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I think that when we know that we actually do live in uncertainty,

then we ought to admit it; it is of great value to realize that we do not

know the answers to different questions. This attitude of mind – this

attitude of uncertainty – is vital to the scientist, and it is this attitude

of mind which the student must first acquire.

RICHARD P. FEYNMAN

iv



Abstract

This research aims to improve the modeling of stationary and moving shock waves by

adding an unsteady capability to an existing high-spatial-order, finite-element, streamline

upwind/Petrov-Galerkin (SU/PG), steady-state solver and using it to examine a novel shock

capturing technique. Six L-stable, first- through fourth-order time-integration methods were

introduced into the solver, and the resulting unsteady code was employed on three canonical

test cases for verification and validation purposes: the two-dimensional convecting inviscid

isentropic vortex, the two-dimensional circular cylinder in cross flow, and the Taylor-Green

vortex. Shock capturing is accomplished in the baseline solver through the application of

artificial diffusion in supersonic cases. When applied to inviscid problems, especially those

with blunt bodies, numerical errors from the baseline shock sensor accumulated in stagnation

regions, resulting in non-physical wall heating. Modifications were made to the solver’s shock

capturing approach that changed the calculation of the artificial diffusion flux term (F ad)

and the shock sensor. The changes to F ad were designed to vary the application of artificial

diffusion directionally within the momentum equations. A novel discontinuity sensor, derived

from the entropy gradient, was developed for use on inviscid cases. The new sensor activates

for shocks, rapid expansions, and other flow features where the grid is insufficient to resolve

the high-gradient phenomena. This modified shock capturing technique was applied to three

inviscid test cases: the blunt-body bow shock of Murman, the planar Noh problem, and the

Mach 3 forward-facing step of Colella and Woodward.
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Chapter 1

Introduction

1.1 Motivation and Research Goals

Modeling shock waves in an Eulerian reference frame with computational fluid dynamics

(CFD) is a very challenging endeavor, due in large part to non-linear changes in field

properties that occur over a distance on the order of the mean free path. [1, 2] Modeling

moving shock waves further increases the complexity of the problem because the phenomenon

must be resolved as it convects across grid cells. As the demand for high-speed flight vehicles

in both the military and commercial sectors increases, [3–5] so too does the need for adequate

simulation techniques to model phenomena that arise from interactions between high-speed

flow and structures with complex geometries. The extreme dynamic surface loads generated

by unsteady shock/boundary layer interactions (SBLI) are a perfect illustration of the

challenges facing designers of high-speed flight vehicles. [6, 7] Advancing the state of the

art in this area of modeling and simulation will aid in the creation of new high-speed aircraft

and reduce the overall time needed to develop and operate complex systems.

The vast majority of CFD work is conducted using codes that are spatially and temporally

first- or second-order accurate, where order of accuracy describes how the overall error

behaves with respect to the spatial or temporal scale, h, and a kth order scheme means

that error is proportional to hk. Higher-order 1 schemes, have mostly been relegated to

1Wang et al. [8] define “higher-order” as 3rd-order or greater.
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the research community, in part because for years 2nd-order codes have produced solutions

accurate enough for most engineering applications.

In the published review article “High-order CFD methods: current status and perspec-

tive,” Wang et al. [8] discuss the motivations for and results from the 1st International

Workshop on High-Order CFD Methods, held prior to the American Institute of Aeronautics

and Astronautics 50th Aerospace Sciences Meeting. In this article Wang et al. contend that

there are no special properties of 2nd-order schemes that ideally suit them for efficient

simulations. The higher accuracy and lower numerical dissipation of higher-order schemes

make them especially well suited to tackle vortex-dominated flows and aeroacoustics, and

although lower-order schemes may produce acceptable levels of error for key parameters,

those errors may compound and reach unacceptable levels for others.

Unsteady calculations contain both spatial and temporal discretization errors. High-order

schemes are typically focused on decreasing errors related to spatial discretization, but recent

research [9, 10] has shown that higher-order temporal schemes play a critical role in lowering

the overall error by reducing the component resulting from temporal discretization. Explicit

time-stepping schemes like the common 4th-order Runge-Kutta (RK4) offer minimal temporal

error, but they can place burdensome requirements on the size of the time step, ∆t, when

resolving small spatial scales, like those within boundary layers. Implicit methods eliminate

the time step size requirement; however, they are often more difficult to implement because

they require the formation of a matrix and the solution of a linear algebra problem, Ax = b.

The most commonly used implicit methods, the backward differential formulae 1 and 2

(BDF1 and BDF2), are first or second-order accurate, respectively. Given the definition of

higher-order schemes, it stands to reason that an unsteady higher-order code should be

3rd-order, or higher, accurate with respect to both spatial and temporal discretizations.

NASA’s CFD Vision 2030 document [11] is a forecast of the CFD technologies

that will be required in 2030, according to a broad group of experts in aerodynamics,

aerospace engineering, applied mathematics, and computer science, and recommendations

for reaching these goals. Recommendation 1 in the document describes the development

of a Revolutionary Computational Aerosciences (RCA) Program, and within this program,

higher-order discretizations are identified as emphasis areas. The document states that the
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use of higher-order methods could lead to more accurate and scalable solvers, and that

”the demonstration of complete configuration-grid convergence technology in the 2020 time

frame relies on the use of robust higher-order discretizations combined with improved scalable

solvers and adaptive h-p refinement.” [11]

Wang et al. [8] state that “robust, accuracy-preserving, and parameter-free shock

capturing” for steady flow problems with higher-order discretizations is one area that is in

need of development. Some research has been conducted in this area, [12–15] but more work

is needed, especially in the area of unsteady shock problems. If progress is made with respect

to unsteady shock capturing, higher-order solvers may play a critical role in increasing the

aerospace community’s understanding of SBLIs, which often feature prominent, unsteady

vortical structures in separated regions.

The goal of this research was to assess the ability of a finite-element CFD solver with high

spatial and temporal order of accuracy to model stationary and moving shocks on non-shock-

aligned grids. To this end, a high-temporal-order time integration capability was introduced

into the high-spatial-order, finite-element, steady-state CFD solver, Conservative Field Finite

Element (COFFE) CFD solver, developed by the Department of Defense (DoD) High

Performance Computer Modernization Program Computational Research and Engineering

for Acquisition Tools and Environments - Air Vehicles (HPCMP CREATETM-AV) Program.

Verification and validation tests were conducted on these components to ensure that methods

were implemented properly and that the results conform to experimental results and other

accepted numerical solutions. Finally a new artificial diffusion shock capturing technique

was implemented in COFFE, and several cases were run to assess the ability of the newly-

extended, unsteady, high-order solver to simulate flow fields containing stationary and

moving shock waves on a variety of grid types.

1.2 Outline of Document

In Chapter 2 of this document, the current state of the art is reported with respect to

three specific areas of interest: the underlying method for discretizing the boundary value

problem, the time-integration methods used for unsteady simulations, and the technique for
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handling shock waves on a discretized grid. The rationale for using higher-order methods is

also addressed. Chapter 3 contains a description of COFFE and the modifications that were

made to the code for this effort. Chapters 4 and 5 describe each of the test cases relating

to time-integration methods and stationary/moving shocks, respectively. Finally, the overall

conclusions from the research are summarized in Chapter 6.
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Chapter 2

Literature Review

The purpose of this literature review is to assess the state of the art in modeling stationary

and moving shocks. This assessment will be made with respect to three different areas:

• The underlying method for discretizing the boundary value problem.

• The time-integration methods used for unsteady simulations.

• The technique for handling shock waves on a discretized grid.

The direction of the dissertation was guided by this assessment with the goal of advancing

the state of the art in modeling and simulation techniques and identifying difficulties that

result from new approaches.

2.1 Boundary Value Problem Discretization

The choice of spatial discretization method is core to any CFD problem. Decisions made at

this foundational level dictate a solver’s strengths and weaknesses with respect to complex

geometry, spatial order of accuracy, numerical stability, ability to handle flow discontinuities

like shock waves, and a myriad of other qualities. For a CFD code to be useful for real-world

problems with moving shock waves, it must be easy to apply to complex geometries, which

means it should handle unstructured grids, and it must manage shock waves, preferably on

non-shock-aligned grids, without introducing an excessive amount of error to the flow field

in the shock region.
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The three most commonly used methods for boundary value problems (BVP) are the

finite-difference method (FDM), the finite-volume method (FVM), and the finite-element

method (FEM). All three methods accomplish the same task, which is to approximate the

value of a given function at finite points on a discretized mesh, but each accomplishes this

task in a different manner. A high-level comparison between the three methods applied to the

function u = sin(4πx) with grid points at x = 0 to 1 in steps of 0.1 is shown in Fig. 2.1. The

FDM finds approximate solutions to the equation at the nodal points. Only these points are

used in calculations, and functional information between nodes is ignored. The FVM sets the

value of a cell to the average of the function within the cell. This incorporates information

between the nodes, but it does not retain the value of the function at any specific point.

The FEM approximates the value within each element using a Method of Weighted

Residuals (MWR) [16] with a chosen set of basis functions that satisfy the boundary

conditions. A trial solution, u∗(x), is created, which is a linear combination of the basis

functions, ui(x), such that the boundary condition, us(x) = fs, is satisfied.

u∗(x) = us(x) +
N∑
i=1

ciui(x) (2.1)

The trial solution is substituted into the differential equation to create a residual equation,

R, which is ultimately driven to zero through the proper selection of constants, ci. In the

example case, only linear and constant basis functions were used, so the FEM creates a linear

approximation of the function within the element. Like the FVM method, the FEM does

not retrain the exact value of the function at any specific point, but it does a better job

of approximating the value between the nodes. The FVM is actually limiting case of FEM,

where the only basis function is a top-hat filter.

2.1.1 Finite-Difference Method

The finite-difference method is considered to be the simplest discretization scheme to

implement. OVERFLOW [17] is an example code that employs FDM. The solutions to

BVPs are found at discrete nodes on a numerical grid, and the partial derivatives in the

governing equations are replaced by truncated Taylor series expansions, which are algebraic
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Figure 2.1: Comparison between finite-difference, finite-volume, and discontinuous finite-
element methods applied to a 1-dimensional function.

combinations of values at different nodes. Solutions are then found either by explicit or

implicit numerical algorithms. [18]

FDM requires structured grids, and the grid spacing in the computational domain must

be uniform. [19] Mappings are used to transform from non-equidistant point in the physical

domain to the computational domain. Without employing overlapping grids, structured grids

are more difficult to implement than unstructured grids for complex geometries.

First and second orders of spatial accuracy are often achieved using standard forward

(or backward) difference and central difference schemes, respectively. [18] Spatial order of

accuracy refers to the rate at which the numerical error reduces with mesh refinement, also

called h-refinement. The numerical error is proportional to the mesh spacing raised to the

order of accuracy of the scheme, or ε ∝ hp, where p is the spatial order of accuracy. h-

refinement is more effective for higher orders of accuracy. In the FDM, higher-order spatial

accuracy (greater than 2nd-order) can be achieved by using data from more points in the

Taylor series expansion; however, this can be an issue at boundaries, where central differences

from interior points transition to one-sided differences at boundaries. This change can result

in a loss of accuracy at boundaries. [19]

Another shortcoming applicable to this dissertation topic, is that it is difficult to calculate

1st-order derivatives in the presence of shock waves. Lim, Le Lann, and Joulia [20] showed
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that only 1st-order and essentially non-oscillatory (ENO) type schemes produced stable

results near shock waves. Higher-order schemes resulted in spurious oscillations in properties

downstream of the shock, which is often referred to as being a manifestation of the Gibbs

phenomenon. [21] These oscillations could result in a number of errors including, but not

limited to, those related to force accounting on a surface, shock position/stand-off distance,

and surface heat transfer.

2.1.2 Finite-Volume Method

The finite-volume method is by far the most commonly used discretization method, with

implementations in numerous research1 and commercial2 solvers. Varga [27] first discussed

this method in 1965, which was then referred to as the integration method. [28] The FVM

arrives at the approximate solution to the governing equations (that are also conservation

laws) through the balancing of fluxes integrated around cell boundaries, which naturally

conserves properties. The use of the integral form, rather than the differential form, is a

critical philosophical difference between FVM and FDM, particularly in the presence of

discontinuities such as shock waves. The integral form allows for discontinuities between

control volumes, while the differential form implicitly assumes that flow properties are

continuous. For this reason, Anderson [29] states that “this is a strong argument for the

integral form of the equations to be considered more fundamental than the differential form.”

The numerical grid on which FVM operates could be better described as a collection

of cells with finite volumes rather than a grid created between specific nodal points. The

cells may be structured or unstructured, and nodal spacing need not be uniform or require

mapping to a uniform computational domain. This relaxation of gridding requirements

affords FVM a major advantage over FDM for flow simulations over complex geometries.

First and second orders of spatial accuracy are typically found in FVM applications.

Higher-order methods do exist [30, 31]; however, in practice these are difficult to apply on

unstructured meshes due to stencil requirements.

1Loci/CHEM [22], FUN3D [23], USM3D [24], US3D [25], and OpenFOAM [26] to name a few.
2Such as CFD++® from Metacomp Technologies and Fluent® from ANSYS.
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At a high level, cell-centered, first-order methods use the cell-averaged solution infor-

mation to calculate fluxes at the cell faces. Second-order methods use a larger stencil to

calculate fluxes, as opposed to just the local cell-averaged solution. These algorithms are

conceptually similar to the forward (or backward) difference and central difference schemes

of FDM. Local errors for FVM can be reduced through mesh refinement (recall, also called

h-refinement).

2.1.3 Finite-Element Method

The finite-element method is a numerical approach for approximating the solution to BVPs

that relies on the weak, or variational, formulation of continuous systems. This document

is not intended to be a comprehensive description of FEM, several other excellent resources

exist for that purpose,3 rather it highlights key differences between FEM, FVM, and FDM

in order to show why FEM is an attractive choice for CFD solvers. A practitioner utilizing

FEM approximates the solution to the governing equations by first subdividing the overall

domain into smaller elements and then calculating weights for a given set of basis functions

that approximate the solution to the governing equations on each of the elements. The overall

solution to the BVP is then the collection of all of the smaller elements.

The numerical grids used for FEM can be structured or unstructured, like FVM grids,

which is advantageous for problems involving complex geometries. FEM grids can contain

elements that are of any polynomial order, where the polynomial order describes the order

of the basis functions used within the element, and the elements within a domain do not all

have to be the same order. FVM is a limiting case of FEM whose grids contain only zeroth-

order elements. Truly curved boundaries are possible with higher-order elements, due to

their curvilinear basis functions. [34] Lower-order grids, to include FVM grids, approximate

curved surfaces using a series of straight lines, which appears rough when inspected closely,

and can be a source of error in the solution. [35–37]

Since the order of accuracy is controlled at the element level, local p-refinement is more

readily available than in FDM or FVM. p-refinement produces diminishing returns at higher

orders, and the extra computational cost due to basis function computations, quadrature,

3See Hughes [32] and Zienkiewicz, Taylor, and P. Nithiarasu [33]
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(a) 4th-order Continuous Galerkin (b) 4th-order Discontinuous Galerkin

Figure 2.2: Comparison of element degrees of freedom for Continuous Galerkin and
Discontinuous Galerkin schemes. Figures from Erwin [42].

and a denser matrix must be balanced with the required error. Mitchell [38] concluded that

p = 3 or 4 was adequate for non-singular problems, and for problems requiring high accuracy,

there was little to gain by going beyond p = 10. Fidkowski et al. [39] showed that p-refinement

outperformed h-refinement for the smooth problems (i.e., no shocks) that they considered.

Continuous versus Discontinuous Galerkin

Continuous Galerkin (CG) and Discontinuous Galerkin (DG) methods are distinct in how

unknowns are handled within the element and between adjacent elements. In CG methods

values are common between adjoining elements at nodes, and in DG schemes, nodal values are

owned by an element and not shared between elements. As a result, the storage requirements

for DG methods are higher than CG schemes. [40, 41] Erwin [42] detailed the work disparity

between CG and DG methods. A comparison between CG and DG node arrangements for

a regular two-dimensional triangular grid is shown in Fig. 2.2. Each node is a degree of

freedom (DOF) that must be solved for numerically, and more DOFs equate to a higher

computational cost. It is clear from the figures that the CG method requires fewer DOFs

than the equivalent DG method due to the fact that values are continuous between elements,

and thus nodes are shared.
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Figure 2.3: Ratio of DOFs DG-to-CG versus Element Polynomial Order

The ratio of DOFs (DG-to-CG) versus element polynomial order is shown in Fig. 2.3. The

two-dimensional values are derived from a triangle grid, like the one shown in Fig. 2.2. There

is not a three-dimensional analogue to this simple two-dimensional grid, but Erwin [42] used

an icosahedron, with 12 connecting edges and 20 connecting tetrahedra, as a representative

grid for comparison. The ratio asymptotically approaches unity as more unshared interior

nodes are added at higher polynomial orders. For p ≤ 4, the two-dimensional DOF ratio

ranges from 6 at p = 1 to 2.3 at p = 4, and the three-dimensional DOF ratio ranges from

24 at p = 1 to 3.4 at p = 4. This demonstrates that DG schemes require significantly more

resources than PG schemes, especially for three-dimensional grids.

Anderson et al. [43] compared a CG scheme, more specifically a Petrov-Galerkin (PG)

scheme, with a DG method for Maxwell’s equations and found that, when applied to the same

grid, the L1 errors were nearly identical (less than 1% difference) between the two schemes,

but the L2 error for the DG scheme was as much as 40% lower than the PG scheme. The L1

error is the average error in the system, which is a measure of global accuracy. The L2 error

is the average of the squares of the errors, which is effectively a weighted average in which

larger errors contribute more to the resulting value. The difference between L1 and
√
L2 is a
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Figure 2.4: Comparison between L1 error for PG and DG schemes for different numbers of
DOFs using linear and quadratic elements. Data are from Anderson et al. [43].

measure of the variance of the frequency distribution of the errors within the system, where

L1 =
√
L2 indicates that there is no variance because all errors are the same size.

Anderson’s results show that the global accuracy, quantified by the L1 error, of PG and

DG schemes applied to the same grid is nearly identical, but the variation in the frequency

distribution of the errors within the system is higher in the PG results. When computational

cost is factored in, PG schemes have been shown to produce the same global accuracy as

DG methods, but at a fraction of the DOFs, and thus computational cost. [43, 44] If, rather

than employing the two schemes on the same grid, they were applied to grids with the

same number of DOFs, the PG method would result in a significantly lower global error, as

illustrated in Fig. 2.4.

Stabilized Galerkin

When the standard continuous Galerkin FEM is applied to convection-dominated flow

problems, spurious, non-physical oscillations upstream of rapidly changing flow features

can appear due to numerical instabilities in the underlying method. An example of these

numerical “wiggles” from Brooks and Hughes [45] is shown in Fig. 2.5. These aberrations
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Figure 2.5: Non-physical oscillations generated upstream of a block (Re = 200). Figure
from Brooks and Hughes [45].

satisfy the system of equations, in a least-squares sense, but they are not physical, and they

can only be eliminated through excessive h-refinement, when using the Galerkin method.

In order to eliminate these oscillations without the use of h-refinement, practitioners have

implemented stabilization with upwind-based schemes through various modifications to the

standard central-difference-type Galerkin. The two most prominent modified schemes are

the Streamline Upwind/Petrov-Galerkin (SU/PG) method [45–52] and the aforementioned

Discontinuous Galerkin method [40, 41, 53–59]. The SU/PG scheme implements upwinding

by modifying the Galerkin weighting function. [45] DG methods apply upwinding by treating

elements as separate entities and imposing a flux jump condition at interfaces. [44]

2.2 Temporal Integration Methods for Unsteady Sim-

ulations

An abundance of numerical methods exists to solve initial value problems, such as the

unsteady moving shock problem that is the focus of this work. The decision of which temporal

discretization method to use should be driven by the method’s numerical stability, temporal

order of accuracy, and computational expense. Ideally, the time step size should be chosen

based on the flow physics of interest, rather than the grid size, and it should introduce

minimal temporal error to the simulation. Numerical stability and temporal order of accuracy

directly affect these properties.
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Methods can be categorized as either explicit or implicit. A method is explicit if the

values at the next time step can be solved for using only the current time step (and possibly

previous time steps). If, however, the method requires solving a system of equations that

include the current and the next time steps, then the method is implicit. Implicit methods

require the implementation of a matrix solver to solve the system of nonlinear equations,

which is much more computationally expensive than explicit methods.

The methods discussed in this section are also categorized as either multi-step or multi-

stage. Multi-step methods require values from the current time step and possibly one or more

previous time steps, and the next time step is computed directly. Multi-stage methods only

require values from the current time step, but one or more intermediate stages between the

current and the next time step are calculated. Each intermediate stage requires the solution

of the system of nonlinear equations.

2.2.1 Temporal Stability

The concept of stability, as it pertains to a numerical method for solving an initial value

problem, refers to the behavior of the numerical solution in response to small perturbations,

often caused by numerical errors. Stable methods will dampen small perturbations, while

unstable methods can amplify them, resulting in erroneous values that grow with each time

step. There are two major categories of stability: zero-stability and absolute stability. The

former describes a solution’s response as the step size approaches zero, ∆t → 0, at a fixed

time, t, and the latter relates its behavior as t → ∞ for a fixed ∆t. A numerical method

must possess both zero and absolute stability in order to be useful in CFD modeling.

Zero-Stability

Suli and Mayers [60] define zero-stability for linear multi-step methods as:

A linear k-step method (for the ordinary differential equation y′ = f(x, y)) is said

to be zero-stable if there exists a constant K such that, for any two sequences (yn)

and (zn) that have been generated by the same formulae but different starting
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values y0, y1, ..., yk−1 and z0, z1, ..., zk−1, respectively, we have

|yn − zn| ≤ Kmax{|y0 − z0|, |y1 − z1|, ..., |yk−1 − zk−1|},

for xn ≤ XM , and as ∆t tends to 0, where x ∈ [x0, XM ].

