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Abstract
Today,many fields are characterised by having extensive quantities of data from
a wide range of dissimilar sources and domains. One such field is medicine, in
which data contain exhaustive combinations of spatial, temporal, linear, and
relational data. Often lacking expert-assessed labels, much of this data would
require analysis within the fields of unsupervised or semi-supervised learning.
Thus, reasoned by the notion that higher view-counts provide more ways to
recognise commonality across views, contrastive multi-view clustering may
be utilised to train a model to suppress redundancy and otherwise medically
irrelevant information. Yet, standard multi-view clustering approaches do not
account for relational graph data. Recent developments aim to solve this by
utilising various graph operations including graph-based attention. And within
deep-learning graph-based multi-view clustering on a sole view-invariant
affinity graph, representation alignment remains unexplored.

We introduce Deep Representation-Aligned Graph Multi-View Clustering
(DRAGMVC), a novel attention-based graph multi-view clustering model.
Comparing maximal performance, our model surpassed the state-of-the-art
in eleven out of twelve metrics on Cora, CiteSeer, and PubMed. The model
considers view alignment on a sample-level by employing contrastive loss
and relational data through a novel take on graph attention embeddings in
which we use a Markov chain prior to increase the receptive field of each layer.
For clustering, a graph-induced DDC module is used. GraphSAINT sampling
is implemented to control our mini-batch space to capitalise on our Markov
prior.

Additionally, we present the MIMIC pleural effusion graph multi-modal dataset,
consisting of two modalities registering 3 520 chest X-ray images along with
two static views registered within a one-day time frame: vital signs and lab tests.
These making up the, in total, three views of the dataset. We note a significant
improvement in terms of separability, view mixing, and clustering performance
comparing DRAGMVC to preceding non-graph multi-view clustering models,
suggesting a possible, largely unexplored use case of unsupervised graph multi-
view clustering on graph-induced, multi-modal, and complex medical data.
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1
Introduction
The field of medicine is famously plagued with high workloads and hectic
schedules [84; 101]. Much technological research is conducted on the topic
of pattern recognition to aid in medical tasks (see figs. 1.2 & 1.3) looking to
ease the work loads of physicians and health care workers. Easing the work
load suffered by health care workers is an noble ambition, however, due to
the aforementioned high demand by the health sector, expert annotators for
the sake of medical pattern recognition research are few and far in-between.
Although, while data labels (also referred to as data annotations) are largely
unavailable, the medical field contains a vast mass of patient data from a wide
range of sources and different modalities. In this thesis we explore the topic
of machine learning (ML) without extensive guidance by expert annotations.
Instead, we aim to utilise the many forms of data available to strengthen
underlying group structures for the sake of prediction and visualisation of
multi-modal medical data including chest X-rays (CXRs). A form of data that
we found to be an important driving force in recognising cluster structures
is that of relational information (illustrated in fig. 1.1) in the form of affinity
graphs. When data annotations are unavailable, having available information of
similarities between data samples prove to be an excellent aid in our endeavour.
In the following, we provide an introduction to the field and details on the
problem areas addressed in this thesis. Namely, an unexplored approach to
graph-based multi-modal unsupervised machine learning on complex medical
data for prediction and cluster analysis.

1



2 chapter 1 introduction

Figure 1.1: The relational information in datasets as shown by connecting lines.

1.1 Getting Information from Data

When we consider the sheer mass of accumulated data in many fields, man-
ually analysis becomes, for the most part, infeasible without proper analysis
tools. In addition to the volume, big data tends to be heterogeneous in type
and significantly unstructured [20], making it yet harder to analyse. Today’s
solutions exist partly within the field of machine learning (ML), aiming to auto-
mate the learning process and provide useful tools to deal with and learn from
large data masses. Machine learning is a cross-disciplinary subject combin-
ing computer science, mathematics, statistics, and information theory creating
powerful data analysis methods of interpretation [71], generation (e.g. [26]),
prediction (e.g. [79; 10]), and visualisation (e.g. [66]). This can be employed
by presenting examples in a set of data points with associated labels in what is
commonly referred to as supervised machine learning. The amount of research
within the topic of machine learning has been increasing drastically over the
last few decades, implying a strong belief in its potential as well as a demand
for solutions within data analysis and pattern recognition (see figs. 1.2a & 1.2b).

Taking theory into practice will, in most cases, pose challenges. In machine
learning, we see that although data is abundant, it is commonly imperfect
through a combination of it being incomplete, inaccurate, and/or unlabeled.
Regularly exposed to these imperfections is the field of medicine [20]. Medical
data will often require hard-to-obtain expert-assessed labels, as well as devoid
information, erroneous/lost lab tests, and exposure to the varying customs of
caregivers and physicians. Machine learning fields such as semi-supervised and
unsupervised learning (specifically clustering) attempt to learn data patterns
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(a) PubMed publications containing the words
”machine learning”.

(b) PubMed publications containing the words
”big learning”.

Figure 1.2: Plots illustrating the machine learning trend in health research.

Figure 1.3: PubMed publications containing the words ”semi-supervised”.

despite the data being unlabeled — and the field is an increasingly appealing
subject for medical research (see fig. 1.3). The problem of data incomplete-
ness is commonly attempted neutralised by taking appropriate pre-processing
measures, as will be adequately covered in chapter 6. Nevertheless, real-world
data will contain bias, implicitly by default, or explicitly when attempting to
neutralise the innate biases. Thus, having a fundamental understanding of the
data at hand could prove beneficial both in pre-processing and data imputation.
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1.2 Advantages of Data Diversity

Let us consider the task of teaching an algorithm to recognise a specific dog
in an image by using a set of examples having annotations ”dog” or ”not dog”.
Imagining that the majority of images taken view dogs located outside. Do
we actually learn to recognise the dog, or do we recognise the grass it stands
on, the trees in the background, or the blue sky above? We refer to this as
the implicit bias of data — the presumptions made by the model implicitly
through the data that was presented. Now, let us consider two approaches to
deal with this bias. Firstly, to actively select a subset of the training dataset con-
taining balanced image properties, explicitly introducing bias into the data in
an attempt to neutralise the pre-existing bias. Secondly, to adjust our machine
learning approach to improve its learning abilities. For instance, if we were to
consider both the image as well as a newfound knowledge of the dog’s colour
and size, we would have an advantage in our task by recognising the sections
of the image which is more likely to contain the dog. Multi-view learning as a
ML approach attempts to unify learning across different sources — or views —
such as in our example. It builds on the intuition that additional informative and
non-redundant views will improve machine learning models in the recognition
of complex patterns by singling out the common properties. When data from
a range of different sources is readily available, yet labeled training data is un-
available,multi-view clustering (MVC) may often prove to be a suitable solution.

Multi-view learning is well-suited for unambiguous datasets, however, when
similar data features may be interpreted differently depending on latent infor-
mation, we might yet find MVC to be lacking. In the case of having available
similarity values between samples in the dataset, similarly valued features may
yet be interpreted differently depending on their associated samples. Having
these features in an affinity graph, we may unite the advantages of having mul-
tiple views and accessible graph data to the method of graph-based multi-view
learning.

1.2.1 Graph Multi-View Clustering and Health Data

As we have covered, in medical data is both abundant and from a wide range
of modalities and sources (e.g. figure 1.4) [20]. It is therefore a promising place
to start for graph-based multi-view machine learning approaches. However, the
limited capacity of medical experts for constant data labelling makes fully su-
pervised learning hard to accomplish. We hypothesise that managing to merge
information across views by recognising groupings that discovers commonality
across different sources and modalities while taking sample similarity into
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Figure 1.4: Use cases of multi-view learning in healthcare [9].

account, we reason that the dependency on a priori assessments may lessen
— enabling solutions requiring less supervision on significantly complex data.
Other challenges posed include (i) data selection by selecting non-redundant
and informative data views; (ii) the high interconnected nature of medical
diagnostics, requiring extensive datasets for noise smoothing (having sufficient
data to get a accuracte portrayal of the assumed underlying diagnostic distri-
butions) and yielding highly correlated predictions that does not necessarily
isolate any singular diagnosis — simply recognising a correlated subgroup;
(iii) the resulting clustering lacking interpretability.

Hypothesising that the extraction of features by recognising commonality across
views on a sample-level may provide added cluster stability and performance
benefits for intricate data, we introduce the model to be presented in this
thesis (chapter 5). We also hypothesise that we may extract diagnostically
relevant information from limited labeled data — unsupervised or partially
labeled in a semi-supervised manner — by using graph-based multi-modal
clustering with contrastive learning in the form of representation alignment, as
in [104]. Other approaches to contrastive graph-based multi-view clustering is
commonly within the fields of representation learning and/or graph learning
[33; 78; 109; 95; 40]. Meanwhile, to the best of the author’s knowledge, no other
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graph-based MVC models employ representation alignment on a predermined
graph multi-view dataset without employing representation learning and/or
graph learning. Thus, in this thesis we aim to present a model adhering the
following set of model features with the core intention of performing clustering
as close to the raw input data as possible:

• The machine learning model should learn to extract diagnostically rele-
vant information from each view separately and utilise this information
in union in its clustering.

• The machine learning model should learn to nuance information by
taking both data features and relational information into consideration.
Each sample in each view should be fused in a representation space in
which similar nodes are located close together.

• The machine learning model should learn to attend to similar neighbour-
ing samples in the dataset by an attention mechanism.

• The model should not learn new views but cluster purely on the provided
multi-view data (unlike multi-view approaches such as [33]).

• The model should not learn graphs during training, but utilise one prede-
termined view-invariant graph (unlike works such as [78; 109; 95; 40]).

1.2.2 No Benchmark Dataset Exists

While publicly available databases are readily available [47; 49; 24], we fail
to identify any graph-based multi-modal datasets for training of graph multi-
view neural networks for lung diagnostics: namely the prediction of pleural
effusion from CXR-assisted multi-view clustering. We construct a novel medical
dataset containing multi-modal and relational data for pleural effusion/not
pleural effusion patients for classification. The dataset to be detailed (chapter
6) should comply to the following:

• The dataset should contain at least two different data modalities that
provide non-redundant and relevant information (and otherwise conform
to the multi-view principles as will be covered in chapter 4).

• The dataset should contain one general homogeneous graph shared across
views.

• The dataset features should be extracted without feature selection to
assess the ability of unsupervised feature selection by models.
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• The underlying ground truth classes (diagnoses) should not be used in
the construction of the dataset in any way.

1.3 Contributions

In this thesis, we present DRAGMVC: a novel representation alignment-based
graph MVC model evaluated in unsupervised and semi-supervised applications.
The model extends on the representation alignment approach in [104], i.e. by
teaching a model to extract relevant features by recognising commonality
across data views. In our dog image classification example this correspond to,
e.g., recognising that the object in the image is both brown and has a snout, thus
learning to recognise relevant commonality across data views. We reason that
the sample-to-sample approach should yield more informative data representa-
tions that could prove useful in certain real-world applications in which nuance
is crucial. This is an unexplored approach for medical diagnostic purposes to
the best of the author’s knowledge. Models such as MAGCN [13] being the
established state-of-the-art within deep graph-based multi-view clustering do
not align representations directly, which we assume to weaken their feature
extraction capabilities on sufficiently complex datasets such as our constructed
MIMIC dataset. We attribute this to the very general nature of aligning distri-
butions, allowing for a significant degree of intra-cluster variation, which we
assume as likely to be a cause of instability on their clustering performance.
In the following thesis we display, by the use of DRAGMVC, that the degree of
representation alignment is significantly strengthened by learning from rela-
tional information in clustering.

We evaluate the model on our novel medical dataset to evaluate its usefulness
for highly complex data as well as its limited labeled data performance and
compare it to previous, similar clustering models. In evaluation we consider
the predictions’ subgroups in terms of diagnoses, as well as the statistical
significance of the resulting diagnosis splits. The thesis presents two main
contributions. Firstly, DRAGMVC introduces the graph attention convolutions
using a Markov prior improving on existing MVC-targeted attention-based
graph convolutions by allowing for a more selective attention approach by
using a Markov chain model as a statistical prior. This will allow for potentially
further-reaching attention than simple graph masking and a more selective
attention than attending to the full dataset. Due to the learned attention, this
serves as a potential dampening effect to the over-smoothing problem regularly
encountered in graph neural networks [76].
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Our second contribution in this thesis is a novel medical dataset constructed
from two publicly available databases: MIMIC-IV and MIMIC-CXR [47; 49; 24],
using ground truth classes pleural effusion/not pleural effusion. The dataset
contains relational data generated from radiology reports in a fully unsuper-
vised manner. For our node attributes, the data uses two different modalities:
vectorial and image data, and three data views in total: vital signs, lab tests,
and chest X-rays. Our aim is to evaluate the quality of information contained in
our dataset, as well as whether it complies with the non-redundancy presump-
tion of multi-view datasets — as demonstrated by the ”dog/no dog” example.
The MIMIC dataset will be evaluated using state-of-the-art methods including
the model presented in this thesis and its non-graph counterpart. From this
analysis, we aim to assess both diagnostic capabilities and any significant effect
on interpretability due to the employment of relational data. In addition to
our constructed MIMIC dataset, we perform comparisons on three common
graph multi-view datasets (Cora, CiteSeer, and PubMed [93; 73]) in order
to assess DRAGMVC’s performance in comparison to the established state-of-
the-art within deep learning graph-based multi-view clustering with a single
view-invariant affinity graph.

1.4 Thesis Outline

Seeing as our method employs methods from graph learning, unsupervised
learning, classic neural networks, and builds on foundational multi-view con-
cepts and advanced multi-view approaches — we will cover the necessary
theory: from basic clustering of data features and graphs, to neural networks,
and finally, the current state-of-the-art within graph-based multi-view learning
and clustering. These make up the three chapters of clustering (chapter 2), deep
learning (chapter 3), and multi-view learning (chapter 4), respectively. Follow-
ing the background, theory detailing both of our main contributions will be
covered thoroughly in chapters 5 & 6. Chapter 7 covers experiments aiming
to challenge questions raised regarding our model’s comparative performance
and its potential for complex medical applications. The chapter opens with
descriptions of datasets used, model setup, and the tools used in result analy-
sis. Results are presented along with their interpretation. The thesis finalises
with a comprehensive discussion of the results, providing a rendition of the
contributions made and their strengths and weaknesses. Finally, we conclude
the thesis in chapter 8 along with propositions of potential future work.

The thesis builds upon work done in the project paper preceding this thesis:
Exploring Multi-modal Medical Data with Deep Multi-view Clustering [27]. Some
of the content in the thesis, including parts of the introduction, are reused
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from this paper. Namely, chapters 2-4 covering the background theory for
the thesis is widely reused from [27]. Notable alterations in the background
theory include the addition of sections covering graph neural networks, semi-
supervised learning, graph-based multi-view networks, and many lesser or
inconsequential changes. Similarly, chapter 6 covering the construction of our
multi-view dataset is largely drawn from [27] with the exception of the creation
of our affinity graph and distinct changes in the selection of static views and
ground truth classes. Lastly, the analysis methods using in the experiments
(covered in section 7.2) are also reused from [27] due to the similarities of the
medical dataset in use.





Part I

Background

11





2
Clustering
In this chapter, clustering methods will be covered. We include these methods
to build a fundamental understanding of the variety, potential, and limitations
of clustering — aiming to build the knowledge necessary in order to properly
cover the main contributions of this thesis. Clustering can be divided into multi-
ple categories and sub-categories. A simple way of categorisation follows from
the structure of the resulting groupings. Does it partition the data into defined
clusters or a tree-like hierarchical cluster structure? These are appropriately
named partitional and hierarchical clustering, respectively. It is also worth men-
tioning that traditional clustering methods can be used in conjunction: in an
ensemble of machine learning methods, i.e. ensemble learning [23]. Naturally,
this group falls into a superposition of the two clustering categories previously
mentioned. Partitional clustering can be further bisected into centroid-based
(as seen in fig. 2.1) and affinity-based methods. In other words, the cluster-
ing methods presented will cover pattern recognition methods on either data
features or relational information.

13
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Figure 2.1: Partitional clustering on a dataset generated from three random Gassian
distributions. Marker symbol denotes the distribution from which a given
point was generated. Colour denotes predictions.

2.1 Clustering Definitions

2.1.1 Clusters

Let 𝑿 be our data set which is to be clustered, defined as

𝑿 = {𝒙1, 𝒙2, ..., 𝒙𝑁 }. (2.1)

Now, a partitioning of 𝑿 is defined as the 𝑚 clusters 𝐶1,𝐶2, ...,𝐶𝑚, if the
following three conditions are met [103]:

(i) 𝐶𝑖 ≠ /0, 𝑖 = 1, ...,𝑚

(ii) ∪𝑚
𝑖=1𝐶𝑖 = 𝑿

(iii) 𝐶𝑖 ∩𝐶 𝑗 = /0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, ...,𝑚

In other words: no cluster set is allowed to be empty, the union of all clusters
must add up to the complete data set, and the intersection of any two clusters
must be an empty set, i.e. none of the data points may be classified as being a
part ofmultiple clusters. In addition to these three conditions, clusters should re-
flect some similarity in its set. Data points contained in any given cluster should
be more similar to each other and less similar to points in another cluster [103].

In the above clustering definition, each data point is assigned to a sole cluster.
This is referred to as hard memberships. Alternatively, fuzzy memberships [121]
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may be applied in situations where the class assignments are less clear-cut.
In this case, data points’ memberships are given as a partial affinity with all
clusters that must add up to 1. Looking at our 𝑿 , 2.1, fuzzy memberships are
defined as [103]:

𝑢 𝑗 : 𝑿 → [0, 1], 𝑗 = 1, ...,𝑚 (2.2)

where 𝑢 𝑗 is the membership for cluster 𝑗 , with memberships in 𝑿 .
𝑚∑︁
𝑗=1

𝑢 𝑗 (𝒙𝑖) = 1, 𝑖 = 1, ..., 𝑁 (2.3)

0 <

𝑁∑︁
𝑖=1

𝑢 𝑗 (𝒙𝑖) < 𝑁, 𝑗 = 1, ...,𝑚. (2.4)

This means that each data point’s membership sums up to 1 — potentially
distributed among multiple clusters — and that each cluster must partially
contain at least one data point and also cannot fully contain all data points.

2.1.2 Proximity Measures

Proximity measures describe the similarity (and dissimilarity) of two points,
𝒙 and 𝒚, in feature space. The most common dissimilarity measure 1 is the
weighted 𝑙𝑝 metric [103]

𝑑𝑝 (𝒙,𝒚) =
( 𝑙∑︁
𝑖=1

𝑤𝑖 |𝑥𝑖 − 𝑦𝑖 |𝑝
)1/𝑝

(2.5)

for features along dimensions 𝑖 = 1, ..., 𝑙

The simple, unweighted variants correspond to familiar distance metrics, e.g.
we may recognise the unweighted 𝑙2 metric as the Euclidean norm

𝑑2(𝒙,𝒚 |𝑾 = 𝑰 ) =
√︃
(𝒙 −𝒚)𝑇 (𝒙 −𝒚). (2.6)

Sometimes used when considering a difference between two identically shaped
matrices, i.e. 𝑨 = 𝑿 − 𝒀 ∈ R𝑚×𝑛, we may use the Frobenius norm given as
such

| |𝑨| |𝐹 =

√√√ 𝑚∑︁
𝑖

𝑛∑︁
𝑗

|𝐴𝑖 𝑗 |2. (2.7)

1. A measure where higher values corresponds to two points being more dissimilar
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In the special case where dissimilarity is to be measured between clusters
represented in feature space as probability density functions (PDFs) — a
divergence measure may be more appropriate than the previous methods. In
the multi-cluster (𝑘 ≥ 2) case, a well-suited measure is the Cauchy-Schwarz
(CS) divergence [46]. Defined as:

𝐷𝑐𝑠 (𝑝1, ..., 𝑝𝑘 ) = − log
(
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∫
𝑝𝑖 (𝒙)𝑝 𝑗 (𝒙)𝑑𝒙√︃∫

𝑝2
𝑖
(𝒙)𝑑𝒙

∫
𝑝2
𝑗
(𝒙)𝑑𝒙

)
(2.8)

for PDFs 𝑝𝑖 and 𝑝 𝑗 . The intuitive understanding of divergence measures is to
quantify the degree with which two probability density functions overlap. This
is often desired in order to optimise one’s feature representation to fit a desired
distribution. This approach is used in e.g. the deep divergence-based clustering
module [50] employed in DRAGMVC.

2.2 Outlining Hierarchical Clustering

Hierarchical clustering can be split into two defining methods: agglomerative
clustering and divisive clustering [6]. The former of which constructs a tree of
clusters by initially having 𝑁 separate clusters — one for each data point —
and merging clusters that minimise a predetermined distance metric until a
sole cluster remains. A dendrogram may then be used to display the clustering
results and in turn find natural groupings in the data set (as can be seen in figs.
2.2a and 2.2b) by assigning hard memberships at an optimal threshold along
the 𝑦-axis, which in this case represents Euclidean distance. Agglomerative
clustering may be further differentiated by the selection of distance metric,
and equally importantly its measuring method. Notable variants of the latter
include the single-link 2 [98] and complete-link 3 [55] algorithms.

The process for divisive clustering can be simplified as the reverse of that in
agglomerative clustering. The dataset is now initialised as a single cluster. As
opposed to the merging one might associate with agglomerative clustering,
the objective is now to find the cut (the graph cut will be covered later in
this chapter) that yields maximum between-cluster distance until there is one
cluster for each data point in the dataset. Similar to agglomerative clustering,
the results can be displayed in a dendrogram from which natural groupings
can be extracted and clustered together.

2. Measuring distance based on the pair of nearest data points in different clusters
3. Distance measured at furthest distance between points in different clusters
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(a) Dendrogram of agglomerative clustering by
the complete-linkage algorithm.

(b) The resulting clusters from the three
coloured clusters in fig. 2.2a.

Figure 2.2: Agglomerative clustering on an identical data distribution to the one in
fig. 2.1.

Hierarchical clustering is very suitable when the objective is to gather an
understanding of the underlying structure of the data. However, when the
objective is to obtain memberships or explicit predictions, rather than the tree-
like pattern we see in a dendrogram (2.2a), partitional methods are frequently
more suitable.

2.3 Partitional Methods

The idea behind partitional methods is to partition data points into predicted
classes, rather than describe their data hierarchy. One such approach is our pro-
posedmodel, DRAGMVC, aiming to assign predicted labels to data points.

2.3.1 Centroid-based Methods

2.3.1.1 The Generalised Hard Algorithmic Scheme

The Generalised Hard Algorithmic Scheme (GHAS) [103] is a generalised
formulation of centroid-based hard clustering which can be used to describe a
wide range of known clustering methods. We may use the definitions for fuzzy
clustering in eqs. 2.2, 2.3, & 2.4 to describe hard clustering as well, in the case
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of a one-hot vector such as [103]

𝑢𝑖 𝑗 ∈ {0, 1}, 𝑗 = 1, ...,𝑚 (2.9)
𝑚∑︁
𝑗=1

𝑢𝑖 𝑗 = 1, 𝑖 = 1, ..., 𝑁 (2.10)

(2.11)

with𝑚 clusters and 𝑁 data points. The loss function is given as a sum over
dissimilarities to clusters 𝑗 = 1, ...,𝑚 by 𝑢𝑖 𝑗 , defined as

𝐽 (𝜽 ,𝑈 ) =
𝑁∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑢𝑖 𝑗𝑑 (𝒙𝑖, 𝜽 ) . (2.12)

Equation 2.12 is minimised for the cluster 𝑗 = 1, ...,𝑚 that minimises the
dissimilarity 𝑑 (𝒙𝑖, 𝜽 𝑗 ), i.e. for a one-hot vector 𝒙𝑖 :

𝑢𝑖 𝑗 =

{
1, if 𝑑 (𝒙𝑖, 𝜽 𝑗 ) = min𝑘=1,...,𝑚 𝑑 (𝒙𝑖, 𝜽𝑘 )
0, otherwise

. (2.13)

We update the clusters 𝜽 𝑗 by solving
𝜕𝐽 (𝜽 ,𝑈 )
𝜕𝜽 𝑗

for 𝑗 = 1, ...,𝑚 to find our loss

minimum:
𝑁∑︁
𝑖=1

𝑢𝑖 𝑗
𝜕𝑑 (𝒙𝑖, 𝜽 𝑗 )
𝜕𝜽 𝑗

= 0, 𝑗 = 1, ...,𝑚. (2.14)

Now, combining eqs. 2.13 and 2.14 into the GHAS clustering scheme given
in algorithm 1 [103]. Its termination criterion can be any arbitrary criterion,
e.g. no change in cluster coordinates, a set number of iterations, or no cluster
assignment change.

