6 research outputs found

    What it takes to design a supply chain resilient to major disruptions and recurrent interruptions

    Get PDF
    Global supply chains are more than ever under threat of major disruptions caused by devastating natural and man-made disasters as well as recurrent interruptions caused by variations in supply and demand. This paper presents an optimization model for designing a supply chain resilient to (1) supply/demand interruptions and (2) facility disruptions whose probability of occurrence and magnitude of impact can be mitigated through fortification investments. Numerical results and managerial insights obtained from model implementation are presented. Our analysis focuses on how supply chain design decisions are influenced by facility fortification strategies, a decision maker’s conservatism degree, demand fluctuations, supply capacity variations, and budgetary constraints. Finally, examining the performance of the proposed model using a Monte Carlo simulation method provides additional insights and practical implications

    Blood supply chain network design considering responsiveness and reliability in conditions of uncertainty using the lagrangian relaxation algorithm

    Get PDF
    The growing need for adequate and safe blood and the high costs of health systems have prompted governments to improve the functioning of health systems. One of the most critical parts of a health system is the blood supply chain, which accounts for a significant share of the health system's costs. In the present study, with an operational approach, the total network costs are minimized along with the minimization of transportation time and lead time of delivery of blood products. Also, determining the optimal routing decisions is improved the level of responsiveness and reliability of the network. In this research, a multi-objective stochastic nonlinear mixed-integer model has been developed for Tehran's blood supply chain network. Robust scenario-based programming is capable of effectively controlling parametric uncertainty and the level of risk aversion of network decisions. Also, the proposed reliability approach controls the adverse effects of disturbances and creates an adequate confidence level in the capacity of the network blood bank. Lastly, the model is solved through the Lagrangian relaxation algorithm. Comparison of the results shows the high convergence rate of the solutions in the Lagrangian relaxation algorithm

    Multi-period maximal covering location problem with capacitated facilities and modules for natural disaster relief services

    Get PDF
    The paper aims to study a multi-period maximal covering location problem with the configuration of different types of facilities, as an extension of the classical maximal covering location problem (MCLP). The proposed model can have applications such as locating disaster relief facilities, hospitals, and chain supermarkets. The facilities are supposed to be comprised of various units, called the modules. The modules have different sizes and can transfer between facilities during the planning horizon according to demand variation. Both the facilities and modules are capacitated as a real-life fact. To solve the problem, two upper bounds-(LR1) and (LR2)-and Lagrangian decomposition (LD) are developed. Two lower bounds are computed from feasible solutions obtained from (LR1), (LR2), and (LD) and a novel heuristic algorithm. The results demonstrate that the LD method combined with the lower bound obtained from the developed heuristic method (LD-HLB) shows better performance and is preferred to solve both small- and large-scale problems in terms of bound tightness and efficiency especially for solving large-scale problems. The upper bounds and lower bounds generated by the solution procedures can be used as the profit approximation by the managerial executives in their decision-making process

    Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas

    Get PDF
    CD-T 662.88 V58; 75 pEl objetivo de esta investigación es el diseño de una cadena de suministro de biocombustible, que integre decisiones de instalaciones e inventario, en busca de la maximización del valor presente neto (VPN) del sistema. Un modelo de Programación Linea Entera Mixta (PLEM) determina la capacidad y ubicación de centros de acopio y biorefinerías, además de los flujos a lo largo de la cadena.Universidad Libre Seccional Pereir

    An improved lagrangian relaxation-based heuristic for a joint location-inventory problem

    Get PDF
    International audienceWe consider a multi-echelon joint inventory-location (MJIL) problem that makes location, order assignment, and inventory decisions simultaneously. The model deals with the distribution of a single commodity from a single manufacturer to a set of retailers through a set of sites where distribution centers can be located. The retailers face deterministic demand and hold working inventory. The distribution centers order a single commodity from the manufacturer at regular intervals and distribute the product to the retailers. The distribution centers also hold working inventory representing product that has been ordered from the manufacturer but has not been yet requested by any of the retailers. Lateral supply among the distribution centers is not allowed. The problem is formulated as a nonlinear mixed-integer program, which is shown to be NP-hard. This problem has recently attracted attention, and a number of different solution approaches have been proposed to solve it. In this paper, we present a Lagrangian relaxation-based heuristic that is capable of efficiently solving large-size instances of the problem. A computational study demonstrates that our heuristic solution procedure is efficient, and yields optimal or near-optimal solutions
    corecore