Expressed a different way, a numerical method is zero-stable if a small perturbation in the

initial condition, y0 +ε, does not change the solution by more than Kε, where K is a constant

that does not depend on ∆t.

Test equations are used to assess the stability of a numerical method. The test equation

used to evaluate zero-stability is simply y′ = 0, which tests the characteristics of the solution

as ∆t→ 0. [61] In order to be zero stable, the first characteristic polynomial of the numerical

method must satisfy the root condition, which states that all of the roots of the polynomial

lie on the unit disc in the complex plane, and any that lie on the unit circle must be simple.

[60] The numerical methods used in CFD modeling must be zero-stable.

Absolute-Stability

Suli and Mayers [60] define absolute stability for linear multi-step methods as:

A linear multi-step method is said to be absolutely stable for a given value of

λ∆t if each root zr = zr(λ∆t) of the associated stability polynomial π( · ;λ∆t)

satisfies |zr(λ∆t)| < 1.

Dahlquist [62] originally introduced absolute stability in reference to linear multi-step

methods, but it is also an applicable concept for single-step, multi-stage methods, like Runge-

Kutta methods. [63] To describe absolute stability more clearly, it is useful to start by looking

at Dahlquist’s test equation applied to two simple methods, the forward and backward
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Euler methods, given in Eqs. (2.2a) and (2.2b), which are explicit and implicit methods,

respectively.

yn+1 − yn = ∆tfn (2.2a)

yn+1 − yn = ∆tfn+1 (2.2b)

Dahlquist’s test equation to assess absolute stability of a numerical method is

y′ = λy, y(0) = 1.

The exact solution to this equation is y = eλt, where λ ∈ C. The solution, y, is bounded and

approaches zero as t → ∞ for all Re λ < 0 and ∆t > 0. The attribute of absolute stability

is related to conditions in which the solution to the test equation approaches zero for finite

time steps because those conditions will dampen rather than amplify small perturbations.

One time step of the forward Euler method applied to the test equation results in

y1 = y0 + ∆tf0 = y0 + zy0 = R(z)y0,

where z = ∆tλ, f0 = y′, and R(z) = 1 + z. R(z) is the stability function of the numerical

method, and it can be used to find the method’s stability region, which is defined by Hairer

and Wanner [63] as the region in which the magnitude of the stability function is less than

or equal to 1, or

S = {z ∈ C ; |R(z)| ≤ 1} . (2.3)

Small perturbations are amplified when |R(z)| is greater than 1, damped for |R(z)| less than

1, and neither amplified nor damped for |R(z)| equal to 1.

One time step of the backward Euler method applied to the test equation results in

y1 = y0 + ∆tf1 = y0 + zy1 = R(z)y0,

where the stability function R(z) = 1
1−z .
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Figure 2.6: Stability regions for the forward and backward Euler methods

The stability region for the forward Euler method is on a unit disc centered at z = −1

on the complex plane. The stability region for the backward Euler is the entire complex

plane outside of the unit disk centered at z = 1. Plots of the stability regions are shown in

Fig. 2.6, where the stability region is shaded. It is clear from the figure that the backward

Euler method results in a more extensive stability region than the forward Euler. This is

because the forward Euler method is explicit, while the backward Euler method is implicit.

It follows that time steps for explicit methods like the forward Euler are always subject to

restrictions to ensure numerical stability.

Explicit methods force CFD practitioners to select a time step that satisfies the Courant-

Fredrichs-Lewy (CFL) condition, [64] which defines the maximum allowable Courant number

(C) that a particular numerical method can handle stably. The Courant number is a non-

dimensional time step that indicates the speed at which information passes through elements.

Blazek [65] defines the Courant number for unstructured grids as

C =
∆t

Ω

∑
i

(
Λ̂xi
c +KΛ̂xi

v

)
(2.4)
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where Ω is the element volume, Λ̂xi
c and Λ̂xi

v are the convective and viscous spectral radii,

and K is a scalar for the viscous spectral radii that is set based on the choice of spatial

discretization. The convective radii are calculated by

Λ̂xi
c = (|ui|+ a)∆Ŝxi (2.5)

where a is the speed of sound and ∆Ŝxi is a planar projection of the control volume, given

by

∆Ŝxi =
1

2

NF∑
J=1

|Sxi |J (2.6)

and Sxi is the xi component of the face vector S = n̂ ·∆S.

A-Stability, A(α)-Stability, and L-Stability

A-stability is descriptor applied to numerical methods that possess absolute stability

regardless of the chosen step size. Dahlquist [62] stated that a k-step method was A-stable if

all of the solutions to any ODE of the form y′ = λy tend to zero as n→∞ when ∆t is a fixed

positive number and λ is a complex constant with a negative real part. In short, A-stability

requires that a method’s stability region include the entire left side of the complex plane.

Dahlquist’s “Second Barrier,” as stated by Suli and Mayers [60], contains three rules

pertaining to A-stability.4

1. No explicit linear multi-step method is A-stable.

2. No A-stable linear multi-step method can have an order greater than 2.

3. The second-order A-stable linear multi-step method with the smallest error constant

is the trapezoidal rule.

Dahlquist [62] stated that A-stability is a desirable property to have for certain classes

of differential equations. A-stability is desirable for stiff equations, like those found in CFD

applications, because it does not impose burdensome restrictions on the selected time step

4The “First Barrier” was proven by Dahlquist [66], but it is less relevant to this discussion. For more
information, see Suli and Mayers [60] or Hairer and Wanner [61].
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Figure 2.7: A(α)-stability sector definition for BDF5

in order to maintain numerical stability. This allows CFD practitioners to select a time step

capable of capturing the flow features of interest with little concern about how it relates to

the CFL condition.

A-stability can prove to be too strong of a requirement in some cases, because it excludes

some methods that may be acceptable in certain instances. A(α)-stability is used to describe

methods that are implicit and zero-stable but not necessarily A-stable. In A(α)-stability, α

refers to the half-angle of the sector created by rays from the origin that are tangent to a

method’s stability curve (the border of the stability region). Low values of α imply small

regions of stability, and high α’s indicate large stability regions. Methods that are A-stable

have α=90°.

The absolute stability region and A(α)-stability sector for the 5th-order backward

difference formulae method (BDF5), described by

yn+5 −
300

137
yn+4 +

300

137
yn+3 −

200

137
yn+2 +

75

137
yn+1 −

12

137
yn =

60

137
∆tfn+5,

is shown in Fig. 2.7. This method is zero-stable, but not A-stable. Its A(α)-stability is 51°.
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L-stability is a special case of A-stability where the stability function, R(z), approaches

zero as z →∞. Expressed in mathematical terms,

lim
z→∞

R(z) = 0.

Methods that are L-stable are also A-stable, but the opposite is not true. L-stability places

an additional, more stringent requirement on a method beyond A-stability. This property

makes these methods particularly useful for stiff equations because they dampen out rapid

transients much more quickly than methods without L-stability.

The backward Euler method (Eq. (2.2b)) is an A-stable method. Its stability function

is R(z) = 1
1−z , which approaches zero as z → ∞, and as a result, it also L-stable. The

trapezoidal method, shown in Eq. (2.7), is a second-order A-stable method with the smallest

error constant, according to Dahlquist’s Second Barrier. Its stability function is R(z) = 1+z/2
1−z/2 ,

which does not approach zero as z →∞.

yn+2 = yn+1 +
1

2
∆t (fn+2 + fn+1) (2.7)

Hairer and Wanner [63] demonstrated the benefits of L-stability for stiff equations by

comparing backward Euler and trapezoidal solutions to

y′ = −2000(y − cosx), y(0) = 0, 0 ≤ x ≤ 1.5. (2.8)

Fig. 2.8 shows a comparison between the trapezoidal and backward Euler methods applied to

Eq. (2.8). It is clear that the response of the backward Euler method is much more desirable

than that of the trapezoidal method for stiff equations. For CFD applications, this property

could be especially useful when modeling a moving shockwave.

Only methods that are at least A-stable are being considered for use in this work, with

preference placed on those methods that are also L-stable. This excludes all explicit methods,

but it should create a more robust solver whose stability is not tied to the user’s choice of

time step, allowing users to use time steps dictated by flow phenomena rather than numerical

stability. Methods with L-stability are preferred for cases with moving shock waves due to
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Figure 2.8: Comparison between trapezoidal and backward Euler methods for Eq. (2.8).
Figure from Hairer and Wanner [63]

the rapid property transients that occur with a shock waves travels through a domain. An

L-stable method is apt to accurately model a rapid transient without introducing the non-

physical, numerical ringing shown in Fig. 2.8.

2.2.2 Linear Multi-step Methods

Linear multi-step methods are a class of numerical methods for ordinary differential equations

that use a linear combination of the values, yi, and first derivatives with respect to time,

f(ti, yi) or just fi, from s previous solutions to approximate solutions to initial value problems

of the form

y′ = f(t, y), y(t0) = y0.

These methods are of the form

yn+s + as−1yn+s−1 + · · ·+ a0yn = ∆t(bsfn+s + bs−1fn+s−1 + · · ·+ b0fn),

where s is the number of steps and the order of the particular method, ∆t is the time step

size, and the a and b coefficients are determined by each particular method. Linear multi-step
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methods can be either explicit or implicit, and the coefficient bs can be used to distinguish

between the two, where bs = 0 for explicit methods, and bs 6= 0 for implicit ones.

Linear multi-step methods are computationally efficient because they utilize data retained

from previous solutions and do not require intermediate time steps to be calculated and

subsequently discarded. Retaining previous time steps does require additional storage in

memory, but this is typically not an issue for modern computers. Higher orders of accuracy

require more previous time steps, but order of accuracy is ultimately limited by numerical

stability. Methods of order greater than one are not self-starting, meaning that initial time

steps must be solved at a lower order of accuracy until enough time steps are obtained.

2.2.3 Runge-Kutta Methods

Runge-Kutta (RK) methods [61] are a family of multi-stage, single-step numerical methods

that are utilized to solve the Cauchy, or initial value, problem for systems of ordinary

differential equations. These methods are self-starting because they only require information

from one previous time step or the initial value.

The general equation for a RK method with s stages is given in Eq. (2.9). A particular

method is identified by the RK matrix (aij), the weights (bi), and the nodes (ci). The RK

matrix specifies how intermediate stages are calculated, the weights are used to compute the

solution at the next time step, which is the weighted average of the intermediate solutions,

and the nodes define where the intermediate solutions are assessed relative to the overall

time step. Each row in the RK matrix describes an intermediate stage, where the aij values

are weights used to calculate an intermediate solution, similar to bi. The sum of each row is

equal to the associated node, ci (ci =
∑s

j=1 aij). RK methods are typically presented in a

Butcher tableau. The form for a Butcher tableau is shown in Eq. (2.10), where A is the RK

matrix, b is the weights vector, and c is the nodes vector.

yn+1 = yn + ∆t
s∑
i=1

biki (2.9)

where,
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ki = f

(
tn + ci∆t, yn + ∆t

s∑
j=1

aijkj

)
, i = 1, ..., s

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
. . .

...

cs as1 as2 . . . ass

b1 b2 . . . bs

=
c A

bT
(2.10)

RK methods may be either explicit (ERK) or implicit (IRK), and a particular method

can be categorized using the RK matrix. If the matrix is only lower triangular, with the

main diagonal zero, the method is explicit. If any values along the main diagonal or above

it are non-zero, the method is implicit. Explicit schemes were originally proposed by Runge

[67] in 1895 and developed by Kutta [68] in 1901, but they will not be included here because

they are not A-stable.

There are a number of categories within the family of IRK methods.

• Diagonally implicit RK (DIRK) – All coefficients above the main diagonal in the RK

matrix are zero, but one or more of the main diagonal coefficients are non-zero.

• Singly diagonally implicit RK (SDIRK) – All coefficients along the main diagonal are

the same value.

• Fully implicit RK (FIRK) – All coefficients within the RK matrix are non-zero.

FIRK methods are attractive due to their high stage order and high overall order per

stage. Gauss-Legendre methods, for example, have order 2s, and Radau methods have order

2s− 1, where s is the number of stages. In practice these methods are difficult to implement

efficiently because all stages must be solved simultaneously. [69] FIRK methods were not

implemented for this reason.

DIRK methods are easier to implement, as only one new variable is present at each

ensuing stage, which is to say each stage can be solved sequentially rather than all at once.

SDIRK methods, with their constant value along the main diagonal, have the added benefit
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of having a constant Jacobian over all stages. [70] This greatly reduces the computational

cost of these methods.

2.2.4 Dissipation and Dispersion Errors

Numerical errors resulting from spatial and temporal discretization can manifest as

additional, non-physical dissipation or dispersion in a solution. Dissipation reduces the

amplitude of a traveling wave, which acts to smooth out gradients. Dispersion affects the

propagation speed of a traveling wave based on its wave number, which induces spurious

oscillations to appear in a non-oscillatory solution. Dispersion errors are particularly evident

in regions of large or discontinuous gradients in field properties, such as shock waves, because

advection in these regions is characterized by flow at many different wave numbers. [71, 72]

Numerical schemes that are odd-order are dominated by dissipation errors, while those that

are even-order are dispersive. [73, 74]

Takacs [75] described a method for separating the total numerical error into dissipative

and dispersive parts. The method is used in upcoming data analysis, so it warrants further

description here. For this method, the total error is defined as the mean square error,

Etot =
1

M

∑
j

(qT − qD)2
j , (2.11)

where qT is the true solution, qD is the discretized solution, and M is the number of

discretization points. Takacs [75] then applies the definition of variance and rearranges the

terms to show that,

Etot = [σT − σD]2 + (q̄T − q̄D)2 + 2(1− ρ)σTσD, (2.12)

where ρ is the correlation coefficient between qT and qD, σT and σD are the standard

deviations of the true and discretized solutions, and overbars indicate mean. The correlation

coefficient, ρ, is the ratio of the covariance between two variables to the product of their

standard deviations, ρ = cov(T,D)/σTσD, where ρ = 1 indicates that qT and qD are exactly
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correlated and all of the error is dissipative. With this understanding, the dissipative and

dispersive errors are defined, respectively, by

Ediss = [σT − σD]2 + (q̄T − q̄D)2 (2.13)

and

Edisp = 2(1− ρ)σTσD (2.14)

2.3 Shock Wave Handling in Continuum Modeling

Holian et al. [76] describes a shock wave profile as the interaction between two phenomena.

The higher sound speed in the post-shock region steepens the shock wave, increasing the

velocity gradient, while the larger velocity gradient results in a large viscous stresses, which

tend to spread the shock region out. Hirschfelder, Curtiss, and Bird [77] showed that the

shock width resulting from this interaction was on the order of the mean free path, which

implies that a shock wave is not a continuum field structure. [76, 78] The Knudsen number

is the ratio of the mean free path to a physical length scale, and it can be shown to be

proportional to the Mach number divided by the Reynolds number (Kn ∝M/Re). A small

Knudsen number means that the mean free path is small in relation to a physical length

scale, and since the shock width is on the order of the mean free path, it is also small in

relation to the same physical length scale. In fact, in the inviscid limit, where Re→∞, the

shock wave is a discontinuity as there is no viscosity to spread the shock region out. Moretti

and Salas [79] investigated the thickness of viscous shocks numerically, in part to determine

at what Reynolds numbers shock waves behave in an inviscid (discontinuous) manner. They

stated that “for Reynolds numbers of the order of 1,000 or higher, the shock thickness can

be neglected and a sharp discontinuity, satisfying the Rankine-Hugoniot conditions, can be

assumed in a flow.” As a result of this discontinuity, the governing equations are no longer

differentiable, and only the weak solution can be obtained. [80]
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Most Eulerian CFD techniques (FEM, FVM, and FDM) rely on a continuum flow field

assumption.5 The governing equations (typically the Navier-Stokes or Euler equations) are

solved at points on a mesh, which enforces a numerical width on the shock region that is

typically much larger than its physical width. Two classes of methods were developed to

manage this scale disparity: shock capturing and shock fitting. Shock capturing and fitting

allow a solver to model this discontinuous phenomena while still solving the governing

equations and applying the continuum flow field assumption. Both methods have been used

effectively in countless cases, but each has distinct shortcomings.

2.3.1 Shock Capturing

Shock capturing techniques work by either applying local artificial viscosity to smear out

the shock and turn the discontinuity into a rapidly changing, but continuous, surface, as in

the method introduced by Von Neumann and Richtmyer [81], or approximating the solution

to the one-dimensional Riemann problem using a Godunov-type scheme [82], such as those

of Roe [83] and Osher and Solomon [84]. These methods tend to overestimate the physical

shock width, [85] which results in the creation of non-physical “filler” states that introduce a

variety of numerical errors that diminish but do not disappear with increased grid resolution

or accuracy. [86] Despite the introduction of non-physical features to the solution, shock

capturing techniques remain popular due to their ease of implementation and use, relative

to shock fitting methods, especially on simulations with moving shock waves.

Artificial bulk viscosity

Bulk viscosity, µb = λ + 2µ/3, where λ is the second (dilatational) viscosity coefficient,

describes the dissipation of energy when a fluid is compressed or expanded. It is only present

in compressible flows, because in the momentum equation, µb is multiplied by the divergence

of velocity (or dilation), ∇ · u, which is zero in incompressible flows. Stokes’ hypothesis

[87] states µb = 0, and thus λ = −2µ/3, and this simplification is broadly leveraged among

compressible flow simulations. [88] White [89] states that there are two cases in which λ 6=
5Methods for rarified gas flows, such as Direct Simulation Monte Carlo (DSMC), will not be discussed in

this document.
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−2µ/3, and µb cannot be neglected: sound wave absorption/attenuation and the normal

shock wave. Landau and Lifshitz [90] related bulk viscosity to the relaxation time required

to restore a fluid to thermodynamic equilibrium after any rapid compression or expansion,

such as a shock wave, stating that increasing µb results in a larger dissipation of energy and

a longer relaxation time. Emanuel and Argrow [91] related this to shock wave thickness and

showed that thickness also increases with increasing µb.

Shock capturing through the application of artificial bulk viscosity6 (ABV) and artificial

thermal conductivity is an active research area. [14, 15, 92–96] These methods are relatively

easy to apply, since they are modifications to physical transport properties based on

calculated flow features as determined through detector functions, such as the strain rate

tensor, and they are designed such that the artificial properties are applied directly to the

discontinuity location through the use of shock switches or sensors, such as the Ducros et al.

[97] sensor. The previously referenced methods [14, 15, 92–96] all utilize 4th-derivatives of

detector functions, which could prove difficult to implement in codes where those derivatives

are not readily available. These high derivatives are used to isolate the application to areas

where rapid changes in flow properties are present. The proper detector functions and shock

switches to use for a given application is an area of development. Early work by Cook and

Cabot [92] suggested using the strain rate tensor for the ABV detector function, but later

investigations by Mani, Larsson, and Moin [98] suggested that dilation would be a better

detector because it affects only shock waves and not vortical structures present in turbulent

flows. This finding was verified by Kawai, Shankar, and Lele [93].

Olson and Lele [15, 99] advanced the concept of ABV by applying the viscous diffusion

independently along each grid direction rather than uniformly in all directions. They showed

that scalar application of ABV to high aspect ratio cells, like those found in boundary layers,

resulted in too much dissipation which led to an increase in numerical stiffness. The results

from Olson and Lele show that their directional application made captured shocks more crisp

and reduced numerical artifacts resulting from non-shock-aligned grids. It should be noted

that Olson and Lele used the strain rate tenor rather than the dilation as a detector function

6Artificial shear viscosity is included in Cook and Cabot [92], but it is more useful as a subgrid scale
turbulence model for large eddy simulations. Kawai, Shankar, and Lele [93] showed that it produced results
similar to the dynamic Smagorinsky model.
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for the ABV application. The results would likely improve if dilation were used, especially

for LES test cases.

Artificial diffusion

Other researchers [12, 97, 100, 101] have introduced an additional artificial diffusion term that

acts in a similar manner to the artificial viscosities previously discussed. Artificial diffusion

differs from artificial viscosity in that it is strictly numerical diffusion added to smooth out

discontinuities; it has no connection to any physical properties. Artificial diffusion is also

typically added to all of the governing equations, rather than just those affected by the

addition of viscosity and thermal conductivity. These differences are often neglected, and

the terms are commonly used interchangeably in literature.

Artificial diffusion is applied by adding a new flux term to the governing equations. The

structure of this term, as described by Holst et al. [102], is

Fad,i = hλmaxεshock
∂qi
∂xj

(2.15)

where q = [ρ, ρu, ρht]
T , h is the characteristic length of the cell, λmax is the maximum wave

speed in the domain, and εshock is a shock indicator. All of the artificial diffusion schemes

found in the literature [12, 97, 100, 101, 103–105] have a similar structure, specifically that

the spatial gradient of q is scaled by a value derived from the size of the cell and a shock

indicator.

The Jameson–Schmidt–Turkel (JST) shock capturing method [100] was one of the earliest

schemes to utilize artificial diffusion. This method was originally applied to the Euler

equations, and the following high-level description, adapted from Jameson [106], outlines

how it is applied to a one-dimensional case on a grid with uniform spacing. The JST method

utilizes a pressure switch, sj where j in this case is the discrete node index, to activate Fad.

sj =

∣∣∣∣pj+1 − 2pj + pj−1

pj+1 + 2pj + pj−1

∣∣∣∣ (2.16)

This pressure switch was used to scale the dissipative flux, ∆wj+(1/2), which was then

subtracted from the inviscid flux.
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∆wj+(1/2) =


ρj+1 − ρj

(ρu)j+1 − (ρu)j

(ρht)j+1 − (ρht)j

 (2.17)

This artificial diffusion for the JST method serves to smooth out discontinuous features that

manifest as large pressure gradients. Jameson [106] provides more details about the JST

method, including the history of its development.