2.3.1.2 K-means

K-means [67] is often regarded as the go-to clustering method because of
its simplicity and efficiency [44]. As such, K-means will be used throughout
the paper where it is deemed appropriate and sufficient in quality. Like many
other popular clustering methods it is shown to be a variant of the GHAS.
The dissimilarity measure used is the squared Euclidean distance, 𝑑 (𝒙𝑖, 𝜽 𝑗 ) =
(𝒙𝑖 − 𝜽 𝑗 )2. Thus, we may rewrite eq. 2.12 as

𝐽 (𝜽 ,𝑈 ) =
𝑁∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑢𝑖 𝑗 | |𝒙𝑖 − 𝜽 𝑗 | |2. (2.15)
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Algorithm 1 Generalised Hard Algorithmic Scheme (GHAS) algorithm.
1: Initialise 𝜽 𝑗 (0), 𝑗 = 1, ...,𝑚.
2: 𝑡 ← 0
3: while termination criterion not met do
4: for 𝑖 ← 1 to 𝑁 do
5: for 𝑗 ← 1 to𝑚 do
6:

𝑢𝑖 𝑗 (𝑡) ←
{
1, if 𝑑 (𝒙𝑖, 𝜽 𝑗 (𝑡)) = min𝑘=1,...,𝑚 𝑑 (𝒙𝑖, 𝜽𝑘 (𝑡))
0, otherwise

7: end for
8: end for
9: 𝑡 ← 𝑡 + 1
10: for 𝑗 ← 1 to𝑚 do
11: Solve the following w.r.t. 𝜽 𝑗 to yield solutions 𝜽 ′𝑗

𝑁∑︁
𝑖=1

𝑢𝑖 𝑗 (𝑡 − 1)
𝜕𝑑 (𝒙𝑖, 𝜽 𝑗 )
𝜕𝜽 𝑗

= 0

12: 𝜽 𝑗 (𝑡) ← 𝜽 ′𝑗
13: end for
14: end while
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The update value eq. 2.14 can be found from eq. 2.15 by first solving
𝜕𝑑 (𝒙𝑖, 𝜽 𝑗 )
𝜕𝜽 𝑗

=
𝜕

𝜕𝜽 𝑗

(
(𝒙𝑖 − 𝜽 𝑗 )2

)
= −2(𝒙𝑖 − 𝜽 𝑗 ) (2.16)

then solving the update equation 2.14

0 = −2
𝑁∑︁
𝑖=1

𝑢𝑖 𝑗 (𝒙𝑖 − 𝜽 𝑗 )

𝜽 𝑗

𝑁∑︁
𝑖=1

𝑢𝑖 𝑗 =

𝑁∑︁
𝑖=1

𝑢𝑖 𝑗𝒙𝑖

𝜽 ′𝑗 =

∑𝑁
𝑖=1𝑢𝑖 𝑗𝒙𝑖∑𝑁
𝑖=1𝑢𝑖 𝑗

.

Recognising
∑𝑁
𝑖=1𝑢𝑖 𝑗 = 𝑁 𝑗 as the numbers of data points of cluster 𝐶 𝑗 and∑𝑁

𝑖=1𝑢𝑖 𝑗𝒙𝑖 as a summation of the data points in cluster𝐶 𝑗 we may simplify the
above equation to

𝜽 ′𝑗 =

∑
𝒙𝑖 ∈𝐶 𝑗

𝒙𝑖

𝑁 𝑗
. (2.17)

This is recognised as the mean of data points 𝒙𝑖 ∈ 𝐶 𝑗 . The intuitive understand-
ing of this algorithm is simple. First, you assign each data point a cluster by
finding the nearest centroid by the squared Euclidean distance. Then, update
the centroid positions by taking the means of the newly assigned data points
within each cluster. Repeat this until convergence or until another termination
criterion is achieved.

2.4 Affinity-based Transformations & Clustering

To continue building our perception of data we introduce the concept of affinity
graphs. In a mathematical context, we employ graphs to define relational
context. While data features may provide an arbitrary mass of data for a single
sample, the data is commonly self-describing, disregarding affinity to other data
points in the dataset. This thesis presents machine learning approaches uniting
the sample-bound data with contextual data. Thus, we find it highly relevant
to cover the topics of graphs and graph-based machine learning methods, the
latter of which will be detailed further in chapter 3.3. In this section, we will
also detail a dimensionality reduction method commonly used in visualisation
of graph structures. Finally, we will introduce the foundational graph clustering
method spectral clustering.
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Figure 2.3: An example of a graph-based transformation [89].

2.4.1 Graph Definitions

Graph-based transformations may be used in cases where patterns are required
to take some grander context into consideration (as illustrated in fig. 2.3). This
underlines the necessity of graph data in certain case, but prior to covering
graph transformations and graph clustering, we will detail a few underlying
definitions.

A graph 𝑮 = (𝑉 , 𝐸) consists of vertices (or nodes) and edges. It defines a
similarity of a connection from vertex 𝑣𝑖 representing data point 𝒙𝑖 by an
edge — representing the vertex’s connections to 𝒙 𝑗 by a weight𝑤𝑖 𝑗 . The edge
weights define proximity or similarity, and are commonly stored in an affinity
matrix 𝑨 ∈ R𝑁×𝑁 . In the case that 𝑤𝑖 𝑗 has no associated floating point value,
the graph is defined as unweighted [74]. In these cases edges connecting two
vertices are simply defined as present or not present. Graphs may further be
categorised by properties of their vertices and edges, for example [124]:

• Directed / undirected graphs : Edges in directed graphs have a direction,
meaning that any node is directed to another (see fig. 2.4a). This is
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(a) A directed graph. (b) An undirected graph.

Figure 2.4: Examples of directed/undirected graphs.

not the case for undirected graphs (fig. 2.4b), however, each edge in an
undirected graph may be represented as a set of directed edges (e.g. node
3 in fig. 2.4a directing to node 1 and node 4).

• Homogeneous / heterogeneous graphs : A graph is homogeneous if vertex-
edge relation type described by the graph is the same for all nodes. In
contrast, relations in heterogeneous graphs may consist of different types
for various nodes⁴.

• Static / dynamic graphs : Whether the graph topology is fixed or vary
with time.

With cases such as distance matrices including every edge may prove excessive,
thus, the affinity matrix itself may be aptly filtered according to its application.
An example of this is seen in the ”swiss roll” figure (fig. 2.3) in which we
commonly aim to purposefully disregard datapoints on the other side of the
space separating the layers of the roll. For the standard machine learning case
where graph vertices are associated with data in some vector space, we define
the following graph alterations

• 𝑘 Nearest neighbour (𝑘-NN) : Considering only the 𝑘 nearest points for
each vertex 𝑣𝑖 , setting the weight of all remaining edges to zero𝑤𝑖 𝑗 = 0
if data point 𝒙 𝑗 is not a 𝑘 nearest neighbour. Using a similarity measure
𝑤𝑖 𝑗 = 𝑠𝑖 𝑗 (such as Euclidean distance) for the neighbours.

• Y neighbourhood : Considering all points within a threshold Y. Setting
the weights of all remaining data points 𝑤𝑖 𝑗 = 0.

4. Example of a heterogeneous graph: Amarked place graphmay consist of nodes seller, buyer,
and product. These are connected by edges selling, buying, in-marked-for, and has-bought.
In this example, both vertices and edges vary in type.
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• Fully connected graph : Using all points in a graph.

2.4.2 Graph Laplacian

From the definitions we have established, we may utilise graph structures to
transform or cluster data. We define the graph Laplacian as a matrix given by

𝑳 = 𝑫 −𝑨, (2.18)

having 𝑨 be our affinity matrix and 𝑫 is the diagonal degree matrix with
elements

𝐷 (𝑖, 𝑗) =
{
deg(𝑣𝑖) 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
,

with deg(𝑣𝑖) =
∑𝑁
𝑗=1𝑤𝑖 𝑗 .

Data patterns found in graphs may be transformed to lower dimensions by ap-
plying Laplacian eigenmaps [103]. Having 𝑦𝑖 ∈ R𝑙 where 𝑙 ≪ 𝑝, let {𝒚1, ...,𝒚𝑁 }
be a set of transformed representation of high-dimensional data 𝑿 ∈ R𝑁×𝑝 .
The loss function aiming to optimise𝒚 should be set so that high-valuedweights
𝑤𝑖 𝑗 correspond to small squared distances (in transformed space) (𝑦𝑖 − 𝑦 𝑗 )2,
while small weights correspond to well-separated nodes. As such, the loss
function is defined as follows

𝐽 (𝒚,𝑨) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝑦𝑖 − 𝑦 𝑗 )2𝑤𝑖 𝑗 . (2.19)
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We have the equality

𝒚𝑇 𝑳𝒚 = 𝒚𝑇 (𝑫 −𝑨)𝒚
= 𝒚𝑇𝑫𝒚 −𝒚𝑇𝑨𝒚

=

𝑁∑︁
𝑖=1

𝑦2𝑖 𝑑𝑖 −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦𝑖𝑦 𝑗𝑤𝑖 𝑗

=
1
2

( 𝑁∑︁
𝑖=1

𝑦2𝑖 𝑑𝑖 − 2
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦𝑖𝑦 𝑗𝑤𝑖 𝑗 +
𝑁∑︁
𝑗=1

𝑦2𝑗𝑑 𝑗

)
=

1
2

( 𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2𝑖𝑤𝑖 𝑗 −
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

2𝑦𝑖𝑦 𝑗𝑤𝑖 𝑗 +
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑦2𝑗𝑤𝑖 𝑗

)
=

1
2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝑦2𝑖 − 2𝑦𝑖𝑦 𝑗 + 𝑦2𝑗 )𝑤𝑖 𝑗

=
1
2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
(𝑦𝑖 − 𝑦 𝑗 )2𝑤𝑖 𝑗 . (2.20)

Thus, by eqs. 2.19 & 2.20
𝐽 (𝒚,𝑨) ∝ 𝒚𝑇 𝑳𝒚. (2.21)

By optimising eq. 2.21 with regards to 𝒚 subject to 𝒚𝑇𝑫𝒚 = 1 in order to find
its minimum, the eigenmap may be derived as follows by eigen-decomposition

𝑳𝒂 = _𝑫𝒂. (2.22)

Consider 0 = _0 ≤ _1 ≤ ... ≤ _𝑙 be the smallest 𝑙 + 1 eigenvalues⁵. By using
the 𝑙 eigenvectors 𝒂1, ..., 𝒂𝑙 as our basis⁶ a Laplacian eigenmap 𝒀 ∈ R𝑁×𝑙 is
produced, e.g. fig. 2.3.

The map yields a new representation where the graph connections are re-
stricted such that highly weighted edges are mapped to be close, while nodes
corresponding to smaller edge weights are pushed away. Using filtering meth-
ods such as 𝑘-NN, only local structures are considered and put in a grander
context, allowing structures such as the on in fig. 2.3 to be solved properly by

5. Note that unlike the notation used in PCA, the eigenvalues are ordered in ascending rather
than descending order.

6. Ignoring _0 = 0 which corresponds to the zero mapping solution.
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Figure 2.5: Spectral clustering predictions for complex data distributions.

using Laplacian eigenmaps.

In many cases it is useful to consider the normalised graph Laplacian, defined
as

𝑳 = 𝑫−1/2𝑳𝑫−1/2 = 𝑰𝑁 − 𝑫−1/2𝑨𝑫−1/2. (2.23)

The normalised graph Laplacian is a symmetric positive semidefinite matrix⁷
[124], making it useful in eigen-decomposition problems such as the one in eq.
2.22.

2.4.3 Spectral Clustering

As opposed to partitional clustering, affinity-based clustering methods are
based by minimising the graph cut. Having two cluster candidates, 𝐴 and 𝐵,
we define the graph cut as [103]

cut(𝐴, 𝐵) =
∑︁
𝑖∈𝐴

∑︁
𝑗 ∈𝐵

𝑤𝑖 𝑗 . (2.24)

The optimal cut is one where where the sum of weights connecting points in
𝐴 with points in 𝐵 is minimised. This does, however, often favour small and
sparse groupings [103]. In order to avoid this issue, the normalised cut was
introduced [96]. This variant attempt to correct the original graph cut’s bias

7. Matrix 𝑨 is positive semidefinite if 𝒙𝑇𝑨𝒙 ≥ 0 for all real and non-zero 𝒙 [1].
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towards sparse groupings and has become one of the most used criteria in
spectral clustering [103]. The normalised cut is defined as [96]

Ncut(𝐴, 𝐵) = cut(𝐴, 𝐵)
𝑉 (𝐴) +

cut(𝐴, 𝐵)
𝑉 (𝐵) , (2.25)

where we define the volume as [96]

𝑉 (𝐴) =
∑︁

𝑖∈𝐴,𝑗 ∈𝑉
𝑤𝑖 𝑗 , (2.26)

having 𝐴 ∪ 𝐵 = 𝑉 .

To ease computation we approximate the normalised cut, defining a label
vector 𝒚 = [𝑦1, ..., 𝑦𝑁 ]𝑇 with elements

𝑦𝑖 =


1

𝑉 (𝑎) 𝒙𝑖 ∈ 𝐴
1

𝑉 (𝐵) 𝒙𝑖 ∈ 𝐵
. (2.27)

Using eq. 2.27 this (as well as the definition for 𝒚𝑇 𝑳𝒚 derived in eq. 2.20), we
may define

𝒚𝑇 𝑳𝒚 =
1
2

∑︁
𝑖∈𝐴

∑︁
𝑗 ∈𝐵

(
1

𝑉 (𝐴) +
1

𝑉 (𝐵)

)2
𝑤𝑖 𝑗

=
1
2

(
1

𝑉 (𝐴) +
1

𝑉 (𝐵)

)2
cut(𝐴, 𝐵) (2.28)

and

𝒚𝑇𝑫𝒚 =
∑︁
𝑖∈𝐴

𝑦2𝑖 𝑑𝑖 +
∑︁
𝑗 ∈𝐵

𝑦2𝑗𝑑 𝑗

=
1

𝑉 (𝐴)2
∑︁
𝑖∈𝐴

𝑑𝑖 +
1

𝑉 (𝐵)2
∑︁
𝑗 ∈𝐵

𝑑 𝑗

=
1

𝑉 (𝐴) +
1

𝑉 (𝐵) . (2.29)
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Finally, we get

𝒚𝑇 𝑳𝒚

𝒚𝑇𝑫𝒚
=

1
2

(
1

𝑉 (𝐴) +
1

𝑉 (𝐵)

)2
cut(𝐴, 𝐵)

1
𝑉 (𝐴) +

1
𝑉 (𝐵)

=
1
2

(
1

𝑉 (𝐴) +
1

𝑉 (𝐵)

)
cut(𝐴, 𝐵)

∝ Ncut(𝐴, 𝐵). (2.30)

The optimisation problem becomes

min
𝒚

𝒚𝑇 𝑳𝒚

𝒚𝑇𝑫𝒚
. (2.31)

Allowing any value for 𝒚 in eq. 2.27 and setting the constraint that

𝒚𝑇𝑫𝒚 = 𝒚𝑇1𝑫
−1/2𝑫−1/2𝒚1 = 𝒛𝑇 𝒛 = 1,

we find that eq. 2.31 reduces to a generalised eigenvalue problem

𝑳𝒚 = _𝑫𝒚

𝑫−1𝑳𝒚 = _𝒚

𝑳𝒚 = _𝒚, (2.32)

where 𝑳 is the normalised graph Laplacian from eq. 2.23. As with Laplacian
eigenmaps, the eigenvector corresponding to the second smallest eigenvalue,
𝒚1, is used to perform the final spectral clustering by dicretising the compo-
nents of 𝒛 = according to some fitting threshold value.

Similar to Laplacian eigenmaps, spectral clustering allow graph relations to
consider both local and global similarities in a way that allows for a higher
degree of variation in the shape of the data distributions, see figs. 2.3 and 2.5.
Thus, unexplored and unfamiliar data could potentially benefit from incorpo-
rating these relations into the tools used. A disadvantage of this method is
its lack of robustness in the presence of noise, see figure 2.6. Due to a ran-
domly generated ”bridge” between the two natural groupings, the resulting
partitions are not discovered by the 𝑘 nearest neighbour affinity graph used in
this particular case. Thus, a significant motivation of this thesis — being within
the field of graph-based multi-view clustering — builds on the intuition that a
unity of graph information and traditional data adds much needed robustness
into spectral clustering, as well as much needed relational information into
traditional clustering.
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Figure 2.6: Spectral clustering performance may be affected by noisy data distribu-
tions.



3
Deep Learning
This chapter will cover a few current deep learning models, as well as a se-
lection of the methods which led us to the state-of-the-art. This includes the
multilayer perceptron (MLP), convolutional neural networks (CNN), and the
graph neural network (GNN). This will set the stage for newer auto-encoder
and deep clustering methods, which will be covered towards the end of the
chapter. The categories covered in this chapter set the stage for a wide range of
deep learning research, including the model presented in this paper. To begin,
let us get familiar with the idea of data features by introducing the concept
of the simple data transformation which will set the foundation for numerous
machine learning approaches.

Let 𝑥1, 𝑥2, ..., 𝑥𝑁 be a set of data values making up some vector 𝒙. Given a
unitary1 𝑁 ×𝑁 matrix 𝑨, a transformation 𝒙 → 𝑓 (𝒙) where 𝒚 = 𝑓 (𝒙) can be
defined as [103]

𝒚 = 𝑨𝑇𝒙 ≡

𝒂𝐻0
...

𝒂𝐻
𝑁

 𝒙 . (3.1)

The vectors 𝒂1, ..., 𝒂𝑵 are referred to as the basis vectors of the transformation
𝑓 [103].

1. Amatrix in the complex domain is unitary iff𝑨−1 = 𝑨𝐻 . This corresponds to an orthogonal
matrix for real matrices, i.e. 𝑨−1 = 𝑨𝑇 .

29
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Figure 3.1: A simple perceptron — the building block of a neural network. This
perceptron has three input nodes and two output nodes.

3.1 Perceptrons

The original perceptron is a simple classifier which is based on our under-
standing of a neuron of the brain [86]. This inspired the grew to become
the multilayer perceptron, appropriately referred to as a neural network [34].
Although the theory behind neural networks run tens of years back into the
previous century, the primary bottleneck of AI development has been the lim-
ited computational power [25]. However, due to the exponentially increasing
computing power (Moore’s law), today’s computers are well able to train neural
networks that are tens — and even hundreds — of layers deep.

The simple perceptron [86] is a linear transformation of an input vector 𝒙 to a
predicted output 𝑦, as such:

𝑦 = 𝑔(𝒙) = 𝒘𝑇𝒙 +𝑤0, (3.2)

where 𝑤0 is referred to as the bias of the function.

In the original paper, the perceptron was used as a binary classifier. Thus, the
output 𝑔(𝒙), is passed through a continuous activation function, 𝑓 (·), from
which the output would be 𝑓 (𝑔(𝒙)) ∈ (−1, 1). However, in many applications
it is desired to have the output 𝑓 (𝑔(𝒙)) ∈ (0, 1), which may also be achieved
by using another activation function.

For supervised machine learning, the perceptron’s weights𝑤 𝑗 for 𝑗 = 0, 1, ..., 𝑘 ,
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can be estimated by an iterative process aimed tominimise a given loss function,
𝐽 (𝒙 |𝒚) defined as

𝐽 =

𝑁∑︁
𝑖=1

Y (𝑖), (3.3)

where Y (𝑖) is the loss value for training pair (𝒙𝑖, 𝑦𝑖).

The properties of the activation function will often play a role in the quality of
the model, as well as its loss value. Two of these important properties are their
derivative and output span. The sigmoid activation function is given by

𝜎 (𝑦) = 1
1 + 𝑒−𝑦

(3.4)

and spans 𝜎 ∈ (0, 1), 𝑦 ∈ (−∞,∞).

Another popular activation function is the hyperbolic tangent:

tanh(𝑦) = 𝑒𝑦 − 𝑒−𝑦
𝑒𝑦 + 𝑒−𝑦

(3.5)

which spans tanh ∈ (−1, 1), 𝑦 ∈ (−∞,∞).

A simple, yet effective activation function is the Rectified Linear Unit (ReLU)
given by:

ReLU(𝑦) =
{
𝑦 𝑦 ≥ 0
0 𝑦 < 0

(3.6)

having ReLU ∈ (0, 1), 𝑦 ∈ (−∞,∞).

An alternative to the ReLU function is the LeakyReLU [65]:

LeakyReLU(𝑦;𝑎) =
{
𝑦 𝑦 ≥ 0
𝑎𝑦 𝑦 < 0

, (3.7)

using parameter 0 < 𝑎 < 1 defining the leaking parameter, yielding a slight
gradient leakage for negative values.

If the aim is to produce a probability-like output, the softmax activation function
is applicable. In this case,we look at a one-hot label vector for data pairs (𝒙 𝒊,𝒚𝑖),
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Notation :

• 𝑣𝑟𝑗 (𝑖) : Layer output for node 𝑗 ∈ {1, ..., 𝑘𝑟 }, layer 𝑟 ∈ {1, ..., 𝐿}, and
sample 𝑖 ∈ {1, ..., 𝑁 } pre-activation.

• 𝑎𝑟𝑗 (𝑖) = 𝑓 (𝑣𝑟𝑗 (𝑖)) : Post-activation output for node 𝑗 in layer 𝑟 for sample
𝑖.

• 𝑦 𝑗 (𝑖) = 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗 (𝑖)) : Prediction, post-activation for 𝑣𝐿𝑗 (𝑖).
• 𝒘𝑟𝑗 : The weight vector of shape 𝑘𝑟−1 relating the output of layer 𝑟 − 1 to

node 𝑗 in layer 𝑟 .
• 𝑤𝑟

𝑗0 : The bias of node 𝑗 in layer 𝑟 .

where 𝒚𝑖 = (𝑦𝑖,𝑚, ..., 𝑦𝑖,𝑘𝐿 ) are binary values

softmax(𝑦𝑖,𝑚) =
𝑒𝑦𝑖,𝑚∑𝑘𝐿
𝑛=1 𝑒

𝑦𝑖,𝑛
(3.8)

which spans softmax(𝑦𝑖,𝑚) ∈ [0, 1], 𝑦𝑖,𝑚 ∈ (−∞,∞), 𝑖 = 1, ..., 𝑘𝑙 ,𝑚 ∈ {1, ..., 𝑘𝐿}.

3.1.1 The Multilayer Perceptron

The multilayer perceptron (MLP) [34] takes advantage of the property that an
arbitrary number of repeated linear transformations may create any complex
hyperplane to be used in classification [103]. The architecture of such a net-
work is split in three, the input layer, the hidden layer(s), and the output layer.
Their tasks are, respectively, to form the hyperplanes used in classification,
form the class regions by one or multiple repeated transformations, and give
neuron weightings that correspond to the output prediction [103]. By increas-
ing the number of hidden layers in the network (thus increasing the depth of
a neural network) its potential in recognising complex patterns increases as
well. However, the number of parameters to be learned increase as well.

By utilising the transformation of equation 3.2, sequential transformation of
the data are applied by the input layer and hidden layers as such

𝑣𝑟𝑗 (𝑖) =
(
𝒘𝑟𝑗

)𝑇
𝒂 (𝑟−1) +𝑤𝑟𝑗0, (3.9)

and 𝒗𝑟 (𝑖) = [𝑣𝑟1(𝑖), 𝑣𝑟2(𝑖), ..., 𝑣𝑟𝑘𝑟 (𝑖)]
𝑇 . This is calculated for 𝑟 = 1, ..., 𝐿 where

𝒗𝐿 (𝑖) = 𝒚(𝑖) is the output vector.
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The final layer transforms the data into the same shape as the labels to which
the data corresponds. This is where we apply the loss function (eq. 3.3). An
example of such a loss function is the cross-entropy loss

Y (𝑖) = −
𝑘𝐿∑︁
𝑘=1

𝑦𝑘 (𝑖) ln𝑦𝑘 (𝑖), (3.10)

where𝑦𝑘 (𝑖) ∈ {0, 1} is the binary value of one-hot vector𝒚(𝑖) for training pair 𝑖.

