4,886 research outputs found

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    Where and Who? Automatic Semantic-Aware Person Composition

    Full text link
    Image compositing is a method used to generate realistic yet fake imagery by inserting contents from one image to another. Previous work in compositing has focused on improving appearance compatibility of a user selected foreground segment and a background image (i.e. color and illumination consistency). In this work, we instead develop a fully automated compositing model that additionally learns to select and transform compatible foreground segments from a large collection given only an input image background. To simplify the task, we restrict our problem by focusing on human instance composition, because human segments exhibit strong correlations with their background and because of the availability of large annotated data. We develop a novel branching Convolutional Neural Network (CNN) that jointly predicts candidate person locations given a background image. We then use pre-trained deep feature representations to retrieve person instances from a large segment database. Experimental results show that our model can generate composite images that look visually convincing. We also develop a user interface to demonstrate the potential application of our method.Comment: 10 pages, 9 figure

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    Semantic Photo Manipulation with a Generative Image Prior

    Full text link
    Despite the recent success of GANs in synthesizing images conditioned on inputs such as a user sketch, text, or semantic labels, manipulating the high-level attributes of an existing natural photograph with GANs is challenging for two reasons. First, it is hard for GANs to precisely reproduce an input image. Second, after manipulation, the newly synthesized pixels often do not fit the original image. In this paper, we address these issues by adapting the image prior learned by GANs to image statistics of an individual image. Our method can accurately reconstruct the input image and synthesize new content, consistent with the appearance of the input image. We demonstrate our interactive system on several semantic image editing tasks, including synthesizing new objects consistent with background, removing unwanted objects, and changing the appearance of an object. Quantitative and qualitative comparisons against several existing methods demonstrate the effectiveness of our method.Comment: SIGGRAPH 201

    Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques

    Get PDF
    This paper presents a parallel rendering approach that allows high-quality visualization of large time-varying volume datasets. Multiresolution and adaptive-resolution techniques are also incorporated to improve the efficiency of the rendering. Three basic steps are needed to implement this kind of an application. First we divide the task through decomposition of data. This decomposition can be either temporal or spatial or a mix of both. After data has been divided, each of the data portions is rendered by a separate processor to create sub-images or frames. Finally these sub-images or frames are assembled together into a final image or animation. After developing this application, several experiments were performed to show that this approach indeed saves time when a reasonable number of processors are used. Also, we conclude that the optimal number of processors is dependent on the size of the dataset used
    corecore