence of different schemes for 1D1W

As a basic test of different schemes, we consider a one-dimensional problem driven
by a one-dimensional Wiener process, in the Itô form described by the SDE (1D1W
Problem 1 of Burrage and Burrage (1996)),

dy = −a2y(1− y2)dt+ a(1− y2)dW , y(0) = y0 , t ∈ [0, 1], (77)

which is equivalent to the Stratonovich SDE

dy = a(1− y2) ◦ dW , y(0) = y0 , t ∈ [0, 1], (78)
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and whose solution is given analytically by

ytheory(t) = tanh[aW (t) + arctanh(y0)]. (79)

As the initial condition, we choose y0 = 0.5. Other parameters are the same as those
in Burrage and Burrage (1996), namely, a = 1, ∆t = 0.00125, 0.0025, 0.005, 0.01, 0.02,
0.04. For each scheme, 25 trajectories (also referred to as particles or samples) are
launched and the averaged error is calculated at tend = 1 when the results from the
solver developed in this work are compared with the previous work Burrage and Burrage
(1996). The global error ǫy,i is calculated for each trajectory yi(t) first. Then the mean
error ǭy (the so-called strong error) and the standard deviation of the mean (which
serves as a measure of the Monte Carlo error occurring due to the finite number of
samples in the computations) are calculated for all particles. Namely,

ǫy,i = |yi(tend)− ytheory,i(tend)| , (80)

ǭy =
1

Np

Np
∑

i=1

ǫy,i , (81)

σmean =

√

√

√

√

1

Np(Np − 1)

Np
∑

i=1

(ǫy,i − ǭy)2 . (82)

As shown in the top left frame of Fig. 1, we calculated the strong error for different
schemes for different values of time step size ∆t. The half-height of the error bar
is σmean. The previous results for the PL and CL schemes in Burrage and Burrage
(1996) are also shown for benchmarking. Reasonable agreement can be seen, while
the discrepancy is due to the small ensemble size (we used only 25 particles to mimic
the experiment in Burrage and Burrage (1996)). The right frame shows the standard
derivation of the mean of the errors divided by the mean error, indicating that the half-
height of the error bar in the left frame is much smaller (by a factor of 0.15 ∼ 0.45) than
the mean error. The higher-order schemes (4-stage CL, E1, and 5-stage G5) reduce the
relative error significantly than the Euler-Maruyama scheme. The convergence order is
calculated by the least-square fitting with two free parameters c0, c1,

log ǫ = c0 + c1 log dt , (83)

where c1 is the convergence order shown in Fig. 1. The convergence order is calculated
in a similar way for the other cases in the following sections. Theoretically, the Euler,
PL, E1, CL, and G5 schemes have a strong order of convergence of 0.5, 1.0, 1.0, 1.5,
and 1.5, respectively Burrage and Burrage (1996, 2000). The strong convergence order
c1 = 0.52 observed in the numerical experiment for the Euler-Maruyama scheme is close
to the theoretical value 0.5. Those for PL, E1, CL, and G5, c1 = 0.91, 1.05, 1.38, 1.61, are
slightly different from the expected theoretical values c1,theory = 1, 1, 1.5, 1.5 as shown
in the top-left frame. Nevertheless, the high-order schemes show their advantages in
reducing errors. For ∆t = 0.00125, the relative errors of PL and CL schemes are lower
than 10−1 and 10−2 of that of the Euler-Maruyama scheme respectively.

To investigate the effect of the ensemble size and to reduce the Monte Carlo error, the
same cases were studied with 50000 particles/samples. The similar strong convergence
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orders of the PL (Platen), E1, GL, and G5 schemes are obtained as shown in the
bottom left frame. In addition, the error of the Heun scheme is also shown, which is
higher than that of other schemes except that of PL (and also Euler-Maruyama). The
Midpoint and DIRK (diagonally implicit Runge–Kutta) schemes are implicit schemes
that have been studied previously Tyranowski (2021) and they (especially DIRK) give
better precision than the explicit high-order schemes. To assess the weak convergence
of the considered integrators, we also studied how well the numerical expected value
E(y2(tend)) approximates the theoretical expected value E(y2theory(tend)). The weak error
η̄y and the corresponding standard deviation of the mean σweak are defined by the
formulas

δy =
1

Np

Np
∑

i=1

(

y2i (tend)− y2theory,i(tend)
)

, (84)

η̄y = |δy| , (85)

σweak =

√

√

√

√

1

Np(Np − 1)

Np
∑

i=1

(

y2i (tend)− y2theory,i(tend)− δy

)2

. (86)

The weak convergence plots are depicted in the bottom right frame of Fig. 1.