Or in the binary case

Y = −
𝑘𝐿∑︁
𝑘=1

𝑦𝑘 (𝑖) ln𝑦𝑘 (𝑖) + (1 − 𝑦𝑘 (𝑖)) ln (1 − 𝑦𝑘 (𝑖)), (3.11)

where 𝑦𝑘 (𝑖) ∈ {0, 1} and 𝑦𝑘 (𝑖) ∈ (0, 1) are, respectively, the true labels and
the predicted (soft) labels for output node 𝑘 and training pair 𝑖.

In order to iteratively create an optimal MLP model 𝑔 : 𝒙 → 𝒚, we want to
find the weights that minimise this loss function, i.e.

𝐽 ∗ = min
𝑾

{ 𝑁∑︁
𝑖=1

Y (𝑖)
}
, (3.12)

where 𝑾 is the set of all parameters in MLP 𝑔. The the vast majority of loss
landscapes has no closed-form solution, as such finding the minimum of a loss
function such as eq. 3.12 is done iteratively.

3.1.1.1 Gradient Descent and Backpropagation

The way neural network weights are optimised is through a process called
gradient descent (described in [54]). This is an iterative process in which
the gradient of the loss function with regards to model parameters is used to
fine-tune the parameters of the model.

Let us look at a set of simple perceptrons — one transformation in a MLP, with
input dimension 𝑘0 and output dimension 𝑘1 (see fig. 3.1 for reference). For
each of the two layers 𝑟 ∈ {0, 1}, we look at nodes 𝑗 = 1, ..., 𝑘𝑟 — the number
of variables in the given layer. The transformation has one set of weights 𝒘1

𝑗

The process of finding the optimal weight change begins by solving

∇𝒘1
𝑗
𝐽 =

𝑁∑︁
𝑖=1

𝜕Y (𝑖)
𝜕𝒘1

𝑗

. (3.13)
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Given that we know this value, the updated weights for layer 𝑟 (in our case
𝑟 = 1 as this is our only weight vector) can be defined by taking a small step
in the correct direction, as such

𝒘𝑟𝑗 (new) = 𝒘𝑟𝑗 (old) + Δ𝒘𝑟𝑗 (3.14)

with
Δ𝒘𝑟𝑗 = −` · ∇𝒘𝑟

𝑗
𝐽 , (3.15)

where ` is a step size parameter that determines how fast the model weights
will change throughout the iterative process.

The process described for the simple perceptron extends to the MLP. At layer
𝑟 ≤ 𝐿 we extend eq. 3.13 by applying the chain rule

∇𝒘𝐿
𝑗
𝐽 =

𝑁∑︁
𝑖=1

𝜕Y (𝑖)
𝜕𝒘𝐿

𝑗

=

𝑁∑︁
𝑖=1

𝜕Y (𝑖)
𝜕𝑣𝑟
𝑗
(𝑖) ∇𝒘

𝑟
𝑗
𝑣𝑟𝑗 (𝑖), (3.16)

where 𝑣𝑟𝑗 (𝑖) is the 𝑗 ’th node output of a layer 𝑟 in the MLP, as given in eq. 3.2.
For each node 𝑗 this can be written as:

𝑣𝑟𝑗 (𝑖) =
𝑘𝑟−1∑︁
𝑘=1

𝑤𝑟
𝑗𝑘
𝑎𝑟−1
𝑘
(𝑖) +𝑤𝑟𝑗0, (3.17)

where 𝑣𝑟
𝑘
(𝑖) is the output of layer 𝑟 . For 𝑟 = 𝐿, 𝑎𝑟

𝑘
(𝑖) = 𝑦𝑘 (𝑖). And for the input

layer 𝑟 = 1 we have 𝑣𝑟
𝑘
(𝑖) = 𝑥𝑘 (𝑖).

Recalling eqs. 3.14 and 3.15, the task now consists of finding the two factors

from eq. 3.16, namely
𝜕Y (𝑖)
𝜕𝑣𝑟
𝑗
(𝑖) and ∇𝒘

𝑟
𝑗
𝑣𝑟𝑗 (𝑖), for nodes 𝑗 = 1, ..., 𝑘𝑟 and layers

𝑟 = 1, ..., 𝐿.

For simplicity of notation, we define

𝜕Y (𝑖)
𝜕𝑣𝑟
𝑗
(𝑖) ≡ 𝛿

𝑟
𝑗 (𝑖) . (3.18)

Starting off, by looking at eq. 3.17, ∇𝒘𝑟
𝑗
𝑣𝑟𝑗 (𝑖) for 𝑗 = 0, ..., 𝑘𝑟−1 can be solved
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simply as following [103]

∇𝒘𝑟
𝑗
𝑣𝑟𝑗 (𝑖) ≡



𝜕

𝜕𝑤𝑟
𝑗1
𝑣𝑟𝑗 (𝑖)
...

𝜕

𝜕𝑤𝑟
𝑗𝑘𝑟−1

𝑣𝑟𝑗 (𝑖)


= 𝒂𝑟−1(𝑖) (3.19)

and for the bias:
𝜕

𝜕𝑤𝑟
𝑗0
𝑣𝑟𝑗 (𝑖) = +1. (3.20)

The other factor, 𝛿𝑟𝑗 (𝑖), will be dependent on the activation function 𝑓 (·) and
the loss function Y (𝑖). Using the multi-class cross-entropy loss function from
eq. 3.10, the calculation for layer 𝑟 = 𝐿 is derived as follows

𝛿𝐿𝑗 (𝑖) =
𝜕Y (𝑖)
𝜕𝑣𝐿
𝑗
(𝑖)

=
𝜕

𝜕𝑣𝐿
𝑗
(𝑖)

{
−

𝑘𝐿∑︁
𝑘=1

𝑦𝑘 (𝑖) ln
(
𝑦𝑘 (𝑖)

)}
=

𝑘𝐿∑︁
𝑘=1

[
𝜕

𝜕𝑦𝑘 (𝑖)

(
− 𝑦𝑘 (𝑖) ln

(
𝑦𝑘 (𝑖))

) )
· 𝜕𝑦𝑘 (𝑖)
𝜕𝑣𝐿
𝑗
(𝑖)

]
=

𝑘𝐿∑︁
𝑘=1

[(
− 𝑦𝑘 (𝑖)
𝑦𝑘 (𝑖)

)
·
𝜕𝑓 (𝑣𝐿

𝑘
(𝑖))

𝜕𝑣𝐿
𝑗
(𝑖)

]
. (3.21)

In the case of softmax output the derivative is defined as

𝜕𝑓𝑠 (𝑣𝐿𝑘 (𝑖))
𝜕𝑣𝐿
𝑗
(𝑖)

=
𝜕

𝜕𝑣𝐿
𝑗
(𝑖)

(
𝑒𝑣

𝐿
𝑘
(𝑖)∑𝑘𝐿

𝑚=1 𝑒
𝑣𝐿𝑚 (𝑖)

)

=

𝜕𝑒𝑣
𝐿
𝑘
(𝑖)

𝜕𝑣𝐿
𝑗
(𝑖)
·
( ∑𝑘𝐿

𝑚=1 𝑒
𝑣𝐿𝑚 (𝑖)

)
− 𝑒𝑣𝐿𝑘 (𝑖)𝑒𝑣

𝐿
𝑗
(𝑖)

( ∑𝑘𝐿
𝑚=1 𝑒

𝑣𝐿𝑚 (𝑖)
)2

= 𝑓𝑠 (𝑣𝐿𝑘 (𝑖)) ·
(
𝛿𝑘 𝑗 − 𝑓𝑠 (𝑣𝐿𝑗 (𝑖))

)
, (3.22)

where

𝛿𝑘 𝑗 =

{
1 𝑘 = 𝑗

0 𝑘 ≠ 𝑗
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is the Kronecker delta function.

Yielding out final answer in the case of cross-entropy loss and softmax out-
put:

𝛿𝐿𝑗 (𝑖) =
𝑘𝐿∑︁
𝑘=1

[(
− 𝑦𝑘 (𝑖)
𝑦𝑘 (𝑖)

)
· 𝑦𝑘 (𝑖)

(
𝛿𝑘 𝑗 − 𝑦 𝑗 (𝑖))

) ]
= −𝑦 𝑗 (𝑖)

(
1 − 𝑦 𝑗 (𝑖))

)
+

∑︁
𝑘≠𝑗

𝑦𝑘 (𝑖)𝑦 𝑗 (𝑖)

= 𝑦 𝑗 (𝑖)
(
𝑦 𝑗 (𝑖) +

∑︁
𝑘≠𝑗

𝑦𝑘 (𝑖)
)
− 𝑦 𝑗 (𝑖) .

As, in a one-hot vector
∑
𝑘 𝑦𝑘 (𝑖) = 𝑦 𝑗 (𝑖) +

∑
𝑘≠𝑗 𝑦𝑘 (𝑖) = 1, we get

𝛿𝐿𝑗 (𝑖) = 𝑦 𝑗 (𝑖) − 𝑦 𝑗 (𝑖) (3.23)

Now, for the lower layers 𝑟 < 𝐿1:

𝛿𝑟−1𝑗 (𝑖) =
𝜕Y (𝑖)
𝜕𝑣𝑟−1
𝑗
(𝑖)

=

𝑘𝑟∑︁
𝑘=1

𝜕Y (𝑖)
𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

=

𝑘𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

(3.24)

The first factor 𝛿𝑟
𝑘
(𝑖) is given by eq. 3.23. The second factor is found as such,

using activation function 𝑓 (·)1

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

=
𝜕

𝜕𝑣𝑟−1
𝑗
(𝑖)

( 𝑘𝑟−1∑︁
𝑚=1

𝑤𝑟
𝑘𝑚
𝑎𝑟−1𝑚 (𝑖)

)
=

𝜕

𝜕𝑣𝑟−1
𝑗
(𝑖)

( 𝑘𝑟−1∑︁
𝑚=1

𝑤𝑟
𝑘𝑚
𝑓 (𝑣𝑟−1𝑚 (𝑖))

)
.

By assuming the use of an independent activation function such as ReLU, we
get

𝜕𝑣𝑟
𝑘
(𝑖)

𝜕𝑣𝑟−1
𝑗
(𝑖)

= 𝑤𝑟
𝑘 𝑗
𝑓 ′(𝑣𝑟−1𝑗 (𝑖)), (3.25)
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which yields our final 𝛿𝑟−1𝑗 (𝑖)1

𝛿𝑟−1𝑗 (𝑖) =
( 𝑘𝑟∑︁
𝑘=1

𝛿𝑟
𝑘
(𝑖)𝑤𝑟

𝑘 𝑗

)
𝑓 ′(𝑣𝑟−1𝑗 (𝑖)). (3.26)

Using ReLU activation function 𝑓𝑅 (·) with derivative 𝑓 ′
𝑅
(𝑥) =

{
1 𝑥 ≥ 0
0 𝑥 < 0

yields

𝛿𝑟−1𝑗 (𝑖) =

(∑𝑘𝑟

𝑘=1 𝛿
𝑟
𝑘
(𝑖)𝑤𝑟

𝑘 𝑗

)
𝑣𝑟−1𝑗 (𝑖) ≥ 0

0 𝑣𝑟−1𝑗 (𝑖) < 0
. (3.27)

This completes the algorithm for the standard MLP. Many of the backprop-
agation algorithm for other deep learning methods build on ideas borne of
the algorithm above, as we will discover throughout the remainder of this
chapter.

3.2 Convolutional Neural Networks

A Convolutional Neural Network (CNN or ConvNet) is a neural network de-
signed for spatial or sequential data. There are many examples that fall within
this category, being both one- and two-dimensional in nature. A few examples
are object detection in images [58] and videos [52], time series data [16],
spectograms [21], high- and low-frequency images (e.g. images from medical
[117] or remote sensing devices [99]), and sensor data (e.g. PET images [53]).
These applications differ in architecture, data augmentation, output format,
and in learning approach. The main similarity of the CNN is that its main
component for feature extraction is the convolution operation. The high pixel
count in the average image make linear operations, such as the ones seen in
the standard MLP, not a reliable method of feature extraction due to the high
parameter count this would entail. In addition, such a network would in most
cases not be translation invariant, i.e. its classification ability would depend on
the objects placement in the image. The reason for this is due to the behavior
of the convolution operation.

The convolution operation is a mathematical operation that applies a kernel of
arbitrary size to weigh an image, see fig. 3.2. The operation can be compared
to a weighted mean. However, in convolutions the spatial relations are highly
relevant. The formula of the one-dimensional convolution operation is as
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Figure 3.2: Visualisation of the convolution operation on a weight kernel𝑾 .

follows [25]

(𝑥 ∗𝑤) (𝑡) =
∞∑︁

𝑎=−∞
𝑥 (𝑎)𝑤 (𝑡 − 𝑎) . (3.28)

In order to apply convolutions to two-dimensional data such as images, the
function needs to be extended to two or more dimensions as such [25]

(𝑰 ∗ 𝑲 ) (𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼 (𝑚,𝑛)𝐾 (𝑖 −𝑚, 𝑗 − 𝑛) (3.29)

(𝑰 ∗ 𝑲 ) (𝑖, 𝑗, ...) =
∑︁
𝑚,𝑛,...

𝐼 (𝑚,𝑛, ...)𝐾 (𝑖 −𝑚, 𝑗 − 𝑛, ...). (3.30)

The convolution operation can be extended to an arbitrary number of dimen-
sions, so if volumetric data such as CT images are to be processed by a CNN
[97], the operation can be extended to three dimensions.

Each one of these convolutions provide a sole value for a convolution of an im-
age section with an equally dimensioned weight matrix,𝑀 ×𝑁 . Such a weight
matrix is slid across the image so that each𝑀 ×𝑁 tile on the input corresponds
to one pixel in the output. Additional parameters such as stride: the number of
pixels to jump from one tile to the next (the default 1 will imply that for each
convolution operation, the next section is 1 square away), and padding: how
many pixels to fill the space surrounding the image and what to fill it with.
The default stride value is 1, and padding is usually simply done by inserting 0.
As an example, if a 3 × 3 weight matrix is applied in a convolutional operation
with stride 1 and 1 pixel pooling, the output will equal the input in size, as each
pixel in the original image is surrounded by at least one pixel in every direction.

A block (referred to as layer in [25]) in a CNN typically consists of more than just
the convolution operation [25]. Similar to the feature extraction approach in
the MLP, CNNs also apply activation functions. Common activation functions
such as the ReLU work in a similar fashion, on a pixel-to-pixel basis [25].
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Figure 3.3: Max pooling and padding.

Figure 3.4: The increasing receptive field of a CNN with a 3× 3 convolution operator.

Thirdly, a block consists of a pooling layer. The objective of the pooling layer is
to compress the feature representation, as well as help in making them more
translation invariant [25]. A common selection for pooling is maximum pooling
[125]. In maximum pooling, a pooling window of size 𝑀 × 𝑁 ”slides” across
the image in a similar fashion to the convolution operation and outputs the
maximum feature value in the tile. See fig. 3.3. Many recent CNN methods
employ the skip connection introduced in the ResNet architecture [35] in which,
the network performs residual learning, i.e. an arbitrary CNN operation 𝑓 (·)
producing output 𝑓 (𝒙) will pass on the learned feature map by adding to an
identity mapping of 𝒙, as such

𝒙𝑟+1 = 𝑓 (𝒙𝑟 ) + 𝒙𝑟 . (3.31)

This change allowed deep learning research to create far deeper and better
neural networks. Reasoned by the fact that any arbitrarily deep network should
be able to perform at least as well as a similar but shallower network, if simply
by having the additional layers solely performing identity mappings (i.e., the
case where additional layers produce 𝑓 (𝒙𝑟 ) = 0). A core point of repeated
applications of CNN blocks is the concept of increasing the network’s receptive
field. Compressing information through convolution and pooling operations
will allow for information sharing across the full image space. See fig. 3.4.
Ideally, this should allow the final output to process an image in its entirety.
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Figure 3.5: AlexNet architecture (figure taken from [58]).

Figure 3.6: Segmentation of a dash cam image.

A simple and common example of a CNN is the AlexNet architecture [58] (fig.
3.5) achieving at the time state-of-the-art (SOTA) accuracy on the ImageNet
dataset [19] for image classification. Another application of a CNN is for image
segmentation tasks. Tasks in which the goal is to locate various classes in an
image and return a masking reflecting the discovery, see fig. 3.6. An example
of such a network is U-net [85]. The architectures of CNNs can be applied to
various tasks by simply adjusting the output layer. In an image segmentation
task, one may set the output dimensions to be equal to the spatial dimensions
of the input and compute loss on the difference to an annotated image that
has been defined by annotators.

3.2.1 Backpropagation

Backpropagation for CNNs is based on the same ideas seen in backpropagation

for MLPs. The idea is to find ∇𝑾𝐿
𝑗
𝐽 =

∑𝑁
𝑖=1

𝜕Y (𝑖)
𝜕𝑾𝐿

𝑗

, similar to eq. 3.16, and

iteratively improve the weight kernels by attempting to reduce the loss function
by gradient descent. From the chain-rule, we have

𝜕Y (𝑖)
𝜕𝑾𝑟

𝑗

=

(
𝜕Y (𝑖)
𝜕𝑨𝑟

𝑗
(𝑖)

)𝑇 𝜕𝑨𝑟𝑗 (𝑖)
𝜕𝑾𝑟

𝑗

. (3.32)



3.2 convolutional neural networks 41

Notation :

• 𝑽 𝑟𝑗 (𝑖) : Feature map 𝑗 ∈ {1, ..., 𝑘𝑟 } of shape (𝐻𝑘𝑟 ,𝑊𝑘𝑟 ) in layer 𝑟 ∈
{1, ..., 𝐿}, for sample 𝑖 ∈ {1, ..., 𝑁 }, pre-activation.

• 𝑨𝑟𝑗 (𝑖) = 𝑓 (𝑽 𝑟𝑗 (𝑖)) : Feature map 𝑗 in layer 𝑟 for sample 𝑖, post-activation.
• 𝑦 𝑗 (𝑖) = 𝑓 (𝑣𝐿𝑗 (𝑖)) : Linear prediction for output node 𝑗 from node 𝑣𝐿𝑗 (𝑖)

in a flattened layer 𝒗𝐿 (𝑖).
• 𝒀 (𝑖) = 𝑓𝑜𝑢𝑡 (𝑽𝐿 (𝑖)) : Image prediction of shape (𝐶,𝐻𝑘𝐿 ,𝑊𝑘𝐿 ) for from

the final layer convolution output 𝑽𝐿 (𝑖).
• 𝑾𝑟

𝑗 : The weight kernel of shape (𝑘𝑟−1, 𝐻𝑊 ,𝑊𝑊 ) relating the output
from layer 𝑟 − 1 to feature map 𝑗 in layer 𝑟 .

• 𝑤𝑟𝑗,𝑖,𝑚,𝑛 : The weight value in (𝑚,𝑛) going from feature map 𝑖 in layer
𝑟 − 1 to feature map 𝑗 in layer 𝑟 .

• 𝑏𝑟𝑗 : The bias associated with kernel matrix𝑾𝑟
𝑗 for feature map 𝑗 in layer

𝑟 .

For backpropagation further down the layers, we also want to derive

𝜕Y (𝑖)
𝜕𝑨𝑟−1𝑠 (𝑖)

≡ 𝜹𝑟−1𝑗 (𝑖) =
(
𝜕Y (𝑖)
𝜕𝑨𝑟 (𝑖)

)𝑇
𝜕𝑨𝑟 (𝑖)
𝜕𝑨𝑟−1𝑠 (𝑖)

. (3.33)

Same as for MLPs, an easy way to solve this problem is to bisect the equation
and solve one factor at a time. Looking to the convolution step illustrated in
fig. 3.2 and taking into account eq. 3.29 and the components in 3.3, we see
that an output pixel 𝑣𝑟𝑗,𝑝,𝑞 (𝑖) is defined by a weighted sum with 𝑾𝑟

𝑗 over its
corresponding tile in the previous layer 𝒂𝑟−1·,𝑝′,𝑞′ (𝑖). The convolution for output
𝑎𝑟1,1 stems from a convolution of tile 𝒗1:3,1:3 (1 as index for padded pixels)
with 𝑾𝑟 . For odd values of 𝐻𝑊 and 𝑊𝑊 we define 𝐻𝑜 𝑓 𝑓 = (𝐻𝑊 − 1)/2
and𝑊𝑜 𝑓 𝑓 = (𝑊𝑊 − 1)/2. And for even values we have 𝐻𝑜 𝑓 𝑓 = 𝐻𝑊 /2 and
𝑊𝑜 𝑓 𝑓 =𝑊𝑊 /2. An output value is then found to be

𝑎𝑟𝑖,𝑝,𝑞 (𝑖) = 𝑓
( ∑︁
𝑙,𝑚,𝑛

[
𝑤𝑟
𝑗,𝑙,𝑚,𝑛

𝑎𝑟−1
𝑙,𝑝′−𝐻𝑜𝑓 𝑓 +𝑚,𝑞′−𝑊𝑜𝑓 𝑓 +𝑛)

]
+ 𝑏𝑟𝑗

)
(3.34)

In the case of equally sized input and output, i.e. (𝐻𝑘𝑟 ,𝑊𝑘𝑟 ) = (𝐻𝑘𝑟−1,𝑊𝑘𝑟−1),
we have (𝑝, 𝑞) = (𝑝 ′, 𝑞′).

Now, to derive the two terms in eq. 3.32. The bias is — as with the MLP — easy
to derive from eq. 3.34

𝜕𝑨𝑟𝑗 (𝑖)
𝜕𝑏𝑟
𝑗

= 𝑓 ′
(
𝑽 𝑟𝑗 (𝑖)

)
. (3.35)
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Now for the weights.

𝜕𝑎𝑟𝑗,𝑝,𝑞 (𝑖)
𝜕𝑤𝑟

𝑗,𝑠,𝑎,𝑏

= 𝑓 ′
(
𝑣𝑟𝑗,𝑝,𝑞 (𝑖)

) 𝜕𝑣𝑟𝑗,𝑝,𝑞 (𝑖)
𝜕𝑤𝑟

𝑗,𝑠,𝑎,𝑏

= 𝑓 ′
(
𝑣𝑟𝑗,𝑝,𝑞 (𝑖)

) 𝜕

𝜕𝑤𝑟
𝑗,𝑎,𝑏

(
(𝑾𝑟

𝑗 ∗𝑨𝑟−1(𝑖)) (𝑝, 𝑞) + 𝑏𝑟𝑗
)
. (3.36)

Using the definition in eq. 3.30

𝜕𝑎𝑟𝑗,𝑝,𝑞 (𝑖)
𝜕𝑤𝑟

𝑗,𝑠,𝑎,𝑏

= 𝑓 ′
(
𝑣𝑟𝑗,𝑝,𝑞 (𝑖)

) ∑︁
𝑙,𝑚,𝑛

𝜕

𝜕𝑤𝑟
𝑗,𝑠,𝑎,𝑏

(
𝑤𝑟
𝑗,𝑙,𝑚,𝑛

𝑎𝑟−1
𝑙,𝑝−𝑚,𝑞−𝑛 (𝑖)

)
= 𝑓 ′

(
𝑣𝑟𝑗,𝑝,𝑞 (𝑖)

)
𝑎𝑟−1
𝑠,𝑝−𝑎,𝑞−𝑏 (𝑖), (3.37)

yielding

𝜕Y (𝑖)
𝜕𝑤𝑟

𝑗,𝑠,𝑎,𝑏

=

(
𝜕Y (𝑖)
𝜕𝑨𝑟

𝑗
(𝑖)

)𝑇 
𝑓 ′

(
𝑣𝑟
𝑗,1,1(𝑖)

)
𝑎𝑟−1
𝑠,1−𝑎,1−𝑏 (𝑖)
...

𝑓 ′
(
𝑣𝑟
𝑗,𝐻𝑘𝑟−1 ,𝑊𝑘𝑟−1

(𝑖)
)
𝑎𝑟−1
𝑠,𝐻𝑘𝑟−1−𝑎,𝑊𝑘𝑟−1−𝑏

(𝑖)

 (3.38)

for all corresponding elements in 𝑨.

