4,555 research outputs found

    The SIMCA algorithm for processing Ground Penetrating Radar data and its use in landmine detection

    Get PDF
    The main challenge of ground penetrating radar (GPR) based land mine detection is to have an accurate image analysis method that is capable of reducing false alarms. However an accurate image relies on having sufficient spatial resolution in the received signal. But because the diameter of an AP mine can be as low as 2cm and many soils have very high attenuations at frequencies above 3GHz, the accurate detection of landmines is accomplished using advanced algorithms. Using image reconstruction and by carrying out the system level analysis of the issues involved with recognition of landmines allows the landmine detection problem to be solved. The SIMCA (’SIMulated Correlation Algorithm’) is a novel and accurate landmine detection tool that carries out correlation between a simulated GPR trace and a clutter1 removed original GPR trace. This correlation is performed using the MATLAB R processing environment. The authors tried using convolution and correlation. But in this paper the correlated results are presented because they produced better results. Validation of the results from the algorithm was done by an expert GPR user and 4 other general users who predict the location of landmines. These predicted results are compared with the ground truth data

    The SIMCA algorithm for processing Ground Penetrating Radar data and its use in locating foundations in demolished buildings

    Get PDF
    Abstract—The main challenge of ground penetrating radar GPR) based foundation detection is to have an accurate image analysis method. In order to solve the detection problem a system level analysis of the issues involved with the recognition of foundations using image reconstruction is required. The SIMCA (’SIMulated Correlation Algorithm’) is a technique based on an area correlation between the trace that would be returned by an ideal point reflector in the soil conditions at the site and the actual trace. During an initialization phase, SIMCA carries out radar simulation using the design parameters of the radar and soil properties. Then SIMCA takes the raw data as the radar is scanned over the ground and in real-time uses a clutter removal technique to remove various clutter such as cross talk, initial ground reflection and antenna ringing. The trace which would be returned by a target under these conditions is then used to form a correlation kernel. The GPR b-scan is then correlated with the kernel using the Pearson correlation coefficient, resulting in a correlated image which is brightest at points most similar to the canonical target. This image is then raised to an odd power >2 to enhance the target/background separation. To validate and compare the algorithm, photographs of the building before it was demolished along with processed data using the REFLEXW package were used. The results produced by the SIMCA algorithm were very promising and were able to locate some features that the REFLEXW package were not able to identify

    Anisotropic Mesh Adaptation for Image Representation

    Get PDF
    Triangular meshes have gained much interest in image representation and have been widely used in image processing. This paper introduces a framework of anisotropic mesh adaptation (AMA) methods to image representation and proposes a GPRAMA method that is based on AMA and greedy-point removal (GPR) scheme. Different than many other methods that triangulate sample points to form the mesh, the AMA methods start directly with a triangular mesh and then adapt the mesh based on a user-defined metric tensor to represent the image. The AMA methods have clear mathematical framework and provides flexibility for both image representation and image reconstruction. A mesh patching technique is developed for the implementation of the GPRAMA method, which leads to an improved version of the popular GPRFS-ED method. The GPRAMA method can achieve better quality than the GPRFS-ED method but with lower computational cost.Comment: 25 pages, 15 figure

    Learning based automatic face annotation for arbitrary poses and expressions from frontal images only

    Get PDF
    Statistical approaches for building non-rigid deformable models, such as the active appearance model (AAM), have enjoyed great popularity in recent years, but typically require tedious manual annotation of training images. In this paper, a learning based approach for the automatic annotation of visually deformable objects from a single annotated frontal image is presented and demonstrated on the example of automatically annotating face images that can be used for building AAMs for fitting and tracking. This approach employs the idea of initially learning the correspondences between landmarks in a frontal image and a set of training images with a face in arbitrary poses. Using this learner, virtual images of unseen faces at any arbitrary pose for which the learner was trained can be reconstructed by predicting the new landmark locations and warping the texture from the frontal image. View-based AAMs are then built from the virtual images and used for automatically annotating unseen images, including images of different facial expressions, at any random pose within the maximum range spanned by the virtually reconstructed images. The approach is experimentally validated by automatically annotating face images from three different databases

    Documenting Bronze Age Akrotiri on Thera using laser scanning, image-based modelling and geophysical prospection

    Get PDF
    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri’s architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results
    • …
    corecore