4.1.2. Kubo oscillator

The Kubo oscillator is the two-dimensional Stratonovich SDE

dq = +pdt+ γp ◦ dW , (87)

dp = −qdt− γq ◦ dW , (88)

driven by the standard one-dimensional Wiener process W (t), where p, q are the oscil-
lator’s phase space coordinates, and γ is the noise intensity. The analytical solution is
given by

qtheory(t) = q0 cos[t+ γW (t)] + p0 sin[t+ γW (t)] , (89)

ptheory(t) = p0 cos[t + γW (t)]− q0 sin[t+ γW (t)] . (90)

The energy conservation of the Kubo oscillator is readily obtained,

E = q2(t) + p2(t) = q20 + p20 . (91)

Considering the analytical solution and the energy conservation property of the Kubo
oscillator, we show strong convergence (accuracy of the trajectory) and weak conver-
gence (energy conservation) of various schemes.

In the numerical studies, the initial condition is chosen as

q0 = 0.3 , p0 = 0.4 . (92)

The coefficient γ gives the magnitude of the noise process. Two cases with γ = 0.25
and γ = 1 are shown in Fig. 2. When the diffusion part is small, namely, γ = 0.25,
the time evolution is similar to that of the harmonic oscillator, as shown in the left
frame. When the diffusion part is larger, namely, γ = 1, the time evolution becomes
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more stochastic as shown in the right frame. Since in the collision operator the drift
and diffusion parts are of the same magnitude, as will be shown in Fig. 4, we choose
γ = 1 in this section so that it is more relevant to the studies of the collision operators.
The calculation of errors is the same as that in Sec. 4.1.1 except the absolute value in
Eq. 80

ǫi =
√

[qi(tend)− qi,theory(tend)]2 + [pi(tend)− pi,theory(tend)]2 , (93)

where ‘i’ is the particle/trajectory index.
The weak and strong convergence properties are studied by launching 100 (top

frames) and 50000 (bottom frames) trajectories, with γ = 1, tend = 1, ∆t = 0.00125,
0.0025, 0.005, 0.01, 0.02, 0.04 and the initial condition in Eq. 92. The strong con-
vergence is shown in the left frame of Fig. 3. The 2-stage PL, 4-stage CL, E1, and
the 5-stage G5 show strong convergence of order ∼ 1, and the magnitude of the error
is also significantly lower than the Euler-Maruyama scheme. For ∆t = 0.00125, the
error of the PL scheme is lower than 10% of that of the Euler-Maruyama scheme, and
the CL, E1, and G5 relative errors are lower than 2% of that of the Euler-Maruyama
scheme. The weak energy convergence is shown in the right frame of Fig. 3. The
Euler-Maruyama scheme shows a weak convergence of order ∼ 1, the same as the PL
and CL schemes. The PL scheme has an even higher error than the Euler-Maruyama
scheme. For cases with 100 trajectories, the relative error of the CL scheme is lower
than 1/5 of that of the Euler-Maruyama. For E1 and G5, the convergence orders are
1.9 and 2.1 respectively, and the magnitude of the error at ∆t = 0.00125 is lower than
the Euler-Maruyama by a factor of ∼ 1/300.

The bottom frames depict also the numerical results for the implicit midpoint and
DIRK schemes, as well as for the weakly convergent RS1 and RS2 schemes Rößler
(2007). The error curves of RS1 and RS2 almost overlap with each other, indicating
similar advantages in the precision in the weak sense. While the four schemes (Midpoint,
DIRK, RS1, and RS2) have their good properties, the implementation of the former two
is more complicated due to the implicit treatment, and the latter two do not guarantee
strong convergence. Thus, in the collision studies, we focus on the explicit high-order
schemes and leave the applications of the implicit and weakly convergent schemes to
our future work. Overall, among the explicit high-order schemes, the E1 scheme shows
better strong and weak convergence properties than the Euler-Maruyama, PL, CL, and
G5 schemes. In the following studies of collision operators, we only consider the Euler-
Maruyama, PL, and E1 schemes, the former two of which are considered as reference
schemes for the E1 scheme.