Now for the second part. We have, in eq. 3.33, the factor that is passed on
throughout the neural network. This can be found by changing the variable

being derivated with regards to in factor
𝜕𝑣𝑟𝑗,𝑝,𝑞 (𝑖)
𝜕𝑤𝑟

𝑗,𝑠,𝑎,𝑏

in eq. 3.36 to
𝜕𝑣𝑟𝑗,𝑝,𝑞 (𝑖)
𝜕𝑎𝑟
𝑠,𝑎,𝑏

and

summing over 𝑗 , getting

𝜕Y (𝑖)
𝜕𝑎𝑟−1
𝑠,𝑎,𝑏

=

𝑘𝑟∑︁
𝑗=1

(
𝜕Y (𝑖)
𝜕𝑨𝑟

𝑗
(𝑖)

)𝑇 𝜕𝑨𝑟𝑗 (𝑖)
𝜕𝑨𝑟−1𝑠 (𝑖)

=

𝑘𝑟∑︁
𝑗=1

(
𝜕Y (𝑖)
𝜕𝑨𝑟

𝑗
(𝑖)

)𝑇 
𝑓 ′

(
𝑣𝑟
𝑗,1,1(𝑖)

)
𝑤𝑟−1
𝑗,𝑠,1−𝑎,1−𝑏 (𝑖)
...

𝑓 ′
(
𝑣𝑟
𝑗,𝐻𝑘𝑟−1 ,𝑊𝑘𝑟−1

(𝑖)
)
𝑤𝑟−1
𝑗,𝑠,𝐻𝑘𝑟−1−𝑎,𝑊𝑘𝑟−1−𝑏

(𝑖)

 .
(3.39)

For classification tasks, the feature map is flattened during forward pass into a
one-dimensional feature vector following feature extraction from the convolu-
tional layers. In this case, loss is calculated as in the MLP case and reshaped
during backpropagation. Thus, we end up with matrices 𝜹𝑟𝑗 (𝑖) to be used
throughout the initial convolutional layers. However, in the case of having
spatial outputs, this is not the case. We assume that this is the case (e.g. a
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segmentation task). Our label is given by 𝒀 (𝑖) ∈ {0, 1} in the shape (𝐶,𝐻,𝑊 ),
the same as the soft predictions 𝒀 (𝑖) ∈ [0, 1]. 𝜹𝐿𝑗 (𝑖) should have the shape
(𝐻𝑘𝐿 ,𝑊𝑘𝐿 ). Using (element-wise) sigmoid activation 𝑓𝑜𝑢𝑡 (·) (eq. 3.4) and binary
cross-entropy loss (eq. 3.11) in the final layer 𝑟 = 𝐿, we derive

𝜕Y (𝑖)
𝜕𝑽𝐿

𝑗
(𝑖)

=
𝜕

𝜕𝑽𝐿
𝑗
(𝑖)

{
− 𝒀𝑗 (𝑖) ln 𝒀𝑗 (𝑖) +

(
1 − 𝒀𝑗 (𝑖)

)
ln

(
1 − 𝒀𝑗 (𝑖)

)}
=

𝜕

𝜕𝑽𝐿
𝑗
(𝑖)

(
− 𝒀𝑗 (𝑖) ln 𝑓𝑜𝑢𝑡 (𝑽𝐿𝑗 (𝑖))

)
+ 𝜕

𝜕𝑽𝐿
𝑗
(𝑖)

( (
1 − 𝒀𝑗 (𝑖)

)
ln

(
1 − 𝑓𝑜𝑢𝑡 (𝑽𝐿𝑗 (𝑖))

) )
.

Knowing that the sigmoid function is independent of other 𝑣𝐿𝑗,·,· (𝑖), we may
define the elements of the matrix as such

𝜕Y (𝑖)
𝜕𝑣𝐿
𝑗,𝑝,𝑞
(𝑖)

=

[
−

𝑦 𝑗,𝑝,𝑞 (𝑖)
𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖))

+
1 − 𝑦 𝑗,𝑝,𝑞 (𝑖)

1 − 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖))

]
𝑓 ′𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)). (3.40)

The derivative of the sigmoid is given as

𝜎 (𝑥) = 1
1 + 𝑒−𝑥

𝑑𝜎 (𝑥)
𝑑𝑥

=
𝑒−𝑥

(1 + 𝑒−𝑥 )2

=
1

1 + 𝑒−𝑥
𝑒−𝑥

1 + 𝑒−𝑥

=
1

1 + 𝑒−𝑥
(1 + 𝑒−𝑥 ) − 1

1 + 𝑒−𝑥
= 𝜎 (𝑥) (1 − 𝜎 (𝑥)). (3.41)

Then, finalising eq. 3.40:
𝜕Y (𝑖)

𝜕𝑣𝐿
𝑗,𝑝,𝑞
(𝑖)

=

[
−

𝑦 𝑗,𝑝,𝑞 (𝑖)
𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖))

+
1 − 𝑦 𝑗,𝑝,𝑞 (𝑖)

1 − 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖))

]
𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)) (1 − 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)))

= (𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)) − 1)𝑦 𝑗,𝑝,𝑞 (𝑖) + 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)) (1 − 𝑦 𝑗,𝑝,𝑞 (𝑖))
= 𝑓𝑜𝑢𝑡 (𝑣𝐿𝑗,𝑝,𝑞 (𝑖)) − 𝑦 𝑗,𝑝,𝑞 (𝑖)

or, equally
𝜕Y (𝑖)
𝜕𝑽𝐿 (𝑖)

= 𝑓𝑜𝑢𝑡
(
𝑽𝐿 (𝑖)

)
− 𝒀 (𝑖). (3.42)

Deriving 𝜹𝐿−1𝑠 (𝑖) by the same logic as in eq. 3.39

𝜹𝐿−1𝑠 (𝑖) =
𝑘𝐿∑︁
𝑗=1

(
𝜕Y (𝑖)
𝜕𝑽𝐿

𝑗
(𝑖)

)𝑇 𝜕𝑽𝐿𝑗 (𝑖)
𝜕𝑨𝐿−1𝑠 (𝑖)

=

𝑘𝐿∑︁
𝑗=1

(
𝜕Y (𝑖)
𝜕𝑽𝐿

𝑗
(𝑖)

)𝑇 
𝑤𝑟−1
𝑗,𝑠,1−𝑎,1−𝑏 (𝑖)

...

𝑤𝑟−1
𝑗,𝑠,𝐻𝑘𝑟−1−𝑎,𝑊𝑘𝑟−1−𝑏

(𝑖)

 .
(3.43)
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Now, for the other layers 𝑟 < 𝐿:

𝜹𝑟−1𝑠 (𝑖) =
𝜕Y (𝑖)

𝜕𝑨𝑟−1𝑠 (𝑖)

=

(
𝜹𝑟 (𝑖)

)𝑇 𝜕𝑨𝑟

𝜕𝑨𝑟−1𝑠

, (3.44)

which is derived and propagated for all layers, continuously updating weights
and biases with eqs. 3.38 and 3.35.

3.3 Graph Neural Networks

Thus far, we have tackled some standard machine learning networks for vecto-
rial data, as well as multi-dimensional data in both the spatial and the temporal
domain. In this section, we will cover the deep learning approach for a cen-
trepiece data structure of this paper: the graph. Graphs are unlike images
and temporal data due to similarities not being recognised with respect to
their position in the matrix, and unlike vectorial data as each vector does not
represent a set of objective measures, but rather a subjective view from each
separate data point — thus requiring the entire graph to be taken in context
to understand any broader pattern that may be present.

Graph Neural Networks (GNNs) are ordinarily utilised for three task categories
[124]:

1. Node-level tasks

2. Edge-level tasks

3. Graph-level tasks

These tasks help decide how the loss function should be set up (and as such, the
ML method’s objective) [124]. Node-level tasks will learn to recognise nodes
in, e.g., classification or clustering tasks. Edge-level tasks are often used for
classification and edge prediction tasks. Finally, graph-level tasks may be used
for graph learning / graph matching, and classification. Similar to previous
methods, GNNs span every supervision setting, from fully supervised to unsu-
pervised, as well as everything in between. A selection of these semi-supervised
graph methods will be covered in section 3.5 concerning semi-supervised deep
learning.



3.3 graph neural networks 45

Figure 3.7: One example of a GNN layer [124].

The components of a standard GNN layer is similar to that of the CNN. Skip
connections may be used used to solve the issues of vanishing gradients and
allowing for far deeper neural networks, e.g. [61]. Also similar to CNNs, pool-
ing operators may be employed to extract and compress information. Due to
the poor scaling of graphs, sampling may in many cases be required for large
datasets in order to avoid memory issues. However, due to the larger patterns
in graphs (as discussed in section 2.4.1), sampling a graph is challenging to
avoid resulting in a significant loss of contextual information. Thus, GNN sam-
pling operators can be used used in an attempt to maximise the propagated
information through sampling. Using batches (with 𝐵𝑆 < 𝑁 ) GraphSAINT
[122] has been shown to increase performance compared to using the complete
graph in certain cases [122].

One sampling method is found in GraphSAGE [30], which samples a fixed
number of neighbours for each node, an approach which aptly may be referred
to as node sampling [124]. Layer sampling is another approach to graph sam-
pling that is applied layer-wise, sampling the graph’s receptive field2 directly3
[124]. FastGCN [11] employs this sampling method, utilising an importance
sampling technique making important nodes more likely to be sampled. Finally,
subgraph sampling may be used to sample an entire subgraph at a time, rather
than nodes or edges as was the case with the two latter sampling methods.
This process is utilised in GraphSAINT [122] and ClusterGCN [14]. The former
of which will be covered later in this section.

There are two main approaches one may utilise in GNN feature extraction:
one is spectral in nature and the other is spatial [124]. In this paper, we will

2. Note: The receptive field of a graph is — unlike that of an image — connected by its edges
rather than its spatial affinity (which is the case in the example fig. 3.4).

3. Random nodes are selected in each layer, increasing the receptive field for each layer (the
GNN will converge to include all vertices with a non-zero probability as the number of
layers tends to infinity). This may be understood as sampling the graph’s receptive field
directly.
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mainly focus on spectral approaches. These approaches are characterised by
applying operations in the spectral domain. At the core of this methods is the
graph convolution operator.

3.3.1 The Graph Convolution

Firstly, a singular graph signal 𝒙 ∈ R𝑁 is transformed to the spectral domain
by the Fourier transform F , as such [124]

F (𝒙) = 𝑼𝑇𝒙 . (3.45)

And its inverse is given as
F −1(𝒙) = 𝑼𝒙 . (3.46)

Here, 𝑼 is defined as the matrix of eigenvectors associated with the normalised
graph Laplacian 𝑳 (from eq. 2.23). Convolution with a filter 𝒈 may thus be
achieved by performing element-wise multiplication in the spectral domain⁴
as such

𝒈 ∗ 𝒙 = F −1
(
F (𝒈) ⊙ F (𝒙)

)
= 𝑼

(
𝑼𝑇𝒈 ⊙ 𝑼𝑇𝒙

)
(3.47)

= 𝑼𝑮𝑼𝑇𝒙, (3.48)

where the arbitrary filter 𝒈 in eq. 3.47 is simplified to 𝑮, a learnable diagonal
matrix, in eq. 3.48, which concludes the standard graph convolution function.
Hammond et al. [31] suggested that 𝑮 could be approximated by use of 𝐾 -th
order Chebyshev polynomials. The GCN [57] was later suggested using 𝐾 = 1,
approximating eq. 3.48 by

𝒈 ∗ 𝒙 ≈
𝐾∑︁
𝑘=0

𝑤𝑘𝑻𝑘 (𝑳 − 𝑰𝑁 )𝒙

= 𝑤0𝒙 +𝑤1(𝑳 − 𝑰𝑁 )𝒙
= 𝑤0𝒙 −𝑤1𝑫

−1𝑨𝒙, (3.49)

where 𝑻0(𝒙) ≡ 1 and 𝑻1(𝒙) ≡ 𝒙, and 𝑨 is the affinity matrix. Setting 𝑤 =

𝑤0 = −𝑤1, equation 3.49 is further reduced to

𝒈 ∗ 𝒙 ≈ 𝑤
(
𝑰𝑁 + 𝑫−1𝑨

)
𝒙 (3.50)

or equivalently
𝒈 ∗ 𝒙 ≈ 𝑤

(
𝑰𝑁 + 𝑫−1/2𝑨𝑫−1/2

)
𝒙 . (3.51)

4. Due to the convolution theorem [70].



3.3 graph neural networks 47

In order to counteract the gradient problem, the renormalisation trick is applied
to eq. 3.51 as such

𝑰𝑁 + 𝑫−1/2𝑨𝑫−1/2 → �̃�−1/2�̃��̃�−1/2, (3.52)

where �̃� = 𝑨 + 𝑰𝑁 and �̃�𝑖𝑖 =
∑
𝑗 𝐴𝑖 𝑗 make up the corresponding diagonal

degree matrix. Finally, for a complete input matrix 𝑿 ∈ R𝑁×𝑝 at an arbitrary
layer in a GNN, we transform the data in a fashion familiar to previous deep
learning methods by applying a learned weight matrix𝑾 ∈ R𝑝×𝑝′ transforming
each data point to R𝑝

′
:

𝑯 = �̃�−1/2�̃��̃�−1/2𝑿𝑾 . (3.53)

The GCN has been used as a baseline spectral approach in a range of GNNs,
inspiring developments such as the Dual Graph Convolutional Network (DGCN)
[127] and Adaptive Graph Convolutional Network (AGCN) [62]. The former of
which is trained to combine data to incorporate both local and global consis-
tencies into the network. AGCN is a model aiming to recognise tacit relations
between nodes, while not necessarily being linked by an edge.

We will briefly cover the spatial approach to GNNs for context. Rather than
applying convolution operations in spectral domain, spatial approaches to GNNs
apply convolutions directly on the graph topology. A significant contribution
within this category is GraphSAGE [30] (formerly referred to for its method
of sampling). The extraction process is solved through feature aggregation
of neighbourhoods of sampled nodes. The method of aggregation may vary
in type, namely mean aggregator, LSTM (which requires a predetermined
order of nodes), and pooling aggregator. Providing an adequate solution to
the sampling problem, this method is a simplistic and reliable GNN for many
common applications. Other approacheswithin the spatial category is the Graph
Attention network GAT [107]. GAT is an attention-based method, learning to
recognise the importance of neighbours for each node using self-attention⁵.
Due to its ability to neglect certain uninformative nodes, this approach can be
useful in cases where edges may be noise-prone or diffuse.

3.3.2 Graph Sampling

Graph SAmpling based INductive learning meThod (GraphSAINT) is a sampling
algorithm attempting to solve the aforementioned scaling issue of GNNs [122].

5. Learning to recognise each node’s similarity by understanding their significance in regards
to the other nodes in their respective neighbourhoods.
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GraphSAINT aims to directly sample the graph, rather than the opposing node
and layer-wise sampling. The subgraphs should retain maximal information as
well as select complementary batches building well-learned representations for
the whole graph. In addition, normalisation should be performed to eliminate
sampling biases and variance [122]. Assuming a GCN of shape

𝑿 (𝑙) = 𝑨𝑿 (𝑙−1)𝑾 (𝑙)

or equally
𝒙 (𝑙)𝑣 =

∑︁
𝑢∈V

𝐴𝑣,𝑢𝒙
(𝑙−1)
𝑢 𝑾 (𝑙) ,

Zeng et al. solves the bias and variance problem by finding the unbiased
estimator of the aggregated feature of nodes 𝑣 ∈ V

Z
(𝑙)
𝑣 =

∑︁
𝑢∈V

𝐴𝑣,𝑢

𝛼𝑢,𝑣
𝒙 (𝑙−1)𝑢 𝑾 (𝑙)1𝑢 |𝑣, (3.54)

with normalisation constant 𝛼𝑢,𝑣 and, for each subgraph of nodesV𝑠 and edges
𝐸𝑠 , we have

1𝑢 |𝑣 =

{
0 𝑣 ∈ V𝑠 ∧ (𝑢, 𝑣) ∉ 𝐸𝑠
1 (𝑢, 𝑣) ∈ 𝐸𝑠

.

Now, 𝑝𝑣,𝑢 = 𝑝𝑢,𝑣 is defined as the probability that edge (𝑢, 𝑣) ∈ 𝐸 is sampled,
and 𝑝𝑣 the probability of node 𝑣 ∈ V being sampled. Equation 3.54 may be
shown to be unbiased for an arbitrary subgraph sampling method if 𝛼𝑢,𝑣 =

𝑝𝑢,𝑣

𝑝𝑣
when 𝑣 is sampled in subgraph 𝑠 as such:

E
[
Z
(𝑙)
𝑣

]
= E

[ ∑︁
𝑢∈V

𝐴𝑣,𝑢

𝛼𝑢,𝑣
𝒙 (𝑙−1)𝑢 𝑾 (𝑙)1𝑢 |𝑣

]
=

∑︁
𝑢∈V

𝐴𝑣,𝑢

𝛼𝑢,𝑣
𝒙 (𝑙−1)𝑢 𝑾 (𝑙)E[1𝑢 |𝑣]

=
∑︁
𝑢∈V

𝐴𝑣,𝑢

𝛼𝑢,𝑣
𝒙 (𝑙−1)𝑢 𝑾 (𝑙)𝑃

(
(𝑢, 𝑣) |𝑣

)
,

using Bayes’ theorem, we may rewrite 𝑃
(
(𝑢, 𝑣) |𝑣

)
=
𝑃
(
𝑣 | (𝑢, 𝑣)

)
𝑃
(
(𝑢, 𝑣)

)
𝑃
(
𝑣
) ,

where 𝑃
(
𝑣 | (𝑢, 𝑣)

)
= 1 by the condition that 𝑣 is sampled in a subgraph. Thus,

we get

E
[
Z
(𝑙)
𝑣

]
=

∑︁
𝑢∈V

𝐴𝑣,𝑢

𝛼𝑢,𝑣
𝒙 (𝑙−1)𝑢 𝑾 (𝑙)

𝑝𝑢,𝑣

𝑝𝑣

=
∑︁
𝑢∈V

𝐴𝑣,𝑢𝒙
(𝑙−1)
𝑢 𝑾 (𝑙) . (3.55)
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Finally, loss normalisation is achieved by dividing node loss by normalisation
value _𝑣 =

��V�� · 𝑝𝑣 so that the expectation of the batch loss

𝐿𝑏𝑎𝑡𝑐ℎ =
∑︁
𝑣∈𝐺𝑠

𝐿𝑣

_𝑣

has the unbiased expectation

E
[
𝐿𝑏𝑎𝑡𝑐ℎ

]
=

1��V�� ∑︁
𝑣∈V

𝐿𝑣 .

Zeng et al. proves that the edge probabilities𝑝𝑢,𝑣 minimises the sum of variances
of each dimension

Z =
∑︁
𝑙

∑︁
𝑣∈𝐺𝑠

Z
(𝑙)
𝑣

𝑝𝑣

when the edge probabilities are given as

𝑝𝑢,𝑣 =
𝑚∑

(𝑢,𝑣)′
���� ∑

𝑙 𝒃
(𝑙)
(𝑢,𝑣)′

���� ������∑︁
𝑙

𝒃 (𝑙)(𝑢,𝑣)

������, (3.56)

with 𝒃 (𝑙)(𝑢,𝑣) = 𝐴𝑣,𝑢𝒙
(𝑙−1)
𝑢 𝑾 (𝑙) +𝐴𝑢,𝑣𝒙 (𝑙−1)𝑣 𝑾 (𝑙) and some budget parameter𝑚.

Avoiding the issue of requiring 𝒙 (𝑙−1)𝑢 for sampling, the edge probabilities are
in practice estimated by

𝑝 (𝑢,𝑣) ∝ 𝐴𝑣,𝑢 +𝐴𝑢,𝑣 . (3.57)

One GraphSAINT algorithm is the random walk-based sampler. The form of the
Random walk is arbitrary, but one solution is having 𝑟 root samples randomly
drawn, where each node takes ℎ steps drawn from edge probabilities. Now,
viewing the graph as a Markov Chain, one may get the edge weights of 𝐿 layers
by 𝑩 = 𝑨𝐿 with elements 𝐵𝑖, 𝑗 . The interpretation of 𝑩 is a value proportional
to the probability of going from 𝑖 to 𝑗 in 𝐿 steps — viewing values of 𝑨
as proportional to the transition probabilities. Thus, eq. 3.57 sets the edge
probabilities by 𝑝 (𝑢,𝑣) ∝ 𝐵𝑢,𝑣 + 𝐵𝑣,𝑢 and is interpreted as the mean probability
of a random walk ending up at node 𝑣 starting at node 𝑢, and vice versa, after
𝐿 steps.

3.4 Autoencoders & Deep Clustering

Autoencoders are (for the most part) unsupervised neural networks trained
to reconstruct its input from an encoded representation or an embedding
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Figure 3.8: An example of an autoencoder consisting of fully connected (FC) layers
and convolutional (conv) layers.

𝒉 = 𝑓 (𝒙) [25]. Deep clustering networks often take advantage of this encoder
architecture by performing clustering in the embedded space. Autoencoders
or more specifically its components — encoders and decoders — are often
useful as tools for visualising high dimensional data, tools of compression,
or as a concrete approximation of a latent space [25]. The latter is useful in
e.g. generative adversarial networks (GANs) in which the application is that
of generate new data by randomly drawing from the embedding space, and
applying a decoder to reconstruct the latent representation into a fresh data
point. Considering its usefulness and applicability in clustering, this section
will provide a sufficient introduction into autoencoders, as well as one SOTA
model used in our final multi-view clustering application.

3.4.1 Encoder-Decoder Networks

The standard autoencoder consists of two components: the encoder 𝑓 (·) and
the decoder 𝑔(·) [25]. The first of which is designed to create a latent rep-
resentation of the data, 𝒉, while the latter attempts to reconstruct the input
image from the encoded representation, 𝒚 = 𝑔(𝑓 (𝒙)). Commonly, the latent
representation will be of lower dimensionality than the input. This is referred
to as an undercomplete autoencoder⁶. Thus, the model is forced to learn to
prioritise the aspects of the data when training. In other words: the model is
forced to specialise to the data at hand. This is a useful property for clustering,
as the hidden space will represent a condensed representation of the most
central aspects of a data point.

Any arbitrary data type can be modelled to fit an autoencoder, e.g. images as
in fig. 3.8. Mathematically, the loss function of an autoencoder is given as such
[25]

L
(
𝒙, 𝑔(𝑓 (𝒙));𝜽 , 𝝓), (3.58)

6. It is an overcomplete autoencoder when the opposite is true. Commonly, these fail to learn
important properties of the data as there is no need for data reduction (i.e. selection) [25].
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having encoder and decoder parameters 𝜽 and 𝝓, respectively. Any suitable
loss function may be applied in order to calculate the difference between the
original and reconstructed data, e.g. cross-entropy loss.

In certain cases⁷ encoder and decoder parameters are defined to be equal, i.e.
𝝓 = 𝜽 . This is referred to as tied weights. In these cases linear transformations
in the encoder is given as

𝒀 (𝑟 ) =𝑾 (𝑟 )𝒀 (𝑟−1)

while its corresponding decoder layer is simply given with transposed weights,
as such

𝒀 (𝑟−1) =
(
𝑾 (𝑟 )

)𝑇
𝒀 (𝑟 ) . (3.59)

Autoencoders may be constructed to fit its use case to a greater degree by alter-
ing certain properties. For example, denoising autoencoders can be trained to
improve robustness, as well as eliminate noise from input by simply augment-
ing the second loss term in eq. 3.58 as such 𝑔(𝑓 (𝒙)) where 𝒙 is the input image
with added noise [25]. Other variants include sparse autoencoders, where a
regulariser term Ω(𝒉) is added to the loss term 3.58. These autoencoders can
be used for interpretability or simply as an analysis tool [25]. A third use case
is to learn a statistical hidden representation. These autoencoders are often
referred to as variational autoencoders (VAEs). These models attempt to create
a model that encodes and decodes data to and from a statistically meaningful
hidden space. This is done by minimising the loss function divergence between
the model’s latent distribution and a desired latent distribution [25]. As previ-
ously mentioned, AEs may be applied as tools for clustering, this is done in Deep
Embedded Clustering (DEC) [112] and Improved Deep Embedded Clustering
(IDEC) [29] models. The former train an AE in order to use its encoder for deep
embedded clustering. After extracting the encoder it is finetuned by optimising
a divergence based clustering objective through self-training [112]. IDEC is an
improvement on DEC by jointly training both the autoencoder as well as solely
the encoder by utilising a reconstruction loss and clustering loss, respectively
[29].

