35,135 research outputs found

    Employee substitutability as a tool to improve the robustness in personnel scheduling

    Get PDF

    Resource-constrained project scheduling.

    Get PDF
    Abstract: Resource-constrained project scheduling involves the scheduling of project activities subject to precedence and resource constraints in order to meet the objective(s) in the best possible way. The area covers a wide variety of problem types. The objective of this paper is to provide a survey of what we believe are important recent in the area . Our main focus will be on the recent progress made in and the encouraging computational experience gained with the use of optimal solution procedures for the basic resource-constrained project scheduling problem (RCPSP) and important extensions. The RCPSP involves the scheduling of a project its duration subject to zero-lag finish-start precedence constraints of the PERT/CPM type and constant availability constraints on the required set of renewable resources. We discuss recent striking advances in dealing with this problem using a new depth-first branch-and-bound procedure, elaborating on the effective and efficient branching scheme, bounding calculations and dominance rules, and discuss the potential of using truncated branch-and-bound. We derive a set of conclusions from the research on optimal solution procedures for the basis RCPSP and subsequently illustrate how effective and efficient branching rules and several of the strong dominance and bounding arguments can be extended to a rich and realistic variety of related problems. The preemptive resource-constrained project scheduling problem (PRCPSP) relaxes the nonpreemption condition of the RCPSP, thus allowing activities to be interrupted at integer points in time and resumed later without additional penalty cost. The generalized resource-constrained project scheduling (GRCPSP) extends the RCPSP to the case of precedence diagramming type of precedence constraints (minimal finish-start, start-start, start-finish, finish-finish precedence relations), activity ready times, deadlines and variable resource availability's. The resource-constrained project scheduling problem with generalized precedence relations (RCPSP-GPR) allows for start-start, finish-start and finish-finish constraints with minimal and maximal time lags. The MAX-NPV problem aims at scheduling project activities in order to maximize the net present value of the project in the absence of resource constraints. The resource-constrained project scheduling problem with discounted cash flows (RCPSP-DC) aims at the same non-regular objective in the presence of resource constraints. The resource availability cost problem (RACP) aims at determining the cheapest resource availability amounts for which a feasible solution exists that does not violate the project deadline. In the discrete time/cost trade-off problem (DTCTP) the duration of an activity is a discrete, non-increasing function of the amount of a single nonrenewable resource committed to it. In the discrete time/resource trade-off problem (DTRTP) the duration of an activity is a discrete, non-increasing function of the amount of a single renewable resource. Each activity must then be scheduled in one of its possible execution modes. In addition to time/resource trade-offs, the multi-mode project scheduling problem (MRCPSP) allows for resource/resource trade-offs and constraints on renewable, nonrenewable and doubly-constrained resources. We report on recent computational results and end with overall conclusions and suggestions for future research.Scheduling; Optimal;

    Grammar-Based Integer Programing Models for Multi-Activity Shift Scheduling

    Get PDF

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    Models for robust resource allocation in project scheduling.

    Get PDF
    The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.Model; Resource allocation; Scheduling;

    Tasks, cognitive agents, and KB-DSS in workflow and process management

    Get PDF
    The purpose of this paper is to propose a nonparametric interest rate term structure model and investigate its implications on term structure dynamics and prices of interest rate derivative securities. The nonparametric spot interest rate process is estimated from the observed short-term interest rates following a robust estimation procedure and the market price of interest rate risk is estimated as implied from the historical term structure data. That is, instead of imposing a priori restrictions on the model, data are allowed to speak for themselves, and at the same time the model retains a parsimonious structure and the computational tractability. The model is implemented using historical Canadian interest rate term structure data. The parametric models with closed form solutions for bond and bond option prices, namely the Vasicek (1977) and CIR (1985) models, are also estimated for comparison purpose. The empirical results not only provide strong evidence that the traditional spot interest rate models and market prices of interest rate risk are severely misspecified but also suggest that different model specifications have significant impact on term structure dynamics and prices of interest rate derivative securities.

    Trade & Cap: A Customer-Managed, Market-Based System for Trading Bandwidth Allowances at a Shared Link

    Full text link
    We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.National Science Foundation (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, and CNS-0520166); Universidad Pontificia Bolivariana and COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco Jose ́ de Caldas”

    Project network models with discounted cash flows. A guided tour through recent developments.

    Get PDF
    The vast majority of the project scheduling methodologies presented in the literature have been developed with the objective of minimizing the project duration subject to precedence and other constraints. In doing so, the financial aspects of project management are largely ignored. Recent efforts have taken into account discounted cash flow and have focused on the maximalization of the net present value (npv) of the project as the more appropriate objective. In this paper we offer a guided tour through the important recent developments in the expanding field of research on deterministic and stochastic project network models with discounted cash flows. Subsequent to a close examination of the rationale behind the npv objective, we offer a taxonomy of the problems studied in the literature and critically review the major contributions. Proper attention is given to npv maximization models for the unconstrained scheduling problem with known cash flows, optimal and suboptimal scheduling procedures with various types of resource constraints, and the problem of determining both the timing and amount of payments.Scheduling; Models; Model; Discounted cash flow; Cash flow; Project scheduling; Project management; Management; Net present value; Value; Problems; Maximization; Optimal;

    An Approach to Agent-Based Service Composition and Its Application to Mobile

    Get PDF
    This paper describes an architecture model for multiagent systems that was developed in the European project LEAP (Lightweight Extensible Agent Platform). Its main feature is a set of generic services that are implemented independently of the agents and can be installed into the agents by the application developer in a flexible way. Moreover, two applications using this architecture model are described that were also developed within the LEAP project. The application domain is the support of mobile, virtual teams for the German automobile club ADAC and for British Telecommunications
    corecore