4.2. The high-order stochastic integrator for the collision operators

4.2.1. Features of the Rosenbluth-Trubnikov collision operator

For collision operator with Maxwellian background, the drag and the diffusion co-
efficients in Eqs. 20–21 are shown in Fig. 4. The general form of the diffusion and
drag coefficients derived from the Rosenbluth-Trubnikov potentials are not analytically
tractable. Both coefficients are fully non-uniform in the velocity space and are unknown
a priori. Thus the corresponding stochastic equation is non-commutative.

Compared with the Kubo oscillator discussed in Section 4.1.2, the collision operator
problem is different in several aspects as follows.
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1. The analytical solution of the Langevin equation corresponding to the collision
operator can be hardly given. On the other hand, conservation is one key issue
for physics studies of our interest. Thus the strong convergence is not studied in
this work for the collisions.

2. Generally, for the whole multiple-species particle system, the conservation of en-
ergy and momentum is satisfied. In our case, since the test particle with a
Maxwellian distribution is given, if the temperature of the test particle is the same
as the background particles that are used for the calculation of the Rosenbluth-
Trubnikov potentials, the energy conservation and momentum conservation are
satisfied.

3. Generally, for each particle, the energy and the momentum are not conserved since
an individual particle can migrate from one location to another in the velocity
space.

In numerical studies, numerous particles are initialized with a given analytical distri-
bution, and the collisions are applied. Since the particles represent the distribution,
even if the analytical solution of f is known in the presence of collisions, the calculated
f from markers and the total energy of all particles can deviate from the analytical
solution due to the noise, which causes the Monte-Carlo error. As a result, to evaluate
the performance of the high-order stochastic integrator, the marker number should be
large enough so that the Monte-Carlo error is lower than the error due to the time
integrator. For the purpose of this experiment, we adopt the number ǫacc ≡ 1/

√

Np as
an acceptable error threshold, that is, we only analyze the error of the total energy if
it is higher than ǫacc.

The boundary condition at y = 0 is applied to particles. In the original partial
differential equation, there is no flux flowing to the y < 0 region. In solving the SDE of
each particle, in one step, if a particle’s y becomes negative, then this step is canceled
and the random number is re-generated until y ends up with a positive value (“step-
back-re-try”). Other treatments are possible, for example, A) set y to zero; B) set y to
its absolute value, and C) step back without re-trying, if negative y appears. However,
in the following numerical studies, we adopt the “step-back-re-try” scheme if y < 0
since other treatments do not give better conservation of energy in our studies.

4.2.2. The Rosenbluth-Trubnikov potentials from the mixed-MC-FEM solver

The Rosenbluth-Trubnikov potentials are obtained by solving Eqs. 42, 44 with the
boundary conditions given by Eqs. 47, 48, 49, 50. The 2-dimensional cubic splines are
adopted in the finite element scheme. The error of h and g is shown in Fig. 5. The grid
numbers in (v‖, v⊥) are Nv‖ = 21, Nv⊥ = 11. The error is calculated by making use of
the analytical solution of h and g for Maxwellian background distribution in Eqs. 53
and 54, denoted as htheory and gtheory,

ǫA =

√

∑

i,j(Ai,j −Ai,j,theory)2
∑

i,j A
2
i,j,theory

, (94)

where A = h, g and i, j denote the grid indices along v‖ and v⊥, respectively. The error
is shown in Fig. 5. The convergence order is ∼ 0.5. Since the cubic spline finite element
gives high enough accuracy, the main error is from the marker noise. In this case, using
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1000 markers per degree of freedom of the finite element solver gives reasonably low
errors (ǫA < 10−3) for both h and g.

While the study of the mixed-MC-FEM solver is for the completeness of the collision
model in particle simulations, one of our focuses is the application of the high-order
SDE schemes. Thus, in the rest part of this work, the background distribution is chosen
as the Maxwellian distribution, and the Rosenbluth-Trubnikov potentials are obtained
analytically so that the performance of the high-order SDE schemes can be evaluated
separately.

4.2.3. Maintainance of Maxwellian test particles

We choose the Maxwellian distribution for the test particles with the same temper-
ature as the background Maxwellian particles. The expected theoretical solution is the
maintenance of the Maxwellian distribution function after the collisions are applied.
The energy conservation is checked for various schemes. The Monte-Carlo noise due to
finite particle number thus gives a constraint of the achievable lowest relative error of
the total particle energy. However, the high-order schemes of the SDE are still expected
to improve the overall computation accuracy when the time integrator-induced error is
higher than that due to the Monte-Carlo noise. As shown in Fig. 6, the relative error
of total particle energy is shown for different values of time step size ∆t. In these cases,
we have used Np = 105 (the left frame) and 107 (the right frame) markers and thus the
acceptable error thresholds ǫacc are ∼ 1/