Barter and Darmofal [101] showed that there were benefits to applying artificial diffusion

smoothly across cells rather that discretely at affected cells. The smooth application increased

the robustness of the solution and significantly reduced oscillatory errors downstream of

the shock. Ching, Lv, and Ihme [12], Barter and Darmofal [101], and Yano, Modisette,

and Darmofal [104] utilized an elliptic partial differential equation to smooth the diffusion

application across the solution, which is a robust approach, but it increases the computational

cost of the solution.

Additionally, two modifications to h have been shown to be helpful. Persson and Peraire

[103] scaled h by 1/p, where p is the polynomial order of the finite element basis functions.

By doing this they were able to take advantage of the sub-grid scale resolution from higher-

order elements to produce shocks that were thinner than the element size. Ching, Lv, and

Ihme [12], much like Olson and Lele [15, 99], used a directional h to ensure that diffusion

was applied appropriately for anisotropic cells.

Errors introduced

For higher-order methods, possibly the most pernicious issue introduced by shock capturing is

that of the reduction in spatial order accuracy to unity in the downstream region. Carpenter

and Casper [107] studied supersonic flow around a blunt, two-dimensional cylinder using

1st, 2nd, and 4th-order spatial discretization schemes, and they found that each method

asymptotically approached 1st-order as grid was refined. This finding showed that the 1st-

order error introduced by the shock capturing method was independent of the chosen spatial

discretization scheme. Carpenter and Casper point out that their finding does not necessarily

“prove that captured shocks are destined only to be 1st-order accurate;” however, Roy [108]
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also observed this phenomenon in his investigation of Mach 8 inviscid flow over a blunted

cone. Banks, Aslam, and Rider [109] demonstrated less-than 1st-order convergence on an

advecting shock problem and provided a detailed explanation for the mechanism that results

in a degradation in spatial order of accuracy. Pirozzoli [110] went so far as to say “these [order

of accuracy] limitations, related to the misrepresentation of discontinuities on a mesh with

finite spacing, can only be overcome by some form of shock-fitting.” Casper and Carpenter

[111] also found out that this applied to unsteady problems. The order of accuracy for a

higher-order method was reduced to unity, but the overall error was lower when compared

to a linear method applied to the same problem.

Other numerical anomalies that are created due to the over-estimation of the shock

width include, but are not limited to, the carbuncle aberration, Gibbs phenomenon, and

wall heating. The carbuncle phenomenon is a large discontinuous error in the shock wave at

the stagnation streamline. An example of a carbuncle is shown in Fig. 2.9, where Powers,

Bruns, and Jemcov [112] have simulated Mach 5.73 flow over a circular cylinder with physical

diffusion neglected (µ = k = 0). The carbuncle aberration was first reported by Peery and

Imlay [113] when they used the flux difference method of Roe [83] to calculate Mach 6 flow

solutions around a circular cylinder. It is actually a valid solution of the Euler equations

[114], but it is undesirable in numerical simulations as it is not found in nature. This error

was found in the flux-difference Riemann solvers of Roe [83] and Osher and Solomon [84],

but it was not found in the flux-splitting methods presented by Peery and Imlay [113], Steger

and Warming [115], and Leer [116], nor was it present when Lin [117] added dissipation to

Roe’s flux-difference method.

Excess wall heating is a numerical error common to methods that rely on artificial

viscosity. Noh [118] identified a simple test case to demonstrate this issue. A perfect gas

impinges on a rigid wall at the origin, and a rightward moving shockwave emanates from

the wall. The downstream conditions and shock speed are known from inviscid calculations.

An example of the wall heating error illustrated with the planar Noh problem is shown in

Fig. 2.10a, where the phenomenon is seen as a sharp decrease in density at the left boundary.

Noh [118] states that “wall heating is inherent in all such shock-smearing procedures”

because “too much work is done when a shock starts up, or as here, when a shock is formed
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Figure 2.9: Carbuncle phenomenon demonstrated with Mach 5.73 flow over a circular
cylinder by Powers, Bruns, and Jemcov [112]

by bringing the gas to rest.” To expand on this, when the shock forms at the wall, the

momentum equation ensures that the correct pressure level is reached downstream of the

shock. The artificial viscosity added at the shock generates heat through the energy equation,

which is not dissipated due to the lack of thermal conductivity. [119] Noh suggested that

a way to alleviate this issue was to introduce artificial heat flux at the site of the shock in

addition to the artificial viscosity. This refined method was applied to the same example

problem, and the results are shown in Fig. 2.10b. The wall heating error is gone, and the

oscillations in the region downstream of the shock are also nearly eliminated.

The Gibbs phenomenon [120] refers to spurious oscillations that form when a discontin-

uous function is approximated by the sum of a series of continuous functions. A common

example of this error is present in the Fourier series approximation of a square wave, as

seen in Fig. 2.11. As more terms are added in the approximation, the overshoot error is

reduced in magnitude, but it is not eliminated. This phenomenon can manifest in the region

downstream of a shock wave as well, see Fig. 2.10.
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(a) Without artificial heat flux (b) With artificial heat flux

Figure 2.10: Wall heating errors using the shock capturing method of Von Neumann and
Richtmyer [81] with and without artificial heat flux. Wall heating manifests as a sharp
decrease in density at the left boundary. Figures from Noh [118].

Figure 2.11: Fourier series approximation of square wave using 1, 10, 100, and 1,000 terms,
highlighting the Gibbs phenomenon.
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2.3.2 Shock Fitting

Shock fitting was first used by Emmons [121] in 1944. This class of methods treats the

shock wave as an explicit discontinuity over which the Riemann problem is solved or

approximated through the application of the Rankine-Hugoniot jump condition. Typically

the jump condition is applied to the control volume face, which results in an underestimate

of the physical shock width. [122] This technique for managing shock waves is not subject

to any of the error sources discussed in the previous section (reduced order of accuracy,

carbuncle, wall heating, and Gibbs phenomenon), which makes it a very attractive option

for shock modeling.

Shock fitting methods impose a major requirement on the numerical grid, as the locations

of shocks must either be known a priori or tracked dynamically through a simulation.

Historically this has been the largest challenge for shock fitting techniques, but progress

has been made in the development of algorithms to detect and track these discontinuities on

an unstructured grid. [123] This method was applied to cases with complex flow topologies,

including shock-shock interactions, by Ivanov et al. [124] and Paciorri and Bonfiglioli [85].

The dynamic shock-fitting technique described by Bonfiglioli et al. [123] involves seven

steps:

1. Remove cells around the shock front

2. Re-meshing local area around the shock front

3. Compute tangent and normal unit vectors

4. Compute upstream shock state on the new mesh

5. Compute downstream shock state and shock speed by enforcing the Rankine–Hugoniot

jump relations

6. Compute displacement of the shock at time t+ ∆t

7. Interpolate results on to phantom nodes surrounding local area around shock
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Steps 1 and 2 are particularly challenging and computationally intensive because they require

the creation of new elements after the mesh has been initialized and partitioned, and these

steps would need to be performed at each time step.

The ability to add elements dynamically during a simulation is currently not available

in COFFE, and adding it to the code would be an undertaking beyond the scope of this

dissertation. The simulation results from shock fitting are widely considered to be superior

to those from shock capturing; [125–128] however, the benefits come with increased code

complexity and computational cost.

2.3.3 Enriched Finite Elements

Finite element methods have seen widespread use for many years on simulating structural

problems, where discontinuities can arise in the form of cracks. Modeling cracks in a solid

structure presents a similar problem, numerically, to modeling a shock wave in a fluid, in that

the underlying finite element method is predicated on the assumption that field variables

are continuous across an element7, and a crack or shock wave breaks that assumption. So it

stands to reason that finite element fluid solvers could leverage crack modeling innovations

made by structural solvers for fluid dynamic discontinuities.

Fries and Belytschko [129] reviews the application of enriched shape functions within

finite elements to model discontinuities. They refer to the method as the eXtended Finite

Element Method (XFEM) [129–131]; however, their discussion also applies to the Partition

of Unity Method (PUM) [132–134] and the Generalized Finite Element Method (GFEM)

[135, 136], as all three of these methods are functionally the same.

The general form of XFEM is given in Eq. (2.18), which is Equation 11 in Fries and

Belytschko [129]. In this equation, Ni and N∗i are standard FEM shape functions, and they

are often chosen to be identical, I is the set of all nodes within the domain, and I∗ is a subset

of those nodes (I∗ ⊂ I) on which enrichment is applied. ψ(x) is an enrichment function that

provides the FE approximation with more flexibility to handle, in this case, discontinuous

solutions such as shocks. For discontinuities this enrichment function is typically taken to

7Field variables for Discontinuous Galerkin methods are discontinuous between adjacent elements, but
still continuous across individual elements.
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be a Heaviside function (or a slightly smoothed-out Heaviside function for viscous flow, as

described by Abbas, Alizada, and Fries [137]), but it could be different for other applications

such as boundary layer flow. [137–139]

u(x) =
∑
i∈I

Ni(x)ui︸ ︷︷ ︸
standard FE approx.

+
∑
i∈I∗

N∗i (x) · [ψ(x)− ψ(xi)]ai︸ ︷︷ ︸
enrichment

(2.18)

Abbas, Alizada, and Fries [137] applied XFEM, without any upwinding stabilization

like SU/PG and DG, to fluid problems with high-gradients and found that errors were

significantly reduced with XFEM on coarse meshes, but that the errors converged with mesh

refinement. They also showed that the spurious oscillations commonly found downstream of

steep gradients (Gibbs phenomenon) were not present in the XFEM results.

XFEM appears to produce results similar to shock fitting without the need for

dynamically remeshing or clustering grid points at high-gradient regions. It is unknown

if XFEM solutions downstream of shocks are able to maintain high-spatial order, or if they

succumb to the same order of accuracy reduction issue identified by Carpenter and Casper

[107].
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Chapter 3

Numerical Methodology

3.1 COFFE Description

The Conservative Field Finite Element (COFFE) CFD solver was developed by the Depart-

ment of Defense (DoD) High Performance Computer Modernization Program Computational

Research and Engineering for Acquisition Tools and Environments - Air Vehicles (HPCMP

CREATETM-AV) Program. CREATE is to address the need for a software package to be

extensible with respect to spatial and temporal order of accuracy, available physics, and

execution on modern compute architectures. [140–144] COFFE resides within the Kestrel

component of CREATE-AV. It was chosen as the foundation for this effort because it is a

high-order, finite-element solver that is currently under development, and it is representative

of the next-generation of numerical solvers for engineering applications. The advancements

made in COFFE resulting from this undertaking will impact engineering design and analyses

over the lifetime of the code.

COFFE utilizes the Streamline Upwind/Petrov-Galerkin (SU/PG) finite-element method

[45–52] to spatially discretize the governing equations, and higher-order spatial accuracy is

achieved with Lagrangian basis functions. It was originally designed as a steady-state solver.

[145–147] Many flow phenomena of interest to air vehicle designers, such as aeroacoustics,

fluid/structure interactions, combustion, and shock wave/boundary layer interactions, are

inherently unsteady. Part of this effort included the introduction of a time-accurate capability
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to the solver. Several time-integration methods were investigated, and six were implemented

within COFEE with 1st to 4th orders of accuracy.

3.1.1 Governing Equations

The conservative form of the Navier-Stokes equations is presented in Eq. (3.1). Note that all

equations in this section assume three spatial dimensions and that no turbulence modeling

is included.

∂Q

∂t
+

∂

∂xj
(F c(Q)− F v(Q,∇Q)) = 0 (3.1)

Q contains the conservation variables, which are given in Eq. (3.2), where {uj, j = 1, 2, 3}

are the Cartesian velocity components, ρ is the density, and et is the total energy.

Q =


ρ

ρuj

ρet

 (3.2)

F c and F v contain the convective and viscous fluxes, which are given in Eqs. (3.3) and (3.4),

respectively.

F c =


ρuj

ρujui + pδij

(ρet + p)uj

 (3.3)

F v =


0

τji

uiτij − qj

 (3.4)

τij is the viscous stress tensor, δij is the Kronecker delta, p is the pressure, and qj = −λ∂T/∂xj
is heat flux. τij is described by Eq. (3.5) for a Newtonian fluid, where Aij, given in Eq. (3.6),

denotes the deviator of the strain tensor, which is the part of the strain tensor that represents

shape change at constant volume. In Eq. (3.6) Sij = 1
2

(gij + gji) is the strain tensor, and
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gij = ∂ui/∂xj is the velocity gradient tensor. This formulation relies on Stokes’ hypothesis,

which assumes that the bulk viscosity can be neglected, and thus τkk = 0.

τij = 2µAij (3.5)

Aij = Sij −
1

3

∂uk
∂xk

δij (3.6)

Lastly the ideal equation of state (p = ρRT ) is used to describe the total energy in the

flow, as shown in Eq. (3.7), where γ is the ratio of specific heats.

ρet =
p

1− γ
+

1

2
ρuiui (3.7)

3.2 Temporal Integration Methods

The COFFE solver operates by driving the overall residual, R, to zero through an implicit

Newton method that utilizes a Generalized Minimum Residual (GMRES) [148] linear solver.

In the steady-state solver, convergence in R is achieved by reducing the temporal and spatial

components, Rt = ∂Q
∂t

and Rs = ∂
∂xj

(F c−F v), to zero via a non-linear path to convergence.

[145] The Newton iteration method is applied to the overall residual in Eq. (3.8).

Rn+1 = Rn +
∂Rn

∂Qn∆Qn+1 (3.8)

The left hand side is set to zero, and the solution update vector, ∆Qn+1, is solved for using

Eq. (3.9).

∂Rn

∂Qn∆Qn+1 = −Rn (3.9)

The non-linear path for the steady-state solver employs a pseudo-time-stepping method

that rapidly achieves convergence but is not directly relatable to physical time. The unsteady,

time-accurate solver also reduces the overall residual to zero, but it does so by reducing the

sum of the temporal and spatial components at each time step, since R = Rt + Rs. The
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spatial residual is handled with the same SU/PG discretization as the steady-state solver,

and the temporal residual is calculated using one of the methods described in Section 2.2.

Note that the temporal residual is also calculated in the steady-state solver using a 1st-order

backward Euler method. The overall unsteady calculation algorithm is given in Algorithm 1.

for time = timeStep to endTime by timeStep do

for stage = 1 to numberStages do

newtonianIterations = 0;

converged = False;

while not converged do

R = buildResidual(q, qOld);

if initial or newtonianIterations > iterationLimit then

dRdQ = linearizeResidual(R, q, qOld);

end

dQ = calculateDeltaQ(R, dRdQ);

q += dQ;

++newtonianIterations;

converged = checkConvergence();

end

end

end

Algorithm 1: Unsteady algorithm

3.2.1 Linear Multi-step Methods Implemented

The Backward Difference Formulae (BDF) family of implicit, linear, multi-step numerical

methods were first described by Curtiss and Hirschfelder [149] and subsequently popularized

by Gear [150]. These methods were the first introduced to solve stiff ordinary differential

equations (ODE) [63] and are the most efficient at solving them. [60]

The equations for the 1st through 6th-order BDF methods (BDF1-BDF6) are given in

Eqs. (3.10a) to (3.10f), where f is the derivative of y with respect to time. [60] BDF1-BDF6

are all zero-stable. BDF1 is also called the backward Euler method and is common among
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other families of implicit methods. These methods are implicit because the unknown, y at

tn+1, is dependent on f at that same time step. They can be derived by fitting a Lagrange

interpolating polynomial to the values at each time step, differentiating that polynomial with

respect to time, and evaluating the derivative at tn+1.

yn+1 − yn = ∆tfn+1 (3.10a)

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
∆tfn+2 (3.10b)

yn+3 −
18

11
yn+2 +

9

11
yn+1 −

2

11
yn =

6

11
∆tfn+3 (3.10c)

yn+4 −
48

25
yn+3 +

36

25
yn+2 −

16

25
yn+1 +

3

25
yn =

12

25
∆tfn+4 (3.10d)

yn+5 −
300

137
yn+4 +

300

137
yn+3 −

200

137
yn+2 +

75

137
yn+1 −

12

137
yn =

60

137
∆tfn+5 (3.10e)

yn+6 −
360

147
yn+5 +

450

147
yn+4 −

400

147
yn+3 +

225

147
yn+2 (3.10f)

− 72

147
yn+1 +

10

147
yn =

60

147
∆tfn+6

Only the 1st and 2nd-order BDF methods are L-stable. Orders 3 - 6 are A(α)-stable.

Orders above 6th are not zero-stable, so they are not included. The absolute stability regions

for the BDFs 1-6 are given in Fig. 3.1. The stability region for each BDF is outside of the

curve, and in order to be A-stable, which is a requirement for L-stability, the stability region

must include the entire left half of the complex plane (negative real values). The zoomed in

view shows that the stability curves for orders 3 - 6 extend into the left half of the complex

plane, and thus the methods are not A-stable. L-stability requires that a method’s stability

function, R(z), approaches zero as z → −∞. This is shown in Eqs. (3.11) and (3.12) for

BDF1 and BDF2, respectively.

lim
z→∞

R(z) = lim
z→∞

1

1− z
= 0 (3.11)
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(a) Overall view (b) Zoomed view

Figure 3.1: Stability regions for Backward Difference Formulae orders 1-6, exterior of curves

lim
z→∞

R(z) = lim
z→∞

4±
√

16− 4 (3− 2z)

2 (3− 2z)
= 0 (3.12)

The time residual in COFFE is simply the derivative of the conservative variables, q,

with respect to time. Eqs. (3.10a) to (3.10f) can be rearranged to solve for f and expressed

as a single equation, Eq. (3.13), where k is the BDF order and the coefficients ᾱi are given

in Table 3.1. This simplification method was also employed by Newman and Anderson [9].

Rtime(qn+1) =
∂q

∂t

∣∣∣∣
n+1

≈ 1

∆t

k−1∑
i=−1

ᾱiqn−i (3.13)

Vatsa, Carpenter, and Lockard [151] identified a method by which BDF2 can be combined

with BDF3 and BDF4 to produce 2nd-order L-stable schemes with lower error constants than

the traditional BDF2 method. They called these methods BDF2OPT4 and BDF2OPT5,

where the 4 and 5 denote the number of time steps required for the calculation. BDF2OPT4

(Eq. (3.14a)) is a linear combination of BDF2 and BDF3, whereas BDF2OPT5 (Eq. (3.14b))

is a linear combination of BDF2, BDF3, and BDF4. The stability regions for BDF2OPT4

and BDF2OPT5 compared to BDF3 and BDF4 are shown in Fig. 3.2. Note that the stability
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Table 3.1: Recast Backward Difference Formulae Coefficients

k ᾱ−1 ᾱ0 ᾱ1 ᾱ2 ᾱ3 ᾱ4 ᾱ5

1 1 −1

2 3
2
−2 1

2

3 11
6
−3 3

2
−1

3

4 25
12
−4 3 −4

3
1
4

5 137
60
−5 5 −10

3
5
4
−1

5

6 49
20
−6 15

2
−20

3
15
4
−6

5
1
6

Table 3.2: Recast Optimized 2nd-order Backward Difference Formulae Coefficients

OPT ᾱ−1 ᾱ0 ᾱ1 ᾱ2 ᾱ3

4 5
3

−5
2

1 −1
6

5 25
12
γ + 11

6
β5 + 3

2
δ −4γ − 3β5 − 2δ 3γ + 3

2
β5 + 1

2
δ −4

3
γ − 1

3
β5

1
4
γ

curves for the OPT schemes do not extend into the left half of the complex plane, but that

the stability curve for BDF2OPT5 touches the vertical axis at two points. The method is

neutrally stable at those two points, which could have implications for stability in a CFD

calculation.

BDF2OPT4(β4) = (β4)BDF3 + (1− β4)BDF2 (3.14a)

BDF2OPT5(β5, γ) = (γ)BDF4 + (β5)BDF3 + (1− β5 − γ)BDF2 (3.14b)

The coefficients that provide the lowest error constant are β4 = 1
2

for BDF2OPT4 and

β5 = −5
2

+ 2
√

2 and γ = 1 − 1√
2

for BDF2OPT5. The accuracy for BDF2OPT4 and

BDF2OPT5 is still 2nd-order; however, the optimization techniques reduce the leading-order

truncation error of the BDF2 scheme by a factor of 2 and 2
5−3
√

2
≈ 2.64, respectively. [151]

Coefficients for use in COFFE with Eq. (3.13) are given in Table 3.2, where δ = (1−β5−γ).
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Figure 3.2: Stability regions for Four and Five-time-level Optimized 2nd-order Backward
Difference Formulae compared to 3rd and 4th-order Backward Difference Formulae, zoomed,
exterior of curves

3.2.2 Runge-Kutta Methods Implemented

Kennedy and Carpenter [152] conducted an extensive review of DIRK methods ranging from

2nd to 6th-order. Their review guided the selection of two L-stable SDIRK methods: a 3rd-

order accurate, three-stage method (SDIRK33) and a 4th-order accurate, five-stage SDIRK

method (SDIRK45). SDIRK33 was derived by Alexander [153] and was employed by Persson

[154]. The tableau for SDIRK33 is shown in Eq. (3.15). SDIRK45 was outlined by Hairer

and Wanner [63] and also used by Newman and Anderson [9]. The tableau for this method

is shown in Eq. (3.16).

0.4358665215 0.4358665215

0.7179332608 0.2820667392 0.4358665215

1 1.208496649 −0.644363171 0.4358665215

1.208496649 −0.644363171 0.4358665215

(3.15)
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1
4

1
4

3
4

1
2

1
4

11
20

17
50

− 1
25

1
4

1
2

371
1360

− 137
2720

15
544

1
4

1 25
24

−49
48

125
16
−85

12
1
4

25
24

−49
48

125
16
−85

12
1
4

(3.16)

The absolute stability function for RK methods is given in Eq. (3.17) from Hairer and

Wanner [61]. The stability regions for SDIRK33 and SDIRK45 are shown in Fig. 3.3. For

both methods, the entire left side of the complex plane is in the stability region, which

indicates that the methods are A-stable. Both SDIRK33 and SDIRK45 are also L-stable, as

shown in Eqs. (3.18) and (3.19).