3.4.2 Deep Divergence-based Clustering

The clustering module to be used in experiments is the Deep Divergence-based
Clustering (DDC) module. This will be the building block in the SOTA multi-
view clustering models, and is therefore deemed central to the contents of this

7. e.g. when one wishes to reduce the number of learnable parameters of the model.
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Figure 3.9: The DDC architecture for image data [50].

paper. It is also important to note that a thorough understanding of DDC will
help in analysis of our experiments later on. The DDC module is based on an
objective to obtain good feature representations that retain three desired prop-
erties of high-quality clustering: (i) dense (intra-cluster distance), (ii) separated
(inter-cluster distance), and (iii) unambiguous (strict assignments). The model
consists of an encoder which outputs cluster assignment predictions fromwhich
the loss is calculated and backpropagated to optimize the encoder (see fig. 3.9).

The loss function of the DDC module consists of three loss terms with each its
separate objective. Firstly, the CS divergence (see section 2.1.2) is employed to
assert the dissimilarity between distributions. In order to use the CS divergence
in a clustering problem, one would first have to quantise the distributions. This
can be done by applying kernel methods and in this case by using a Parzen
window estimator [87] with bandwidth parameter 𝜎 . Taking the unweighted
𝑙2 norm from eq. 2.6 we may calculate the similarity matrix 𝑲 ∈ R𝑛×𝑛 with
elements

𝑘𝒙𝑖 ,𝒙 𝑗
= exp

{
−𝑑2(𝒙𝑖, 𝒙 𝑗 )2/(2𝜎2)

}
. (3.60)

Using this estimate, the discretised CS divergence becomes [46]

𝐷𝑐𝑠 = − log
(
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∑
𝑞∈𝐶𝑖

∑
𝑙 ∈𝐶 𝑗

𝑘𝑞,𝑙√︃∑
𝑞,𝑞′∈𝐶𝑖

𝑘𝑞,𝑞′
∑
𝑙,𝑙 ′∈𝐶 𝑗

𝑘𝑙,𝑙 ′

)
. (3.61)

Using cluster assignments 𝒀 = [𝛼𝑞,𝑖] ∈ R𝑛×𝑘 denoting hard cluster member-
ships 𝛼𝑞,𝑖 ∈ {0, 1} of data point 𝑞 to cluster 𝐶𝑖 , we may rewrite eq. 3.61 as
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𝐷𝑐𝑠 = − log𝑑𝛼 where [50]

𝑑𝛼 =
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∑𝑁
𝑞,𝑙=1 𝛼𝑞,𝑖𝛼𝑙, 𝑗𝑘𝑞,𝑙√︃∑𝑁

𝑞,𝑙=1 𝛼𝑞,𝑖𝛼𝑙,𝑖𝑘𝑞,𝑙
∑𝑁
𝑞,𝑙=1 𝛼𝑞,𝑗𝛼𝑙, 𝑗𝑘𝑞,𝑙

, (3.62)

given that
∑
𝑞∈𝐶𝑖

∑
𝑙 ∈𝐶 𝑗

𝑘𝑞,𝑙 =
∑𝑁
𝑞,𝑙=1 𝛼𝑞,𝑖𝛼𝑙, 𝑗𝑘𝑞,𝑙 . This corresponds to the first

loss term in the DDC module: L1 = 𝑑𝛼 .

Now, in order to avoid trivial solutions and collapsing clusters (corresponding
to the third objective), the second loss term will ensure diversity in cluster
assignments [50]. This is achieved through the outer product of the cluster
assignment matrix 𝒀 , 𝒀𝒀𝑇 . Now, for clear cluster assignments and a balanced
prediction, the upper triangular element of 𝒀𝒀𝑇 — denoted triu

(
𝒀𝒀𝑇

)
and is

interpreted as a sum of the upper triangle — will ensure that not all clusters
winds up in the same cluster by favouring orthogonal cluster assignments.
Thus, we have our second loss term [50]

L2 = triu(𝒀𝒀𝑇 ) =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝜶𝑇𝑖 𝜶 𝑗 . (3.63)

Finally, our third loss term will remove the trivial solutions arising from the
fact that orthogonal cluster assignments are not necessarily located along the
simplex for clear classification [50]. Thus, the third loss term will push points
towards the simplex R𝑘 , promoting clear cluster assignments. Given 𝒆𝑖 ∈ R𝑘
being the 𝑖th corner of the simplex, the function

𝑚𝑞,𝑖 = exp {−||𝜶𝑞 − 𝒆𝑖 | |2} (3.64)

is defined as a similarity measure that draws cluster assignments towards the
simplex. This measure is implemented in the CS divergence as before, taking
the place of 𝛼𝑞,𝑖 as such

L3 =
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∑𝑁
𝑞,𝑙=1𝑚𝑞,𝑖𝑚𝑙, 𝑗𝑘𝑞,𝑙√︃∑𝑁

𝑞,𝑙=1𝑚𝑞,𝑖𝑚𝑙,𝑖𝑘𝑞,𝑙
∑𝑁
𝑞,𝑙=1𝑚𝑞,𝑗𝑚𝑙, 𝑗𝑘𝑞,𝑙

. (3.65)
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Resulting in the final loss function of the DDC module

L𝑡𝑜𝑡 = L1 + L2 + L3

=
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∑𝑁
𝑞,𝑙=1 𝛼𝑞,𝑖𝛼𝑙, 𝑗𝑘𝑞,𝑙√︃∑𝑁

𝑞,𝑙=1 𝛼𝑞,𝑖𝛼𝑙,𝑖𝑘𝑞,𝑙
∑𝑁
𝑞,𝑙=1 𝛼𝑞,𝑗𝛼𝑙, 𝑗𝑘𝑞,𝑙

(3.66)

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝜶𝑇𝑖 𝜶 𝑗 +
1
𝑘

𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

∑𝑁
𝑞,𝑙=1𝑚𝑞,𝑖𝑚𝑙, 𝑗𝑘𝑞,𝑙√︃∑𝑁

𝑞,𝑙=1𝑚𝑞,𝑖𝑚𝑙,𝑖𝑘𝑞,𝑙
∑𝑁
𝑞,𝑙=1𝑚𝑞,𝑗𝑚𝑙, 𝑗𝑘𝑞,𝑙

.

By optimising this function by help of gradient descent, the model will optimise
its ability to draw clusters from the input data.

3.5 Semi-supervised Learning

Thus far we have covered both supervised and unsupervised machine learning
models. Their usefulness in machine learning applications are evident. Whether
the goal is to maximise model performance in a resource rich environment
or its antipode: modelling entirely fresh data with no available fitting labels.
The final section covering deep learning, will cover the field of semi-supervised
learning (SSL). Being a unification of the two previous tasks, SSL is applied
in cases where labels are available for a subset of the complete dataset. Its
usefulness is the highest in applications where labels are costly to obtain and
the subject matter sufficiently complex. Similarly to fully supervised and unsu-
pervised approaches, semi-supervised machine learning range in complexity
from closed-form-solution, basic machine learning methods to deep neural
network approaches.

The basic methods may be categorised based on separation method and the
nature of the data. Low-density separation based, disagreement-based, graph-
based, and self-training are four categories of semi-supervised machine learning
that will build upon the general understanding of how partially labeled data
may help (and potentially harm) learning. To begin, the Transductive Support
Vector Machine (TSVM) [106] is a semi-supervised, low-density separation
based approach to the traditional Support Vector Machine (SVM) [15] which is
a powerful linear classifier. Illustrated in figure 3.10a, the TSVM uses unlabeled
data to better recognise the low-density areas that best fit a decision boundary.
Disagreement-based methods is used to generate agreement by comparing
different predictors on data from a single dataset. One common method within
this category — co-training — will be covered in chapter 4. Within the cate-
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(a) The TSVM approach of SSL. A decision boundary using
only the labeled data is illustrated with a dashed line.

(b) Label propagation. A graph-based approach to SSL.

Figure 3.10: Illustrations of how unlabeled data (grey) may assist in finding an optimal
decision boundary.
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gory of graph-based method, one core method is label propagation [126]. Using
graph-based methods in an unsupervised manner allows for similar advantages
to those of spectral clustering and Laplacian eigenmaps (in section 2.4), while
providing additional useful information as compared to the fully unsupervised
spectral clustering — see comparison between label propagation and spectral
clustering in fig. 3.10b. Self-training is the final basic category of SSL in our
selection. Self-training [22] originated from the concept of labelling unlabeled
data. This can be utilised by training a supervised model on limited labeled
data, outputting label predictions. A set of these predictions, known as pseudo-
labels, were assigned as true labels and reiterated by the supervised model,
now with a larger set of feature-label pairs. The criterion of selection for the
pseudo-labels is in principle arbitrary, but common practice is to select the most
confident predictions [3], generally by setting some threshold or by selecting
the 𝑛 most confident predictions.

3.5.1 Deep Semi-supervised Learning

Extending into the deep learning domain, SSL builds upon the base principles
(or categorisations) using better performing networks: graph-based methods
such as GraphSAGE [30] and GCN [57], mentioned in the section on GNNs,
are designed to be used in semi-supervised machine learning [115]. Methods
such as co-training and self-training also extends to the deep learning domain,
as they are model agnostic⁸ in nature. Put simply, SSL may be defined as to
minimise the following optimisation problem [115]:∑︁

𝒙∈𝑿𝐿,𝑦∈𝒚𝐿
L𝑠 (𝒙, 𝑦, 𝜽 ) + 𝛼

∑︁
𝒙∈𝑿𝑈

L𝑢 (𝒙, 𝜽 ) + 𝛽
∑︁
𝒙∈𝑿
R(𝒙, 𝜽 ), (3.67)

having labels 𝒚𝐿, input data corresponding to labeled and unlabeled data 𝑿 =

{𝑿𝐿,𝑿𝑈 }, and hyperparameters 𝜽 . The three terms makes up the supervised
loss, unsupervised loss, and regularisation, respectively.

8. The method does not depend on any specific machine learning model.



4
Multi-view Learning
4.1 The Basic Approach

This portion of the thesis will cover basic multi-view methods. These will serve
as base knowledge and provide the reader with a fundamental understanding
of the ideas that make up multi-view learning as well as its many applications
in the health sector.

The medical domain is one that is very attractive to the field of multi-view
learning [123; 9]. This is in part due to the information contained in data
from a range of different modalities. Of these include image data from medical
imaging such as X-rays, time series data from medical time series such as ECG
and oxygen saturation levels, as well as a range of static data such as laboratory
tests or categorical data such as prior diagnoses and prescriptions. The existing
methods of multi-view learning can be separated into three reigning categories
[113]: co-training, multiple kernel learning, and subspace learning. These are
the categories that will be covered in this chapter, acting as context for the
deep-learning based multi-view method to be used in our experiments.

Multi-view learning in general consists of two principles: the consensus principle
and the complementary principle [113]. The former aims to ensure agreement
across views. Given that there are two hypotheses for two different views,
(𝑥1𝑖 , 𝑥2𝑖 , 𝑦𝑖) where 𝑦𝑖 is the associated label, the principle can be expressed as

57
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the inequality [17]

𝑃 (𝑓 1 ≠ 𝑓 2) ≥ max
{
𝑃𝑒𝑟𝑟 (𝑓 1), 𝑃𝑒𝑟𝑟 (𝑓 2)

}
, (4.1)

where 𝑓𝑖 is the hypothesis from view 𝑖. This implies that the error rate of
either hypothesis must be less or equal to the corresponding probability of
disagreement [113]. In simpler terms, the maximum probability of any one
view yielding an inaccurate prediction cannot be higher than the probability of
the two views disagreeing. This states that the two views improve when taken
in context of the other.

The second principle, being the complementary principle, states that each view
may contain knowledge that is not present in the other views [113]. This is an
intuitive interpretation as we are used to different observations correspond-
ing to different information. As an example, let us look at any arbitrary oral
statement. Three modalities may for example be the sentence in itself, how
they say it, and their body language. These modalities may completely change
the perception of what is being said by providing additional information and
context. Looking at a more closely related case, multi-view clustering may be
aptly used to combine information from the many modalities present in health
data.

The trivial approach to multi-view learning is to create a concatenated vector
containing all views. However, this approach is cause to over-fitting on small
training samples and will not provide a meaningful context to the classifier due
to each view containing unique statistical properties not accurately represented
in this format [113].

4.1.1 Co-training

Co-training style algorithms are mostly used for semi-supervisedmachine learn-
ing problems, which was covered in chapter 3. These methods work by using
predicted data from a given view to provide labels for other uncertain views.
The consensus principle is thus achieved by alternately maximising the mutual
agreement on different views of unlabeled data [113]. The general idea of
co-training has been extended to other multi-view methods such as co-testing
[72] and co-clustering [114].

The process of co-training begins with setting up classifiers for each view sep-
arately. The goal of the classifier is to ensure that the trainers are correlated
in their predictions. Thus, any disagreement in prediction should be used to
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Figure 4.1: The general procedure of co-training [116].

develop a consensus among the trainers [113]. The unlabeled data should be
used as a validation set (knowledge in fig. 4.1) where predictions from a view
is used as training samples in the other view(s) (see fig. 4.1).

Yang and Gao’s [114] co-clustering approach utilises information theory to
adapt the methods in standard co-training to domain adaptation, where infor-
mation is transferred across domains by employing transfer learning1 methods
[123].

4.1.2 Multiple Kernel Learning

This section will cover multiple kernel learning (MKL), however, prior to the
multi-view variant, basic kernel methods should be covered sufficiently. Ker-
nel methods is an expansive subject and cannot be covered in full in this section.

The use of kernel functions is often based on kernel trick [103]. The kernel trick
is a method of extracting more information by adding an implicit mapping to
the data [103]. Through this mapping the desire is to create a feature space
that is more linearly separable along the hyperplane in which the original data
lay. A good kernel function to use as an example are Radial Basis Functions
(RBF) given by [103]:

𝑓 ( | |𝒙 − 𝒄𝑖 | |) (4.2)

or equally
𝐾 (𝒙, 𝒄𝑖). (4.3)

These functions, centred around a point 𝒄𝑖 can take a range of forms, e.g.

1. A machine learning field aiming to improve machine learning by transferring knowledge
across different source domains [128].
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Figure 4.2: Displaying the decision curve for the XOR task — a standard non-linear
classification problem where the classes are located along the diagonals
(𝐶1 = {(0, 0), (1, 1)} and 𝐶2 = {(0, 1), (1, 0)}) — in input space (left)
and the transformed kernel space (right) [103].

[103]

𝑓 (𝒙) = 𝐾 (𝒙, 𝒄𝑖) = exp
(
− 1

2𝜎2
𝑖

| |𝒙 − 𝒄𝑖 | |2
)

(4.4)

𝑓 (𝒙) = 𝐾 (𝒙, 𝒄𝑖) =
𝜎2

𝜎2 + ||𝒙 − 𝒄𝑖 | |2
(4.5)

of which the Gaussian variety (eq. 4.4) is the most commonly used [103]. The
aim of these types of functions is to transform variable 𝒙 into a transformed
space 𝒚 = 𝑓 (𝒙) in which a classifier can linearly separate classes [103].

A kernel function given by 𝐾 (·, ·) associated with the implicit mapping 𝒙 →
𝝓 (𝒙) is the building block of such kernel methods. 𝐾 (𝒙𝑖, 𝒙 𝑗 ) will yield a mea-
sure of the effect of point 𝒙 𝑗 on point 𝒙𝑖 . Thus,wemay use the effect of all points
in a dataset 𝒙1, 𝒙2, ..., 𝒙𝑁 to decide the altered weighting in the mapped space.
An example of such mapping is seen in Parzen window estimates [87; 103]. A
decision line made in kernel space can be visualised as shown in figure 4.2.

The multiple kernel approach used in multi-view learning is based on the idea
that instead of selecting a single kernel function to transform data in different
domains, a superior solution would be to use a set of kernels and allow the
classifier to decide which kernel function to use for each variety [113]. The
data is split by view and transformed into a set of kernels and combined into
a unified kernel representing the multi-view data element [113]. A number of
combination methods may be used to combine the set of kernels, e.g. a linear
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combination method [113] as such

𝐾 (𝒙𝑖, 𝒙 𝑗 ) =
𝑀∑︁
𝑘=1

𝑑𝑘𝐾𝑘 (𝒙𝑖, 𝒙 𝑗 ) =
𝑀∑︁
𝑘=1

𝑑𝑘 𝑓𝑘 (𝒙𝑖, 𝒙 𝑗 ) (4.6)

where 𝑑𝑘 is the weighting of kernel 𝐾𝑘 on the unified kernel. This kernel is
referred to as a composite kernel.

Having transformed the multi-view data into the unified kernel space, a high-
grade linear classifier such as a Support Vector Machine (SVM) can be used
to classify a MKL problem, such as in SILP [100] or the simple MKL [83].
Unsupervised approaches using multi-kernel learning in the natural sciences
has also been suggestet by e.g. Mariette and Villa-Vialaneix [69] on multi-
omics2 data. Other MKL algorithms worth mentioning are within the group-
LASSO approach [120]. The group-LASSO approach is an extension of the
LASSO regression model3 which aims to regularise the set of kernels as to
create a more sparse representation. Considering the kernels as groups, these
methods provide a way of analysing the relevance of various views [113].

4.1.3 Subspace Learning

The final category of classical multi-view learning algorithms is subspace learn-
ing. These methods aim to obtain a shared latent subspace from which it is
assumed that all the input views were generated from [113]. One advantage
of using this latent subspace is to reduce the dimensionality of the input data
to lessen the effect of the curse of dimensionality⁴ [113]. Having obtained this
unified subspace, the ensuing analysis tool should be straight-forward by ap-
plying standard classification or clustering methods [113].

These methods are often used in collusion with dimensionality reduction
methods based on eigendecomposition. An example of this is the approach
of canonical correlation analysis (CCA) [38] or its kernel variant KCCA [2].
These methods obtain the unified subspace by applying a basis by which
the correlation between projections is maximised. Another approach within
subspace learning is that of multi-view metric learning [113]. For these learning
algorithms, the aim is to produce a unified embedding by utilising meaningful
distancemeasures for every view [113]. One such approach is that of Quadrianto

2. Analysis on data from multiple ”omes”, e.g. genomics, proteomics, and methylomics.
3. A regression model which employs a regularisation term 𝑙1 to create sparser weights.
4. A classification problem that arises in high dimensions as the density of data points

decreases and prediction boundaries become less clear-cut.
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and Lampert [81] which is based on the straightforward idea to pull similar
samples together while pushing dissimilar samples apart [113].

4.2 Multi-view Clustering

4.2.1 Simple Multi-view Clustering

This chapter in its entirety builds on the paper covering Simple- and Contrastive
Multi-view Clustering (SiMVC and CoMVC, respectively) models by Trosten et
al. [104]. The idea of this method builds on the understanding that aligning the
views in an embedded feature space create a view-invariant feature represen-
tation. This will have the added benefit of being able to disregard information
that only exists in certain views, while extracting the common information.
Given an assumption of the complementary principle⁵ covered in chapter 4, we
understand that the model should not learn to disregard views instantly. This
leads to the idea that aligning the representation will force the model to find
patterns by having it try to employ all views. This will contain the drawback of
making it harder to prioritise views in representation space. Another drawback
of multi-view cluster alignment is the issue of not having an equal number of
separable clusters in each view, and thus making it harder to separate in the
combined representation space. A third drawback in cluster alignment comes
from the problem of mis-aligning the innate ”ground truth” distributions as
a result of different view representations aligning with each other, creating
a combined representation space that misrepresents the underlying natural
groupings. To avoid these common drawbacks of cluster alignments, Trosten
et al. propose the contrastive variant of their deep multi-view clustering (MVC)
algorithm by using contrastive learning to align data points at sample-level.

Using what we know of MLPs and CNNs and encoder networks, feature en-
coders are created for each view separately by appropriately selecting neural
networks that — for each sample view 𝒙 (𝑣)

𝑖
— create an output vector 𝒛 (𝑣)

𝑖
of

a predetermined common shape for all views 𝑣 = 1, ...,𝑉 with 𝑉 total views.
This is, for each view 𝑣 , given by the equation

𝒛 (𝑣)
𝑖

= 𝑓 (𝑣) (𝒙 (𝑣)
𝑖
). (4.7)

5. Views may contain knowledge not present in other views.
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Then the unified representation is given by a weighted average

𝒛𝑖 =
𝑉∑︁
𝑣=1

𝑤𝑣𝒛
(𝑣)
𝑖
, (4.8)

where 𝑤𝑣 is the fusion weight for view 𝑣 ∈ [1,𝑉 ]. The weights must sum to
one, i.e.

∑𝑉
𝑣=1𝑤𝑣 = 1, which is achieved by utilising the softmax activation

function.

Our clustering module of choice, the DDC module, is utilised on this fused
representation 𝒛𝑖 . Having our soft cluster assignments 𝛼𝑖 , we recall the three
loss components from DDC 3:

L1 =

(
𝑘

2

)−1 𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

𝜶𝑇𝑖 𝑲𝜶 𝑗√︃
𝜶𝑇
𝑖
𝑲𝜶𝑖𝜶𝑇𝑗 𝑲𝜶 𝑗

(4.9)

L2 =

(
𝑛

2

)−1 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝜶𝑇𝑖 𝜶 𝑗 (4.10)

L3 =

(
𝑘

2

)−1 𝑘−1∑︁
𝑖=1

∑︁
𝑗>𝑖

𝒎𝑇
𝑖 𝑲ℎ𝑖𝑑𝒎 𝑗√︃

𝒎𝑇
𝑖
𝑲𝒎𝑖𝒎𝑇

𝑗
𝑲𝒎 𝑗

(4.11)

having𝑘 is the numberof clusters, elements of kernel𝑲 being^𝑖 𝑗 = exp {−||𝒉𝑖 − 𝒉 𝑗 | |2/(2𝜎2)}
where 𝒉𝑖 are embedded data points, 𝜎 is a hyperparameter, and elements of
𝒎𝑖 :𝑚𝑖 𝑗 = exp {−||𝜶𝑖 − 𝒆 𝑗 | |2} in which 𝒆 𝑗 is the unit vector of corner 𝑗 of the
R𝑘 standard simplex.

Finally, the loss function minimised by SiMVC is

L = L1 + L2 + L3. (4.12)

4.2.2 Contrastive Multi-view Clustering

For the contrastive variant of the model, a self-supervised contrastive loss term
is added. This term will attempt to pull points from the same sample towards
each other across views, while pushing points from separate samples apart.
These are referred to as positive and negative pairs, respectively. The contrastive
module does not depend on the clustering assignments like the loss terms used
in SiMVC, but will be added on top of the hidden representation, see fig. 4.3.
The contrastive module itself is based on that of Chen et al. [12].
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Figure 4.3: The CoMVC model [104].

