1,009 research outputs found

    BNDB – The Biochemical Network Database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances in high-throughput techniques and efficient data acquisition methods have resulted in a massive amount of life science data. The data is stored in numerous databases that have been established over the last decades and are essential resources for scientists nowadays. However, the diversity of the databases and the underlying data models make it difficult to combine this information for solving complex problems in systems biology. Currently, researchers typically have to browse several, often highly focused, databases to obtain the required information. Hence, there is a pressing need for more efficient systems for integrating, analyzing, and interpreting these data. The standardization and virtual consolidation of the databases is a major challenge resulting in a unified access to a variety of data sources.</p> <p>Description</p> <p>We present the Biochemical Network Database (BNDB), a powerful relational database platform, allowing a complete semantic integration of an extensive collection of external databases. BNDB is built upon a comprehensive and extensible object model called BioCore, which is powerful enough to model most known biochemical processes and at the same time easily extensible to be adapted to new biological concepts. Besides a web interface for the search and curation of the data, a Java-based viewer (BiNA) provides a powerful platform-independent visualization and navigation of the data. BiNA uses sophisticated graph layout algorithms for an interactive visualization and navigation of BNDB.</p> <p>Conclusion</p> <p>BNDB allows a simple, unified access to a variety of external data sources. Its tight integration with the biochemical network library BN++ offers the possibility for import, integration, analysis, and visualization of the data. BNDB is freely accessible at <url>http://www.bndb.org</url>.</p

    Flexible web-based integration of distributed large-scale human protein interaction maps

    Get PDF
    Protein-protein interactions constitute the backbone of many molecular processes. This has motivated the recent construction of several large-scale human protein-protein interaction maps [1-10]. Although these maps clearly offer a wealth of information, their use is challenging: complexity, rapid growth, and fragmentation of interaction data hamper their usability. To overcome these hurdles, we have developed a publicly accessible database termed UniHI (Unified Human Interactome) for integration of human protein-protein interaction data. This database is designed to provide biomedical researchers a common platform for exploring previously disconnected human interaction maps. UniHI offers researchers flexible integrated tools for accessing comprehensive information about the human interactome. Several features included in the UniHI allow users to perform various types of network-oriented and functional analysis. At present, UniHI contains over 160,000 distinct interactions between 17,000 unique proteins from ten major interaction maps derived by both computational and experimental approaches [1-10]. Here we describe the details of the implementation and maintenance of UniHI and discuss the challenges that have to be addressed for a successful integration of interaction data

    OREMP: Ontology Reasoning Engine for Molecular Pathways

    Get PDF
    The information about molecular processes is shared continuously in the form of runnable pathway collections, and biomedical ontologies provide a semantic context to the majority of those pathways. Recent advances in both fields pave the way for a scalable information integration based on aggregate knowledge repositories, but the lack of overall standard formats impedes this progress. Here we propose a strategy that integrates these resources by means of extended ontologies built on top of a common meta-format. Information sharing, integration and discovery are the primary features provided by the system; additionally, two current field applications of the system are reported

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Electronic data sources for kinetic models of cell signaling

    Get PDF
    Functional understanding of signaling pathways requires detailed information about the constituent molecules and their interactions. Simulations of signaling pathways therefore build upon a great deal of data from various sources. We first survey electronic data resources for cell signaling modeling and then based on the type of data representation the data sources are broadly classified into five groups. None of the data sources surveyed provide all required data in a ready-to-be-modeled fashion. We then put forward a wish list for the desired attributes for an ideal modeling centric database. Finally, we close with perspectives on how electronic data sources for cell signaling modeling have developed. We suggest that future directions in such data sources are largely model-driven and are hinged on interoperability of data sources

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    Ontology-based knowledge representation of experiment metadata in biological data mining

    Get PDF
    According to the PubMed resource from the U.S. National Library of Medicine, over 750,000 scientific articles have been published in the ~5000 biomedical journals worldwide in the year 2007 alone. The vast majority of these publications include results from hypothesis-driven experimentation in overlapping biomedical research domains. Unfortunately, the sheer volume of information being generated by the biomedical research enterprise has made it virtually impossible for investigators to stay aware of the latest findings in their domain of interest, let alone to be able to assimilate and mine data from related investigations for purposes of meta-analysis. While computers have the potential for assisting investigators in the extraction, management and analysis of these data, information contained in the traditional journal publication is still largely unstructured, free-text descriptions of study design, experimental application and results interpretation, making it difficult for computers to gain access to the content of what is being conveyed without significant manual intervention. In order to circumvent these roadblocks and make the most of the output from the biomedical research enterprise, a variety of related standards in knowledge representation are being developed, proposed and adopted in the biomedical community. In this chapter, we will explore the current status of efforts to develop minimum information standards for the representation of a biomedical experiment, ontologies composed of shared vocabularies assembled into subsumption hierarchical structures, and extensible relational data models that link the information components together in a machine-readable and human-useable framework for data mining purposes
    corecore