R(z) =
det(I − zA + z1bT)

det(I − zA)
(3.17)

lim
z→∞

R(z) = lim
z→∞

−0.2376606908z2 − 0.3075995645z + 1

(−0.4358665215z + 1)3
= 0 (3.18)

lim
z→∞

R(z) = lim
z→∞

7z4/768 + z3/96− z2/8− z/4 + 1

−z5/1024 + 5z4/256− 5z3/32 + 5z2/8− 5z/4 + 1
= 0 (3.19)

3.2.3 Modified Frequency Analysis

Modified frequency analysis is akin to modified wave number analysis [155] and is a method

of analyzing the effect of discretization on spectral content within the solution of a differential

equation. Starting with the same test equation used in Dahlquist’s absolute stability analysis,

which was discussed in Section 2.2.1,

y′ = λy, y(0) = y0, λ ∈ C
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(a) SDIRK33 (b) SDIRK45

Figure 3.3: Stability regions for SDIRK methods

The analytical solution to this equation is y = y0e
λt. If we discretize this solution and march

from t to t+ ∆t,

y(t+ ∆t) = y0e
λ̃(t+∆t) = y0e

λ̃teλ̃∆t = y(t)eλ̃∆t (3.20)

This can be rearranged to solve for λ̃∆t, now called z̃, which is referred to as the modified

frequency.

λ̃∆t = z̃ = ln

(
y(t+ ∆t)

y(t)

)
= ln (R(z)) (3.21)

The quantity y(t+∆t)
y(t)

was previously defined as the stability function, R(z). By injecting

a signal, z = [0, iπ], into the natural log of the stability function, one can assess each

discretization method’s dissipative and dispersive qualities as a function of frequency. The

deviation of the imaginary component of the result from the injected signal represents

dispersion error, and the real component represents amplification error. The modified

frequency analyses for the BDF1, BDF2, SDIRK33, and SDIRK45 methods are shown in

Fig. 3.4. The imaginary component of the modified frequency is shown in Fig. 3.4a, and

deviations from the exact line represent dispersion errors. This plot shows that BDF1 and

BDF2 have similar levels of dispersion, as do SDIRK33 and SDIRK45. The amplitude error,

defined as |eRe(z̃)|, is shown in Fig. 3.4b, and this plot shows that BDF2 and SDIRK33
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(a) Dispersion error (b) Dissipation error

Figure 3.4: Modified frequency analyses for BDF1, BDF2, SDIRK33, and SDIRK45
methods.

have similar levels of dissipation. For both cases, the first-order BDF1 scheme is the worse

performer, and the fourth-order SDIRK45 scheme is the best, as expected.

3.3 Diffusion Continuation as a Nonlinear Strategy

When running COFFE unsteady, a nonlinear system of equations is formed at each stage for

SDIRK methods or each time step for BDF methods. This system, shown in Eq. (3.22) where

R is the transient residual, is solved via Newton’s method. The update to the solution vector

∆Q is solved for using Eq. (3.23), and an under-relaxation parameter, ωn in Eq. (3.24), is

applied to the update for robust convergence. For large time steps, this system of equations

can become very stiff and exceedingly difficult to solve. To alleviate this issue, constant, global

artificial diffusion, shown in Eq. (3.25), is applied to the system of equations, where ηh is

the homotopy diffusion coefficient. ηh is decreased to zero as the Newton system converges.

Typical Newton system convergence with artificial diffusion is shown in Fig. 3.5.

0 = Rn+1 = Rn +
∂Rn

∂Qn∆Qn+1 (3.22)
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Figure 3.5: Example Newton convergence history for 3rd-order, 3-stage SDIRK method.
Homotopy diffusion is bled off before convergence is declared.

∂Rn

∂Qn∆Qn+1 = −Rn (3.23)

Qn+1 = Qn + ωn∆Qn+1 (3.24)

F hd =


hjλmaxηh

∂ρ
∂xj

hjλmaxηh
∂ρui
∂xj

hjλmaxηh
∂ρht
∂xj

 (3.25)

3.4 Shock Capturing Technique

Shock capturing methods involve the inclusion of non-physical properties, such as artificial

viscosity, as described by Von Neumann and Richtmyer [81], that smooth out the apparent

discontinuity so that it may be modeled on a general numerical grid. This smoothing-out

process over-estimates the physical width of the shock, which is on the order of the mean

free path, so that it is proportional to the grid size, allowing the governing equations to be
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solved. This introduces numerical anomalies, including, but not limited to, shock position

[156] and inappropriate entropy generation [86].

COFFE utilizes artificial diffusion for shock capturing, and the present technique for

its application is given below. The conservative form of the Navier-Stokes equations, with

artificial diffusion flux added, are presented in Eq. (3.26). Note that all equations in this

section assume three spatial dimensions, no turbulence modeling is included.

∂Q

∂t
+

∂

∂xj
(F c − F v − F ad) = 0 (3.26)

Q, F c, and F v were previously defined in Eqs. (3.2) to (3.4). F ad contains the artificial

diffusion flux used for shock capturing. The current definition of F ad is given in Eq. (3.27).

Within this term, h is an element length at each quadrature point, shown in Eq. (3.28),

where φi are the basis functions. λmax, defined in Eq. (3.29), is the maximum wave speed

in the element, and εshock is the current shock sensor that is defined in Eq. (3.30). Within

εshock, κshock is a user adjustable parameter that modifies the sensitivity of the sensor.

F ad =


hλmaxεshock

∂ρ
∂xj

hλmaxεshock
∂ρui
∂xj

hλmaxεshock
∂ρht
∂xj

 (3.27)

h =
1√

∇φi ·∇φi
(3.28)

λmax = |u|+ c (3.29)

εshock =


(u·∇p)h

(u·∇p)h+κshockpc
u ·∇p > 0

0 u ·∇p ≤ 0

(3.30)

The current shock sensor, εshock, does not possess Galilean invariance, which is to say it

operates differently depending on the inertial reference frame. This is due to the usage of

the velocity field vector, u, which is independent of any rigid-body motion. The hypersonic

circular cylinder case, described in Appendix C.1, was used to demonstrate the consequences
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(a) Stationary cylinder (b) Moving cylinder

Figure 3.6: Comparison between calculated values of current shock sensor for stationary
and moving bodies.

of lack of Galilean invariance. In this case, flow in the domain is from left to right at 5 km/s.

In Fig. 3.6a the circular cylinder is stationary, and the shock sensor activates at the shock

locations, as expected. In Fig. 3.6b the circular cylinder is moving through the domain with

Vx,body = Vy,body = 5 km/s. This body motion negates the bulk flow velocity in the domain,

and it should result in the same shock pattern rotated counterclockwise 90 degrees. The

current shock sensor only activates where the bulk flow velocity is aligned with a positive

pressure gradient, and as a result, the current shock sensor is only active over a portion of

shock.

3.4.1 Modified Shock Capturing Technique

For this effort, modifications have been made to the calculation of the artificial diffusion

flux term, F ad, as well as the shock sensor. The changes to F ad were designed to vary

the application of artificial diffusion directionally within the momentum equations, in the

same manner as Olson and Lele [99]. The shock sensor was modified to detect additional

discontinuous features and apply artificial diffusion smoothly, analogous to the approach

used by Barter and Darmofal [101].
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The modified artificial diffusion flux term is shown in Eq. (3.31). Details on the changes

to include directional h, hj, and the new sensor, εs̃, are described in this section.

F ad =


hjλmaxεs̃

∂ρ
∂xj

hjλmaxεs̃
∂ρui
∂xj

hjλmaxεs̃
∂ρht
∂xj

 (3.31)

Riemannian Metric Tensor

The size and shape of an element is used to scale the amount of artificial diffusion applied

to that element in a specific direction and its overall shock sensor value. The non-directional

element length, h, used with the current shock sensor is calculated from Eq. (3.28). The inner

product results in a single value for element length, calculable at each quadrature point. This

provided information about the size of the cell, but not its shape. Numerous authors [12,

15, 99] have shown that a directional h, which accounts for element shape, can help apply

diffusion properly for anisotropic cells.

In two dimensions, determining directional element lengths for a unit square aligned

with the coordinate axes is a trivial task. In real-world problems, elements are rarely, if ever,

uniformly shaped and aligned with coordinate axes. The Riemannian metric Tensor, M, is

a rotationally invariant symmetric positive definite (SPD) tensor that specifies the elements’

size and shape by describing the mapping of the physical element in Cartesian coordinates,

{x, y, z}, to the reference element in computational coordinates, {r, s, t}. It is commonly

used for mesh generation and adaptation. [157–160]

The Riemannian metric tensor is defined as

M = DDT (3.32)

where D is a tensor containing Dij = ∂xi/∂rj, which are obtained from the element nodal

coordinates and derivatives of the basis functions. The directional h values, hj, used in

Eq. (3.31) are taken to be the square root of the main diagonal values of M, or

hj =
√
Mjj
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Figure 3.7: Temperature at the base of forward-facing step in the inviscid Mach 3 case from
Woodward and Colella [161], with the current shock sensor used, and showing non-physical
wall heating is present at the step’s forward surface.

Exponential-Entropy Gradient Sensor

The current shock sensor has been shown to operate well on viscous problems, [102] but

when it is applied to inviscid problems, especially those with blunt bodies, numerical errors

resulting in non-physical wall heating have been observed in the stagnation region. In these

regions numerical error accumulates rapidly and, with no viscosity to disperse it, causes

the simulation to fail. The base of the forward facing step in the inviscid Mach 3 case

popularized by Woodward and Colella [161] is shown in Fig. 3.7 shortly after startup using

the current shock sensor. The wall heating issue is clearly identified by high/low temperature

regions at the front surface of the step. If artificial diffusion were applied in this region, the

erroneous temperature oscillations would dissipate, and the simulation would be allowed to

proceed. The current shock sensor would need to be modified so that it would be triggered in

these areas. The resulting sensor would not be purely a “shock” sensor, but would be more

appropriately called a “smoothness” sensor.

The modified sensor is given in Eq. (3.33). It has a structure similar to the current shock

sensor, shown in Eq. (3.30). The u ·∇p term of the current shock sensor is the component

that detects the presence of a shock. This term is replaced by the weighted magnitude of

the gradient of a nondimensional exponential-entropy, s̃ = p/ργ. Nondimensional entropy

is defined as s = ln (p/ργ), and the natural log resulted in negative values that proved
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problematic. A comparison between the exponential-entropy gradient sensor and an entropy

gradient sensor is shown in Fig. 3.8. Due to the zero-crossing of entropy, the entropy gradient

sensor has a line of erroneous activation emanating from the primary bow shock below the

triple point. This line is not present in the exponential-entropy gradient sensor plot, and it

is an artifact of the form of Eq. (3.33).

The magnitude of the exponential-entropy gradient is weighted by the Riemannian metric.

The current sensor relies on a hyperbolic tangent function to smoothly apply artificial

diffusion, per recommendations of Barter and Darmofal [101]. This smoothing is modified by

multiplying the hyperbolic tangent function by the sensor value. This smoothly approaches

zero and uniformly applies smoothing away from zero, as shown in Fig. 3.9.

εs̃ = ψ tanh (10ψ) , ψ =
ξ

ξ + κs̃s̃
(3.33)

where ξ is the weighted magnitude of the gradient of a nondimensional exponential-entropy

ξ =
√
∇s̃M∇s̃T .

A comparison between the current shock sensor and the exponential-entropy gradient

sensor at the base of forward-facing step in the inviscid Mach 3 case is shown in Fig. 3.10.

For this figure, κshock = κs̃ = 0.5. Both sensors capture the upstream shock well, but the

exponential-entropy gradient sensor also activates at the face of the step, where the wall

heating error is present.
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(a) Entropy Gradient Sensor

(b) Exponential-Entropy Gradient Sensor

Figure 3.8: Comparison between entropy gradient sensor and exponential-entropy gradient
sensor on the inviscid Mach 3 case from Woodward and Colella [161].
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Figure 3.9: Modified sensor smoothing.

(a) Temperature (b) Current Shock Sensor (c) Exponential-Entropy Gra-
dient Sensor

Figure 3.10: Comparison between current shock sensor and exponential-entropy gradient
sensor at the base of forward-facing step in the inviscid Mach 3 case from Woodward and
Colella [161].
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Chapter 4

Temporal Integration Methods

Verification and Validation

For this research, a new capability was added to COFFE to allow unsteady, time-accurate

simulations with a variety of temporal integration methods. These methods range from 1st to

4th order of accuracy. The three verification and validation (V&V) test cases detailed in this

chapter were used to ensure that the code functioned properly and that outputs compare

well with accepted experimental or numerical results. A sound time-accurate solver is the

foundation for moving shock simulations, and these cases aim to build confidence that the

added capability is able to accurately model unsteady flow phenomena.

4.1 2-D Inviscid Isentropic Vortex

The 2-D inviscid isentropic vortex is a simple test case with an exact solution that has

been used by several authors to verify a numerical method’s ability to preserve a vortex

without unwanted dissipation. [162–164] For this case, a vortex is initialized and convected

horizontally over a distance u∞t in order to assess the temporal accuracy. This case was

run using the BDF1, BDF2, BDF2OPT4, BDF2OPT5, SDIRK33, and SDIRK45 methods.

For the multi-step BDF2, BDF2OPT4, and BDF2OPT5 cases, exact solutions were used to

initialize each of the previous time steps required by the method, since these methods are

not self-starting.
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Non-dimensionalized freestream values for the mean flow density, horizontal and vertical

velocities, pressure, and temperature were set as (ρ∞, u∞, v∞, T∞) = (1, 1, 0, 1). The

freestream values were perturbed by δu, δv, and δT , given in Eq. (4.1), in order to produce

the initial vortex at point (x0, y0). These initial values are similar to those of Yee, Sandham,

and Djomehri [162] but corrected for COFFE’s non-dimensionalization. All other conserved

quantities were calculated assuming isentropic flow, p/ργ = 1, and a perfect gas equation of

state, T = pγ/ρ, where γ = 1.4 is the ratio of specific heats.

δu =− β

2π
(y − y0)e(1−r2)/2 (4.1a)

δv =
β

2π
(x− x0)e(1−r2)/2 (4.1b)

δT =− β2(γ − 1)

8π2
e(1−r2) (4.1c)

where,

r =
√

(x− x0)2 + (y − y0)2.

In the perturbation equations, β = 5 is the specified vortex strength and r is the radial

distance from the vortex center. The equations for the initial conditions are given in Eq. (4.2).

u = u∞ + δu =1− β

2π
(y − y0)e(1−r2)/2 (4.2a)

v = v∞ + δv =
β

2π
(x− x0)e(1−r2)/2 (4.2b)

ρ = T 1/(γ−1) = (T∞ + δT )1/(γ−1) =

[
1− β2(γ − 1)

8π2
e(1−r2)

]5/2

(4.2c)

A rectangular grid over x ∈ [−5, 9] and y ∈ [−5, 5] was used for this case. The grid

contained 112,000 uniform triangle elements with P2 (formally 3rd-order accurate) spatial

discretization, and all of the boundaries were set to freestream characteristic. The grid is

shown in Fig. 4.1. The vortex was initially centered at (x0, y0) = (0, 0) and allowed to convect
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(a) Overall grid (b) Zoomed view of lower left corner of grid,
red dots indicate nodes

Figure 4.1: Grid for Euler vortex case

(a) Overall contour (b) Line plot at y = 0

Figure 4.2: Initial density field for Euler vortex case

horizontally for non-dimensional time t = 4 (time non-dimensionalized by L/V∞), after which

the vortex would be centered at (x, y) = (4, 0). The initial density field is shown in Fig. 4.2.

Each time-integration method was run at non-dimensional time steps of ∆t = 0.5, 0.25,

0.125, 0.0625, 0.03125, and 0.01. Density profiles at y = 0 are shown in Figs. 4.3 and 4.4.

The plots are grouped by time-integration method in Fig. 4.3 and by time step in Fig. 4.4.

The exact solution is also presented on each plot.

The SDIRK45 time-integration method provided the best resolution of the vortex for

each time step, which was expected since it is has the highest order of accuracy (4th-order).

The numerical errors present for the BDF1 case were dominated by diffusion, which served

to dissipate the strength of the vortex as the time step increased. For large time steps
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(∆t ≥ 0.25) the BDF2, BDF2OPT4, and BDF2OPT5 cases exhibited a lateral shift in the

vortex. This shift is the result of numerical dispersion errors that are dominant in even-order

schemes.

The overall error of any CFD simulation is the sum of spatial and temporal discretization

errors. This verification effort is focused on the temporal error (εt), and isolating it from the

spatial discretization error was accomplished by comparing the results at a given time step

to results at ∆t = 0.01, which Wang and Mavriplis [163] call the “numerical exact” solution.

This assumes that there is negligible interaction between the spatial and temporal errors,

and therefore the “numerical exact” solution contains the same spatial error as results for

larger time step sizes.

The errors presented in Fig. 4.5 are the RMS values of the differences in all conserved

quantities (ρ, ρu, ρv, ρet) between a given time step and the “numerical exact” values at

each of the grid points. Temporal order of accuracy, Pt, is related to εt and ∆t through the

expression εt = f
(
∆tPt

)
, order of accuracy is simply the slope of the εt versus ∆t when

plotted on a log-log plot. Verification of temporal order of accuracy for each time-integration

method is shown in Fig. 4.5. Each method matches its theoretical order of accuracy, and the

BDF2OPT methods showed the same 2nd-order accuracy as the BDF2 method, but with

a lower error coefficient, as expected. Thus, it appears the time integration methods were

implemented correctly in COFFE.

The temporal error was further decomposed using the method of Takacs [75], described

in Section 2.2.4. The error in density (ρ) was used for this assessment. The dissipation and

dispersion components of the temporal errors for each method and time step are shown

in Table 4.1. Dissipation error is only present in appreciable quantities in the odd-order

schemes (BDF1 and SDIRK33), and it is the dominant error source for BDF1. The even-

order schemes (BDF2, BDF2OPT4/5, and SDIRK45) were dominated by dispersion errors;

however, it should be noted that the overall error for SDIRK45 was orders of magnitude

smaller than the BDF2 methods at each time step.

The errors in the SDIRK45 method were too low to be detectable in the line plots shown

in Fig. 4.3. That is not the case for the BDF2 and BDF2OPT4/5 methods, and as a result

the interaction between dissipation and dispersion error can be observed in the these results.
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Figure 4.3: Density profiles for Euler vortex case at t = 4, grouped by time-integration
method
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Figure 4.4: Density profiles for Euler vortex case at t = 4, grouped by time step
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Figure 4.5: Temporal order of accuracy for BDF1, BDF2, BDF2OPT4, BDF2OPT5,
SDIRK33 and SDIRK45 methods using data from Euler vortex runs
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Figure 4.6: Density field for Euler vortex case using BDF5 after 46 time steps at ∆t = 0.0625
(C=7.5)

At the largest time step (∆t = 0.5), approximately 7% of the error for the BDF2 case

is attributable to dissipation. The BDF2OPT4/5 cases exhibit a marked decrease in the

dissipation error, relative to the dispersion error, and this is evident in the line plots. The

wiggles to the left of the density deficit, which are a characteristic feature of dispersion errors,

are more prominent in the BDF2OPT4/5 cases than in the BDF2 case. A small amount of

dissipation in the BDF2 case was effective at damping the wiggles.

The importance of numerical stability was detailed in Section 2.2.1, and A-stability was

identified as a desirable property for a numerical method to possess because it allows the CFD

practitioner to choose a time step size based on the physics of interest rather than numerical

stability. To demonstrate how an unstable method can affect a simulation, the BDF5 method,

which is not A-stable, was also run on the isentropic vortex at a relatively large time step.

The density field for this case using the BDF5 after 46 time steps at ∆t = 0.0625 (C = 7.5

calculated using Eq. (2.4)) is shown in Fig. 4.6. The striations at the top, bottom, and left

of the flow field result from the temporal instability of the underlying method.
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Table 4.1: Dissipation and dispersion components of density temporal errors in isentropic
vortex case

Method ∆t C Etotal Ediss %diss Edisp %disp

0.5 60 3.258e-04 6.868e-06 0.04 3.257e-04 99.96
0.25 30 2.580e-05 4.597e-07 0.03 2.580e-05 99.97
0.125 15 1.759e-06 1.499e-08 0.01 1.759e-06 99.99
0.0625 7.5 1.228e-07 2.045e-10 0.00 1.228e-07 100.00

SDIRK45

0.03125 3.75 2.980e-08 2.908e-11 0.00 2.989e-08 100.00
0.5 60 3.239e-03 1.765e-03 29.70 2.715e-03 70.30
0.25 30 5.752e-04 2.700e-04 22.03 5.079e-04 77.97
0.125 15 8.192e-05 3.504e-05 18.29 7.405e-05 81.71
0.0625 7.5 1.050e-05 4.365e-06 17.27 9.553e-06 82.73

SDIRK33

0.03125 3.75 1.276e-06 5.293e-07 17.22 1.161e-06 82.78
0.5 60 1.978e-02 2.509e-03 1.61 1.962e-02 98.39
0.25 30 5.399e-03 3.151e-05 0.00 5.398e-03 100.00
0.125 15 1.456e-03 7.490e-06 0.00 1.456e-03 100.00
0.0625 7.5 3.672e-04 1.604e-06 0.00 3.672e-04 100.00

BDF2OPT5

0.03125 3.75 8.543e-05 2.582e-07 0.00 8.543e-05 100.00
0.5 60 2.349e-02 8.440e-04 0.13 2.348e-02 99.87
0.25 30 7.172e-03 1.410e-04 0.04 7.171e-03 99.96
0.125 15 1.987e-03 1.426e-05 0.01 1.987e-03 99.99
0.0625 7.5 4.917e-04 1.198e-06 0.00 4.917e-04 100.00

BDF2OPT4

0.03125 3.75 1.133e-04 2.470e-07 0.00 1.133e-04 100.00
0.5 60 2.797e-02 7.297e-03 6.81 2.700e-02 93.19
0.25 30 1.078e-02 1.673e-03 2.41 1.065e-02 97.59
0.125 15 3.461e-03 2.622e-04 0.57 3.451e-03 99.43
0.0625 7.5 9.456e-04 3.708e-05 0.15 9.449e-04 99.85

BDF2

0.03125 3.75 2.243e-04 4.771e-06 0.05 2.243e-04 99.95
0.5 60 4.562e-02 4.043e-02 78.53 2.114e-02 21.47
0.25 30 3.208e-02 2.905e-02 81.99 1.361e-02 18.01
0.125 15 1.927e-02 1.766e-02 83.92 7.728e-03 16.08
0.0625 7.5 1.000e-02 9.181e-03 84.28 3.965e-03 15.72

BDF1

0.03125 3.75 4.340e-03 3.976e-03 83.90 1.742e-03 16.10
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(a) Overall grid (b) Zoomed view of cylinder

Figure 4.7: Grid for 2-d circular cylinder case

4.2 2-D Circular Cylinder

The second test case was vortex shedding around a two-dimensional circular cylinder at

a Mach number of 0.2 and various Reynolds numbers, based on cylinder diameter, D.

