765 research outputs found

    Smooth and compactly supported viscous sub-cell shock capturing for Discontinuous Galerkin methods

    No full text
    In this work, a novel artificial viscosity method is proposed using smooth and compactly supported viscosities. These are derived by revisiting the widely used piecewise constant artificial viscosity method of Persson and Peraire as well as the piecewise linear refinement of Klöckner et al. with respect to the fundamental design criteria of conservation and entropy stability. Further investigating the method of modal filtering in the process, it is demonstrated that this strategy has inherent shortcomings, which are related to problems of Legendre viscosities to handle shocks near element boundaries. This problem is overcome by introducing certain functions from the fields of robust reprojection and mollififers as viscosity distributions. To the best of our knowledge, this is proposed for the first time in this work. The resulting C0∞C_0^\infty artificial viscosity method is demonstrated to provide sharper profiles, steeper gradients and a higher resolution of small-scale features while still maintaining stability of the method

    Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes

    Full text link
    We have developed the formalism necessary to employ the discontinuous-Galerkin approach in general-relativistic hydrodynamics. The formalism is firstly presented in a general 4-dimensional setting and then specialized to the case of spherical symmetry within a 3+1 splitting of spacetime. As a direct application, we have constructed a one-dimensional code, EDGES, which has been used to asses the viability of these methods via a series of tests involving highly relativistic flows in strong gravity. Our results show that discontinuous Galerkin methods are able not only to handle strong relativistic shock waves but, at the same time, to attain very high orders of accuracy and exponential convergence rates in smooth regions of the flow. Given these promising prospects and their affinity with a pseudospectral solution of the Einstein equations, discontinuous Galerkin methods could represent a new paradigm for the accurate numerical modelling in relativistic astrophysics.Comment: 24 pages, 19 figures. Small changes; matches version to appear in PR

    Dissipation-based WENO stabilization of high-order finite element methods for scalar conservation laws

    Full text link
    We present a new perspective on the use of weighted essentially nonoscillatory (WENO) reconstructions in high-order methods for scalar hyperbolic conservation laws. The main focus of this work is on nonlinear stabilization of continuous Galerkin (CG) approximations. The proposed methodology also provides an interesting alternative to WENO-based limiters for discontinuous Galerkin (DG) methods. Unlike Runge--Kutta DG schemes that overwrite finite element solutions with WENO reconstructions, our approach uses a reconstruction-based smoothness sensor to blend the numerical viscosity operators of high- and low-order stabilization terms. The so-defined WENO approximation introduces low-order nonlinear diffusion in the vicinity of shocks, while preserving the high-order accuracy of a linearly stable baseline discretization in regions where the exact solution is sufficiently smooth. The underlying reconstruction procedure performs Hermite interpolation on stencils consisting of a mesh cell and its neighbors. The amount of numerical dissipation depends on the relative differences between partial derivatives of reconstructed candidate polynomials and those of the underlying finite element approximation. All derivatives are taken into account by the employed smoothness sensor. To assess the accuracy of our CG-WENO scheme, we derive error estimates and perform numerical experiments. In particular, we prove that the consistency error of the nonlinear stabilization is of the order p+1/2p+1/2, where pp is the polynomial degree. This estimate is optimal for general meshes. For uniform meshes and smooth exact solutions, the experimentally observed rate of convergence is as high as p+1p+1

    Simulations of Unsteady Shocks via a Finite-Element Solver with High-Order Spatial and Temporal Accuracy

    Get PDF
    This research aims to improve the modeling of stationary and moving shock waves by adding an unsteady capability to an existing high-spatial-order, finite-element, streamline upwind/Petrov-Galerkin (SU/PG), steady-state solver and using it to examine a novel shock capturing technique. Six L-stable, first- through fourth-order time-integration methods were introduced into the solver, and the resulting unsteady code was employed on three canonical test cases for verification and validation purposes: the two-dimensional convecting inviscid isentropic vortex, the two-dimensional circular cylinder in cross ow, and the Taylor-Green vortex. Shock capturing is accomplished in the baseline solver through the application of artificial diffusion in supersonic cases. When applied to inviscid problems, especially those with blunt bodies, numerical errors from the baseline shock sensor accumulated in stagnation regions, resulting in non-physical wall heating. Modifications were made to the solver\u27s shock capturing approach that changed the calculation of the artificial diffusion flux term (Fad) and the shock sensor. The changes to Fadwere designed to vary the application of artificial diffusion directionally within the momentum equations. A novel discontinuity sensor, derived from the entropy gradient, was developed for use on inviscid cases. The new sensor activates for shocks, rapid expansions, and other ow features where the grid is insufficient to resolve the high-gradient phenomena. This modified shock capturing technique was applied to three inviscid test cases: the blunt-body bow shock of Murman, the planar Noh problem, and the Mach 3 forward-facing step of Colella and Woodward
    • …
    corecore