The similarity between samples 𝑖 and 𝑗 in views 𝑣 and 𝑢, respectively, will be
measured by the cosine similarity function as such [12; 104]:

𝑠
(𝑣𝑢)
𝑖 𝑗

=

(
𝒛 (𝑣)
𝑖

)𝑇
𝒛 (𝑢)
𝑗

| |𝒛 (𝑣)
𝑖
| | · | |𝒛 (𝑢)

𝑗
| |
. (4.13)

The loss function is given as a generalised version of NT-Xent loss proposed in
[12], and is given as

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
1

𝑛𝑉 (𝑉 − 1)

𝑛∑︁
𝑖=1

𝑉∑︁
𝑣=1

𝑉∑︁
𝑢=1

1{𝑢≠𝑣 }𝑙
(𝑢𝑣)
𝑖

, (4.14)

where 1{𝑢≠𝑣 } =

{
1 𝑢 ≠ 𝑣

0 𝑒𝑙𝑠𝑒
and

𝑙
(𝑢𝑣)
𝑖

= − log 𝑒𝑠
(𝑢𝑣)
𝑖𝑖
/𝜏∑

𝑠′∈Neg
(
𝒛 (𝑣)
𝑖
,𝒛 (𝑢)
𝑖

) 𝑒𝑠′/𝜏 , (4.15)

where 𝜏 is a hyperparameter⁶ and Neg(𝒛 (𝑣)
𝑖
, 𝒛 (𝑢)
𝑖
) is the set of negative pairs

corresponding to the positive pair counterpart 𝒛 (𝑣)
𝑖

and 𝒛 (𝑢)
𝑖

. The hyperparam-
eter 𝜏 decides the polarisation of the contrastive loss term, i.e. how strong the
contrastive force should be on close points versus distant points. The term in

6. 𝜏 is set to 0.1 for all experiments.
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Figure 4.4: The MAGCN model architecture [13].

eq. 4.15 will have the undesirable effect of separating the group structures of
which we are after. Thus the set of negative samplesN𝑖 is contructed in such a
way that only samples from different cluster predictions than that of 𝑖 are used
in calculating the contrastive loss:

N𝑖 =
{
𝑠𝑢𝑣𝑖 𝑗 : 𝑗 = 1, ..., 𝑁 , 𝑗 ≠ 𝑖, 𝑢, 𝑣 = 1, ...,𝑉 , argmax𝛼𝑖 ≠ argmax𝛼 𝑗

}
.

(4.16)

Given a weighting for the contrastive loss, 𝛿 , as well as the fusion weights,
𝑤1, ...,𝑤𝑉 , from eq. 4.8, we create the differentiating term for CoMVC by
scaling the weighted contrastive loss with the minimum fusion weight. This is
done to ensure that its importance is equal to that of the least important view.
Finally, we obtain the final loss function for CoMVC given by

L = L1 + L2 + L3 + 𝛿 · min{𝑤1, ...,𝑤𝑉 }L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 . (4.17)

This model is set up to tackle the mixing and weighting of data from various
domains, while attempting to avoid the disadvantages of opposing alignments
by different views. Due to these properties the model is in this thesis hypothe-
sised to be suitable to cluster medical data, where information of underlying
characteristics such as diagnoses or risk analysis are important to assess based
on multiple domains considered in context.

4.2.3 Attribute Graph Convolution Clustering

Multi-view Attribute Graph Convolution Networks for Clustering (MAGCN)
[13] is a graph-based approach to MVC, combining information from both
feature data and some common predetermined affinity matrix. By employing
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an attention-based graph embedding to each view, the aim is to reduce both
noise and redundancy from views, making it easier to recognise the common in-
formation subspace in the consistent embedding encoders [13]. The architecture
consists of a complete autoencoder— with both graph and view reconstruction,
then feeding the encoded graph embeddings into some consistent embedding
encoder, yielding our resulting clustering space. Shown in figure 4.4. The
model utilises an attention mechanism with parameters shared among nodes,
thus allowing for learned attention that does not require a priori knowledge
of the dataset size and yielding a model that is better suited for inference and
generalisation.

4.2.3.1 Multi-view Attribute Graph Convolution Autoencoder

Let𝑨 be our affinity matrix from our graph. The graph-attention mechanism is
utilised in the relevance matrix 𝑺, containing two learnable parameter vectors
𝒕 (𝑟 )𝑠 ∈ R𝑑𝑟 and 𝒕 (𝑟 )𝑟 ∈ R𝑑𝑟 that weighs nodes and their neighbours in the
graph. As mentioned, parameters are shared among nodes such that each base
node corresponds to a singular attention value 𝑡𝑟𝑠 (𝑖). Similarly, each receiving
node has an attention 𝑡𝑟𝑠 ( 𝑗). The base node and receiving node attentions
correspond to the rows and columns of the affinity matrix, respectively. The
relevance matrix, inspired by that of GATE [91], is found by summing row and
column embeddings⁷, respectively. The two embeddings are found by masking
the affinity matrix with the attentions in an element-wise multiplication in the
vertical and horizontal directions, respectively. Explicitly stated as

𝑺 (𝑟 )𝑣 = 𝜑

(
𝑨 ⊙

(
𝑯 (𝑟−1)𝑣 𝑾 (𝑟 ) 𝒕 (𝑟 )𝑠

)𝑇
+𝑨 ⊙

(
𝑯 (𝑟−1)𝑣 𝑾 (𝑟 ) 𝒕 (𝑟 )𝑟

))
. (4.18)

The non-linearity 𝜑 is set as the sigmoid activation function (eq. 3.4). To get
the final relevance coefficient matrix 𝑨(𝑟 )𝑣 , the relevance matrix is normalised
in a softmax-like fashion as such

𝐴
(𝑟 )
𝑣 (𝑖, 𝑗) =

exp
(
𝑆
(𝑟 )
𝑣 (𝑖, 𝑗)

)∑
𝑘∈𝑁𝑖

exp
(
𝑆
(𝑟 )
𝑣 (𝑖, 𝑘)

) , (4.19)

where𝐴 (𝑟 )𝑣 (𝑖, 𝑗) and 𝑆 (𝑟 )𝑣 (𝑖, 𝑗) denotes the (𝑖, 𝑗) index of matrices𝑨(𝑟 )𝑣 and 𝑺 (𝑟 )𝑣 ,
respectively, and 𝑁𝑖 is the set of all nodes in node 𝑖 ’s neighbourhood. This will
assert that attentions are pushed to either its full or minimum weights relative
to the sum. This forces the model to attempt to learn the most relevant data

7. Equation 4.18 is a correction to the original paper, where the equation provided is found to
contradict both what is done in their code [5], as well as lacking logical meaning (summing
two different parameter vectors in an identical context) nor being solvable with its matrix
dimensions not corresponding.
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points for all nodes by restricting the total attention.

Letting 𝑯 (0)𝑣 ≡ 𝑿𝑣. The multi-view attribute graph convolution encoder is —
for each view 𝑣 = 1, ...,𝑉 — given as the familiar graph convolution used in
the GCN with common weights across views, i.e.

𝑯 (𝑟 )𝑣 = 𝜎

( (
�̃� (𝑟 )𝑣

)−1/2
�̃�(𝑟 )𝑣

(
�̃� (𝑟 )𝑣

)−1/2
𝑯 (𝑟−1)𝑣 𝑾 (𝑟 )

)
. (4.20)

�̃�(𝑟 )𝑣 is our relevance coefficient matrix with added self-connections, using the
renormalisation trick from the GCN (eq. 3.52) where �̃� (𝑟 )𝑣 is its associated
degree matrix. The non-linearity 𝜎 is set to be the ReLU activation function
(eq. 3.6).

Following 𝐿 encoder layers yielding 𝑯𝑣 ≡ 𝑯𝐿
𝑣 , 𝑿𝑣 is reconstructed by using 𝐿

decoder layers, acting as the inverse of the preceding encoding process, and
using tied weights for feature reconstruction.

�̂� (𝑟−1)𝑣 = 𝜎

( (
˜̂𝑫 (𝑟 )𝑣

)−1/2 ˜̂𝑨(𝑟 )𝑣
(
˜̂𝑫 (𝑟 )𝑣

)−1/2
�̂� (𝑟 )𝑣 �̂� (𝑟 )

)
, (4.21)

yielding feature reconstructions �̂�𝑣 ≡ �̂� (0)𝑣 .

The reconstructed graphs �̂�𝑣 are computed from the inner products, denoted
⟨·, ·⟩, of row vectors in embedding 𝑯𝑣:

𝐴
𝑖 𝑗
𝑣 =

〈
− 𝒉𝑖𝑣, 𝒉

𝑗
𝑣

〉
. (4.22)

Completing the autoencoder section, a reconstruction loss is calculated as such:

L𝑟𝑒 =
𝑉∑︁
𝑖=1
| |𝑿𝑖 − �̂�𝑖 | |2𝐹 + _1

𝑉∑︁
𝑖=1
| |𝑨 − �̂�𝑖 | |2𝐹 , (4.23)

where | | · | |2
𝐹
denotes the squared Frobenius norm (eq. 2.7).

4.2.3.2 Consistent Embedding Encoder

Having graph embeddings for views 𝑣 = 1, ...,𝑉 , 𝑯𝑣, the goal becomes to
find a unified clustering space 𝒁 . To solve this task, consistent embedding
encoders are employed. Each embedding is transformed to a lower-dimensional
clustering space by a MLP layer 𝑔 having parameters 𝜽

𝑔𝑣 (𝑯𝑣;𝜽 ) → 𝒁𝑣 . (4.24)
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Figure 4.5: MAGCN clustering embedding [13].

The consistent embedding encoder takes two loss functions, one concerns
the geometric relationships, L𝑔𝑒𝑜 , and one the probabilistic relationships, L𝑝𝑟𝑜𝑏 .
The former aims to minimise the Frobenius norm of all embedding differences

L𝑔𝑒𝑜 =
𝑉∑︁
𝑖≠𝑗

| |𝒁𝑖 − 𝒁 𝑗 | |2𝐹 . (4.25)

The embeddings 𝒁𝑣 are combined into 𝒁 through adaptive fusion

𝒁 =

𝑉∑︁
𝑣=1

𝛽𝑣𝒁𝑣 . (4.26)

A Student’s 𝑡 -distribution is fit for each data point, 𝑖, to measure the similarity
to centroids, 𝑗 , which are randomly initialised in a 𝑘-means clustering fashion.
With 𝛼 being the degree of freedom in the 𝑡 -distribution, the probability of
assigning node 𝑖 to cluster 𝑗 is given by

𝑞𝑖 𝑗 =
(1 + ||𝒛𝑖 − 𝝁 𝑗 | |2/𝛼)−(𝛼+1)/2∑
𝑗 ′ (1 + ||𝒛𝑖 − 𝝁 𝑗 ′ | |2/𝛼)−(𝛼+1)/2

. (4.27)

An ideal probability distribution 𝑷 of 𝒁 is calculated by squaring these possi-
bilities and normalising by the per-class frequency, i.e.⁸

𝑝𝑖 𝑗 =
𝑞2𝑖 𝑗/𝑓𝑗∑
𝑗 ′ 𝑞

2
𝑖 𝑗 ′/𝑓𝑗 ′

, (4.28)

8. Correcting the equation in the original paper where 𝑓𝑖 is used in the numerator, rather
than 𝑓𝑗 .
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where 𝑓𝑗 =
∑
𝑖 𝑞𝑖 𝑗 are the fuzzy cluster frequencies. In effect, eq. 4.28 will help

encourage separated cluster distributions. Finally, by again using the Frobenius
norm the third loss function is given as

L𝑝𝑟𝑜𝑏 =
𝑉∑︁
𝑖=1

𝜌𝑖 | |𝑸𝑚 − 𝑷 | |2𝐹 . (4.29)

𝜌𝑣 is trade-off parameters to alter the loss impact of certain view distributions.

Finalising the model, MAGCN is trained by minimising the sum of terms 4.23,
4.25, and 4.29:

L =L𝑟𝑒 + _2L𝑔𝑒𝑜 + _3L𝑝𝑟𝑜𝑏 (4.30)

=

𝑉∑︁
𝑖=1
| |𝑿𝑖 − �̂�𝑖 | |2𝐹 + _1

𝑉∑︁
𝑖=1
| |𝑨 − �̂�𝑖 | |2𝐹 (4.31)

+ _2
𝑉∑︁
𝑖≠𝑗

| |𝒁𝑖 − 𝒁 𝑗 | |2𝐹 + _3
𝑉∑︁
𝑖=1

𝜌𝑖 | |𝑸𝑚 − 𝑷 | |2𝐹 ,

and the final, hard cluster label of node 𝑖 is simply defined as

𝑦𝑖 = argmax
𝑘

(
𝑝𝑖𝑘

)
. (4.32)

4.2.3.3 Discussion

The geometric and probabilistic loss terms in eqs. 4.25 & 4.29 are losses that
align the averages of data points across views and the corresponding distribu-
tions in embedded space. These do not consider distance-based similarities in
hidden space, likely making intra-cluster positioning of nodes to be largely in-
dependent from each other. This is due to the closeness measures being purely
based on statistical similarity measures to clusters, disregarding other data
points entirely. These loss terms will undoubtedly allow for much variation of
the within-cluster structure and not utilising the assumed natural cluster struc-
ture that may originate from considering similarities with surrounding nodes.
Another potential area of improvement with the MAGCN model is related to
the issue of over-smoothing in deep GCNs [76]. Having the graph attention
considered in eq. 4.19 only consider one neighbour, thus, potentially consid-
ering reaching 𝐿 degrees of neighbours in a 𝐿 layer GCN. Further-reaching
attention per layer could potentially compress the model potential by being
more selective in each graph convolution layer.
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5
Proposed Method
5.1 Motivation

Having covered background theory of clustering, deep learning, and multi-view
learning, we have built a foundation to present our proposed deep graph-based
multi-view clustering model. This thesis presents a novel approach that aims to
unify the advantages of representation-alignment as documented by Trosten
et al. [104], with a new interpretation of the graph embedding layer utilised in
graph-based multi-view clustering methods [13; 95; 40]. The method aims to
combine the per-sample linkage of views — borne of the contrastive module
in CoMVC — with a focused attention-based graph embedding encoder that
acts both as a smoothing operator and a redundancy filter [78]. The novelty
of our graph attention approach is that of a new approach to graph attention
weighting, using Markov chain probabilities to improve the selective process
when applying attention, reducing the attention space from the full graph,
while making better use of further-reaching attention neighbourhoods. We
also hypothesise that the prior may reduce the smoothing effect frequently
observed in GCNs as the number of layers increases [76] when combined with
a suitable sampling operator. With our solution, we reason that each layer may
attend to distant nodes and avoid the penalty of excessive over-smoothing [76],
which will be explored in chapter 7.

Given an ability properly able to unify views on a sample-to-sample basis we
hypothesis that our model may provide more informative embedding spaces

73
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and transform raw, unlabeled data into more stable subspaces compared to
the existing SOTA, which attends to a much more general cluster structure
[13]. Looking at the medical domain in particular, unsupervised methods are
in many cases plagued by noisy data as well as significant black-box problems
in inference. Recognising the success of the contrastive module in CoMVC [104]
for the unification of multi-view data to recognise commonality, we reason that
the method may still lack the relational information required to properly filter
noise and redundancy and enhance the underlying group structures. Assuming
that this is especially problematic for complex and imperfect data, we assess
that the incorporation of group structures observed in relational data, with the
already existing feature-based clusters — will yield more robust results.

5.2 Graph Attention

We firstly introduce our interpretation of the graph attention layer. Unlike
methods such as MCGC [78] using a fully learned graph, we reason that the
attention solution utilised in e.g. MAGCN [13] and GAT [107], using parameters
invariant to dataset size improves its flexibility immensely — allowing for e.g.
batch sampling as well as inference on unseen data using a pre-trained model.
Unlike the MAGCN, we develop a novel approach based on a Markov chain
prior used in the graph attention module.

5.2.1 The Markov Prior

In order to create a neighbourhood mask of our attention, we employ a random
walk Markov model [88] and treat each node as each own state. Using this,
we assume that a given state 𝑢 may be associated with another state 𝑣 by the
edge weight connecting the two nodes. Having adjacency matrix 𝑨, the edges
of every node may be represented as a probability by normalising each row
using graph normalisation

�̂� = 𝑫−1𝑨.

This function assumes that the transition probabilities are given by each edge
weight normalised by all outgoing edge weights from node 𝑢. The first assump-
tion made is that the random walk probabilities are proportional to the weights
of edges. We assess this as a reasonable assumption for similarity-based graphs.
Now, by assuming that a state 𝑣 𝑗 at time 𝑘 + 1 is affected only by the previous
state we may define the stochastic process as a Markov chain. The transition
probabilities are then stated as the following:

𝑃𝑖 𝑗 = 𝑃{𝑣𝑘+1 = 𝑗 |𝑣𝑘 = 𝑖}. (5.1)
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Figure 5.1: A Markov process from node 𝑖 to node𝑚:
𝑖 → 𝑗 → 𝑘 → 𝑗 →𝑚.

Extending this, we may define the 𝑛-step transition probability from node 𝑖 to
node 𝑗 ,

𝑃𝑛𝑖 𝑗 = 𝑃{𝑣𝑘+𝑛 = 𝑗 |𝑣𝑘 = 𝑖}, 𝑛 ≥ 0.

By applying the Chapman-Kolmogorov equations wemay prove the relationship
between nodes after 𝑛 +𝑚 transitions may be stated as such [88]

𝑃𝑛+𝑚𝑖 𝑗 = 𝑃{𝑣𝑛+𝑚 = 𝑗 |𝑣0 = 𝑖}, 𝑛,𝑚 ≥ 0

=

∞∑︁
𝑘=0

𝑃{𝑣𝑛+𝑚 = 𝑗, 𝑣𝑛 = 𝑘 |𝑣0 = 𝑖}

=

∞∑︁
𝑘=0

𝑃{𝑣𝑛+𝑚 = 𝑗 |𝑣𝑛 = 𝑘, 𝑣0 = 𝑖}𝑃{𝑣𝑛 = 𝑘 |𝑣0 = 𝑖}

=

∞∑︁
𝑘=0

𝑃𝑛
𝑖𝑘
𝑃𝑚
𝑘 𝑗
. (5.2)

Letting 𝑃𝑡𝑖 𝑗 be the transition weights𝑤𝑖 𝑗 associated with nodes in our adjacency
matrix 𝑨 after 𝑡 time steps, and with the full matrix representation denoted
as 𝑷 (𝑡 ) (with 𝑷 (0) ≡ �̂�), we use eq. 5.2 to define

𝑷 (𝑛) = 𝑷 (𝑛−1)�̂� = �̂� · · · �̂� = �̂�𝑛 . (5.3)

Having found probabilities for transitioning from node 𝑖 to node 𝑗 in exactly 𝑛
steps given by 𝑷 (𝑛) , we reason that the similarity measure defining the 𝑛-step
neighbours is insufficient in described similarity between nodes 𝑖 and 𝑗 . We
reason that a superior measure of familiarity is the number of times node 𝑖 has
visited 𝑗 after 𝑛 steps. This will include, not only the start node and end node,
but rather the full probability describing every encounter along the way. The
neighbourhood matrix used for masking is then proportional to the sum of the
Chapman-Kolmogorov transition probabilities.

𝑴 (𝑛) =
𝑛∑︁
𝑘=1

𝑷 (𝑘) =
𝑛∑︁
𝑘=1

�̂�𝑘 . (5.4)
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Figure 5.2: Finding graph attention 𝑮 (𝑟 )
𝑣,ℎ

in the graph attention layer.

Assuming a rapid growth of the number of non-zero edges in 𝑷 (𝑘) , we reason
that its probabilities will naturally decline as 𝑘 increases, given its restriction as
a probability matrix having to sum to𝑁 in its entirety. Looking at figure 5.1, this
would correspond to the weight from node 𝑖 to node 𝑗 being commonly higher
weighted (due to the recurring early transitions to node 𝑗) than the weight of
transitioning from 𝑖 to𝑚 in 4 steps. This will create a natural focus on closer
nodes, as well as continually strengthening nodes that are regularly re-visited.
In order to assess 𝑴 (𝑛) as a probability, normalisation must be applied to all
nodes through normalisation along the horizontal axis as such

�̂� (𝑛) = 𝑫−1𝑴 (𝑛) , (5.5)

being a matrix of probabilities of having visited any given node (given by
column index 𝑗), starting at any node (given by row index 𝑖) after 𝑛 random
steps.

5.2.2 Graph Attention Convolutions

In order to properly embed graph information into our data, we define the
graph convolution process we employ in DRAGMVC. To encourage the extrac-
tion of commonality across views, all parameters of the operation are to be
shared across views, as inspired by MAGCN [13]. This results in the operation
learning to extract features while strengthening the requirement for similar
view representations. The operation will propagate the contrastive loss used in
representation alignment in addition to the clustering loss, thus also optimising
the operation for maximising feature extraction of shared features.

We introduce the operation by looking to the standard GCN equation (eq. 3.53),
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splitting the process into two sub-operations: a linear transformation and a
graph convolution. Thus, we initially transform input 𝑯 (𝑟−1)𝑣 as follows

�̂� (𝑟 )𝑣 = 𝑯 (𝑟−1)𝑣 𝑾 (𝑟 ) , (5.6)

using shared weights for all 𝑣 = 1, ...,𝑉 .

The graph attention is computed given a set of weight parameters. With 𝑑 (𝑟 )

features 𝝓 (𝑟 )
𝑁
∈ R𝑑 (𝑟 ) and 𝝓 (𝑟 )

𝐸
∈ R𝑑 (𝑟 ) define the weights for vertices and edges,

respectively. Linear transformations of node and edge weights are performed
and thereafter activated using activation functions 𝜑𝑁 and 𝜑𝐸 , as such

𝜶 (𝑟 )
𝑁,𝑣

= 𝜑𝑁
(
�̂� (𝑟 )𝑣 𝝓 (𝑟 )

𝑁

)
(5.7)

𝜶 (𝑟 )
𝐸,𝑣

= 𝜑𝐸
(
�̂� (𝑟 )𝑣 𝝓 (𝑟 )

𝐸

)
, (5.8)

as displayed in figure 5.2. In our experiments 𝜑𝑁 = 𝐿𝑒𝑎𝑘𝑦𝑅𝐸𝐿𝑈 = 𝜑𝐸 with
negative slope 0.2, as in [107]. The use of LeakyReLU activation allows for a
gradient leak for inactive attentions as well as slight negative attention proving
useful in cases where node attentions and edge attentions contradict. It will
also allow the model to ”disable” certain attentions by setting negative values.

We compute the corresponding attentionmatrix𝚫(𝑟 )𝑣 = ReLU
(
𝑎

(
𝜶 (𝑟 )
𝑁,𝑣
,

(
𝜶 (𝑟 )
𝐸,𝑣

)𝑇 ))
as done in the graph attention auto-encoders (GATE) model [91]:

𝚫
(𝑟 )
𝑣 = ReLU

©«

𝛼
(𝑟 )
𝑁,𝑣
(0) + 𝛼 (𝑟 )

𝐸,𝑣
(0) · · · 𝛼

(𝑟 )
𝑁,𝑣
(0) + 𝛼 (𝑟 )

𝐸,𝑣
(𝑁 )

𝛼
(𝑟 )
𝑁,𝑣
(1) + 𝛼 (𝑟 )

𝐸,𝑣
(0) . . .

...
...

. . .
...

𝛼
(𝑟 )
𝑁,𝑣
(𝑁 ) + 𝛼 (𝑟 )

𝐸,𝑣
(0) · · · 𝛼

(𝑟 )
𝑁,𝑣
(𝑁 ) + 𝛼 (𝑟 )

𝐸,𝑣
(𝑁 )


ª®®®®®¬

(5.9)

where 𝑎 denotes element-wise summation of edges and nodes along the hori-
zontal and diagonal axes. The resulting attention matrix is a 𝑁 × 𝑁 matrix of
attentions, activated by the ReLU activation function to allow for apt ”disabling”
of values Δ(𝑟 )𝑣 (𝑖, 𝑗) ≤ 0.

The matrices 𝚫(𝑟 )𝑣 are weighted by the prior �̂� (𝑛) from section 5.2.1, eq. 5.5,
creating attention graphs

�̃� (𝑟 )𝑣 = SparseSoftmax
(
𝚫
(𝑟 )
𝑣 ⊙ �̂� (𝑛)

)
. (5.10)

We define SparseSoftmax as Softmax using exp (𝑥𝑖) = 0 for 𝑥𝑖 = 0, which
corresponds to a Softmax with 𝑥𝑖 = 0 → 𝑥𝑖 = −∞. This will avoid unneces-
sary attention to every edge in �̃� (𝑟 )𝑣 (yielding attentions > 0 for all values in
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�̃� (𝑟 )𝑣 ) and thus reduce unnecessary smoothing by the GCN. The advantage of
using a Markov prior in eq. 5.10 is two-fold: it provides a more informative
initialisation for graph attention; it allows for further-reaching attention than
the traditional graph masking which only attends to graph neighbours and
more specialised attention than the unmasked attention struggling with over-
smoothing as datasets increase in size 𝑁 →∞. The added benefit of possibly
disabling attentions by utilising the LeakyReLU activation in eqs. 5.7 & 5.8 will
further contribute to a narrower attention space, reasoned to further optimise
the ratio of information gain to over-smoothing.

