695 research outputs found

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Earth Resources: A continuing bibliography (issue 32)

    Get PDF
    This bibliography list 580 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data

    The Second Spaceborne Imaging Radar Symposium

    Get PDF
    Summaries of the papers presented at the Second Spaceborne Imaging Radar Symposium are presented. The purpose of the symposium was to present an overwiew of recent developments in the different scientific and technological fields related to spaceborne imaging radars and to present future international plans

    Satellite monitoring of harmful algal blooms (HABs) to protect the aquaculture industry

    Get PDF
    Harmful algal blooms (HABs) can cause sudden and considerable losses to fish farms, for example 500,000 salmon during one bloom in Shetland, and also present a threat to human health. Early warning allows the industry to take protective measures. PML's satellite monitoring of HABs is now funded by the Scottish aquaculture industry. The service involves processing EO ocean colour data from NASA and ESA in near-real time, and applying novel techniques for discriminating certain harmful blooms from harmless algae. Within the AQUA-USERS project we are extending this capability to further HAB species within several European countries

    Wetland Monitoring and Mapping Using Synthetic Aperture Radar

    Get PDF
    Wetlands are critical for ensuring healthy aquatic systems, preventing soil erosion, and securing groundwater reservoirs. Also, they provide habitat for many animal and plant species. Thus, the continuous monitoring and mapping of wetlands is necessary for observing effects of climate change and ensuring a healthy environment. Synthetic Aperture Radar (SAR) remote sensing satellites are active remote sensing instruments essential for monitoring wetlands, given the possibility to bypass the cloud-sensitive optical instruments and obtain satellite imagery day and night. Therefore, the purpose of this chapter is to provide an overview of the basic concepts of SAR remote sensing technology and its applications for wetland monitoring and mapping. Emphasis is given to SAR systems with full and compact polarimetric SAR capabilities. Brief discussions on the latest state-of-the-art wetland applications using SAR imagery are presented. Also, we summarize the current trends in wetland monitoring and mapping using SAR imagery. This chapter provides a good introduction to interested readers with limited background in SAR technology and its possible wetland applications

    Continuous Forest Monitoring Using Cumulative Sums of Sentinel-1 Timeseries

    Get PDF
    Forest degradation is recognized as a major environmental threat on a global scale. The recent rise in natural and anthropogenic destruction of forested ecosystems highlights the need for developing new, rapid, and accurate remote sensing monitoring systems, which capture forested land transformations. In spite of the great technological advances made in airborne and spaceborne sensors over the past decades, current Earth observation (EO) change detection methods still need to overcome numerous limitations. Optical sensors have been commonly used for detecting land use and land cover changes (LULCC), however, the requirement of certain technical and environmental conditions (e.g., sunlight, not cloud-coverage) restrict their use. More recently, synthetic aperture radar (SAR)-based change detection approaches have been used to overcome these technical limitations, but they commonly rely on static detection approaches (e.g., pre and post disturbance scenario comparison) that are slow to monitor change. In this context, this paper presents a novel approach for mapping forest structural changes in a continuous and near-real-time manner using dense Sentinel-1 image time-series. Our cumulative sum−spatial mean corrected (CUSU-SMC) algorithm approach is based on cumulative sum statistical analysis, which allows the continuous monitoring of radar signal variations, derived from forest structural change. Taking advantage of the high data availability offered by the Sentinel-1 (S-1) C-band constellation, we used an S-1 ground range detected (GRD) dual (VV, VH) polarization timeseries, formed by a total of 84 images, to monitor clear-cutting operations carried out in a Scottish forest during 2019. The analysis showed a user’s accuracy of 82% for the (conservative) detection approach. The use of a post-processing neighbor filter increased the detection performance to a user’s accuracy of 86% with an overall accuracy of 77% for areas of a minimum extent of 0.4ha. To further validate the detection performance of the method, the CUSU-SMC change detector was tested against commonly-used pairwise change detection approaches for the same period. These results emphasize the capabilities of dense SAR time-series for environmental monitoring and provide a useful tool for optimizing national forest inventories
    • …
    corecore