√

Np ≈ 3.3× 10−3, 3.3× 10−4, respectively, as
indicated by the horizontal black dashed line. In the left frame, the Euler-Maruyama
scheme leads to a higher relative error than the PL scheme by ∼ 8 times for ∆t = 0.08.
For higher-order schemes, the acceptable error threshold ǫacc is reached when ∆t is
small, and thus the relative error at low ∆t is mainly determined by the particle num-
ber. The weak convergence of the 4-stage scheme is better than the 2-stage scheme and
the Euler-Maruyama scheme. In other words, to achieve the same accuracy, the allowed
maximum time step size ∆t can be larger if using higher-order schemes than using the
Euler-Maruyama scheme. In the right frame, as the larger marker number (Np = 107) is
used, the relative errors for smaller time step sizes are also studied. For the E1 scheme,
the convergence order becomes smaller than 2 for ∆t < 0.16 and is between 0.5 and 1.
At ∆t = 0.00125, the relative error of E1 is lower than the Euler-Maruyama scheme by
a factor of ∼ 1/2, while at ∆t = 0.16, by a factor of ∼ 1/11, which indicates that the
E1 scheme’s advantage is more significant for moderate to large ∆t values.

4.2.4. Thermalization of a test particle distribution

The thermalization of the test Maxwellian particle a due to collisions with fixed
Maxwellian field species b Trubnikov (1965) is chosen as the test case in this section,
as is also studied previously using the finite volume solver Xiong et al. (2008). The
distribution of the test particle is assumed to be Maxwellian, and the theoretical rate
of the temperature change of the test particle is given by

dTa

dt
= − 8ma

3mb

√
π

Ta − Tb

τa\b(Ta +
ma

mb
Tb)

, (95)

where τa\b is the basic relaxation time defined by τa\b =
√
maε

3/2/(π
√
2e2ae

2
bΛcnb). The

steady-state solution for which dTa/dt = 0 can be readily obtained as Ta = Tb. In our
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numerical test, we assume the temperature of the background particle is fixed, namely,
Tb(t) = Tb(t = 0), yielding the steady-state solution Ta(t ≫ τa\b) = Tb.

Three schemes are compared for different time step sizes, as shown in Fig. 7. The
time step size has to be sufficiently small to produce the correct final temperature of the
test particle distribution. The high-order scheme (the 4-stage E1 scheme) produces the
final temperature precisely for ∆t = 0.16. Still, the error using the Euler-Maruyama
scheme is significant and thus smaller ∆t is needed to achieve the same accuracy as
that of the high-order E1 scheme.

4.2.5. Relaxation of anisotropic distribution to isotropic Maxwellian

In this section, we demonstrate that the implemented collision operator can relax an
anisotropic distribution to an isotropic Maxwellian distribution. The relaxation of the
distribution with loss cone cavity to isotropic Maxwellian distribution is chosen in the
following studies, as done previously in the finite-volume work Xiong et al. (2008). The
loss cone is defined in the velocity space (Λ, E), where Λ = v2⊥/v

2, E = v2/2. As the
initial condition, the particles in the loss cone Λ0 < Λ < Λ1 are eliminated, to mimic
the physics process due to particle loss in the specific regime of the velocity space.

The relaxation of the distribution with a loss-cone cavity to the isotropic Maxwellian
distribution is shown in Fig. 8. As the initial condition, the particles with 0 ≤ Λ ≤ 0.5
are absent. The high-order scheme shows its advantages in reaching a more accurate
final solution. For a large step size ∆t, all schemes give the final state with significant
error in E‖/E⊥. As ∆t decreases, E‖/E⊥ converges to the theoretical value for ∆t = 0.04
if using a high-order scheme but for the Euler-Maruyama scheme, a relative error of
the order of 5% in the total energy is produced in the steady state.

5. Summary

In this study, we have applied high-order schemes to stochastic differential equations,
both in the Stratonovich and the Itô forms, associated with the Fokker-Planck equation
with the Rosenbluth-Trubnikov collision operator. We have formulated a mixed Monte
Carlo-Finite Element Method for the calculation of the nonlinear collision operator for
a general distribution function. We have implemented various high-order stochastic in-
tegration schemes and we have demonstrated their favorable properties, such as better
accuracy and improved conservation of energy. More specifically, in the numerical sim-
ulations related to the Fokker-Planck equation with the Rosenbluth-Trubnikov collision
operator with Maxwellian background particles we have observed that:

• The 4-stage E1 scheme shows better weak energy convergence than the Euler-
Maruyama and PL schemes.