Finally, the output of the embedding layer is given by

𝑯 (𝑟 )𝑣 = 𝜎

(
𝑮 (𝑟 )𝑣 �̂� (𝑟 )𝑣

)
, (5.11)

using the renormalisation trick from section 3.3.1:

𝑮 (𝑟 )𝑣 =

(
�̃� (𝑟 )𝑣

)−1/2 (
�̃� (𝑟 )𝑣 + 𝑰

) (
�̃� (𝑟 )𝑣

)−1/2
.

𝜎 (·) denotes the activation function set to ReLU.

5.3 Model Architecture

Putting together DRAGMVC, we assert that view encoders should be feature
reduced representations of the raw input data creating similar representations
across views, thus opting to use independent and fitting view encoders for
the view at hand. The views are reduced to their encoded representations
of a predetermined common dimensionality. Following the process described
in section 5.2.2, we pass the views through a graph attention encoder with
shared parameters for each layer. From this, we aim to strengthen and ex-
tract commonality across the view embedding space — and in the process
remove irrelevant noise. Having the graph-embedded encoding of our data,
we perform weighted fusion using view weights 𝑤1, ...,𝑤𝑉 as in [104]. The
final clustering is performed by the DDC clustering module [50] on a graph
attention-embedded fused representation. The aim of the shared-weight graph
attention embedding for the views was to extract commonality, while its appli-
cation in the DDC module is to attend to fully fused representations without
any constraints from other views. The effects of graph attention in the DDC
module will be quantitatively explored and analysed in section 7.4.3.

For the loss function we use the generalised NT-Xent [12] as utilised in [104] for
the CoMVC model. The contrastive module is applied after the graph attention
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Figure 5.3: The proposed model.

layers. As a consequence, we get the desired effect of view alignment in the
view encoders as well as in the graph embedding, thus guiding both the view
feature extraction modules and the graph attention module. We do not apply
any reconstruction loss to our model, as is common in many encoder structures
(e.g. MAGCN [13],GATE [91]). This is due to the observation that reconstruction
loss strongly mitigates contrastive loss, reducing the ability to properly align
representations (see appendix A.3.1).





6
Proposed Dataset
The experiments on our MIMIC dataset are performed in an unsupervised and
semi-supervised manner, thus — due to the limitations of the methods used
— having a thorough pipeline which covers data extraction, coupling data
from different databases, creating pseudo-labels, extracting and processing
static data, as well as processing of image data is critical. This subsection
will cover the structure of the database, the dataset creation process, as well
as the processing that was done. We will initially cover a brief introduction
to two databases for context, but will not delve deep into the details of the
creation of the database itself, as this topic is beyond the scope of this thesis1.
The majority of this chapter will focus on how tables in the databases were
linked, pre-processed, and the results of the data cleaning process. In addition,
we will detail the process of creating an associated affinity graph for the dataset.

The databases used were the Medical Information Mart for Intensive Care IV
(MIMIC-IV) and its chest X-ray counterpart: MIMIC-CXR [47; 49; 24]. These
are publicly available, de-identified databases from the Beth Israel Deaconess
Medical Center (BIDMC) Emergency Department in the years 2008 till 2019,
and 2011 till 2016, respectively. MIMIC-IV presents critical care data for more
than 40 000 patients,while theMIMIC-CXR provides imaging studies for65 379
patients, yielding 377 110 separate images. The author of the paper [47; 49]

1. For more information about the creation of the databases, please refer to the publications
[24; 47; 49].
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has confirmed that the two datasets are linked by subject identifiers [48]
which we will use to create a multi-modal dataset such that each X-ray image
corresponds to data from MIMIC-IV in a given time frame around the time and
day at which the X-ray was captured. Each data point will include properties
of the static data and one X-ray image.

6.1 Databases

6.1.1 MIMIC-IV

MIMIC-IV is a database of critical care data. This consists of measurements
done throughout their hospital stay such as vital signs, lab tests, chart data and
observations made, drugs the patients have been prescribed, diagnoses, trans-
fers, procedures, and more. The database has gone through a number of steps
prior to the publication. Namely: acquisition, preparation, and de-identification
[47]. The data was extracted from the BIDMC emergency department and in-
tensive care units (ICU). From this point, the data was organized in a way
such that it was suited for data analysis, which include de-normalisation and
reorganisation into fewer tables [47]. Data cleaning was not performed such
that the data would not lose its likeness to real-world data. Finally, the data was
de-identified appropriately. Dates and times were randomly shifted. However,
the shift was applied on a subject-to-subject basis and thus, we may — for a
single subject — compare information by relative time differences, e.g. image
acquisition time relative to hospital admission.

6.1.2 MIMIC-CXR

MIMIC-CXR is a chest X-ray database that contains two items, namely chest
X-rays in DICOM data format and free-text radiology reports [49]. Similarly to
MIMIC-IV, MIMIC-CXR is de-identified by removal of protected health informa-
tion (PHI). This include — among the alterations mentioned in the previous
subsection — adding black boxes to X-ray images for removal of sensitive
information and eliminating PHI from the free-text reports.
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6.2 Extraction

6.2.1 Database Diagram

A database map of MIMIC is illustrated in figure 6.1. A range of tables and fields
were not included in this map due to the sheer total number. It would only
serve to clutter the figure above while not providing any information relevant
to this thesis. For the sake of order, the complete list of tables included in the
datasets is provided in section A.4.2.

6.2.2 Data Extraction & Filtering

The main goal of our cleaned dataset is to unite ICU data with X-ray data. ICU
data (mimic-icu) was selected over the more general hospital data (mimic-hosp)
by the reasoning that ICU patients are significantly more closely monitored and
thus will provide more data during the the time frame in which X-rays were
captured. Thus, the initial step of our extraction process is to find overlapping
subject_ids and hadm_ids that appear in both datasets at the same period. This
can be done by simply joining the tables on subject identifier and ensuring that
the acquisition time of the X-ray is during the patient’s stay at the ICU.

The next step is to select the distributions from which to draw our samples,
e.g. 𝑘 lung diseases. It is important to note that — as this is in preparation for
an unsupervised machine learning model — we do not require this grouping
to be the grounds for the output clusters, it is rather included to assure that
there exist some underlying group structure in the data. For this, we join tables
diagnoses_icd and d_icd_diagnoses on ICD code and version. Then, we wish
to find the population that covers e.g. disease 1, while excluding the patients
with any combination of diseases 2, ..., 𝑘. From these 𝑘 populations we draw
𝑁𝑚𝑖𝑛 = min

(
𝑁1, 𝑁2, ..., 𝑁𝑘

)
samples from each population without replace-

ment, ending up with a balanced dataset of 𝑁 = 𝑘 · 𝑁𝑚𝑖𝑛 samples.

Having the patient samples, we may now generate the image input data by link-
ing it to the MIMIC-CXR database. The images are downloaded and presented
for local data processing. The static data tables selected are vital signs and
labevents. Vital signs contain information on: heart rate, blood pressure (and
its variations), respiratory rate, temperature, oxygen saturation, and glucose
levels. The second table, lab events, was selected to increase the range of mea-
surements done. However, by using multiple tables we may define different
time slots in which to gather data depending on the table in question. For
example, lab tests could be less frequent than vital signs and thus should be
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collected with a bigger time frame in mind.

These tables makes for a multi-view dataset on their own, as it is generated
from a separate set of observations. The data is then — similar to the image
data extraction — extracted within a given time frame, with fields dicom_id,
chart_time, valuenum, and label. Lab events not accounted for in less than 40%
of the patients are removed. The value of 40% is based on the amount of data
needing to undergo imputation in the processing stage, as > 40%missing data
is considered substantial [45]. Another reason was the intention to exclude rare
tests, as such tests could be a strong indicator of a given disease and thus create
groupings that heavily depend on rare data. Following this filtering, the table is
pivoted such that each label gets its separate column given by value valuenum
at index dicom_id. As each index may corresponds to many measurements, we
generate six statistical parameters to represent the data for any given patient,
first, last, minimum, maximum, median, and mean. Assuming that the data is
non-categorical in nature, these parameters should provide an accurate picture
of the dataset in both a statistical and temporal sense. Standard deviation was
excluded due to the inconsistency of measurements taken. Seeing as the period
and seriousness of illness may vary significantly, patients will not be measured
an equal number of times nor retain critical values for equally long. We reason
that this will therefore likely disrupt features more than assist in unsupervised
applications. Finally, the maximum / minimum values describe potential spikes
/ dips in the values.

6.3 Data Processing

The image processing consists of two main steps generally used in medical
image analysis: contrast enhancement and resizing. In this subsection we
will cover the decisions made and describe the processing steps for the chest
X-rays, as well as for the static data. For the image data, we performed all
image processing techniques prior to resizing as to not lose information when
processing, e.g. in histogram transformations.

6.3.1 Processing the Static Data

We apply our imputation method of choice. Imputation in medical data is often
a necessity as there is a large number of missing variables (e.g. from certain
patients not having taken a test — willfully or not) as removal of the missing
data will often be far worse than having any arbitrary imputation method
[39]. There are a number of approaches to imputation. However, for many
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cases is often preferable to make no assumptions regarding whether the data
is Missing Completely At Random2 (MCAR), Missing At Random3 (MAR), or
Missing Not At Random⁴ (MNAR), and use the zero imputation (i.e. setting
NaN values to 0, before data normalisation) [39]. This will often yield values
far outside of the expacted range, seemingly lacking intuitive sense. However,
as this imputation is not of any clinically meaningful value [39] we reason that
a machine learning model will learn to segregate abnormal values on its own,
potentially explaining its often unexpected high performance [39].

After setting Nan’s to 0 (zero imputation) we perform data normalisation, as
is common for deep learning approaches [41]. In our case, this was done by
Z-score normalisation given by

𝑧𝑖 𝑗 =
𝑥𝑖 𝑗 − ` 𝑗
𝜎 𝑗

for sample 𝑖 = 0, 1, ..., 𝑁 and feature 𝑗 = 1, ..., 𝑝. This removes magnitude
differences from having data in a range of different units, and allows the
network to weigh input nodes on an equal basis.

6.3.2 Interpolation

For interpolation, cubic spline (B-spline) [111] was selected, as it is well-suited
for medical image tasks such as ours [60]. Before down-sizing the image,
we rotated the image to a number of different angles (−45 deg, 45 deg) and
counted the number of black columns and rows. Angles with the maximum
number of black rows and columns is selected and the black bars removed (see
fig. 6.2), in order to maximise the image content. This was a necessary pre-
processing step as a number of images was randomly rotated by a significant
margin. The image size selected was 256×256 as this is regularly used in deep
learning implementations for chest X-rays (as in [102; 32], or the comparable
resolution 224 × 224 as in [75; 82]). The small size does not provide any very
significant disadvantage compared to the larger size alternatives 512×512 and
1024× 1024 [102; 32], while being far less memory demanding and commonly
requiring fewer training parameters.

2. Themissing data has no correlation with other features [39]. E.g. a dropped vial containing
a lab measurement.

3. Not missing at random. Indirectly depend on other observed variables in the dataset [39].
E.g. if men are more likely to drop out of a clinical trial.

4. The missing data is directly correlated with other features [39]. E.g. a missed drug test.
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(a) Image pre-rotation.
(b) After removing excess and downsizing the

image.

Figure 6.2: An X-ray image before and after removing excess.

6.3.3 CLAHE

Contrast Limited Adaptive Histogram Equalisation (CLAHE) [80] has been a
successful processing step in various chest X-ray deep learning classification
approaches [90; 119]. Its benefit is to improve contrast while limits the ampli-
fication of noise [119].

Rather than equalising the histogram of intensities over the entire images,
CLAHE operates on small tiles of the image. The boundaries between tiles are
then merged by interpolation. The result is that both lighter and darker areas
receive much more contrast relative to its immediate surroundings. Given the
previously referenced improvements that has been observed with CLAHE in
chest X-rays, this was deemed a favourable step in pre-processing. The resulting
processed image is shown in figure 6.3 (as compared to fig. 6.2b).

6.4 Graph Construction

In order to evaluate the MIMIC dataset on our graph-based MVC method, we
needed to construct a relevant graph, as this is not included in the MIMIC
database. Thus, we constructed four informative graphs for three different
methods. One graph is created with full access to label data, one graph is cre-
ated without label data, and two graphs are created with respectively𝑁1 = 100
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Figure 6.3: A fully processed image from input 6.2a.

and 𝑁2 = 500 balanced labels as a semi-supervised approach.

The source of the graph is a difficult choice, having many possibilities as well
as a lacking precedence in the literature for medical applications. Parisot et. al
[79] and Cao et. al [10] built medical graphs by having vertices correspond to
fMRI image features, and edges correspond to a similarity of image features
and non-image features. However, fMRI images are much more clear-cut in
activation than X-ray images. Similarities between X-ray images are hard to
define in an unsupervised manner. Our solution is to utilise the associated
radiology reports of X-rays. The radiology reports are to be valued based on
a weighted average of their words. The word weights are given as a simple
difference in expected word frequency, 𝑛𝑘 between groups. We define two
groups 𝐶1 and 𝐶2 denoting the labels for our supervised evaluation graph. 𝑃1
and 𝑃2 denote predicted classes by classifiers for both the semi-supervised and
unsupervised cases. The weight for word 𝑘 is given by:

𝜔𝑘 = E
[
𝑛𝑘

��𝑘 ∈ 𝐶1
]
− E

[
𝑛𝑘

��𝑘 ∈ 𝐶2
]

(6.1)
𝜔𝑘 = E

[
𝑛𝑘

��𝑘 ∈ 𝑃1] − E[𝑛𝑘 ��𝑘 ∈ 𝑃2] .
The weight vector 𝝎 is constructed by concatenating the weights for all words.
The process is illustrated in fig. 6.4. The classifier used for unsupervised classi-
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Figure 6.4: Our supervised and semi-supervised/unsupervised approaches to extract
word weights.

fication is set to K-means, and the semi-supervised approach is a self-training
classifier, using a linear SVM as a base estimator. In the semi-supervised case,
the linear approach is selected as to avoid over-fitting by limiting the decision
boundary, thus making it comparable to the K-means approach in separability.
We reason that a simplistic prediction algorithm is superior to a complex one
given the graph’s role as a very general indication of data affinity. The radiology
reports are given as bag-of-words representations: one report corresponds to a
vector of elements with the number of occurrences of a given word. The shape
of the data is 𝑁 ×𝑊 where𝑊 is the total number of unique words in radiology
reports. No filtering is applied as this should occur naturally due to the low
word weights yielded by eq. 6.1 for words that are common throughout the
dataset. The models are run on the full 𝑁 ×𝑊 data matrix and yields two
prediction classes: 𝑃1 and 𝑃2. These are naively used as ground truth labels in
an approach similar to self-training.

Having weight vector 𝝎, all radiology reports are weighted, yielding the report
values 𝒕 = [𝑡1, ..., 𝑡𝑁 ]𝑇 , where

𝑡𝑖 = ⟨word counts(𝑖),𝝎⟩

defines the report value by an inner product operator. A symmetric affinity
matrix 𝑨 — having ˆ̀ and 𝜎 be the first moment and second central moment
of the elements in 𝒕 𝒕𝑇 — is constructed as such:

�̃� =
(
𝒕 𝒕𝑇 − ˆ̀𝑱

)
⊙ 𝜎−1𝑱 + 𝑬

�̃�+ = �̃� −min
(
�̃�
)

𝑨 =
�̃�+ + �̃�𝑇+

2
, (6.2)
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(a) Affinity graph without noise. (b) Affinity graph with noise.

Figure 6.5: A Laplacian eigenmap of affinity graph 𝑨 (from fully labeled data) with
and without added noise.

where 𝑱 is defined as a R𝑁×𝑁 matrix of ones and

𝑬 ≡

Y (0, 𝑠) · · · Y (0, 𝑠)
...

. . .
...

Y (0, 𝑠) · · · Y (0, 𝑠)

 ∈ R𝑁×𝑁
is a matrix of random noise sampled inN(0, 𝑠), defining Y (0, 𝑠 = 0) = 0. Noise
is added to avoid issues arising with low data dimensionality as there is but
a single input feature dimension. The issue at hand, visualised in fig. 6.5a,
is that of overly linear spectral relations. Adding noise, will make between-
node relations less linear. This is illustrated in figure 6.5 displaying a Laplacian
eigenmap of matrix𝑨 (fully labeled) with and without added noise. The graphs
for unsupervised and semi-supervised with 𝑁1 and 𝑁2 are subsequently given
in figure 6.6.

To assert the informativeness of the graphs in an unsupervised manner, we em-
ploy K-means clustering⁵ with K-means++ initialisation (see section A.2.1.1).
Firstly, we perform clustering on eigenmaps from randomly generated matrices
𝑨, having 𝑠 = 0, 0.1, 0, 2, ..., 0.9. The results can be seen in the histogram in
fig. 6.7. Aiming to minimise 𝑠 to retain the input information while aiming to
maximise clustering performance, we set 𝑠 = 0.4.

Now, we perform clustering on randomly generated eigenmaps such as the
ones in figs. 6.5b, 6.6a, 6.6b, & 6.6c. With 𝑁 = 30 runs, we recognise no sig-
nificant accuracy related advantage using a supervised-generated graph over

5. Every K-means model is determined by minimum inertia of 10 initiations.
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(a) Semi-supervised (𝑁1) affinity graph. (b) Semi-supervised (𝑁2) affinity graph.

(c) Unsupervised affinity graph.

Figure 6.6: Laplacian eigenmaps of affinity graphs 𝑨 of the unsupervised and semi-
supervised approaches.

Figure 6.7: Histogram of K-means clustering accuracy on eigenmaps (fully labeled)
by noise, in 𝑆𝐷. Peaking at 73.3% clustering accuracy.
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Table 6.1: Mean results of 30 K-means clustering models on Laplacian eigenmaps
generated from affinity matrices with noise 𝑠 = 0.4.

Graph Accuracy Standard deviation
Unsupervised 0.71532 0.00662
Semi-supervised (𝑁1) 0.70883 0.00622
Semi-supervised (𝑁2) 0.71197 0.00807
Supervised 0.71512 0.00602

(a) 𝑘-NN transform on the supervised affinity
graph.

(b) Y thresholding on the supervised affinity
graph normalised to [0, 1].

Figure 6.8: Accuracy of 2-dimensional eigenmap K-means for a range of 𝑘-nearest
neighbour and Y neighbourhood parameters.

unsupervised / semi-supervised based graphs. See table 6.1.

Lastly, considering the exponential growth of 𝑁 ×𝑁 affinity matrices as 𝑁 gets
large,we select appropriate neighbourhoods of edges. Both𝑘 nearest neighbour
and Y neighbourhood are considered (see fig. 6.8). The optimal selection is one
combining a high level of sparsity, for practical reasons, with high performance.
Consider that the graph’s unsupervised counterpart will likely be subject to
higher uncertainty in its edges (thus excluding low-neighbour / low-threshold
alternatives). Taking the above into consideration, a reasonable middle-ground
is found to be a 𝑘 nearest neighbourhood with 𝑘 = 140 neighbours. Evaluation
of the 𝑘-NN graph is detailed later in section 7.4.6.2. Now, due to the high
separability recognised in all eigenmaps (figs. 6.5b & 6.6), the unsupervised
𝑘-NN (with 𝑘 = 140) graph is decided to be used in our MIMIC multi-view
graph dataset.
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7
Experiments
Prior to presenting our experiment results, we will briefly cover the datasets
used, the tools used in analysis and their added level of insight, as well as the
setup of our model. In our experiments we aim to shed light on ambiguities
regarding our model and its use cases. Firstly, we will assess model perfor-
mance on familiar datasets containing two complementary views. Here we
wish to compare our model1 to the state-of-the-art in a less complex cluster-
ing setting. After establishing the basic clustering potential of our model, we
wish to determine parameter significance, the effects of dropout in the graph
embedding layers, as well as the effects of replacing a fully-connected layer
with a graph embedding convolution in the DDC clustering module. Following
the experiments on model architecture and parameter values, we progress to
experimentation on our real-world dataset. For our MIMIC experiments, we
wish to determine the limitations of contrastive learning for proper feature
extraction and the abilities and limitations of applying our model to highly
complex data. We will assess the importance of views and the effects of view
count in unsupervised contrastive learning by analysing representation plots,
and finally, we will consider the semi-supervised approach to clustering and
its effect on fusion space and the contrastive loss. Following our experiments,
we will discuss our findings and limitations.

1. The source code of DRAGMVC can be found on GitHub [28].
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(a) Label distributions for the
Cora dataset. Coefficient of
variation:
𝑆𝐷𝑐𝑜𝑟𝑎

(
𝑛𝐶𝑖

)
E𝑐𝑜𝑟𝑎

[
𝑛𝐶𝑖

] = 0.548.

(b) Label distributions for the
CiteSeer dataset.
𝑆𝐷𝑐𝑠

(
𝑛𝐶𝑖

)
E𝑐𝑠

[
𝑛𝐶𝑖

] = 0.284.

(c) Label distributions for the
PubMed dataset.
𝑆𝐷𝑝𝑚

(
𝑛𝐶𝑖

)
E𝑝𝑚

[
𝑛𝐶𝑖

] = 0.326.

Figure 7.1: Label distributions for secondary datasets.

Table 7.1: Specifications for our selection of datasets.

Nodes Classes 𝑑 (1) 𝑑 (2) min𝐶𝑖
𝑛𝐶𝑖

max𝐶𝑖
𝑛𝐶𝑖

Cora 𝑁𝑐𝑜𝑟𝑎 = 2 708 7 1 433 2 708 180 818
CiteSeer 𝑁𝑐𝑠 = 3 327 6 3 703 3 327 264 701
PubMed 𝑁𝑝𝑚 = 19 717 3 500 19 717 4 103 7 875

7.1 Datasets

We describe the process of creating the MIMIC dataset creation and its pre-
processing in section 6. The views used are images and vectorial data. The
tables from which the linear views are gathered are those containing vital
signs gathered from mimic_derived, as well as lab results from mimic_hosp. The
images are chest X-rays from MIMIC-CXR which are bound to vectorial data
by subject ID and registered in a 1-day time frame. The final dataset consists
of 3 520 samples containing three views and two classes: pleural effusion/not
pleural effusion. Each sample correspond to one X-ray image and its associated
static data. The three views have, respectively, shapes (1, 256, 256), (66, ), and
(210, ). A graph is computed in an unsupervised manner by a similarity mea-
sure based on the radiology reports. This is described in detail in section 6.4.
The graph is further simplified by applying the 𝑘 nearest neighbour transform
— the effects of which are covered in section 7.4.6.2.

For our secondary datasets, we use the Cora and CiteSeer [93] and PubMed
[73] datasets. The datasets are real-world bibliographic datasets of various
papers being divided into a number of different categories [93]. Cora and
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CiteSeer were pre-processed by stemming2, removing stop words3 and words
with fewer than 10 occurrences. The Cora dataset was composed of 2 708
machine learning papers with 1 433 distinct words and 5 429 links (graph
edges); the CiteSeer dataset was composed of 3 327 papers with 3 703 distinct
words and 4 732 links. The PubMed dataset was composed of 19 717 PubMed
papers using words corresponding to the 500 highest TF/IDF scores⁴ as binary
attribute features. The links making up the graph in PubMed has been set as
undirected and make up 44 438 edges in total [73]. A summary of the three
secondary datasets can be found in table 7.1 and label distributions in fig. 7.1.

Similar to [13], a second view is constructed by using the Cartesian product⁵
𝑿2 = 𝑿1𝑿𝑇1 , each sample having 𝑁 attribute features. The datasets are binary
valued as well as having unweighted graphs unlike those of our constructed
MIMIC dataset. All graphs are assumed to be undirected, static, and homo-
geneous in that multiple views are associated with every node, but graph
topography and edge relations are identical in all views.

7.2 Analysis tools

In our MIMIC dataset, experimental results originate from multi-view data
with an unknown number of underlying natural clusters (other than pleural
effusion/not pleural effusion), and for patients with long lists of diagnoses.
Thus, the results can be hard to analyse in a clear-cut way. In this part we
will go through the analysis tools we will use, as well as define their aid in
interpretation.