The computational grid for this case is shown in Fig. 4.7. It consisted of 32,000 P2

triangle elements, which were created by diagonalizing a 200-by-80 (θ-by-r) element O-

grid. The initial wall spacing was 0.001D with growth rate of 1.1. The outer boundary

was approximately 42D and set to freestream, and the cylinder boundary was set to no-slip,

adiabatic wall.

Zdravkovich [165] assembled virtually all of the available experimental, analytical, and

numerical data on circular cylinders in cross flow between 1938 and his publication in 1997,

and he identified several flow regimes characterized by Reynolds number based on cylinder

diameter. The regimes of interest for this investigation are listed below.

• Laminar vortex shedding (L3) – 48 < Re < 180

• Turbulent transition in wake (TrW) – 180 < Re < 400

• Turbulent transition in shear layer (TrSL) – 400 < Re < 200, 000
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Flow in the L31 regime is laminar and two-dimensional, whereas the TrW and TrSL

regimes are three-dimensional in nature due to turbulent transition in the wake and shear

layers, respectively. Mittal and Balachandar [166] found that three-dimensionality in the flow,

which manifests as streamwise vortices, cannot be modeled in a two-dimensional simulation.

These streamwise vortices extract energy from the vortex shedding motion, reducing the

Reynolds stresses, and ultimately reducing the magnitude of the mean base pressure and

thus the drag. For this reason, two-dimensional simulations in the L3 regime were compared

to numerical and experimental data, while simulations in the TrW and TrSL regimes were

only compared to published two-dimensional numerical results. Comparing the results in

the TrW and TrSL regimes to experimental data would not be appropriate because the

two-dimensional simulations are not capable of modeling key flow features.

Henderson [167] published results for numerical simulations at Reynolds numbers from 10

to 1,000. A curve fit of Strouhal number (St = fD/U∞) as a function of Reynolds number

of these two-dimensional cases is given in Eq. (4.3). [168] This curve fit has an average

error-of-fit of 0.0004, and it diverges from experimental and three-dimensional numerical

simulations at approximately Re = 180, which is consistent with the TrW regime, where

turbulent transition occurs in the wake.

St = 0.2731− 1.1129√
Re

+
0.4821

Re
(4.3)

4.2.1 Re = 1,200

The first set of cases investigated the impact of time step and time-integration method on

lift coefficient at Re = 1, 200, which is in the TrSL regime. Flow at this Reynolds number

is three-dimensional, with period vortex shedding and turbulent transition occurring in the

shear layer. No comparisons will be made to experimental results, as the present simulation is

two-dimensional, but comparisons will be made to Eq. (4.3), which was created using results

from other two-dimensional simulations.

Each time-integration method was run at non-dimensional time steps of ∆t = 2−n for

n = 1 to 6 and a total time of 100. Only data for time between 50 and 100 were used

1The L1 and L2 regime refer to creeping flow and laminar flow with a steady separation, respectively.
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Table 4.2: Strouhal numbers for Re = 1, 200 at various ∆t and time methods, Eq. (4.3)
value is 0.2414

∆t BDF1 BDF2 BDF2OPT4 BDF2OPT5 SDIRK33 SDIRK45

0.5 0.1621 0.1915 0.2101 0.2202 0.2331 0.2448

0.25 0.1851 0.2233 0.2297 0.2260 0.2444 0.2427

0.125 0.2037 0.2397 0.2447 0.2430 0.2434 0.2416

0.0625 0.2187 0.2426 0.2424 0.2422 0.2421 0.2414

0.03125 0.2302 0.2421 0.2417 0.2416 0.2415 0.2414

0.015625 0.2365 0.2416 0.2414 0.2414 0.2414 0.2414

Table 4.3: RMS lift coefficient for Re = 1, 200 at various ∆t and time methods

∆t BDF1 BDF2 BDF2OPT4 BDF2OPT5 SDIRK33 SDIRK45

0.5 0.0944 0.7185 0.8245 0.8856 0.9819 1.1273

0.25 0.4862 0.9640 1.0548 1.0734 1.0768 1.1475

0.125 0.7317 1.0491 1.0609 1.0839 1.1314 1.1501

0.0625 0.8865 1.1074 1.1338 1.1390 1.1457 1.1511

0.03125 0.9893 1.1423 1.1486 1.1500 1.1505 1.1514

0.015625 1.0544 1.1502 1.1515 1.1516 1.1515 1.1516

for subsequent analyses. Lift coefficient grouped by time-integration method is plotted in

Fig. 4.8. The Strouhal number and the RMS value for lift coefficient, Cl,RMS, were calculated

for each of the solutions, and the values are presented in Tables 4.2 and 4.3, respectively.

The SDIRK45 time-integration method provided the best representation of the lift

coefficient for each time step, which was expected since it is has the highest order of accuracy

(4th-order). BDF1 introduced the most numerical error, lowering the Strouhal number and

decreasing the RMS amplitude of the periodic lift coefficient. Each method, except BDF1,

approached the same Strouhal number (0.2414) as ∆t decreased, and that value matched the

number calculated from Eq. (4.3) to 4 significant digits. SDIRK45 converged to 0.2414 for

∆t < 0.0625, which is a 4 times larger time step than BDF2OPT4/5. Each method, except

BDF1, also approached the same Cl,RMS value of 1.15.

A comparison between the density fields for the SDIRK45, SDIRK33, BDF2, and BDF1

methods at t = 100 for ∆t = 0.125 is shown in 4.11. The contour lines reveal that the shed

vortices maintain their strength longer in the higher-order SDIRK methods. The vertical
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Figure 4.8: Lift coefficient for circular cylinder at Re = 1, 200, grouped by time-integration
method
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Figure 4.9: Strouhal numbers for Re = 1, 200 plotted versus 1/∆t for various time methods

Figure 4.10: RMS lift coefficient for Re = 1, 200 plotted versus 1/∆t for various time
methods
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Figure 4.11: Density field for circular cylinder at Re = 1, 200 at t = 100 for SDIRK45,
SDIRK33, BDF2, and BDF1 methods using ∆t = 0.125
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position of the vortices downstream of the circle for the SDIRK methods is more uniform

than those in the BDF2 method, which may be attributable to the higher dispersion error

in the latter method. SDIRK45 is an even-ordered scheme, but the overall temporal error is

much lower, which could be why the vortical disorder is not evident in its wake.

4.2.2 Re = 100-400

Periodic vortex shedding was investigated for five Reynolds numbers: 100, 200, 250, 300, and

400. These match the Reynolds number cases that were investigated by Rajani, Kandasamy,

and Majumdar [169] in the L3 and TrW flow regimes. For each of the cases, the flow was

initialized with the flow fields generated by the Re = 1, 200 cases. This forced the periodic

motion to set up more rapidly than it would have naturally, particularly in the Re = 100

case, and it is not believed to have adversely affected the current results because they match

well with available data. All cases were run to t = 200 with ∆t = 0.0625, and only data from

100 < t ≤ 200 were used for calculations to ensure that any effects from the initial flow field

were no longer present in the domain. Lift and drag coefficients for Re = 100−400 are given

in Fig. 4.12.

The Strouhal number and mean drag coefficient variation with Reynolds number is

shown in Fig. 4.13. The calculated Strouhal number matched the curve fit provided by

Henderson [167] (Eq. (4.3)) to within 1%, and theRe = 100 result matched experimental data

from Williamson [170] to within 0.7%. As Reynolds number increased, the current results

deviated from Williamson’s data, due to the flow three-dimensionality described by Mittal

and Balachandar [166]. The discontinuity between 175 and 250 is the result of two instability

modes that are present in the TrW regime, which are further described in Williamson [170,

171]. The calculated mean drag coefficients were 2-4% higher than the values calculated by

Rajani, Kandasamy, and Majumdar [169].

Comparisons of Strouhal number, RMS lift coefficient, mean drag coefficient, and base

pressure coefficient atRe = 300 between the present numerical results and previous numerical

and experimental results is shown in Table 4.4. The current results more closely aligned with

the two-dimensional simulations by Mittalt and Balachandar [172], with values of Strouhal

number and base pressure coefficient matching to within approximately 0.5% and lift and
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Figure 4.12: Lift and drag coefficients for circular cylinder at Re = 100, 200, 250, 300, and
400
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(a) Strouhal number (b) Mean drag coefficient

Figure 4.13: Variation in Strouhal number and mean drag coefficient with Reynolds number
for 2-d circular cylinder

Table 4.4: Comparison between computations and measurements for circular cylinder at
Re = 300

St ClRMS
Cd Cpbase

Current results 0.212 0.662 1.42 -1.22

Rajani et al. [169] 2-d 0.215 0.602 1.37 -1.17

Mittal and Balachandar [166] 2-d 0.213 0.650 1.38 -1.22

Exp. Norberg [173] 0.203 0.435

Exp. Williamson [171] 0.203 -0.96

Exp. Wieselsberger [174] 1.22

Rajani et al. [169] 3-d 0.195 0.499 1.28 -1.01

Mittal and Balachandar [166] 3-d 0.203 0.380 1.26 -0.99

drag coefficients matching to within 3%. The current results significantly deviated from

experimental measurements and three-dimensional simulations, which was expected as Re =

300 lies in the TrW flow regime where flow three-dimensionality must be taken into account.

4.3 Taylor-Green Vortex

The Taylor-Green vortex is an established test case that is used to assess a code’s ability to

model the decay of turbulent kinetic energy. Taylor and Green [175] proposed a simple and

complete solution to the equations of motion as the starting point to study the “production
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of small eddies from large ones.” The initial conditions consist of a single vortex set up in a

cubic volume. Atkins [176] provided general equations for the starting velocity and pressure

fields.

The specific initial conditions and recommended post-processing analyses were supplied

by the AIAA First International Workshop on High-Order Methods in Computational Fluid

Dynamics, with one alteration made to the geometry. The test case specifies that the problem

shall be solved on a triply-periodic cube of sides −πL ≤ x, y, z ≤ πL. Atkins [176] showed

that results on this domain were identical (to machine zero) to results on a reduced domain

with symmetric boundary conditions, 0 ≤ x, y, z ≤ πL, so the current results were run on

this reduced domain.

The initial flow field is given by Eq. (4.4). The flow conditions are Re = 1, 600 and

M0 = 0.1 with a uniform temperature, T = T0. The fluid is a perfect gas with γ = 1.4 and

Pr = 0.71. The results were non-dimensionalized in the following way: divide t by L
V0

, Ek by

V 2
0 , ε by

V 3
0

L
, E by

V 2
0

L2 .

u = V0 sin
(x
L

)
cos
( y
L

)
cos
( z
L

)
(4.4a)

v = −V0 cos
(x
L

)
sin
( y
L

)
cos
( z
L

)
(4.4b)

w = 0 (4.4c)

p = p0 +
ρ0V

2
0

16

(
cos

(
2x

L

)
+ cos

(
2y

L

))(
cos

(
2z

L

)
+ 2

)
(4.4d)

The grids consisted entirely of P2 hexahedral elements. Three levels of refinement were

run: 323, 643, and 1283. Since the domain was reduced by half in each direction from the

original problem statement, it is appropriate to compare these results to grids of 643, 1283,

and 2563, respectively, for the full domain. The 4th-order SDIRK45 time-integration method

was used with a time step of 0.01. Time steps of 0.04 and 0.0025 were also run for the 1283

to verify temporal convergence. Isosurfaces of Q-criterion2 equal to 0.0001 shaded by the

2Q-criterion was specified by Hunt, Wray, and Moin [177] and is used for vortex identification. A vortex
is defined where Q = 1/2[|Ω|2 − |S|2] > 0.
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z-component of vorticity for select time steps are shown in Fig. 4.14. These results are for

the 1283 grid at ∆t = 0.0025, and the results are mirrored and replicated so that they are

comparable to simulations of the triply-periodic full grid.

The present results are compared to results from Rees et al. [178], who used a spectral

code on a 5123-element, full-domain grid. Spectral methods are highly accurate, and thus

ideal for use as a reference, but they can only be easily applied to simple domains, like

the triply-periodic cube of this case. [179] The temporal evolution of kinetic energy, Ek,

integrated over the domain is displayed in Fig. 4.15. The 323 grid in Fig. 4.15a shows a lower

kinetic energy value for t ≥ 12, which indicates that dissipation rate is spatially dependent

due to the spectral cutoff at high wave numbers. The time step values in Fig. 4.15b show a

possible, albeit less pronounced, time-step dependence on dissipation rate.

Kinetic energy dissipation rate, ε, can be calculated two ways:

• Directly from the integrated kinetic energy, ε = −dEk/dt

• Using the relationship between enstrophy and dissipation rate for incompressible flow,

ε = 2 µ
ρ0
E

Dissipation calculated using −dEk/dt is shown in Fig. 4.16, and calculated using enstrophy,

E , which is the square of vorticity integrated over the domain, is shown in Fig. 4.17. The two

methods for calculating dissipation rate were in agreement, with one exception: Fig. 4.16a

shows an increased dissipation rate after the peak for the 323 grid, as was indicated by the

temporal evolution of kinetic energy shown in Fig. 4.15a. This feature was not picked up in

the enstrophy calculated dissipation rate, as shown in Fig. 4.16a. The time step values in

Figs. 4.16b, 4.16c, 4.17b and 4.17c indicate that time-step refinement brings the dissipation

rate closer to the spectral values. The 1283 grid at ∆t = 0.0025 matched the time of peak

dissipation to 0.0075 and the magnitude of the peak to within 1%. These results show that

COFFE is able to match the accepted dissipation results from a highly-resolved simulation

using a spectral solver. Modeling the correct dissipation rate is critical to properly simulating

time-resolved, vorticity-dominated flows.

Isocontours of the dimensionless vorticity norm at levels of 1, 5, 10, 20, 30, on a subset of

the x/L = −π face at t = 8 are shown in Fig. 4.18 for the 1283 grid at ∆t = 0.04, 0.01, 0.0025
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(a) t = 1 (b) t = 5

(c) t = 9, max dissipation rate (d) t = 13

(e) t = 17

Figure 4.14: Taylor-Green vortex isosurfaces of Q-criterion = 0.0001 colored by the z-
component of vorticity for the single-octant reduced 1283 grid at ∆t = 0.0025
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(a) All grids at ∆t = 0.01 (b) 1283 grid at ∆t = 0.04, 0.01, 0.0025

Figure 4.15: Temporal evolution of kinetic energy integrated over the domain compared to
results from Rees et al. [178] Note: results shown are from single-octant reduced grids.

compared to the spectral results of Rees et al. [178] The contours appear to vary with time

step, which may indicate that the results have a time-step dependency.

The kinetic energy spectra can be calculated as a function of wave number, E(K), for

these cases using the technique detailed by Pope [180] and outlined here. The spatial cross

correlation of the velocity vector is given as

Rij(x) = 〈ui(x0), uj(x0 + x)〉. (4.5)

Taking the three-dimensional Fourier transform of this results in the energy spectrum tensor,

Eij(K), which is a function of the wave number vector, K.

Eij(K) =
1

(2π)3

∫∫∫ ∞
−∞

e−iK·xRij(x)dx (4.6)

If we let i = j, x = 0, and invert the Fourier transform to solve for Rii,

Rii = 〈u2
i 〉 =

∫∫∫ ∞
−∞

Eii(K)dK (4.7)

The turbulent kinetic energy is defined as k = 1
2
〈u2

i 〉. If we only consider the magnitude of

the Fourier modes, neglecting directionality, and let K = |K|, we can calculate the turbulent
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(a) All grids at ∆t = 0.01 (b) 1283 grid at ∆t = 0.04, 0.01, 0.0025

(c) 1283 grid at ∆t = 0.04, 0.01, 0.0025,
zoomed to peak

Figure 4.16: Temporal evolution of kinetic energy dissipation, calculated using −dEk/dt,
compared to results from Rees et al. [178] Note: results shown are from single-octant reduced
grids.
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(a) All grids at ∆t = 0.01 (b) 1283 grid at ∆t = 0.04, 0.01, 0.0025

(c) 1283 grid at ∆t = 0.04, 0.01, 0.0025,
zoomed to peak

Figure 4.17: Temporal evolution of kinetic energy dissipation, calculated using enstrophy,
compared to results from Rees et al. [178] Note: results shown are from single-octant reduced
grids.
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(a) 1283 grid at ∆t = 0.04, 0.01, 0.0025 (b) 1283 grid at ∆t = 0.04

(c) 1283 grid at ∆t = 0.01 (d) 1283 grid at ∆t = 0.0025

Figure 4.18: Isocontours of the dimensionless vorticity norm at levels of 1, 5, 10, 20, 30,
on a subset of the x/L = −π face at t = 8, compared to results from Rees et al. [178] Note:
results shown are from single-octant reduced grids.
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kinetic energy distribution as a function of wave number by integrating Eii over spheres of

radius K.

k =

∫ ∞
0

∮
1

2
Eii(K)dS(K)dK. (4.8)

We go on to define E(K) as the turbulent kinetic energy spectral distribution as a function

of wave number.

E(K) =

∮
1

2
Eii(K)dS(K) (4.9)

The turbulent kinetic energy spectra as a function of wave number, E(K), for all three

levels of grids at ∆t = 0.01 are shown in Fig. 4.19. Higher wave numbers denote smaller

eddy sizes, and the cutoff wave numbers decrease with number of elements due to implicit

filtering. The k−5/3 slope denotes the theoretical inertial-range scaling of the turbulent energy

spectrum given by Kolmogorov. The calculated slopes for these spectra are approximately

-1.8, which is 7.8% lower than the theoretical −5/3 value. This difference could be due to

the fact that there is no energy influx into the domain to offset the energy dissipated by

viscosity, which is a key assumption in Kolmogorov’s inertial-range k−5/3 slope. [181] Only

the ∆t = 0.01 spectrum for the 1283 grid is shown because the effect of time step on the

spectra was negligible.

4.4 Summary

The convecting isentropic vortex case was used to verify the order of accuracy of the time

integration methods that were implemented. Order of accuracy relates to the rate of change

of the temporal error with respect to changes in time step, but the isentropic vortex results

also showed that the temporal error also decreased as order of accuracy increased at a given

time step. This demonstrates that concept that increasing the order of accuracy itself results

in lower temporal error.

Results from the isentropic vortex case were also used to establish the dissipative and

dispersive components of the temporal error for each method. Dissipation was present in
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Figure 4.19: Energy spectra for all grids at ∆t = 0.01. k−5/3 slope line is included for
reference.
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appreciable quantities for the odd-order methods, and dispersion dominated in even-order

methods. At larger time steps, the amount of dissipation relative to dispersion began rising

in the 2nd-order methods, but not to the level seen in the 1st and 3rd-order methods. One new

finding in this work was that the BDF2OPT4/5 methods tended to reduce the dissipation

rise for larger time steps. The result of this decrease in dissipation was an accentuation of

the wiggles upstream of the vortex that were created by the dispersion error.

The second test case, periodic vortex shedding around a two-dimensional circular cylinder,

was used to assess the effects of temporal error on a less-trivial case, for which a wealth of

experimental and numerical data exist. The Re = 1, 200 runs showed that the higher-order

SDIRK schemes reached temporal convergence with respect to Strouhal number and RMS

lift coefficient more rapidly than the lower-order BDF methods, as expected. The SDIRK

methods were able to propagate vortex structures more uniformly and maintain the vortex

strength better than the BDF methods, for a given time step. One key feature to take

away from this portion of the investigation is the importance of time-convergence studies

for unsteady problems, especially those using lower-order time-integration methods. Just as

grid-convergence studies should accompany steady problems, so too should time-convergence

studies be included with unsteady ones.

Circular cylinder cases were also run at Reynolds numbers from 100 to 400 for validation.

Experimental comparisons were only appropriate for the Re = 100 case, and the Strouhal

number matched experimental data from Williamson [170] to within 0.7%. The remaining

cases for Reynolds numbers from 200 to 400 were compared to accepted 2d numerical results.

The Strouhal number matched the numerical data curve fit of Henderson [167] to within 1%,

and the mean drag coefficient matched results from Rajani, Kandasamy, and Majumdar

[169] to 2-4%.

The Taylor-Green vortex case tested COFFE’s ability to handle vortex dynamics and

turbulent dissipation. The current results compared favorably with the highly-resolved

spectral results provided by Rees et al. [178]. Specifically the 1283 grid at ∆t = 0.0025

matched the kinetic energy dissipation peak time to within 0.0075 and magnitude to within

1%.
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Chapter 5

Shock Simulations

Modeling moving shock waves is the crux of this dissertation; however, stationary shock

waves were also be considered in order to assess the viability of shock capturing techniques

applied to a high-spatial-order solver. The goal was to assess how the modified shock

capturing technique, described in Section 3.4, performs on non-shock-aligned grids made

up of tetrahedra and triangles. The stationary shock case was used to evaluate the shock

capturing techniques independent of time, and the moving shock cases were used to evaluate

the combined effect of high spatial and high temporal order.