• The weak energy convergence order of the E1 scheme is between 1 ∼ 2, while
the Euler-Maruyama scheme order is ∼ 1 for moderate to large time step sizes
(∆t ≥ 0.32). For small time step sizes, the convergence order of the Euler-
Maruyama, PL, and E1 schemes are 0.5 ∼ 1.

• The magnitude of the relative error of the E1 scheme is lower than the Euler-
Maruyama scheme by a factor of 1/4 at ∆t = 0.01, by a factor of 1/12 at ∆t =
0.32.
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• The high-order E1 scheme produces reasonably accurate physics results of ther-
malization of isotropic and anisotropic particles at moderate or relatively large
time step size ∆t = 0.16, 0.04 respectively, while the Euler-Maruyama scheme
gives significantly larger errors.

The application of these high-order stochastic integrators to neoclassical transport can
make the simulation more efficient in particle simulations, specifically in the test particle
collision part in the linearized collision operators Satake et al. (2020). In addition, it
can be readily noticed that the collisionless process of the guiding centers’ motion can
be taken into account in the drift part of the stochastic differential equation using
high-order schemes, offering the potential implementation of such advanced schemes in
existing gyrokinetic particle codes.

Future work will focus on the study of fully nonlinear collision operators. Since the
Rosenbluth-Trubnikov potentials are calculated using Maxwellian distribution when
the high-order SDE schemes are applied, the more consistent way is to use the realistic
distribution which can vary self-consistently. In addition, it also merits more effort to
apply the collision operators using high-order schemes to physics studies such as neo-
classical transport near the edge or/and in the steep density and temperature gradient
regimes, as well as the collisional transport in the plasma edge in toroidally confined
plasmas to extend the previous work Lin et al. (1995); Rekhviashvili et al. (2023).

Another direction in which our work can be extended is the application of stochas-
tic geometric and variational integrators. Geometric integration of Hamiltonian sys-
tems has been thoroughly studied (Hairer et al. (2002)) and geometric integrators have
been shown to demonstrate superior performance in long-time simulations of such sys-
tems, compared to non-geometric methods. An important class of geometric integra-
tors are variational integrators. This type of numerical schemes is based on discrete
variational principles and provides a natural framework for the discretization of La-
grangian systems (Marsden and West (2001); Marsden et al. (1998); Leok and Zhang
(2011); Ober-Blöbaum and Saake (2015); Tyranowski and Desbrun (2019b) and the
references therein). Deterministic geometric integrators have been successfully ap-
plied to collisionless problems in plasma physics (Kraus et al. (2017); Qin et al. (2016);
Xiao et al. (2013, 2018, 2015); Tyranowski and Desbrun (2019a)), while stochastic vari-
ational integrators show a great promise for simulations of collisional kinetic equations
(Kraus and Tyranowski (2021); Tyranowski (2021)). Finally, particle simulations often
require a large number of particles to achieve satisfactory accuracy (see Section 4.2.3),
which can be computationally very expensive, especially when simulations for many dif-
ferent values of input parameters are desired. It would be of interest to investigate the
application of data-driven geometric model reduction techniques, which could alleviate
these computational costs (Tyranowski and Kraus (2021); Tyranowski (2024)).
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Figure 1: Top left: The strong errors of the numerical solution at the last step for the Euler-Maruyama
scheme, the 2-stage PL scheme, and the 4-stage CL scheme using 25 sample paths are depicted. Top

right: The standard deviation of the mean of the errors. Bottom: The same cases are run using 50000
sample paths. The strong (Left) and weak (Right) errors are depicted.

Appendix A. Other high-order SDE schemes for Stratonovich form

1. A four-stage scheme (referred to as “CL”) with s = 4, p = 2 (Eq. 56 of
Burrage and Burrage (1996)) as

(aij) =

[

0 0 0 0
1

2
0 0 0

0 1

2
0 0

0 0 1 0

]

(A.1)

(bij,1) =

[

0 0 0 0

−0.7242916356 0 0 0

0.4237353406 −0.1994437050 0 0

−1.578475506 0.840100343 1.738375163 0

]

(A.2)

(bij,2) =

[

0 0 0 0

2.702000410 0 0 0

1.757261649 0 0 0

−2.918524118 0 0 0

]

(A.3)

(αi) = [ 1
6

1

3

1

3

1

6
] (A.4)

(βj,1) = [−0.7800788474 0.07363768240 1.486520013 0.2199211524] (A.5)

(βj,2) = [1.693950844 1.636107882 −3.024009558 −0.3060491602] (A.6)
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Figure 2: The time evolution of the Kubo oscillator for γ = 0.25 (left) and 1 (right).

