49,767 research outputs found

    Increased compression efficiency of AVC and HEVC CABAC by precise statistics estimation

    Get PDF
    The paper presents Improved Adaptive Arithmetic Coding algorithm for application in future video compression technology. The proposed solution is based on the Context-based Adaptive Binary Arithmetic Coding (CABAC) technique and uses the authors’ mechanism of symbols probability estimation that exploits Context-Tree Weighting (CTW) technique. This paper proposes the version of the algorithm, that allows an arbitrary selection of depth of context trees, when activating the algorithm in the framework of the AVC or HEVC video encoders. The algorithm has been tested in terms of coding efficiency of data and its computational complexity. Results showed, that depending of depth of context trees from 0.1% to 0.86% reduction of bitrate is achieved, when using the algorithm in the HEVC video encoder and 0.4% to 2.3% compression gain in the case of the AVC. The new solution increases complexity of entropy encoder itself, however, this does not translate into increase the complexity of the whole video encoder

    Design And Implementation Of Fast Motion Estimation In Modern Video Compression On GPU

    Get PDF
    Motion estimation is the most compute expensive part of high definition video compression. It accounts for more than 50\% of overall execution. Therefore, improving the performance of motion estimation can make significant impact on the overall performance of video compression. The performance of motion estimation can be improved in two aspects: algorithm and implementation. This thesis touches both aspects. We first propose an innovative motion estimation algorithm by replacing the traditional block matching method which comparing blocks pixel by pixel with a brand new method which based on lbp (local binary pattern) code. Our new method first encodes the original video frames into lbp code and then compares the blocks only using the lbp code. Our algorithm reduces the amount of computation significantly by avoiding many pixel by pixel comparisons present in traditional block matching approaches. Using public benchmarks our experiments show our proposed motion estimation algorithm runs 5 times faster than a traditional algorithm. Furthermore, we accelerate our proposed algorithm on gpus. Motion estimation processes of all blocks are offloaded to gpu and accelerated in parallel. Our gpu implementation runs 9 times faster than cpu implementation

    Low Bit-rate Color Video Compression using Multiwavelets in Three Dimensions

    Get PDF
    In recent years, wavelet-based video compressions have become a major focus of research because of the advantages that it provides. More recently, a growing thrust of studies explored the use of multiple scaling functions and multiple wavelets with desirable properties in various fields, from image de-noising to compression. In term of data compression, multiple scaling functions and wavelets offer a greater flexibility in coefficient quantization at high compression ratio than a comparable single wavelet. The purpose of this research is to investigate the possible improvement of scalable wavelet-based color video compression at low bit-rates by using three-dimensional multiwavelets. The first part of this work included the development of the spatio-temporal decomposition process for multiwavelets and the implementation of an efficient 3-D SPIHT encoder/decoder as a common platform for performance evaluation of two well-known multiwavelet systems against a comparable single wavelet in low bitrate color video compression. The second part involved the development of a motion-compensated 3-D compression codec and a modified SPIHT algorithm designed specifically for this codec by incorporating an advantage in the design of 2D SPIHT into the 3D SPIHT coder. In an experiment that compared their performances, the 3D motion-compensated codec with unmodified 3D SPIHT had gains of 0.3dB to 4.88dB over regular 2D wavelet-based motion-compensated codec using 2D SPIHT in the coding of 19 endoscopy sequences at 1/40 compression ratio. The effectiveness of the modified SPIHT algorithm was verified by the results of a second experiment in which it was used to re-encode 4 of the 19 sequences with lowest performance gains and improved them by 0.5dB to 1.0dB. The last part of the investigation examined the effect of multiwavelet packet on 3-D video compression as well as the effects of coding multiwavelet packets based on the frequency order and energy content of individual subbands

    Reuse of motion processing for camera stabilization and video coding

    Get PDF
    The low bit rate of existing video encoders relies heavily on the accuracy of estimating actual motion in the input video sequence. In this paper, we propose a video stabilization and encoding (ViSE) system to achieve a higher coding efficiency through a preceding motion processing stage (to the compression), of which the stabilization part should compensate for vibrating camera motion. The improved motion prediction is obtained by differentiating between the temporal coherent motion and a more noisy motion component which is orthogonal to the coherent one. The system compensates the latter undesirable motion, so that it is eliminated prior to video encoding. To reduce the computational complexity of integrating a digital stabilization algorithm with video encoding, we propose a system that reuses the already evaluated motion vector from the stabilization stage in the compression. As compared to H.264, our system shows a 14% reduction in bit rate yet obtaining an increase of about 0.5 dB in SN

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF
    corecore