The modified shock capturing technique was applied to three inviscid cases: the blunt-

body bow shock, the planar Noh [118] problem, and the Mach 3 forward-facing step of

Woodward and Colella [161]. COFFE’s current shock capturing approach failed when running

on inviscid cases because of its inability to dissipate numerical errors, so the modified

technique was employed on inviscid cases to demonstrate that it could manage this issue.

5.1 Blunt-Body Bow Shock

The inviscid bow shock case was introduced by Scott Murman of NASA Ames Research

Center at the AIAA Fifth International Workshop on High-Order Methods in Computational

Fluid Dynamics (HOW5). It was designed to test the effectiveness of shock-capturing schemes

for a steady, two-dimensional blunt body in inviscid, supersonic flow. This case is of particular

interest because the large stagnation region on the blunt body allows numerical errors
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produced at the shock to accumulate at the surface rather than convecting downstream.

This case also is useful for testing the shock sensor’s ability to operate on grids with a

variety of element sizes and aspect ratios.

The geometry, pictured in Fig. 5.1, consisted of a flat center section one unit long, flanked

by two quarter circles of radius one-half unit. The domain does not include the aft section

because the focus of the test case was on the shock capturing region, not the wake. Although

top-bottom symmetry exists, Murman elected to include the full domain to support any

spurious flow behavior that may arise. The left and right boundaries were inflow and outflow,

respectively, and the body surface boundary was an inviscid (slip) wall. The inflow conditions

were uniform Mach 4.

Families of P1 quadrilateral grids with 5 refinement levels, designated grids 0 (coarse)

through 4 (fine), were provided by the workshop. Triangle grids were created by diagonalizing

the quadrilateral grids. The top half of the coarsest grid is shown in Fig. 5.1. The grids were

shock-aligned using the standard OVERFLOW [182] 2nd-order central-differencing scheme

with 2nd- and 4th-order dissipation blended using a pressure sensor. Refinement was done by

increasing the cell clustering in the shock and surface regions. The shock region was in the

same location for each grid refinement level, and as a result, the calculated shock location on

coarse meshes may not be within the refined region. These grids provide a good test for the

utility of Riemannian metric within the exponential-entropy gradient sensor because they

contain cells with high aspect ratios that are oriented in a variety of ways with respect to

the incoming flow.

To reach steady state, the steady residual, as defined by the RMS of the residuals in

all equations and cells, was driven to machine zero. A sample convergence history plot is

shown in Fig. 5.2. For grid 0, the bow shock extended upstream of the refinement region

and into cells that were too large to accommodate shock capturing. Machine-zero steady

state was only reached for grids 1 through 4. Grids 3 and 4 required the addition of global

artificial diffusion (see Section 3.3) in order to reach steady state. A discussion of the issues

encountered will follow the presentation of the converged results. Steady state was also

reached on two triangle grids created by diagonalizing the quadrilateral grids 2 and 3. Plots
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Figure 5.1: Top half of grid 0 for inviscid bow shock case.

of density, temperature, local Mach number, and pressure for grid 4 with quadrilaterals are

shown in Fig. 5.3. The sonic line is shown in the local Mach number plot.

Contours of the local Mach number downstream of the shock on grid 2 with triangles are

shown in Fig. 5.4. The computational mesh is overlaid to demonstrate that the solution is

smooth and does not conform to the underlying mesh structure. The contours of constant

Mach number form concentric rings about the stagnation point. This is an indication that

the solution is independent of mesh topology, and that COFFE, with the modified shock

capturing technique, is able to operate on non-shock-aligned grids.

A line plot of pressure along the stagnation streamline for quadrilaterals on grids 1

through 4 is shown in Fig. 5.5. This plot clearly shows the impact of grid refinement on the

thickness of the captured shock. The shock was not fully captured within the refinement

region of grid 1 because the location where refinement as implemented remained constant

for each grid level. As a result artificial diffusion was applied in the larger cells upstream of

the refinement region, and the shock was smeared across a wider area, causing this shock

to be much thicker than the shocks of grids 2 through 4. The solver was able to handle the

thicker shock for grid 1, but the issue is exacerbated with the larger cells of grid 0, and a

solution was not reached.
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Figure 5.2: Non-linear convergence for inviscid bow shock case with P1 quadrilaterals on
grid 1.

Figure 5.3: Density, temperature, local Mach number, and pressure for inviscid bow shock
case with quadrilaterals on grid 4. The sonic line is indicated in the local Mach number plot.
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Figure 5.4: Local Mach number contours for inviscid bow shock case with triangles on grid
2, zoomed to stagnation region with computational meshed overlaid.

Two parameters were used for error quantification: the RMS error in the total enthalpy,

Eq. (5.1), and a comparison of the stagnation pressure to the pressure resulting from the

Rayleigh-Pitot formula. The total enthalpy should remain constant for steady inviscid flow,

which makes it an ideal candidate for error quantification, and stagnation pressure was chosen

because it is often required in engineering applications.

ErrH =

√∫
Ω

(H −Href )2dV∫
Ω
dV

(5.1)

Total enthalpy error and stagnation pressure error for quadrilateral grids 1-4 and triangle

grids 2-3 are shown in Fig. 5.6 plotted as a function of the inverse of the square root of the

number of degrees of freedom (Ndofs). They are plotted along side example results from

OVERFLOW provided by Murman in the HOW5 case description. The total enthalpy error

is less sensitive to modeling parameters (κs̃ and global diffusion level) than the stagnation

pressure error. This is reasonable because the total enthalpy error is an integrated quantity

and the stagnation pressure error is a point quantity.
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(a) Full view

(b) Base of bow shock (c) Top of bow shock

Figure 5.5: Pressure along stagnation streamline for inviscid bow shock cases with
quadrilaterals on grids 1-4.
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(a) Total Enthalpy Error (b) Stagnation Pressure Error

Figure 5.6: Error assessment for inviscid bow shock case.

The density gradient magnitude for grids 2 and 3 with quadrilaterals and triangles is

shown in Fig. 5.7. At steady state, there is little discernible difference between results on

quadrilateral and triangle grids. Reaching steady state with the triangle grids required the

addition of more global diffusion than the quadrilateral grids, 0.005 for triangles compared

to 0.001 for quadrilaterals.

Path to Steady State

Grids 2-4 required the addition of global diffusion in order to reach steady state. Without

global diffusion, numerical error from the shock accumulates at the stagnation region. An

example of the early stages of this error accumulation is shown in Fig. 5.8, which shows the

stagnation region of grid 4 run with quadrilaterals and no global diffusion. Waves emanating

from the shockwave on the left side of the figure are focused on the stagnation point, where a

small aberration develops along the stagnation streamline. This resembles a carbuncle, only

at the stagnation surface rather than the shock surface. If allowed to progress, a triangular

region of stagnant fluid forms, creating a fluidic obstruction that the flow above and below

is redirected around. Artificial global diffusion dissipated these waves before they reached

the surface and began amassing.
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(a) Grid 2 quads (b) Grid 2 tris (c) Grid 3 quads (d) Grid 3 tris

Figure 5.7: Density gradient magnitude comparison for grids 2 and 3 with quadrilaterals
and triangles.

Figure 5.8: Density gradient magnitude in stagnation region of grid 4 with quadrilaterals
with no global diffusion.
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5.2 Planar Noh Problem

Noh [118] introduced a validation case for studying moving shocks in which a gas with

velocity u∞ = −1 impinges on a rigid wall at the origin. A right-ward moving shockwave

emanates from the wall, and the downstream conditions and shock speed are known from

inviscid calculations. The planar shock case from Noh is simulated using the Euler equations,

which presents a challenge for numerical techniques operating in an Eulerian reference frame

because a shock is treated as a discontinuity that travels across a finite numerical grid. Noh’s

intent for this test problem was to investigate errors that arise from using artificial viscosity

based shock capturing techniques and compare those to errors from his own technique that

used artificial viscosity and heat flux.

Zaide and Roe [183] showed that the initial conditions for the planar Noh problem can

be reduced to a family of conditions, given in Eq. (5.2), with Mach number, M0, as a free

parameter. The conditions downstream of the shock are provided in Eq. (5.3), with the shock

speed, S, calculated from Eq. (5.4). The downstream conditions are calculated directly from

the jump condition.

ρ0 = 1, u0 = −1, p0 =
1

γM2
0

(5.2)

ρ = 1 +
1

S
, u0 = 0, p = p0 + 1 + S (5.3)

S =
1

4

(
(γ − 3) +

√
(γ + 1)2 +

16

M2
0

)
(5.4)

The Noh problem was run at Mach numbers 4 and 10 on a family of P1 rectangular grids

with quadrilateral elements. This problem is nominally one-dimensional, but COFFE does

not currently support the use of only one-dimensional elements, so two-dimensional grids

were used, each with a length-to-height aspect ratio of 2-to-1. Four refinement levels were

created, and each refinement level doubled the element count in each direction. The grid

levels are identified by the number of degrees of freedom (DOFs) in the x-direction: 101,

201, 401, and 801. Grid 101, which consists of 100-by-50 quadrilateral elements, is shown
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Figure 5.9: Noh problem grid 101 (100-by-50 elements)

Table 5.1: Calculated Conditions for Planar Noh Cases

Case 1 Case 2

Mach 4 10
S 0.25 0.2083
ρ0 1 1
p0 4.464× 10−2 7.143× 10−3

T0 0.0625 0.01
ρ 5 5.801
p 1.295 1.215
T 0.3625 0.2933

ρ/ρ0 5 5.801
p/p0 29 170.2
T/T0 5.8 29.33

in Fig. 5.9. The conditions upstream and downstream of the shock wave, as calculated by

Eqs. (5.2) to (5.4), are provided in Table 5.1. κs̃ was set to 0.5 for each of the runs. Each

case was run with a time step of 0.001 for a total time of 2 using the 3rd-order SDIRK33

scheme. Time was non-dimensionalized by L/u∞.

Surface plots of density for the Mach 4 case on each grid level are shown in Fig. 5.10.

These plots indicate that the flow is one-dimensional and also show how the shock becomes

sharper with increasing refinement. Plots from the Mach 10 case show similar results. The

coefficient of variation (cv) of density in the vertical direction at each axial location was also

used to further quantify how one-dimensional the flow fields were. Coefficient of variation
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(a) Grid 101 (b) Grid 201

(c) Grid 401 (d) Grid 801

Figure 5.10: Surface plots of density for Mach 4 planar Noh case at each grid refinement
level.

is the ratio of the standard deviation to the mean, and it is a measure of the variability

within a data set. Line plots of cv for Mach 4 and 10 cases on each grid level are shown in

Fig. 5.11. Grid level 801 had a peak cv of 0.011 and 0.014 in the shock region for Mach 4

and 10, respectively. In the region downstream of the shock, at x = 0.2, cv values for Mach

4 and 10 were 0.0007 and 0.001, respectively. All subsequent analyses will use data from the

centerline only.

Values of the exponential-entropy gradient sensor for the Mach 4 at each refinement level

are shown in Fig. 5.12. In each plot the values range from 0 to 0.25. There is no vertical

gradient in the sensor, and the horizontal gradient scales with grid refinement level.

Line plots of pressure, temperature, and density at t = 2 for the Mach 4 and 10 cases are

shown in Figs. 5.13 and 5.14, respectively. Each plot contains data from the centerline of the

domain for each grid refinement level along with the exact solution. The shock thicknesses,

as defined by Gilbarg and Paolucci [1] in Eq. (5.5), for the Mach 4 and 10 cases for each grid
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(a) Mach 4 (b) Mach 10

Figure 5.11: Coefficient of variation of density for Mach 4 and 10 planar Noh case at each
grid refinement level.

(a) Grid 101 (b) Grid 201 (c) Grid 401 (d) Grid 801

Figure 5.12: Exponential-entropy gradient sensor values for Mach 4 planar Noh case at
each grid refinement level.
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Figure 5.13: Pressure, temperature, and density along centerline for Mach 4 planar Noh
case at each grid refinement level.

refinement level are shown in Fig. 5.15. The following observations were made from these

figures:

• The shock speed appears to be correct for each of the cases shown, as indicated by the

location of the jump compared to the exact location.

• The shock thickness decreases linearly with increasing Ndofs in the x-direction.

• Wall heating, described by Noh [118], is present when the exponential-entropy gradient

sensor was used. Previous runs of this case with the current sensor (not shown in this

document) also displayed wall heating.

Thickness =
u2 − u1∣∣∂u
∂x

∣∣
max

(5.5)

5.3 Mach 3 Forward-Facing Step

The two-dimensional inviscid Mach 3 forward-facing step case was introduced by Emery

[184], popularized by Colella and Woodward [185], and run most recently by Hendrickson,

Kartha, and Candler [186]. This case is useful for assessing the shock sensor’s ability to track

a complex, unsteady shock structure. Additionally, and similar to the bow shock problem,
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Figure 5.14: Pressure, temperature, and density along centerline for Mach 10 planar Noh
case at each grid refinement level.

Figure 5.15: Shock thickness for Mach 4 and 10 planar Noh cases at each grid refinement
level. Slope is unity.
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Figure 5.16: 75-by-25 quadrilateral grid for inviscid step case.

the stagnation region at the base of the step allows flow irregularities produced by numerical

error at the shock to accumulate at the surface rather than convecting downstream. Previous

attempts to run this case with the current shock sensor have failed due to an accumulation

of numerical error in the stagnation region of the step that caused the simulation to crash

because the accumulated error does not convect out of volume and there is no dissipation to

remove it.

The geometry for this case was a 3-by-1 rectangular domain with a 20% vertical

step located 20% from the inlet. The left and right boundaries were inflow and outflow,

respectively, and the top and bottom boundaries were inviscid (slip) walls. The Euler

equations were solved with a uniform Mach 3 inflow. The modified shock sensor parameter,

κs̃, was set to 0.1 for all cases. Each run was started impulsively with the entire domain

initialized to the freestream value of Mach 3.

Families of P1 and P2 grids were created by starting with a 75-by-25 grid (minus the step

region) and refining by doubling the cell count in each direction up to 2400-by-800. Grids

consisting of uniform quadrilaterals were created at each refinement level. Grids of triangular

elements were created by diagonalizing the quadrilateral elements, and they will be referred

to by the quadrilateral grid that was used create them. The 75-by-25 quadrilateral grid is

shown in Fig. 5.16.

Cases were run with the BDF2, SDIRK33, and SDIRK45 temporal integration schemes.

In order to assess spatial sensitivity, all of the grid combinations were run with the SDIRK33
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Table 5.2: Temporal Sensitivity Runs for Mach 3 Forward-Facing Step

∆t BDF2 SDIRK33 SDIRK45

0.0025 X
0.005 X X
0.01 X X X
0.02 X X X
0.04 X X

method and ∆t = 0.01. Temporal sensitivity was assessed by running the three temporal

integration methods with various time step sizes, defined in Table 5.2, on the 2400-by-800

P1 quadrilateral grid.

The temporal evolution of the domain is shown in Fig. 5.17. Density contour plots are

shown for t = 1 to 10 in increments of 1 on a 2400x800 grid of P1 quadrilaterals using the

SDIRK33 integration scheme and ∆t = 0.01. At t = 1 the bow shock created by the forward

facing step grows out from the step. The bow shock has reaches the top wall and reflects

down from it by t = 2 and a weak shock is visible just downstream of the sharp corner

expansion. The shock reflecting from the top wall has crosses through the weak corner shock

by t = 3 and reflects off of the bottom wall by t = 4. At t = 5 a normal shock is seen forming

between the initial bow shock and the top wall, and at t = 6 a normal shock is present

between the first reflected shock and the bottom wall. Also at t = 6 a Kelvin-Helmholtz

instability (KHI) arises along the slip line emanating from the upper shock triple point. For

t = 7− 10, the normal shocks grow in height, the shock system continues to move upstream,

and the KHI along the slip lines emanating from the upper and lower shock triple points

become more prominent. A vortex is present at the base of the step for times t = 4 and

above. Analysis of the temporal evolution of the density gradient magnitude indicates that

this vortex is the result of trapped numerical error from the intersection of the bow shock

and the lower wall.

Contour plots of density, temperature, and pressure are shown in Fig. 5.18 at t = 10

for P1 quadrilaterals on the 2400x800 grid using SDIRK33 and ∆t = 0.01. The slip line

emanating from the shock triple point where the initial bow and normal shocks meet is
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

(g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10

Figure 5.17: Time evolution of shock system development as indicated by density contours
for the inviscid step case with the P1 quadrilateral 2400x800 grid using the SDIRK33 and
∆t = 0.01.
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clearly visible in the density and temperature plots, and it is not shown in the pressure plot,

as expected since pressure is constant across a slip line.

The density gradient magnitude plotted on a log scale was found to highlight flow features

well, and as a result it is used in subsequent spatial and temporal comparisons. Density

gradient magnitude contour plots are shown in Fig. 5.19 for P1 quadrilateral grids 600x200,

1200x400, and 2400x800 using SDIRK33 and ∆t = 0.01 at t = 10. As the grid is refined,

the shock surfaces become sharper, and the slip lines emanating from the shock triple points

evolves from a diffused region to a distinct KHIs. Many authors [161, 186–190] that have

reported a KHI, which Isaev and Lysenko [187] believe to be driven by small oscillations in

the entropy field at the triple point. The exponential-entropy gradient sensor values for the

same grids at t = 10 are shown in Fig. 5.20. As the grid is refined, the sensor is active over

a smaller region at the shocks and in the region downstream of the expansion corner.

A comparison of the density gradient magnitude on P1 and P2 grids, with the same

number of degrees of freedom, composed of quadrilaterals and triangles, is shown in Fig. 5.21,

again at t = 10 using SDIRK33 with ∆t = 0.01. There is more small-scale noise in the P2

results, but the implications of this are not known. The onset of the KHI is sooner in the

P2 results, which could be due to the additional small-scale noise exciting unstable wave

numbers. There were minor differences in the flow features between the P1 and P2 grids,

as indicated by the figures. The key difference appears to be the height of the unsteady

region on the bottom surface downstream of the step. The region is taller in the P2 results.

The major difference between the quadrilateral and triangle grids is the presence of a bump

on the downstream side of the initial bow shock on the triangle grids. This is not believed

to be physical, and the origin of it is unknown. The KHI for the triangle-grid cases is also

marginally thinner than the quadrilateral cases.
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(a) Density

(b) Temperature

(c) Pressure

Figure 5.18: Density, temperature, and pressure contours at t = 10 for the inviscid step
case with P1 quadrilaterals on grid 2400x800 using SDIRK33 and ∆t = 0.01.

101



(a) Grid 600x200

(b) Grid 1200x400

(c) Grid 2400x800

Figure 5.19: Density gradient magnitude contours at t = 10 for the inviscid step case with
P1 quadrilateral grids 600x200, 1200x400, and 2400x800 using SDIRK33 and ∆t = 0.01.
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(a) Grid 600x200

(b) Grid 1200x400

(c) Grid 2400x800

Figure 5.20: Exponential-entropy gradient sensor values at t = 10 for the inviscid step case
with P1 quadrilateral grids 600x200, 1200x400, and 2400x800 using SDIRK33 and ∆t = 0.01.
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(a) P1 quadrilateral grid 2400x800 at t = 10 (b) P2 quadrilateral grid 1200x400 at t = 10

(c) P1 triangle grid 2400x800 at t = 10 (d) P2 triangle grid 1200x400 at t = 10

Figure 5.21: Density gradient magnitude for the inviscid step case on P1 and P2 grids with the same Ndofs using SDIRK33
and ∆t = 0.01.
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Comparisons of density gradient magnitude on the 2400x800 P1 quadrilateral grid for

various temporal integration methods and time step sizes are given in Figs. 5.22 and 5.23. The

BDF2 and SDIRK33 methods are compared at time steps of 0.005, 0.01, and 0.02 in Fig. 5.22,

and the SDIRK33 and SDIRK45 methods are compared at time steps of 0.01, 0.02, and 0.04

in Fig. 5.23. The main feature of interest used for comparison is the KHI along the slip line

emanating from the upper shock triple point. Starting with the BDF2/SDIRK33 comparison,

the KHI is present in the BDF2 results at ∆t = 0.005, diminished at ∆t = 0.01, and absent

at ∆t = 0.02. At large time steps, the temporal error dissipates this instability, completely

removing the flow feature from the solution. The KHI is prominent in the SDIRK33 results

at ∆t = 0.005 and diminishes with increasing time step size, but is still present at ∆t = 0.02.

The small scale background waves present downstream of the normal shock and along the

upper wall in the ∆t = 0.005 cases are smoothed out in the ∆t = 0.02 cases.

The findings for the SDIRK33/SDIRK45 comparison are similar. In this case the

SDIRK33 method was run at ∆t = 0.04, and the KHI was not present. The KHI is present

in the SDIRK45 results at each time step, but as the time step size increases, the dispersion

error increases, and the coherent vortices present for the ∆t = 0.01 results are disorganized

in the ∆t = 0.04 results.

A closer inspection of the KHI of the BDF2 and SDIRK45 cases at the lowest time step

sizes reveals oscillations upstream of the vortices that are not prominent in the SDIRK33

results. A detailed view of the KHI for BDF2 at ∆t = 0.0025, SDIRK33 at ∆t = 0.005,

and SDIRK45 at ∆t = 0.01 is shown in Fig. 5.24. The oscillations are believed to result

from dispersion error that was shown in Section 4.1 to be prominent in even-ordered results

(BDF2 and SDIRK45) and negligible in odd-order results (SDIRK33) results.
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(a) BDF2 at ∆t = 0.005 (b) SDIRK33 at ∆t = 0.005

(c) BDF2 at ∆t = 0.01 (d) SDIRK33 at ∆t = 0.01

(e) BDF2 at ∆t = 0.02 (f) SDIRK33 at ∆t = 0.02

Figure 5.22: Density gradient magnitude for the inviscid step case with P1 quadrilaterals on grid 2400x800 using BDF2 and
SDIRK33 and ∆t = 0.005, 0.01, 0.02.
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(a) SDIRK33 at ∆t = 0.01 (b) SDIRK45 at ∆t = 0.01

(c) SDIRK33 at ∆t = 0.02 (d) SDIRK45 at ∆t = 0.02

(e) SDIRK33 at ∆t = 0.04 (f) SDIRK45 at ∆t = 0.04

Figure 5.23: Density gradient magnitude for the inviscid step case with P1 quadrilaterals on grid 2400x800 using SDIRK33
and SDIRK45 and ∆t = 0.01, 0.02, 0.04.
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5.4 Summary

The bow shock case proved difficult for the new shock capturing method. The Riemannian

metric tensor helped provide a smooth valued shock sensor along the surface of the shock,

but spurious waves still emanated downstream and collected in the stagnation region. The

sensor did not turn on for this accumulation of error, and so low-level global artificial diffusion

was required in order to reach steady state. Only the P1 grids reached steady state. The

results do not appear to be adversely affected by the addition of artificial global diffusion,

as the total enthalpy and stagnation pressure errors were comparable to the example results

provided by Murman.

