801 research outputs found

    On Throughput and Decoding Delay Performance of Instantly Decodable Network Coding

    Full text link
    In this paper, a comprehensive study of packet-based instantly decodable network coding (IDNC) for single-hop wireless broadcast is presented. The optimal IDNC solution in terms of throughput is proposed and its packet decoding delay performance is investigated. Lower and upper bounds on the achievable throughput and decoding delay performance of IDNC are derived and assessed through extensive simulations. Furthermore, the impact of receivers' feedback frequency on the performance of IDNC is studied and optimal IDNC solutions are proposed for scenarios where receivers' feedback is only available after and IDNC round, composed of several coded transmissions. However, since finding these IDNC optimal solutions is computational complex, we further propose simple yet efficient heuristic IDNC algorithms. The impact of system settings and parameters such as channel erasure probability, feedback frequency, and the number of receivers is also investigated and simple guidelines for practical implementations of IDNC are proposed.Comment: This is a 14-page paper submitted to IEEE/ACM Transaction on Networking. arXiv admin note: text overlap with arXiv:1208.238

    Complexity of Grundy coloring and its variants

    Full text link
    The Grundy number of a graph is the maximum number of colors used by the greedy coloring algorithm over all vertex orderings. In this paper, we study the computational complexity of GRUNDY COLORING, the problem of determining whether a given graph has Grundy number at least kk. We also study the variants WEAK GRUNDY COLORING (where the coloring is not necessarily proper) and CONNECTED GRUNDY COLORING (where at each step of the greedy coloring algorithm, the subgraph induced by the colored vertices must be connected). We show that GRUNDY COLORING can be solved in time O∗(2.443n)O^*(2.443^n) and WEAK GRUNDY COLORING in time O∗(2.716n)O^*(2.716^n) on graphs of order nn. While GRUNDY COLORING and WEAK GRUNDY COLORING are known to be solvable in time O∗(2O(wk))O^*(2^{O(wk)}) for graphs of treewidth ww (where kk is the number of colors), we prove that under the Exponential Time Hypothesis (ETH), they cannot be solved in time O∗(2o(wlog⁡w))O^*(2^{o(w\log w)}). We also describe an O∗(22O(k))O^*(2^{2^{O(k)}}) algorithm for WEAK GRUNDY COLORING, which is therefore \fpt for the parameter kk. Moreover, under the ETH, we prove that such a running time is essentially optimal (this lower bound also holds for GRUNDY COLORING). Although we do not know whether GRUNDY COLORING is in \fpt, we show that this is the case for graphs belonging to a number of standard graph classes including chordal graphs, claw-free graphs, and graphs excluding a fixed minor. We also describe a quasi-polynomial time algorithm for GRUNDY COLORING and WEAK GRUNDY COLORING on apex-minor graphs. In stark contrast with the two other problems, we show that CONNECTED GRUNDY COLORING is \np-complete already for k=7k=7 colors.Comment: 24 pages, 7 figures. This version contains some new results and improvements. A short paper based on version v2 appeared in COCOON'1

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    The Parameterized Complexity of Degree Constrained Editing Problems

    Get PDF
    This thesis examines degree constrained editing problems within the framework of parameterized complexity. A degree constrained editing problem takes as input a graph and a set of constraints and asks whether the graph can be altered in at most k editing steps such that the degrees of the remaining vertices are within the given constraints. Parameterized complexity gives a framework for examining problems that are traditionally considered intractable and developing efficient exact algorithms for them, or showing that it is unlikely that they have such algorithms, by introducing an additional component to the input, the parameter, which gives additional information about the structure of the problem. If the problem has an algorithm that is exponential in the parameter, but polynomial, with constant degree, in the size of the input, then it is considered to be fixed-parameter tractable. Parameterized complexity also provides an intractability framework for identifying problems that are likely to not have such an algorithm. Degree constrained editing problems provide natural parameterizations in terms of the total cost k of vertex deletions, edge deletions and edge additions allowed, and the upper bound r on the degree of the vertices remaining after editing. We define a class of degree constrained editing problems, WDCE, which generalises several well know problems, such as Degree r Deletion, Cubic Subgraph, r-Regular Subgraph, f-Factor and General Factor. We show that in general if both k and r are part of the parameter, problems in the WDCE class are fixed-parameter tractable, and if parameterized by k or r alone, the problems are intractable in a parameterized sense. We further show cases of WDCE that have polynomial time kernelizations, and in particular when all the degree constraints are a single number and the editing operations include vertex deletion and edge deletion we show that there is a kernel with at most O(kr(k + r)) vertices. If we allow vertex deletion and edge addition, we show that despite remaining fixed-parameter tractable when parameterized by k and r together, the problems are unlikely to have polynomial sized kernelizations, or polynomial time kernelizations of a certain form, under certain complexity theoretic assumptions. We also examine a more general case where given an input graph the question is whether with at most k deletions the graph can be made r-degenerate. We show that in this case the problems are intractable, even when r is a constant

    Algorithms for the Maximum Independent Set Problem

    Get PDF
    This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of S2;j;kS_{2;j;k}-free graphs (thus generalizing the classical result for S1;2;kS_{1;2;k}-free graphs); + some subclasses of treektree_{k}-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of P7P_{7}-free graphs and S2;2;2S_{2;2;2}-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of S2;k;kS_{2;k;k}-free graphs and a subclass of S2;2;5S_{2;2;5}-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for P5P_{5}-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for P5P_{5}-free graphs, to give polynomial solutions for some subclasses of S2;2;2S_{2;2;2}-free graphs and treektree_{k}-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of Si;j;kS_{i;j;k}-free subcubic graphs
    • 

    corecore