4,640 research outputs found

    Estimation of the Number of Sources in Unbalanced Arrays via Information Theoretic Criteria

    Full text link
    Estimating the number of sources impinging on an array of sensors is a well known and well investigated problem. A common approach for solving this problem is to use an information theoretic criterion, such as Minimum Description Length (MDL) or the Akaike Information Criterion (AIC). The MDL estimator is known to be a consistent estimator, robust against deviations from the Gaussian assumption, and non-robust against deviations from the point source and/or temporally or spatially white additive noise assumptions. Over the years several alternative estimation algorithms have been proposed and tested. Usually, these algorithms are shown, using computer simulations, to have improved performance over the MDL estimator, and to be robust against deviations from the assumed spatial model. Nevertheless, these robust algorithms have high computational complexity, requiring several multi-dimensional searches. In this paper, motivated by real life problems, a systematic approach toward the problem of robust estimation of the number of sources using information theoretic criteria is taken. An MDL type estimator that is robust against deviation from assumption of equal noise level across the array is studied. The consistency of this estimator, even when deviations from the equal noise level assumption occur, is proven. A novel low-complexity implementation method avoiding the need for multi-dimensional searches is presented as well, making this estimator a favorable choice for practical applications.Comment: To appear in the IEEE Transactions on Signal Processin

    A Noise-Robust Method with Smoothed \ell_1/\ell_2 Regularization for Sparse Moving-Source Mapping

    Full text link
    The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smooth \ell_1/\ell_2 regularization term. As the mean of the noise in the power spectrum domain is dependent on its variance in the time domain, the proposed method includes a variance estimation step, which allows more robust blind deconvolution. Validation of the method on both simulated and real data, and of its performance, are compared with two well-known methods from the literature: the deconvolution approach for the mapping of acoustic sources, and sound density modeling

    Active Markov Information-Theoretic Path Planning for Robotic Environmental Sensing

    Full text link
    Recent research in multi-robot exploration and mapping has focused on sampling environmental fields, which are typically modeled using the Gaussian process (GP). Existing information-theoretic exploration strategies for learning GP-based environmental field maps adopt the non-Markovian problem structure and consequently scale poorly with the length of history of observations. Hence, it becomes computationally impractical to use these strategies for in situ, real-time active sampling. To ease this computational burden, this paper presents a Markov-based approach to efficient information-theoretic path planning for active sampling of GP-based fields. We analyze the time complexity of solving the Markov-based path planning problem, and demonstrate analytically that it scales better than that of deriving the non-Markovian strategies with increasing length of planning horizon. For a class of exploration tasks called the transect sampling task, we provide theoretical guarantees on the active sampling performance of our Markov-based policy, from which ideal environmental field conditions and sampling task settings can be established to limit its performance degradation due to violation of the Markov assumption. Empirical evaluation on real-world temperature and plankton density field data shows that our Markov-based policy can generally achieve active sampling performance comparable to that of the widely-used non-Markovian greedy policies under less favorable realistic field conditions and task settings while enjoying significant computational gain over them.Comment: 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), Extended version with proofs, 11 page

    Spectrum Sensing Algorithms for Cognitive Radio Applications

    Get PDF
    Future wireless communications systems are expected to be extremely dynamic, smart and capable to interact with the surrounding radio environment. To implement such advanced devices, cognitive radio (CR) is a promising paradigm, focusing on strategies for acquiring information and learning. The first task of a cognitive systems is spectrum sensing, that has been mainly studied in the context of opportunistic spectrum access, in which cognitive nodes must implement signal detection techniques to identify unused bands for transmission. In the present work, we study different spectrum sensing algorithms, focusing on their statistical description and evaluation of the detection performance. Moving from traditional sensing approaches we consider the presence of practical impairments, and analyze algorithm design. Far from the ambition of cover the broad spectrum of spectrum sensing, we aim at providing contributions to the main classes of sensing techniques. In particular, in the context of energy detection we studied the practical design of the test, considering the case in which the noise power is estimated at the receiver. This analysis allows to deepen the phenomenon of the SNR wall, providing the conditions for its existence and showing that presence of the SNR wall is determined by the accuracy of the noise power estimation process. In the context of the eigenvalue based detectors, that can be adopted by multiple sensors systems, we studied the practical situation in presence of unbalances in the noise power at the receivers. Then, we shift the focus from single band detectors to wideband sensing, proposing a new approach based on information theoretic criteria. This technique is blind and, requiring no threshold setting, can be adopted even if the statistical distribution of the observed data in not known exactly. In the last part of the thesis we analyze some simple cooperative localization techniques based on weighted centroid strategies

    Model Order Selection in DoA Scenarios via Cross-Entropy based Machine Learning Techniques

    Full text link
    In this paper, we present a machine learning approach for estimating the number of incident wavefronts in a direction of arrival scenario. In contrast to previous works, a multilayer neural network with a cross-entropy objective is trained. Furthermore, we investigate an online training procedure that allows an adaption of the neural network to imperfections of an antenna array without explicitly calibrating the array manifold. We show via simulations that the proposed method outperforms classical model order selection schemes based on information criteria in terms of accuracy, especially for a small number of snapshots and at low signal-to-noise-ratios. Also, the online training procedure enables the neural network to adapt with only a few online training samples, if initialized by offline training on artificial data

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Out of Nowhere: The 'emergence' of spacetime in string theory

    Get PDF
    This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian W\"uthrich and under contract with Oxford University Press. (More information at www.beyondspacetime.net.) This chapter analyses the nature and derivation of spacetime topology and geometry according to string theory.Comment: 40 pages, 2 figure
    corecore