The planar Noh problem was run at Mach numbers 4 and 10 on several P1 rectangular

grids with quadrilateral elements at different levels of refinement. This case was devised by

Noh [118] to assess the erroneous wall heating produced by many shock capturing methods,

and wall heating was present in the results when the exponential-entropy gradient sensor

was used in conjunction with COFFE’s artificial diffusion method. The shock speed appears

to be correct for each of the cases, as indicated by the location of the jump compared to the

exact location, and as the level of grid refinement increases, the shock thickness decreases

linearly.

The two-dimensional inviscid Mach 3 forward-facing step case is useful for assessing the

shock sensor’s ability to track a complex, unsteady shock structure. The results presented

here showed that the new sensor activated in the shock regions, at the rapid expansion, and

at the base of the step. Increasing grid resolution sharpened the shocks and brought out

additional weak features, and the major difference between the results on P1 and P2 grids

was that the P2 grids contained more small-scale noise that the P1 grids presumably filtered

out.

108



(a) BDF2 ∆t = 0.0025

(b) SDIRK33 ∆t = 0.005

(c) SDIRK45 ∆t = 0.01

Figure 5.24: Density gradient magnitude for the inviscid step case with P1 quadrilaterals on
grid 2400x800 using BDF2, SDIRK33, and SDIRK45 at ∆t = 0.0025, 0.005, 0.01, respectively,
zoomed to KHI.
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Chapter 6

Conclusions

6.1 Summary

The primary focus of this research was high-order, finite-element modeling of moving shock

waves on non-shock-aligned grids. Two major components to this were the choice of time-

integration method and the shock capturing technique. COFFE, an existing high-spatial-

order, finite-element, streamline upwind/Petrov-Galerkin (SU/PG), steady-state solver, was

modified to introduce an unsteady capability and a novel approach to shock capturing.

6.1.1 Time-Integration Methods

Six L-stable, first- through fourth-order time-integration methods (BDF1, BDF2, BDF2OPT4,

BDF2OPT5, SDIRK33, and SDIRK45) were introduced into COFFE, and three canonical

test cases were used to assess the methods and the temporal errors they introduced. The

isentropic vortex case was used to verify the order of accuracy of each of the methods. The

results from this case were also used to isolate the dissipative and dispersive components of

the temporal error. A new finding in this work was that the BDF2OPT4/5 methods tended

to reduce the dissipation rise for larger time steps. The result of this decrease in dissipation

was an accentuation of the oscillations upstream of the vortex that resulted from dispersion

error. This case also demonstrated that, for a given time step size, the overall temporal error

decreases as order of accuracy increases. As a result, higher-order methods can achieve the
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same temporal error level as lower-order methods with large time steps. This finding appears

obvious, but order of accuracy refers to the behavior of error as the discretization is refined,

not the absolute level of error.

The unsteady methods were evaluated further using the two-dimensional circular cylinder

case, which is less-trivial than the isentropic vortex case and for which a wealth of

experimental and numerical data exist. The higher-order SDIRK methods performed better

than the lower-order BDF methods with respect to temporal convergence and vortex

coherence. One key observation from this portion of the investigation is the importance

of time-convergence studies for unsteady problems, especially those using lower-order time-

integration methods. Just as grid-convergence studies should accompany steady problems,

so too should time-convergence studies be included with unsteady ones.

Results from the Taylor-Green vortex case compared well with the highly-resolved

spectral results provided by Rees et al. [178]. This case tested COFFE’s modeling of

turbulent dissipation and vortex dynamics. The kinetic energy dissipation rate as calculated

by enstrophy was a key comparison between COFFE and the results from Rees et al. [178],

and the kinetic energy dissipation rate peak on the 1283 grid at ∆t = 0.0025 matched time

to within 0.0075 and peak magnitude to within 1%.

6.1.2 Shock Capturing Technique

A new shock capturing technique involving the gradient of a exponential-entropy parameter

was outlined and evaluated on three inviscid test cases: the bow shock described by Murman

in HOW5, the planar Noh [118] problem, and the Mach 3 forward facing step of Woodward

and Colella [161]. The new sensor was designed to activate in areas where the grid resolution

was not sufficient to resolve flow features, such as shock waves and the rapid expansion

around the forward-facing step corner. It also activated in the stagnation regions of the bow

shock and the forward-facing step when numerical error from the shock rapidly accumulated

and did not convect downstream, though that activation was not enough to fully converge

the bow shock case without additional global artificial diffusion. The new sensor was also

designed to apply artificial diffusion smoothly, as indicated by Barter and Darmofal [101].
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The new exponential-entropy gradient shock sensor was used in conjunction with

modifications to the calculation of the artificial diffusion flux term, F ad. The changes to

F ad were designed to vary the application of artificial diffusion directionally within the

momentum equations, in the same manner as Olson and Lele [99].

The bow shock case proved difficult for the new shock capturing method. Low-level global

artificial diffusion was required, and only the P1 grids reached steady state. The results do

not appear to be adversely affected by the addition of artificial global diffusion, as the total

enthalpy and stagnation pressure errors were comparable to the example results provided by

Murman.

The planar Noh problem was run at Mach numbers 4 and 10, and wall heating was present

in the results with the new exponential-entropy gradient sensor and COFFE’s artificial

diffusion method. The shock speed appears to be correct for each of the cases, and as the

level of grid refinement increases, the shock thickness decreases linearly.

The two-dimensional inviscid Mach 3 forward-facing step case demonstrated the new

shock sensor’s ability to track a complex, unsteady shock structure. The results presented

here showed that the new sensor activated in the shock regions, at the rapid expansion, and

at the base of the step. Increasing grid resolution sharpened the shocks and brought out

additional weak features, and the major difference between the results on P1 and P2 grids

was that the P2 grids contained more small-scale noise that the P1 grids presumably filtered

out.
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A Large Eddy Simulations

Large eddy simulations (LES) are CFD techniques by which perturbations in the calculated

flow field at a scale smaller than ∆x, which is associated with the grid spacing, are removed

with a low-pass filter that is applied to the governing equations. The resulting filtered

governing equations describe the flow field for eddies larger than the filter scale, and

the contribution from the subgrid scales (SGS) is modeled. These techniques allow CFD

practitioners to investigate time-resolved fluctuations of large eddies within a flow field.

Large eddies in boundary layers and separation regions have been shown to be the driving

force behind large-scale oscillations in SBLIs. [191–200]

The governing equations for LES flow modeling in COFFE are the compressible,

filtered, Favre-averaged Navier-Stokes equations. The conservative form of the Navier-Stokes

equations was presented in Eq. (3.1). Note that all equations in this section assume three

spatial dimensions.

A.1 Low-pass Filtering Operation

In order to eliminate contributions from the subgrid scale, the Navier-Stokes equations are

filtered using a low-pass filter. The filtering operation is the convolution of a field variable,

φ, with a filtering kernel G. A spatial filtering operation1 is shown in Eq. (A.1). Note that

all variables with overbars represent filtered quantities.

φ(x, t) = G ∗ φ(x, t) =

∫ ∞
−∞

φ(r, t)G(x− r)dr (A.1)

The field variable, φ, can be separated into filtered and SGS components, as shown in

Eq. (A.2), where the prime denotes the SGS value.

φ = φ+ φ′ (A.2)

1Currently no compressible LES formulations known by the authors employ temporal filtering. This is
corroborated by Garnier, Adams, and Sagaut [201]
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Table A.1: Filter kernels in physical space

Filter Type Kernel, G

Top-hat G(x− r) =

{
1
∆
|x− r| ≤ ∆

2

0 otherwise

Gaussian G(x− r) =
√

γ
π∆2 · exp

(
−γ(x−r)2

∆2

)
, typically γ = 6

Sharp Cutoff G(x− r) = sin(kc(x−r))
kc(x−r) , where kc = π

∆
is the cutoff frequency

Figure A.1: Graphical depiction of filter kernels in physical space

Common Filter Types

Common filter types for LES formulations include the top-hat, Gaussian, and sharp cutoff

filters. [201] The filter kernel for each in physical space is provided in Table A.1. Graphical

depictions of the kernels in physical space are shown in Fig. A.1. The kernels in spectral

space have been omitted because COFFE is not a spectral solver.

Filter Properties

Three filter and convolution properties are required in order to manipulate the filtered Navier-

Stokes equations.
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• The filter operation does not affect constant values because the integral from −∞ to

+∞ of each of the filter kernels defined in the previous section is 1.

∫ ∞
−∞

G(r)dr = 1 ∴ a = a

∫ ∞
−∞

G(r)dr = a

• Convolution is distributive.

f ∗ (g + h) = (f ∗ g) + (f ∗ h) ∴ φ+ ψ = φ+ ψ

• Convolution commutes with differentiation.

f ∗ g′ = f ′ ∗ g = (f ∗ g)′ ∴
∂φ

∂x
=
∂φ

∂x

This filter property convolution commutes with differentiation assumes that the filter

width, ∆, is constant in all directions. When ∆ increases in one direction, properties are

“smeared” in that direction by an amount that increases with ∆ due to a commutation

error that is introduced. [202] The effect of this smearing is akin to the introduction of

artificial diffusion. The computational grid serves as an implicit filter for a CFD solution,

and stretching elements in the boundary layer is a common practice. This stretching changes

the filter width in the surface-normal direction, which introduces a commutation error that

has a similar effect or the simulation as the introduction of modeled eddy viscosity.

Following the lead of Garnier, Adams, and Sagaut [201], it is helpful at this point to define

the commutator from Ring Theory. The commutator for two operators, f and g, acting on

a field variable is shown in Eq. (A.3).

[f, g](φ) = f(g(φ))− g(f(φ)) (A.3)

The commutator is useful in manipulating the filtered product of two field variables,

φψ.2 If we introduce the bilinear form, B, which is simply the multiplication operator when

2φψ must be altered because φ̄ and ψ̄ are variables of interest, not φψ.
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applied to two scalar values, the commutator of the filtering and multiplication operators

applied to the two field variables is,

[G∗, B](φ, ψ) = φψ − φ̄ψ̄.

Rearranging this to solve for φψ results in Eq. (A.4).

φψ = φ̄ψ̄ + [G∗, B](φ, ψ) (A.4)

[G∗, B](φ, ψ) is the error incurred from replacing φψ with φ̄ψ̄. This error accounts for SGS

information and must be modeled.

Implicit and Explicit Filtering

Low-pass filters for the Navier-Stokes equations can be applied implicitly or explicitly.

Implicit filtering occurs inherently when solving the Navier-Stokes equations on a finite

grid. The finite spatial discretization links the filter width, ∆, of a top-hat filter to the grid

spacing, h. This has the benefit of being easy to implement, since no additional filtering steps

are necessary, and of maximizing the numerical grid resolution, since all of the grid points

are used for spatial resolution of the flow field. The main drawback to implicit filtering is

that, for most cases, the shape of the filter is not known because cell dimensions vary within

grids for any useful application. [203]

Explicit filtering occurs when a filtering kernel (typically a top-hat or Gaussian) with

∆ > h is applied directly to the numerical solution. The benefits to this approach are that it

lowers numerical truncation error and the filter shape is well known. The drawbacks are that

physical resolution of the solution is decreased in order to get these benefits because some

of the degrees of freedom that would be increasing the physical resolution are now devoted

to the application of the filter. Explicit filtering is typically quantified by the ratio of the

filter width to the grid spacing, ∆/h. Numerical error in the simulation decreases as ∆/h

increases; however, increasing this ratio by a factor of n increases the computational cost by

n4. [203]
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In practice most filtering for non-academic applications is done implicitly due to its

simplicity. Explicit filters are useful, however, when dynamically modeling the SGS terms,

where the results from a test filter of size ∆ are compared to the implicitly filtered results

in order to determine the appropriate SGS model constants dynamically. [204]

A.2 Favre-averaging

Filtering the compressible continuity equation using simply the low-pass filter operation,

given in Eqs. (A.1) and (A.2), results in an additional SGS term that would require modeling.

To avoid this, Favre [205] introduced the density-weighted ensemble-averaging technique

shown in Eq. (A.5). This results in a change in variables and eliminates the addition SGS

term in the continuity equation. Note that all parameters with tildes represent Favre-averaged

quantities.

φ̃ =
ρφ

ρ
=⇒ ρφ = ρφ̃ (A.5)

The filtered term that causes trouble in the continuity equation is shown in Eq. (A.6).

Filtering ρuj and then replacing ρuj with ρ̄ūj introduces the additional SGS term

[G∗, B](ρ, uj), which has to be modeled. Using Favre-averaging ρuj can be directly replaced

with ρũj.

ρuj = ρ̄ūj + [G∗, B](ρ, uj) = ρũj (A.6)

Garnier, Adams, and Sagaut [201] introduced the operator H(a, b, c) = bc/a. Using this

operator and Favre-averaging, it is possible to decompose filtered parameters containing

density and two other field variables, ρφψ, as shown in Eq. (A.7). This is useful when

manipulating the stress tensor in the momentum equation.

ρφψ = ρφ̃ψ = ρφ̃ψ̃ + [G∗, H](ρ, ρφ, ρψ) (A.7)
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A.3 Favre-averaged Filtered Navier-Stokes Equations

Continuity Equation

The continuity equation is given in Eq. (A.8). Favre-averaging allows the ρuj term that

would normally arise from the filtering operation to be replaced with ρũj.

∂ρ̄

∂t
+
∂ρ̄ũj
∂xj

= 0 (A.8)

Energy Equation

Filtering and Favre-averaging the total energy definition, Eq. (3.7), results in Eq. (A.9).

ρ̄ẽt =
p

γ − 1
+

1

2
ρ̄ũiui (A.9)

ρ̄ũiui is not computable, and must be decomposed using Eq. (A.12). Lesieur, Metais, and

Comte [206] introduces the following changes in variables for the filtered pressure and

temperature, referred to as macropressure and macrotemperature.

p̆ = p− 1

3
Tkk (A.10)

T̆ = T̃ − Tkk
2Cvρ

(A.11)

Tij is the SGS stress tensor after Favre-averaging and using the H operator from Eq. (A.7).

Tij = [G∗, H](ρ, ρui, ρuj) = ρ (ũiuj − ũiũj) (A.12)

Lesieur, Metais, and Comte [206] splits the SGS stress tensor into isotropic and deviatoric

parts, where the deviatoric part is referred to here as τSGSij .

Tij = Tij −
1

3
Tkkδij︸ ︷︷ ︸

τSGS
ij

+
1

3
Tkkδij (A.13)

The total energy definition, computed with T̆ , then becomes
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ρ̄ẽt = ρ̄CvT̆ +
1

2
ρ̄ũiũi, (A.14)

and the equation of state becomes

p̆ = ρRT̆ +
3γ − 5

6
Tkk. (A.15)

The energy equation, with the change of variables from Lesieur, Metais, and Comte [206], is

given in Eq. (A.16).

∂ρ̄ẽt
∂t

+
∂

∂xj

[
(ρ̄ẽt + p̆)ũj − q̆SGSj − ũiτ̃ij − q̆j

]
= 0, (A.16)

where q̆SGSj is the SGS heat flux. Eddy viscosity, νt, is used to model this term.

q̆SGSj = (ρ̄ẽt + p̆)ũj − (ρet + p)uj ' ρCp
νt
Prt

∂T̆

∂xj
(A.17)

Momentum Equation

Filtering and Favre-averaging the momentum equation, defined in Eqs. (3.1) to (3.4), results

in Eq. (A.18).

∂ρ̄ũj
∂t

+
∂

∂xj
(ρũiuj + pδij − τ̃ij) = 0 (A.18)

Introducing the SGS stress tensor from Eq. (A.13), Tij, yields Eq. (A.19).

∂ρ̄ũj
∂t

+
∂

∂xj

ρũiũj +

(
p− 1

3
Tkk
)

︸ ︷︷ ︸
p̆

δij − τ̃ij −
(
Tij −

1

3
Tkkδij

)
︸ ︷︷ ︸

τSGS
ij

 = 0 (A.19)

Eddy viscosity is used to model τSGSij .

τSGSij ' ρνtÃij (A.20)
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Combined Equations

The conservative form of the Favre-averaged, filtered Navier-Stokes equations are presented

in Eq. (A.21).

∂Q

∂t
+

∂

∂xj

(
F c − F v

)
= 0 (A.21)

Q contains the conservation variables, which are given in Eq. (A.22).

Q =


ρ

ρũj

ρẽt

 (A.22)

F c and F v contain the convective and viscous fluxes.

F c =


ρũj

ρũiũj + p̆δij

(ρ̄ẽt + p̆)ũj

 (A.23)

F v =


0

τ̃ij + τSGSij

ũiτ̃ij − (q̆j + q̆SGSj )

 (A.24)

Implicit LES

Implicit LES (ILES) relies on the numerical dissipation inherent in a solution scheme and

grid to act as a SGS model. This technique was introduced formally by Boris [207] as an

alternative to explicit SGS schemes. There are no turbulence parameters to model, so this

approach is clearly the easiest to implement. The rationale for employing ILES is described

in great detail by Grinstein, Margolin, and Rider [208], and the method has been used by

Uranga et al. [209] to predict laminar separation with a discontinuous Galerkin (DG) scheme.
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A.4 Tandem Spheres

The tandem sphere test case was designed to appraise the accuracy and efficiency of a solver

when applied to a complex, unsteady, multi-scale flow at low Mach and Reynolds numbers.

The front sphere should feature a laminar separation and the back sphere a turbulent one,

due to being in the wake of the first sphere.

The flow conditions and grids were supplied by the AIAA Fifth International Workshop

on High-Order Methods in Computational Fluid Dynamics. Free stream conditions were a

uniform inflow with ReD = 3, 900 and M∞ = 0.1. Free stream values for temperature and

density were T∞ = 300 K and ρ∞ = 1.225 kg/m3. The fluid is a perfect gas with γ = 1.4

and Pr = 0.72.

The geometry was simply two spheres with diameter D that were separated by 10D.

The sphere surfaces were set to an adiabatic, no-slip wall boundary condition. The grid was

provided by Steve Karman of Pointwise®. It is available on the High-Order Workshop web-

site3, and the particular grid that was used was named “TandemSpheresTetMesh4P2.cgns”.

It consisted of 6.94 million p = 2 tetrahedral elements with 9.25 million nodes. The case

was run using the SDIRK4 time-integration method [102] with a time step of 0.01. Pictures

of the interaction region in the grid, the off-body grid, and the surface grid are shown in

Fig. A.2.

The High-Order Workshop test case description provided computations to make with

the simulation results. These included integral values of lift and drag coefficients, mean and

RMS values of parameters, including Reynolds stresses, along specified lines, and frequency

spectra at specified points for t∗ ∈ [100, 200], where t∗ = tU∞/L. The lines and points of

interest are shown in Fig. A.3. The locations of the lines and points are as follows, note the

origin is in the center of the front sphere:

• Surface lines on x−y, x−z, and y−z planes passing through the center of each sphere,

• Streamwise lines along centerline (y = z = 0) for x ∈ [−5.5D,−0.5D], [0.5D, 9.5D],

and [10.5D, 15.5D],

3https://how5.cenaero.be/content/cs1-tandem-spheres-re3900
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(a) Interaction region grid

(b) Sphere off-body grid (c) Sphere surface grid

Figure A.2: Tandem sphere grid (“TandemSpheresTetMesh4P2.cgns”) provided by Steve
Karman of Pointwise
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(a) Isometric view (b) Side view

Figure A.3: Data sampling locations (black lines and red points) for tandem sphere case.

Table A.2: Mean and RMS values of lift and drag coefficient on front and back spheres.

Lift Drag
Sphere Mean RMS Mean RMS

Front -0.00422 0.00732 0.387 0.387
Back 0.0110 0.0452 0.409 0.410

• y and z-transverse lines on y, z ∈ [−D,D], respectively, at x = −1.5D, 1.5D, 5D,

8.5D, 11.5D, 15D,

• Point 1, 2, and 3 at x = −2.5D, 5D, and 12.5D, respectively, with y = z = D.

Mean and RMS values of the lift and drag coefficients for the front and back spheres are

given in Table A.2. The values of the lift and drag coefficients over time are shown in Fig. A.4,

and the frequency spectra are presented in Fig. A.5. Based on the available experimental

drag data, Krumins [210] recommended a CD of 0.388 for M∞ = 0.1 and Re = 4, 000, which

is excellent agreement with the current results.

Mean values of the surface pressure coefficient along on x − y, x − z, and y − z planes

passing through the center of each sphere are shown in Fig. A.6. The front sphere CP results

were in agreement with experimental results from Kim and Durbin [211] at Re = 4, 200.

Mean values of u, v, and w velocity components along the centerline are shown in Fig. A.7,

and RMS values are given in Fig. A.8. Mean values of the u velocity components along the

transverse lines are displayed in Fig. A.9, and mean values of the v and w velocity components

parallel and normal to the transverse lines are shown in Figs. A.10 and A.11, respectively.
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Figure A.4: Lift and drag coefficients on the front and back spheres at Re = 3, 900 and
M∞ = 0.1 for 100 < t∗ < 200.

