320 research outputs found

    Transductive Learning for Spatial Data Classification

    Full text link
    Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the nave Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented

    Computing Vertex-Vertex Dissimilarities Using Random Trees: Application to Clustering in Graphs

    Get PDF
    A current challenge in graph clustering is to tackle the issue of complex networks, i.e, graphs with attributed vertices and/or edges. In this paper, we present GraphTrees, a novel method that relies on random decision trees to compute pairwise dissimilarities between vertices in a graph. We show that using different types of trees, it is possible to extend this framework to graphs where the vertices have attributes. While many existing methods that tackle the problem of clustering vertices in an attributed graph are limited to categorical attributes, GraphTrees can handle heterogeneous types of vertex attributes. Moreover, unlike other approaches, the attributes do not need to be preprocessed. We also show that our approach is competitive with well-known methods in the case of non-attributed graphs in terms of quality of clustering, and provides promising results in the case of vertex-attributed graphs. By extending the use of an already well established approach-the random trees-to graphs, our proposed approach opens new research directions, by lever-aging decades of research on this topic

    Computing Vertex-Vertex Dissimilarities Using Random Trees: Application to Clustering in Graphs

    Get PDF
    International audienceA current challenge in graph clustering is to tackle the issue of complex networks, i.e, graphs with attributed vertices and/or edges. In this paper, we present GraphTrees, a novel method that relies on random decision trees to compute pairwise dissimilarities between vertices in a graph. We show that using different types of trees, it is possible to extend this framework to graphs where the vertices have attributes. While many existing methods that tackle the problem of clustering vertices in an attributed graph are limited to categorical attributes, GraphTrees can handle heterogeneous types of vertex attributes. Moreover, unlike other approaches, the attributes do not need to be preprocessed. We also show that our approach is competitive with well-known methods in the case of non-attributed graphs in terms of quality of clustering, and provides promising results in the case of vertex-attributed graphs. By extending the use of an already well established approach-the random trees-to graphs, our proposed approach opens new research directions, by lever-aging decades of research on this topic

    Measuring Distances Among Graphs En Route To Graph Clustering

    Get PDF
    The graph data structure offers a highly expressive way of representing many real-world constructs such as social networks, chemical compounds, the world wide web, street maps, etc. In essence, any collection of entities and the relationships between them can be modelled using a graph, thus preserving more information about the real-world objects than a simple vector space model. An issue that arises when operating on collections of graphs, however, is that most statistical analysis and machine learning methods expect their input data to be in the form of multidimensional vectors, where all items can be compared with each other using well-understood metrics such as Euclidean or Manhattan distance. This paper presents a variety of approaches for computing distances between graphs with known node correspondence, with the aim of applying those measures alongside clustering algorithms to discover patterns in a given dataset. The performance of each distance measure is then evaluated through its ability to identify communities of graphs with similar features. We show that because the considered distance metrics highlight different structural properties, the method that produces the highest quality result will depend on the characteristics of the processed graph population

    Deep Representation-aligned Graph Multi-view Clustering for Limited Labeled Multi-modal Health Data

    Get PDF
    Today, many fields are characterised by having extensive quantities of data from a wide range of dissimilar sources and domains. One such field is medicine, in which data contain exhaustive combinations of spatial, temporal, linear, and relational data. Often lacking expert-assessed labels, much of this data would require analysis within the fields of unsupervised or semi-supervised learning. Thus, reasoned by the notion that higher view-counts provide more ways to recognise commonality across views, contrastive multi-view clustering may be utilised to train a model to suppress redundancy and otherwise medically irrelevant information. Yet, standard multi-view clustering approaches do not account for relational graph data. Recent developments aim to solve this by utilising various graph operations including graph-based attention. And within deep-learning graph-based multi-view clustering on a sole view-invariant affinity graph, representation alignment remains unexplored. We introduce Deep Representation-Aligned Graph Multi-View Clustering (DRAGMVC), a novel attention-based graph multi-view clustering model. Comparing maximal performance, our model surpassed the state-of-the-art in eleven out of twelve metrics on Cora, CiteSeer, and PubMed. The model considers view alignment on a sample-level by employing contrastive loss and relational data through a novel take on graph attention embeddings in which we use a Markov chain prior to increase the receptive field of each layer. For clustering, a graph-induced DDC module is used. GraphSAINT sampling is implemented to control our mini-batch space to capitalise on our Markov prior. Additionally, we present the MIMIC pleural effusion graph multi-modal dataset, consisting of two modalities registering 3520 chest X-ray images along with two static views registered within a one-day time frame: vital signs and lab tests. These making up the, in total, three views of the dataset. We note a significant improvement in terms of separability, view mixing, and clustering performance comparing DRAGMVC to preceding non-graph multi-view clustering models, suggesting a possible, largely unexplored use case of unsupervised graph multi-view clustering on graph-induced, multi-modal, and complex medical data
    corecore