1,151 research outputs found

    TS-MUWSN: Time synchronization for mobile underwater sensor networks

    Get PDF
    Time synchronization is an important, yet challenging, problem in underwater sensor networks (UWSNs). This challenge can be attributed to: 1) messaging timestamping; 2) node mobility; and 3) Doppler scale effect. To mitigate these problems, we present an acoustic-based time-synchronization algorithm for UWSN, where we compare several message time-stamping algorithms in addition to different Doppler scale estimators. A synchronization system is based on a bidirectional message exchange between a reference node and a slave one, which has to be synchronized. Therefore, we take as reference the DA-Sync-like protocol (Liu et al., 2014), which takes into account node's movement by using first-order kinematic equations, which refine Doppler scale factor estimation accuracy, and result in better synchronization performance. In our study, we propose to modify both time-stamping and Doppler scale estimation procedures. Besides simulation, we also perform real tests in controlled underwater communication in a water test tank and a shallow-water test in the Mediterranean Sea.Peer ReviewedPostprint (author's final draft

    Personal area technologies for internetworked services

    Get PDF

    Multi-stage Wireless Signal Identification for Blind Interception Receiver Design

    Get PDF
    Protection of critical wireless infrastructure from malicious attacks has become increasingly important in recent years, with the widespread deployment of various wireless technologies and dramatic growth in user populations. This brings substantial technical challenges to the interception receiver design to sense and identify various wireless signals using different transmission technologies. The key requirements for the receiver design include estimation of the signal parameters/features and classification of the modulation scheme. With the proper identification results, corresponding signal interception techniques can be developed, which can be further employed to enhance the network behaviour analysis and intrusion detection. In detail, the initial stage of the blind interception receiver design is to identify the signal parameters. In the thesis, two low-complexity approaches are provided to realize the parameter estimation, which are based on iterative cyclostationary analysis and envelope spectrum estimation, respectively. With the estimated signal parameters, automatic modulation classification (AMC) is performed to automatically identify the modulation schemes of the transmitted signals. A novel approach is presented based on Gaussian Mixture Models (GMM) in Chapter 4. The approach is capable of mitigating the negative effect from multipath fading channel. To validate the proposed design, the performance is evaluated under an experimental propagation environment. The results show that the proposed design is capable of adapting blind parameter estimation, realize timing and frequency synchronization and classifying the modulation schemes with improved performances
    corecore