RMS values for the u, v, and w velocity components along the transverse lines are shown in

Figs. A.12 to A.14.

Mean values of Reynolds stresses along the centerline are shown in Fig. A.15. Mean

values of the normal Reynolds stress components along the transverse lines are displayed in

Fig. A.16, and shear values are given in Fig. A.17.

Frequency spectra of the velocity magnitude, pressure coefficient, and turbulent kinetic

energy at the point locations are shown in Figs. A.18 to A.20, respectively. Point 2 was

close to the location where Sakamoto and Haniu [212] acquired hot wire measurements from

spheres in uniform flow at various Reynolds numbers. A velocity magnitude peak for Point 2

occurred at St = 0.24. This point is plotted with data from Sakamoto and Haniu in Fig. A.21.

Instantaneous and mean contours of density, vorticity magnitude, and velocity magnitude

on an x − y slice are shown in Figs. A.22 to A.24. The instantaneous values are taken

at t∗ = 150. Instantaneous contours of Q-criterion colored by temperature are shown in

Fig. A.25.
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Figure A.5: Frequency spectra of lift and drag coefficients on the front and back spheres
at Re = 3, 900 and M∞ = 0.1 for 100 < t∗ < 200.

A comparison of instantaneous contours of vorticity between the current results and

results from Yun, Kim, and Choi [213] is shown in Fig. A.26. The extent of the separation

region and the flow structures are qualitatively similar between the two cases.
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Figure A.6: Mean values of surface pressure coefficient on x − y, x − z, and y − z planes
passing through the center of each sphere of the tandem spheres case, with experimental
results from Kim and Durbin [211] for Re = 4, 200.
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Figure A.7: Mean values of u, v, and w velocity components along centerline of the tandem
spheres case.
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Figure A.8: RMS values of u, v, and w velocity components along centerline of the tandem
spheres case.

Figure A.9: Mean values of u velocity component along y and z transverse lines of the
tandem spheres case.
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Figure A.10: Mean values of v and w velocity components parallel to y and z transverse
lines of the tandem spheres case.

Figure A.11: Mean values of v and w velocity components normal to y and z transverse
lines of the tandem spheres case.

Figure A.12: RMS values of u velocity component along y and z transverse lines of the
tandem spheres case.
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Figure A.13: RMS values of v and w velocity components along parallel to y and z
transverse lines of the tandem spheres case.

Figure A.14: RMS values of v and w velocity components along normal to y and z transverse
lines of the tandem spheres case.

163



Figure A.15: Mean values of Reynolds stresses along centerline of the tandem spheres case.
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Figure A.16: Mean values of Reynolds normal stresses along y and z transverse lines of the
tandem spheres case.
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Figure A.17: Mean values of Reynolds shear stresses along y and z transverse lines of the
tandem spheres case.

Figure A.18: Frequency spectra of velocity magnitude at specified points of the tandem
spheres case.
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Figure A.19: Frequency spectra of pressure coefficient at specified points of the tandem
spheres case.

Figure A.20: Frequency spectra of turbulent kinetic energy at specified points of the tandem
spheres case.
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Figure A.21: Strouhal number for velocity magnitude peak at Point 2 compared to results
from Sakamoto and Haniu [212].
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(a) Instantaneous density at t∗ = 150

(b) Mean density

Figure A.22: Density contours on X-Y slice of tandem spheres.
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(a) Instantaneous vorticity magnitude at t∗ = 150

(b) Mean vorticity magnitude

Figure A.23: Vorticity magnitude contours on X-Y slice of tandem spheres.
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(a) Instantaneous velocity magnitude at t∗ = 150

(b) Mean velocity magnitude

Figure A.24: Velocity magnitude contours on X-Y slice of tandem spheres.

Figure A.25: Isosurfaces of Q-criterion of 0.01 colored by temperature for tandem spheres
at t∗ = 150.
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Figure A.26: Comparison of instantaneous vorticity contour at t∗ = 150 to results from
Yun, Kim, and Choi [213]
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B Hybrid RANS/LES Modeling

B.1 Reynolds-Averaged Navier-Stokes Turbulence Modeling

Reynolds [214] developed the notion of describing instantaneous properties of turbulent

flow (velocity, pressure, stress, strain, and other so called “passive contaminants” such as

heat, chemical species, and particles) in terms of mean and fluctuating components. This is

known as the Reynolds decomposition. Let the instantaneous value of a property be denoted

by a lower-case letter, the mean component by an upper-case letter, and the fluctuating

component by a lower-case letter with a prime. Taking the velocity as an example:

ui = Ui + u′i (B.1)

Ui is the time averaged value of the instantaneous velocity, as given by:

Ui = lim
T→∞

1

T

∫ t0+T

t0

uidt (B.2)

The time average of the fluctuating component is, by definition, zero.

When Reynolds decomposition is applied to the incompressible momentum equation, the

Reynolds momentum equation results:

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
2µSij − ρu′iu′j

)
(B.3)

The −ρu′iu′j term is known as the Reynolds stress. The off-diagonal components of this stress

tensor are shear stresses that are the dominant mechanism for mean momentum transfer in

turbulent flows. [215]

The Reynolds stress tensor, defined as τ ′ij = −ρu′iu′j, represents six additional unknowns

in the governing equations, which creates a closure problem. Rather than create six more

independent equations to close the equation set, algebraic turbulence models commonly

utilize the Boussinesq approximation (or more accurately, assumption) to reduce the number

of unknowns from six to one. Boussinesq [216] suggested that the Reynolds stress could be

modeled in the same manner analogous to the viscous stress, Eq. (3.5), where a new eddy
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viscosity, µt, is used in place of the molecular viscosity, µ. The resulting value definition for

the Reynolds stress tensor with the Boussinesq approximation is given in Eq. (B.4). The

eddy viscosity is now the only unknown that must be modeled.

τ ′ij = 2µtAij (B.4)

The governing equations are the same as those outlined in Section 3.1.1, but now

the viscous stress tensor, Eq. (3.5), is replaced by Eq. (B.5), which includes turbulence

contributions via the eddy viscosity. A turbulence model is used for closure.

τij = 2(µ+ µt)Aij (B.5)

The one-equation, negative Spalart-Allmaras [217, 218] (SA) model without the trip term

was coded into COFFE early in the solver’s development. The overall transport equation is

given in Eq. (B.6).

∂ρν̃

∂t
+

∂

∂xj

(
ρν̃uj −

1

σ
(µ+ fnρν̃)

∂ν̃

∂xj

)
=

cb2
σ
ρ

(
∂ν̃

∂xj

∂ν̃

∂xj

)
− 1

σ
(ν − ν̃)

(
∂ρ

∂xj

∂ν̃

∂xj

)
+ ρPn − ρDn

(B.6)

Eddy viscosity, µt, is given by

µt =

ρν̃fv1 ν̃ ≥ 0

0 ν̃ < 0

fv1 =
χ3

χ3 + c3
v1

χ ≡ ν̃

ν
. (B.7)

Within the SA transport equation, fn is a modification to the diffusion coefficient,

fn =

1 ν̃ ≥ 0

cn1+χ3

cn1−χ3 ν̃ < 0

(B.8)

Pn and Dn are the production and wall destruction terms,
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Pn =

cb1(1− ft2)S̃ν̃ ν̃ ≥ 0

cb1(1− ct3)S̃ν̃ ν̃ < 0

(B.9)

Dn =


(
cw1fw − cb1

κ2

) (
ν̃
d

)2
ν̃ ≥ 0

−cw1

(
ν̃
d

)2
ν̃ < 0

(B.10)

ω̃ is the modified vorticity,

ω̃ =

ω + ω̄ ω̄ > −cv2ω

ω +
ω(c2v2ω+cv3 ω̄)

(cv3−2cv2 )ω−ω̄ ω̄ ≥ −cv2ω
(B.11)

where ω is the magnitude of the vorticity and d is the distance to closest wall,

ω =

∣∣∣∣εijkei∂uk∂xj

∣∣∣∣ ω̄ =
ν̃fv2
κ2d2

fv2 = 1− χ

1 + χfv1
(B.12)

ft2 is the laminar suppression term,

ft2 = ct2e
−ct4χ

2

(B.13)

and the function fw is given by

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

g = r + cw2(r6 − r) r = min

(
ν̃

ω̃κ2d2
, rlim

)
. (B.14)

The constants are σ = 2/3, κ = 0.41, cb1 = 0.1355, cb2 = 0.622, cn1 = 16, ct3 = 1.2, ct4 = 0.5,

cv1 = 7.1, cv2 = 0.7, cv3 = 0.9, cw1 = cb1/κ
2 + (1 + cb2)/σ, cw2 = 0.3, cw3 = 2, and rlim = 10.

The 2013 version of Quadratic Constitutive Relation (QCR) for the SA model was also

implemented earlier in development as an option for users to employ if necessary. SA-

QCR2013 has shown a significant improvement over the standard SA model in corner flow

applications. [219] Erwin et al. [220] made side-by-side comparisons of the SA and SA-

QCR2013 models for test cases in the AIAA 6th Drag Prediction Workshop. They found

that the QCR model was necessary to properly model the wing-body juncture.
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QCR is essentially a modification to the standard Boussinesq approximation, wherein

additional terms are added to model the directional dependance, or anisotropy, that

creates secondary recirculation within complex flow fields. The modified Reynolds stress

tensor is given in Eq. (B.15). τ ′ij is the turbulent stresses computed from the Boussinesq

approximation, Eq. (B.4).

τ ′ij,QCR = τ ′ij − ccr1(Oikτ
′
jk +Ojkτ

′
ik)− ccr2µt

√
2AmnAmnδij (B.15)

where

Oij =
2Sij√
∂um
∂xn

∂um
∂xn

. (B.16)

The constants are ccr1 = 0.3 and ccr2 = 2.5.

B.2 Single Sphere

Hybrid RANS/LES was employed for a test case studying vortex shedding around a sphere

at a Mach number of 0.1 and a Reynolds number of 1 × 106, based on sphere diameter. A

strictly laminar simulation with no turbulence modeling would not be appropriate at such a

high Reynolds number for the given grid. The improved delayed detached eddy simulation

(IDDES) model of Shur et al. [221], specifically the DDES branch with the Spalart-Allmaras

(SA) one equation turbulence model of Spalart and Allmaras [217], was employed to address

this issue. The SA model was already in place in COFFE to handle RANS simulations. [145]

The grid for this case was a sphere of diameter D centered in a larger sphere of diameter

50D. It consisted of mixed p = 1 (2nd-order accurate) elements, the counts of which are

given below, with 2,281,468 nodes. The outer boundary was set to freestream, and the sphere

boundary was set to no-slip wall. The BDF2 method was used with a non-dimensional time

step of ∆t = 0.01.

• tetrahedra: 10,407,113

• hexahedra: 525,440

• pyramids: 67,816

• prisms: 10,496
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(a) Overall grid (b) Zoomed view of sphere

Figure B.1: Z-normal slice of grid for single sphere case

A strictly laminar simulation with no turbulence modeling would not be appropriate

at such a high Reynolds number for the given grid. The improved delayed detached eddy

simulation (IDDES) model of Shur et al. [221], specifically the DDES branch with the Spalart-

Allmaras (SA) one equation turbulence model of Spalart and Allmaras [217], was employed

to address this issue. The SA model was already in place in COFFE to handle RANS

simulations. [145]

A short summary of the DDES branch of the IDDES model follows. In the original

description of DDES, Spalart et al. [222] gave the DDES length scale, lDDES, as

lDDES = lRANS − fd max{0, (lRANS − lLES)} (B.17)

where the delaying function, fd, is defined as fd = 1− tanh[(8rd)
3]. This length scale replaces

the RANS length scale, lRANS, in subsequent calculations. rd, defined in Eq. (B.18), is a

marker that is 1 in the log layer and 0 in the freestream. It comes from the original SA

model definition. [217]

rd =
ν + νt

κ2d2
w max{[

∑
i,j(∂ui/∂xj)

2]1/2, 10−10}
(B.18)
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The LES length scale, lLES, is defined as

lLES = CDESΨ∆ (B.19)

Within this equation, the subgrid length scale, ∆, is defined as

∆ = min{max[Cwdw, Cwhmax, hwn], hmax},

where Cw is an empirical constant set to 0.15, dw is the wall distance, and hwn is the grid

spacing in the wall-normal direction. Ψ is low Reynolds number correction. CDES is the

fundamental empirical constant of DES. [223]

Little experimental data were found at Reynolds numbers greater than 106. Achenbach

[224, 225] conducted wind tunnel experiments on smooth spheres at high Reynolds numbers

(5 × 104 ≤ Re ≤ 6 × 106) in the early 1970s, and Bacon and Reid [226] conducted wind

tunnel and free flight experiments in the early 1920s.

The lift and drag coefficients as a function of time are shown in Fig. B.2. Also included

in the plot is a radial force coefficient, that is defined as the force acting normal to the axis

of flow. The simulation was started impulsively. Only data outside of the shaded startup

region were used for subsequent calculations. Achenbach [225] reported that periodic vortex

shedding could not be found beyond the upper critical Reynolds number, Re > 3.7×105. No

dominant frequency was found via spectral analysis of the lift and radial force coefficients

for the current results, which corroborates the findings of Achenbach.

The mean drag coefficient for the current results is plotted with data from Achenbach

[225] and Bacon and Reid [226] in Fig. B.3. The mean of the current results is indicated

by the marker, and the shaded region around it is a violin plot that shows the probability

distribution of the calculated drag coefficients. The current results are in good agreement

with the experimental data, particularly with the free air data of Bacon and Reid.

Achenbach [224] also gave results for the friction contribution to the drag coefficient at

high Reynolds numbers. The friction contribution for the current results is plotted, along

with the data from Achenbach, in Fig. B.4. Again the shaded region around it is a violin
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Figure B.2: Lift, drag, and radial force coefficients for a sphere at Re = 106

Figure B.3: Comparison of the mean drag coefficient for a sphere at Re = 106 to
experiments at high Reynolds numbers. Shaded region represents the probability distribution
of the calculated Cd from the current results.
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Figure B.4: Comparison of the friction contribution to the drag coefficient for a sphere at
Re = 106 to experiments at high Reynolds numbers. Shaded region represents the probability
distribution of the calculated Cdf/Cd from the current results.

plot that shows the probability distribution of the calculated values. The current results are

in very good agreement with Achenbach’s data.

Qualitative images of the flow field at the last time step are given below. The vorticity

magnitude on a longitudinal slice through the center of the sphere is shown in Fig. B.5. A

Kármán vortex street, typical of flows around bluff bodies with periodically vortex shedding,

is not apparent in this image. Isosurfaces of Q-criterion, which indicate coherent vortical

structures, colored by density and vorticity magnitude are shown in Figs. B.6 and B.7,

respectively.
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Figure B.5: Contour of vorticity magnitude on longitudinal slice of sphere solution at
Re = 106

Figure B.6: Isosurface of 0.1 Q-criterion colored by density for sphere solution at Re = 106,
side view
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Figure B.7: Isosurface of 0.1 Q-criterion colored by vorticity magnitude for sphere solution
at Re = 106, isometric view
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C Current Sensor Shock Simulations

COFFE’s current shock capturing technique, described in Section 3.4, was applied to two

viscous cases: the hypersonic circular cylinder and the viscous shock tube. The hypersonic

cylinder is a steady case used to evaluate the current shock capturing technique on a grid

with high spatial order, independent of time, and the viscous shock tube case is an unsteady

case used to evaluate the combined effect of high spatial and high temporal order. The

current shock capturing approach was run for viscous cases to demonstrate that it is capable

of capturing shocks when viscosity is present in the flow. The current approach failed when

running on inviscid cases because of its inability to dissipate numerical errors.

C.1 Hypersonic Circular Cylinder

The hypersonic circular cylinder case is commonly used to test a solver for the carbuncle

phenomenon, which is described in Section 2.3.1. The freestream conditions for this case

were taken from the FUN3D website4, and they are shown below.

U∞ 5, 000 m/s

ρ∞ 0.001 kg/m3

T∞ 200 K

Twall 500 K

M∞ 17.605

ReR 376, 930

The grid, shown in Fig. C.1, consisted of 160-by-160 P2 quadrilateral elements. The initial

wall spacing was 1 × 10−5, and the grid was stretched radially by a factor of 1.075. The

circular cylinder was set to an isothermal, no-slip wall, the outer boundary condition away

from the wall was inflow, and the boundaries above and below the cylinder were outflow.

Temperature and pressure contours are shown in Fig. C.2. These plots show that the

carbuncle phenomenon is not present. This is also confirmed in the temperature, pressure,

and density traces along the stagnation streamline, shown in Fig. C.3. The stagnation

4https://fun3d.larc.nasa.gov
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(a) Overall view (b) Zoomed view of cylinder

Figure C.1: Grid for hypersonic circular cylinder test case

streamline traces compare well with values from NASA’s LAURA code. [227] The current

results have steeper property gradients at the shock than the LAURA code, which may

account for the slight overshoots. The thermodynamic property oscillations in Fig. C.2 and

Fig. C.3 are manifestations of Gibb’s phenomenon, discussed in Section 2.3.1, which is present

in the vicinity of the shock.

The pressure coefficient and wall heat transfer are displayed in Fig. C.4, along with results

from the LAURA code. [227] The pressure coefficients were nearly identical between the two

codes. The heat transfer, however, showed similar trends, but COFFE predicted an increase

in heat transfer just off of the stagnation point that the LAURA code did not. This increase

may be the result of Gibb’s phenomenon.

C.2 Viscous Shock Tube

Shock-tube configurations have often been used as test cases for transient numerical methods.

[228–232] This case, based on the one run by Nichols and Heikkinen [228], is attractive

because the position and strength of the normal shock, expansion, and contact surface can
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(a) Temperature (K)

(b) Pressure (p/ρ∞u
2
∞)

Figure C.2: Temperature and pressure contours for circular cylinder at ReR = 376, 930,
M∞ = 17.605

Figure C.3: Temperature, pressure, and density along stagnation streamline for circular
cylinder at ReR = 376, 930, M∞ = 17.605. Results compared to values from the NASA
LAURA code. [227]
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(a) Pressure Coefficient (b) Wall Heat Transfer

Figure C.4: Surface pressure coefficient and heat transfer for circular cylinder at ReR =
376, 930, M∞ = 17.605. Results compared to values from the NASA LAURA code. [227]

Figure C.5: Shock tube grid

be compared to inviscid flow theory, and heat transfer results from the viscous, isothermal

wall can be compared to the previous numerical results.

This case was run on a rectangular grid, shown in Fig. C.5, consisting of 200-by-80 P2

quadrilateral elements. The grid spanned 0 < x < 1, and the initial spacing in the y-direction

was 0.0002, which provided a y+ value of approximately 0.1 at the bottom wall. Cells were

grown off of the bottom wall with a growth factor of 1.05. The bottom boundary was a

viscous, isothermal wall set to Twall/Tref = 1, and the remaining 3 walls were set to inviscid

walls.

The solution was initialized with left and right states separated at x = 0.5. The left state

was set to (ρL, uL, vL, TL) = (1, 0, 0, 1), and the right state was set to (ρR, uR, vR, TR) =

(0.1, 0, 0, 1). The Reynolds number per unit length for this simulation, based on a∞, was
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10,0005. Simulations were completed for a non-dimensional time step6 of 0.000625 using

each of the time integration methods discussed above. The results were evaluated at t = 0.2.

The density and mass, momentum, and energy fluxes along the top boundary, along with

the inviscid values, are given in Fig. C.6. Detailed views of the density at the normal shock,

contact surface, and expansion are shown in Fig. C.7. Generally speaking, the BDF1 method

smoothed out the changes in density across the shock, the contact surface, and between the

expansion and the quiescent high-pressure driver region more than the other time integration

methods. The BDF2 methods and the SDIRK45 method provided a much steeper density

gradient across the shock, and the SDIRK45 method did so without producing the overshoot

that is present in the BDF2 results.

Heat transfer along the bottom wall is shown in Fig. C.8. These results are qualitatively

similar to those given by Nichols and Heikkinen [228], but the magnitude is reduced by

a factor of 10 because the Reynolds number was also reduced by that amount. The heat

transfer peak occurs just after the shock wave, and the peak value, shown in Fig. C.8b,

shows that the BDF1 method smooths out the value, just as it did with density, resulting in

a peak value that is approximately 33% lower than the BDF2 and SDIRK45 values.

C.3 Summary

The hypersonic circular cylinder case was used to ensure that COFFE does not produce a

carbuncle phenomenon for supersonic bluff body simulations. The current results showed that

the inviscid flux calculation in COFFE does not induce the carbuncle phenomenon for this

case. Values of density, pressure, and temperature along the stagnation streamline compared

favorably to results from the LAURA code, [227] as did surface pressure coefficient and heat

transfer. Slight overshoots in the thermodynamic properties downstream of the shock were

identified, which may be related to the steep property gradients at the shock. COFFE also

predicted a higher heat transfer just off of the stagnation point.

5The Reynolds number run by Nichols and Heikkinen [228] was 100,000, so the results with respect to
heat transfer are expected to be diminished proportionally.

6Time step non-dimensionalized by L/a∞.
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(a) Density (b) Mass flux

(c) Momentum flux (d) Total energy flux

Figure C.6: Shock tube centerline conditions at t = 0.2
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(a) Normal shock (b) Contact surface

(c) Expansion

Figure C.7: Detailed shock tube centerline density at t = 0.2

(a) Heat Transfer (b) Peak after Shock

Figure C.8: Shock tube wall heat transfer at t = 0.2
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The viscous shock tube problem assessed COFFE’s ability to handle a moving shock wave

using various temporal methods. The BDF1 method, with the highest temporal error, tended

to smooth out the discontinuous jumps in flow and surface properties, such as density and

heat transfer, due to the shock. The SDIRK45 method provided a steeper density gradient

across the shock without overshooting, like the BDF2 method did. The flow properties at the

centerline matched the inviscid values, and the heat transfer along the isothermal, no-slip

wall matched expected results.
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