10-3 10-2

t

10-4

10-3

10-2

10-1

E
rr

o
r

Strong convergence, Kubo oscillator

Euler

c
1
=0.50

PL

c
1
=0.98

CL

c
1
=1.01

E1

c
1
=0.97

G5

c
1
=1.01

10-3 10-2

t

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

o
r

Energy weak convergence, Kubo oscillator

Euler

c
1
=0.93

PL

c
1
=0.99

CL

c
1
=0.95

E1

c
1
=1.91

G5

c
1
=2.15

10-3 10-2

t

10-4

10-3

10-2

E
rr

o
r

Strong convergence Kubo oscillator

PL

c
1
=0.99

Heun

c
1
=0.99

CL

c
1
=1.01

E1

c
1
=0.98

G5

c
1
=1.02

Midpoint

c
1
=0.99

DIRK

c
1
=0.99

10-3 10-2

t

10-8

10-7

10-6

10-5

10-4

10-3

10-2

E
rr

o
r

Weak convergence Kubo oscillator

PL

c
1
=1.01

Heun

c
1
=1.02

CL

c
1
=0.96

E1

c
1
=1.99

G5

c
1
=1.99

Midpoint

c
1
=2.02

DIRK

c
1
=2.02

Figure 3: The strong error at the end of the simulation (top left), the relative error of the total energy
(top right) for the Kubo oscillator with 100 particles. The same cases of the Kubo oscillator are run
using 50000 particles as shown at the bottom, with another four schemes included for comparison.
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Figure 4: The structure of the drag and diffusion coefficients in Eq. 19.
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Figure 5: The error of the Rosenbluth-Trubnikov potentials h and g from the mixed-MC-FEM solver.
The bottom x and top x labels are the marker number per degree of freedom of the finite element
solver and the total marker number, respectively.
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Figure 6: The relative error of the total particle kinetic energy for different values of the time step size
∆t and for different schemes. Left: 105 markers; right: 107 markers.

22



0 5 10 15 20 25
t [ ]

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

 d
v

3
 f

 m
v

2
/2

/(
n

m
N

v
N2

)

Euler,dt=0.16
Euler,dt=0.64
PL,dt=0.16
PL,dt=0.64
E1,dt=0.16
E1,dt=0.64
Steady state

0 5 10 15 20 25
t [ ]

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

 d
v

3
 f

 m
v

2
/2

/(
n

m
N

v
N2

)

Euler,dt=0.16
Euler,dt=0.64
PL,dt=0.16
PL,dt=0.64
E1,dt=0.16
E1,dt=0.64
Steady state

Figure 7: The mean energy evolution of the thermalization of the test particles with the initial condition
Ta/TN = 0.5 (left) and Ta/TN = 2 (right).
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Figure 8: The relaxation of the distribution with a loss-cone cavity to the isotropic Maxwellian distri-
bution.
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2. A five-stage scheme with s = 5, p = 2 (“G5”) as

(aij) =





0 0 0 0 0

0.52494822322232 0 0 0 0

0.07167584568902 0.27192330512685 0 0 0

0.13408162649312 0.24489042208103 −0.02150276857782 0 0

−.07483338680171 −.07276896351874 .55202897082453 −.50752343840006 0



 (A.7)

(bij,1) =





0 0 0 0 0

0.52494822322232 0 0 0 0

.49977623528582 −.14576793502675 0 0 0

.60871134749146 .58291821365556 −.94596532788804 0 0

−.04005606091567 −.22719654397712 −.12926284222120 .42881625288868 0



 (A.8)

(bij,2) =





0 0 0 0 0

0 0 0 0 0

−.23101439602069 .59278042710702 0 0 0

−.54946055077234 .86811263829203 .06772607159055 0 0

.03847082280344 −.16953882944054 .88387761274601 −.85833118389518 0



(A.9)

(αj)
T =





−5.60958180689351
−0.67641638321828
−5.44025143434789
8.76396506407891
3.96228456038077



 , (βj,1)
T =





6.68050246229861
0

4.28273528343281
−3.25408735237225
−6.70915039335930



 , (βj,2)
T =





1.90494977554482
−1.90494977554482

0

0

0



(A.10)
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