7.2.1 Dimensionality Reduction

Firstly, presenting a dimensionality-reduced scatter plot of the embedded rep-
resentations before and after fusion will help us better understand the level of
mixing that happens. This will especially help highlight the effect of contrastive

2. Reducing words to their word stem.
3. Commonly used words that are removed due to lacking information, e.g. ”the”.
4. Term frequency/inverse document frequency (TF/IDF) is given as the product of the

relative term frequency in a given document 𝑡 𝑓𝑡,𝑑 = 𝑓𝑡,𝑑/
∑
𝑡 ′∈𝑑 𝑓𝑡 ′,𝑑 , with the inverse

document frequency— used as a measure of how informative a given word is by comparing
across all documents 𝐷: 𝑖𝑑 𝑓𝑡,𝐷 = log(𝑁 /𝑑 𝑓𝑡 ) where 𝑑 𝑓𝑡 is the number of documents that
a given word 𝑡 appears in [68].

5. As found to be superior with the MAGCN [13] to the Fourier, Gabor, and Euler transforms
by Cheng et al. [13].
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loss as we wish to observe sample-level mixing from the contrastive loss term.
The dimensionality reduction techniques used is 𝑡 -SNE (see appendix A.1.2).
The reasoning behind our selection of data visualisation was with the goal of
enhancing the natural groupings in the hidden space. Visualising the similarity
between views in pre-fusion space will help us evaluate the mixing abilities
of the method. In other words, 𝑡 -SNE will more accurately display the prob-
ability of features from different views being located in the same estimated
distribution than using non-statistical measures such as PCA.

7.2.2 Plot of X-ray Images

Another analysis method is to sample predictions and analyse the X-ray images
in each cluster. This gives an intuitive understanding of the differences picked
up by the model. Although we lack the proper expertise to evaluate these
images, we may yet detect whether clusters detect differences within the lung
region or simply by arbitrary differences in colour and/or contrast.

7.2.3 𝑝-values

In order to assess whether natural groupings exists in clusters, 𝑝-values are
calculated for patient diagnoses by the difference between clusters. This means
that the proportional distributions for each diagnosis is used in a two- or
multi-sample proportion test from which the 𝑝-values are calculated. In the
case of 𝑘 = 2, this reduces to a simple two-sample T-test for proportions with
𝐻0 : 𝑝1 − 𝑝2 = 0 given by [108]

𝑧 =
𝑝1 − 𝑝2√︂

𝑝 (1 − 𝑝)
( 1
𝑛1
+ 1
𝑛2

) (7.1)

where 𝑝1 and 𝑝2 are the diagnosis sample proportions in the two clusters, re-
spectively, and 𝑝 is the diagnosis sample proportion for the data in its entirety.
From using double the corresponding probability value for |𝑧 | (which will
correspond to a one-sided hypothesis) we get a final p-value for the two-sided
alternate hypothesis 𝐻1 : 𝑝1 − 𝑝2 ≠ 0.

Having 𝑝-values will aid by highlighting which diagnoses are significantly
different between the prediction clusters. However, as the number of diagnoses
is as large as it is, 𝑝-value correction is in order to control the number of
randomly occuring significant values. For this, we selected the conservative
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Bonferroni correction⁶ [7] and find our adjusted 𝑝-values by:

𝑝𝑎𝑑 𝑗 =𝑚𝑝𝑖 (7.2)

where 𝑝𝑖 are our standard 𝑝-values and𝑚 is the number of features.

7.2.3.1 𝑝-value Histograms

Using the (pre-correction and post-correction) 𝑝-values calculated for each
diagnosis in the dataset, we plot a histogram of all 𝑝-values to assess the 𝑝-
value distribution. From this we desire a tendency towards significant 𝑝-values,
i.e. a left-shifted histogram. This suggests that significant values are not due
to random deviations in the populations, but in fact discovered by the model.
Displaying the post-corrected 𝑝-value histogram will provide the reader with
a relative display of the number of significant diagnoses. Now, given that 𝑝-
values are shown to be significant: a large left-shift post-correction will imply
a high number of correlated diagnoses, while a lesser left-shift will indicate
that clusters are correlated to fewer diagnoses.

7.2.4 Diagnosis Word Cloud

The final analysis tool is — similar to the sampled X-rays — a visualisation
tool. We create a word cloud of diagnoses⁷ for each prediction cluster to
hopefully ease the process of distinguishing clusters from each other. This
process requires more customisation and therefore likely to induce more bias
than the other analysis tools, as simply inserting all diagnoses into a word
cloud will clutter the image with too common diagnoses and filler words such
as ”and”, ”the”, ”with”, and so on. To prevent these issues we subtract all the
diagnosis counts by the population in the least populous cluster, e.g. if a split
with three clusters yields (100, 200, 50) positive cases the altered split will be
(50, 150, 0). In addition to this, we remove common words⁸.

7.3 Setup

For all hidden layers in view encoders as well as the graph embedding encoder
we use ReLU activation after applying batch normalisation. We initialise all

6. Stating that the adjusted significant value is found by 𝛼𝑎𝑑 𝑗 = 𝛼/𝑚 where 𝛼 is the standard
significant value and𝑚 is the number of 𝑝-values.

7. The diagnosis list is drawn from the corresponding ICD diagnosis titles from each person’s
hospital admission ID.

8. A complete list of the words removed from diagnoses are given in table A.2 in the appendix.
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Figure 7.2: Model image encoder.

model weights and graph attention parameters using He normal initialisation
[36] aiming to control the feature distribution of a deep neural networks having
the ReLU non-linearity [36]. The initial biases are set to constant 0 to avoid
shifting the output distribution from the standard normal. For optimisation,
we utilise the Adam optimiser [56] with learning rate 10−3 for all datasets.
We implement dropout in the graph embedding layers following the linear
transformation (eq. 5.6) as well as for the node and edge weights (eqs. 5.7 &
5.8) similarly to the dropout applied in GAT [107]. We evaluate a range of
dropout probabilities in the experiment in section 7.4.2. The metrics selected
for evaluation are 𝐴𝐶𝐶, geometric 𝑁𝑀𝐼 , 𝐴𝑅𝐼 , and macro-𝐹1 (see appendix
A.2.2), and all confidence intervals in our metrics assume a normal sample
distribution using significance level 𝛼 = 0.05, i.e. 95% confidence intervals.

7.3.1 MIMIC Dataset

For the MIMIC dataset we determine minimalistic encoders to control parame-
ter count in each view encoder with the intention of minimising imbalanced
learning rate between view encoders. The image encoder is inspired by the
AlexNet network (shown in fig. 3.5), but further simplified in consideration
of limiting parameter count for unsupervised application. The CNN (shown
in fig. 7.2) consists of 6 convolutional layers with batch normalisation and a
non-linearity, and a fully-connected layer. The blocks 1 × 2D conv, 2 × 2D conv,
and 3 × 2D conv in fig. 7.2 are followed by maximum pooling operations. The
batch size used for GraphSAINT sampling for the MIMIC dataset is 512 unless
otherwise stated. This is due to the large size of the dataset and the number
of features.

7.3.1.1 Performance Potential

To assess performance potential, we run supervised classification, exchanging
the graph attention embedding and DDC module for a fully connected out-
put layer. Using ResNet-18 [35] (pre-trained on the ImageNet dataset [19])
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we achieve a peak 73.0% validation accuracy with supervised classification
proving existing — though limited — performance potential in this view. Our
CNN (fig. 7.2) achieve 66.8% peak validation accuracy. For the vectorial data,
we select two fully-connected layers [1024, 512] as to allow for non-linear
decision boundaries. Similarly, we perform supervised learning to assess learn-
ing potential by adding a prediction head. For the vital signs view, we achieve
73.2% accuracy, while the lab tests dataset achieve 86.2% supervised validation
accuracy.

7.3.2 Secondary Datasets

For the Cora datasets, we set the graph embedding layers to [512, 512] with
single-layer view encoders 𝑓𝑖 : R𝑑 (𝑖 ) → R512 for views 𝑖 = 1, ...,𝑉 . For CiteSeer,
we use [2000, 128] as our graph embedding layers and 2000 dimensions from
our view encoders. For PubMed, we use graph embedding layers [128, 64],
and the dimensionality of our encoded representations are 256. All architec-
tures correspond to undercomplete encoders, thus requiring the model to find
efficient data selection solutions to retain important features. For Cora and
CiteSeer, the batch size used in experimentation is equal to the size of the
dataset unless otherwise stated. For PubMed, the batch size used is 512 due
to the large dataset size.

7.3.3 Models & Parameters

For all our unsupervised experiments we use the full dataset for training,
hyperparameter tuning, and evaluation. For our semi-supervised experiments,
all metrics are computed using the labels {𝒚} \ {𝒚𝑠𝑠} ({𝒚} and {𝒚𝑠𝑠} being the
total set of labels and the set of semi-supervised labels, respectively) to assess
generalisation capabilities of our model and avoid evaluation of a potentially
over-fitted model. The set 𝒚𝑠𝑠 is drawn randomly at the beginning of each run
and is used for batch loss if 𝒚𝑠𝑠 ≠ /0, else L𝑠𝑠 = 0.

7.3.3.1 Parameters

There are a large number of parameters to consider for the DRAGMVC model.
For the sampling, we define the number of random walk steps by GraphSAINT
as 𝑘𝑔𝑠 . This is set to equal the number of Graph attention layers as suggested by
Zeng et al. [122]. The CoMVCmodel uses parameters 𝛿 and𝜏 , being, respectively,
the strength of the contrastive loss and a temperature parameter for the cosine
similarity used in finding positive contrastive pairs [104]. The latter is set to be
0.1 in all our experiments. The DDC module uses parameter 𝜎 to determine the
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standard deviation of the kernel function used to generate kernel 𝑲 (see eq.
3.60) and is set to be 𝜎 = 0.15. The number of neurons for the hidden space
in the DDC module is set to be 100 in all experiments. In addition, our model
uses the following parameters: dropout probability 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ; the number of
steps for our Markov chain prior 𝑘𝑚𝑐 . For experiments we set 𝑘𝑚𝑐 = 2 by the
same reasoning as Zeng et al. [122]: in a random walk, the probability of a
random walk starting from 𝑢 having visited 𝑣 after 𝑘𝑚𝑐 random steps is given
by 𝑀 (𝑘𝑚𝑐 )

𝑢𝑣 (see section 5.2.1). Thus, with GraphSAINT sampling having walk
length equal to 𝑘𝑚𝑐 , we remain within the full sample space for every graph
attention layer. Finally, the two parameters found to be most likely to affect
the results are 𝛿 and 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 , which will be covered in sections 7.4.2 and 7.4.4,
respectively.

7.3.3.2 Models

We compare our model to MAGCN [13] (see section 4.2.3), being the only deep
learning graph-based multi-view clustering for one view-invariant graph to the
best of our knowledge. Models CoMVC & SiMVC [104] are utilised to evaluate
the convenience of adding graph data. For all runs using CoMVC and SiMVC,
we set up the view encoders identically to those of DRAGMVC. In addition, we
will compare performance to the traditional clustering approaches 𝑘-means⁹
and spectral clustering1⁰.

7.3.3.2.1 Recreated MAGCN In our results, we will refer to the recre-
ated MAGCN results as MAGCN𝑜𝑢𝑟𝑠 . Given major deviations from the original
paper, we alter the MAGCN source code [5] to comply with the description
in [13] to the best of our understanding. We find a number of inaccuracies
in the code provided. Firstly, the graph reconstrucion and reconstruction loss
correspond to those of GATE [91] rather than the one described in [13] (in
eqs. 4.22 & 4.23). Using sigmoid activation for graph convolution layers, the
−𝑙𝑜𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (·) = −𝑙𝑜𝑔

(
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (·)

)
was implemented as an activation for

the graph reconstruction. Secondly, the graph embedding layers do not share
weights across views, nor have preceding view-specific encoders. In addition,
we found that the distribution alignment was incorrectly cancelling out the
second view embedding, essentially only aligning one view’s distribution. In
our MIMIC run we correct these deviations as well as extending the model’s
use to the multi-view case with 𝑉 > 2 with the image encoder described in

9. Using the minimum inertia model from 10 runs using 𝑘-means++ initialisation. See
section A.2.1.1.

10. Using 𝑘 number of eigenvectors for spectral embedding and selecting the minimum inertia
model from 10 runs.
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7.3.1. Using this code we were able to closely recreate the results from the
paper (see comparison in table 7.2).

7.3.4 Selection Criteria for Evaluation

We use various sets of patterns to determine the optimal experiments. This is
due to two main factors: the metrics used by the competition and the sampling
method used. For every model, we neglect the initial metrics (epoch 0) to assert
that the performance is properly learned. All of our metrics (that are not global
maximum) are taken at a single epoch that satisfies the conditions to be stated.
In regards to comparative performance to other models we use the absolute
maximum observed for all performance metrics as this is what has been done
by our competition [13]. In table 7.8 comparing peak performance as well
as stable performance, we determine both of which by the performance from
each metric’s peak mean. This is due to the difference in sampling method
not allowing for a fair comparison of losses between the two models. The
evaluation loss by GraphSAINT’s random walk sampling will be subject to the
potentially penalising effect of evaluation on different and unseen data (in
early training as much of the randomly sampled data is not yet encountered),
while MAGCN performs evaluation on the full dataset, yielding losses equal to
those with which it is trained on. This results in differing evaluation losses that
misrepresent the state of either model. With the exceptions of the previously
mentioned results (tables 7.2 & 7.8), all measurements is measured at a single
epoch yielding the lowestmean clustering loss. For DRAGMVC, this corresponds
to the loss L𝑑𝑑𝑐 as described in 4.2.2. The following describes which optima is
used for all results:

• Absolute maximum performance metric for each metric separately: Table
7.2.

• Maximum mean performance metric for each metric separately: Table 7.8.

• Minimum mean clustering loss for all metrics: Tables 7.3, 7.4, 7.5, 7.6, 7.7,
7.9, 7.12, & 7.13.

7.4 Results

Using the above specifications we will present the results of our model on the
graph multi-view datasets detailed in section 7.3. We will assess our proposed
model in light of similar clustering models to assess its general capacity for
deep graph-based multi-view clustering on well-documented data. In addition,
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the section will cover the evaluation and tuning of the most impactful hyper-
parameters, their effects, as well as model design choices made. In tackling
the medical dataset, we will evaluate the clustering performance in a compar-
ative setting, the effect of our 𝑘-NN graph, analysis of the prediction clusters,
results of our model on pairs of views in the MIMIC dataset, and lastly, the
semi-supervised approach using our model and its effect on prediction clusters
and loss terms.

The following will be evaluated and analysed with regards to our proposed
model:

1. Model performance on well-evaluated datasets.

2. Model performance on complex medical data, compared to established
SOTA.

3. Model performance on complex medical data, compared to non-graph
counterpart.

4. View mixing & cluster separability on complex data.

5. Effects of applying semi-supervised loss to performance.

6. Effects of applying semi-supervised loss to view mixing and clustering
ability.

7. Effects on graph network over-smoothing.

8. Effects of using dropout.

9. Effects of the DDC encoder.

And the followingwill be analysedwith regards to our constructeddataset:

1. Evaluating the dataset in light of the multi-view principles from chapter
4.

2. Diagnostic significance, separability, and observed effects from clustering.

3. Evaluating pairs of views with regards to performance and contrastive
clustering ability.

4. Effects of using 𝑘-NN graph as opposed to the fully connected affinity
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Table 7.2: Comparing performance metrics of deep learning graph-based multi-view
clustering models on our secondary datasets.
* Results reported in [13].

Dataset Cora CiteSeer PubMed
Model Data ACC NMI ARI 𝐹1 ACC NMI ARI 𝐹1 ACC NMI ARI 𝐹1
K-means 𝑿1 0.448 0.264 0.165 0.346 0.573 0.306 0.278 0.528 0.597 0.322 0.284 0.582
Spectral clustering 𝑮 0.318 0.126 0.000 0.120 0.227 0.026 0.009 0.117 0.590 0.192 0.133 0.435
SiMVC 𝑿1 & 𝑿2 0.386 0.170 0.130 0.271 0.470 0.224 0.210 0.310 0.659 0.295 0.256 0.670
CoMVC 𝑿1 & 𝑿2 0.499 0.278 0.227 0.302 0.600 0.336 0.320 0.407 0.663 0.304 0.268 0.669
MAGCN𝑜𝑢𝑟𝑠 𝑮, 𝑿1, & 𝑿2 0.704 0.497 0.434 0.470 0.689 0.407 0.430 0.403 0.716 0.347 0.342 0.696
MAGCN* 𝑮, 𝑿1, & 𝑿2 0.751 0.598 0.532 — 0.711 0.458 0.462 — 0.691 0.331 0.321 —
Ours 𝑮, 𝑿1, & 𝑿2 0.762 0.586 0.568 0.640 0.724 0.478 0.490 0.568 0.750 0.349 0.390 0.720

graph.

7.4.1 Comparative Results

To begin, we present the comparative results of our secondary datasets. For
context we include two basic clustering mthods: K-means for the primary fea-
ture matrix 𝑿1, and spectral clustering for the graph 𝑮. For the multi-view
(without graph data) approach, we evaluate the datasets using the SiMVC and
CoMVC models. For the graph-based multi-view clustering model, we employ
the MAGCN model (being the only comparable model to ours given the condi-
tions defined in the introduction, section 1.2) by the results presented in their
paper, referred to as MAGCN*, as well as our recreated results (as described in
section 7.3.3.2), referred to as MAGCN𝑜𝑢𝑟𝑠 .

Table 7.2 displays the comparative results of our method, showing the best
results in bold. DRAGMVC outperforms other comparable methods on every
secondary dataset. We suggest that the added information of direct sample-to-
sample representation aligning yields a more stable and nuanced embedding
space: allowing graph embedding layers to extract more data than the more
common distribution-wise contrastive alignment seen in MAGCN. We will
further analyse this notion in tackling the complex MIMIC dataset and display
and analyse its hidden spaces.

7.4.2 Using Dropout

As a measure to improve the robustness of our model, a dropout layer is
added to the graph attention layers, adding regularisation and lessens over-
dependencies on certain neurons. In addition, it has been speculated that the
regularisation effect borne of dropout induces natural clustering in neural net-
works [63]. With this phenomena in mind, we analyse the effects of applying
dropout with probability 𝑝 in the model’s graph embedding layers. The dropout



106 chapter 7 experiments

Table 7.3: Comparing ourmodel by dropout (taking𝑛 random samples for each setup).
Batch size 𝑁𝑐𝑜𝑟𝑎.

ACC NMI ARI 𝐹1
Dropout probability 𝑝 Mean SD C.I. Mean SD C.I. Mean SD C.I. Mean SD C.I.

Cora dataset
𝑛 = 150: 𝑝 = 0.0 0.618 0.058 (0.609, 0.627) 0.482 0.032 (0.477, 0.487) 0.404 0.052 (0.396, 0.412) 0.205 0.160 (0.179, 0.231)
𝑛 = 150: 𝑝 = 0.2 0.624 0.061 (0.614, 0.634) 0.490 0.033 (0.485, 0.495) 0.411 0.049 (0.403, 0.419) 0.205 0.146 (0.182, 0.228)
𝑛 = 150: 𝑝 = 0.5 0.647 0.050 (0.639, 0.655) 0.503 0.027 (0.499, 0.507) 0.431 0.044 (0.424, 0.438) 0.207 0.135 (0.185, 0.229)

MIMIC dataset
𝑛 = 123: 𝑝 = 0.0 0.609 0.038 (0.602, 0.616) 0.042 0.023 (0.038, 0.046) 0.052 0.030 (0.047, 0.057) 0.606 0.039 (0.599, 0.613)
𝑛 = 150: 𝑝 = 0.2 0.616 0.042 (0.609, 0.623) 0.054 0.028 (0.050, 0.058) 0.059 0.035 (0.053, 0.065) 0.609 0.052 (0.601, 0.617)
𝑛 = 150: 𝑝 = 0.5 0.624 0.034 (0.619, 0.629) 0.061 0.026 (0.057, 0.065) 0.065 0.031 (0.060, 0.070) 0.619 0.041 (0.612, 0.626)

Table 7.4: Comparing DDC module encoder with respective 95% confidence intervals.

Cora Dataset ACC NMI ARI 𝐹1
DDC Encoder Mean SD C.I. Mean SD C.I. Mean SD C.I. Mean SD C.I.
𝑛 = 150: Linear 0.620 0.056 (0.611, 0.629) 0.493 0.031 (0.488, 0.498) 0.412 0.048 (0.404, 0.420) 0.227 0.144 (0.204, 0.250)
𝑛 = 150: GraphAttn. 0.647 0.050 (0.639, 0.655) 0.503 0.027 (0.499, 0.507) 0.431 0.044 (0.424, 0.438) 0.207 0.135 (0.185, 0.229)

will be employed following the linear layer (eq. 5.6) as well as on the generated
graph attentions �̃� (𝑟 )

ℎ
(eq. 5.10), similarly to the dropout utilised in the GAT

model [107].

Seeing table 7.3, increasing dropout does appear to significantly improve every
metric (except for 𝐹1 score) for the Cora andMIMIC datasets. Namely,𝑝 = 0.50
significantly increases the mean performance in 𝐴𝐶𝐶, 𝑁𝑀𝐼 , and 𝐴𝑅𝐼 in both
datasets, suggesting that dropout does improve model performance. We may
assume that, unless otherwise stated, dropout is implemented using probability
𝑝 = 0.50 in all following experiments.

7.4.3 DDC Module — Graph Convolution Encoder

As previously described, the encoder used for the DDC module is set to a graph
attention convolution layer, exchanging the original fully connected layer. The
final output layer of the DDC is unchanged. This switch could help add rela-
tional information into the fused representations, avoiding the restrictions in
preceding graph embedding layers of having to extract commonality across
views (due to the weight-sharing across views). We compare our model to a
similar model using a linear DDC layer on the Cora dataset.

We find that altering the DDC encoder provide a significant advantage to the
clustering performance (see table 7.4) in the 𝐴𝐶𝐶, 𝑁𝑀𝐼 , and 𝐴𝑅𝐼 metrics. It
does not appear to be significantly affecting 𝐹1-score. Considering the signifi-
cant performance improvement we employ the graph attention convolution in
all following experiments.
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7.4.4 Effects of the Contrast Parameter 𝛿

When tuning the contrastive loss strength,we consider values 𝛿 = 0.1, 1, 3, 6, 10.
We evaluate the contrastive strength significance on both the MIMIC dataset
and the Cora dataset. This is reasoned by the intuition that information extrac-
tion may be sourced from different loss terms depending on dataset complexity.
For highly complex datasets such as our pleural effusion/not pleural effusion
dataset we expect that the model will depend highly on contrastive loss to learn
proper feature extraction. To evaluate the intervals of L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 equally, we di-
vide the intervals by 𝛿 . This should be unproblematic as all values L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 are
simple products of 𝛿 , linearly reducing as we know that E [𝑋/𝑐] = (1/𝑐)E [𝑋 ]
and the contrastive loss is scaled similarly (see section 4.2.2).

Table 7.5 shows the results of the various values of 𝛿 . We note that runs with
𝛿 > 0.1 for the both datasets tends to yield higher overall performance in
ACC, NMI, and ARI (and 𝐹1 for the MIMIC dataset). Purely by considering
the number of significantly superior performance metrics we observe that
𝛿 ∈ {3.0, 6.0, 10.0} generally outperform 𝛿 = {0.1, 1.0} in most metrics.

We consider the null hypothesis that 𝛿 does not affect mean performance in any
metrics. The alternate hypothesis is that at least a single mean performance
metric is significantly different from the other means. We set up an one-way
ANOVA test with 𝛼 = 0.05 for the Cora dataset yielding 𝑝-values < 0.0001,
< 0.0001, < 0.0001, and 0.8453, for ACC, NMI, ARI, and 𝐹1, respectively.
Thus, we conclude that the strength of the contrastive loss is significantly dif-
ferent for 𝛿 ∈ {0.1, 1, 3, 6, 10} for the metrics ACC, NMI, and ARI. Now, for the
MIMIC dataset, using the same alternate hypothesis, we get 𝑝-values < 0.0001,
< 0.0001, < 0.0001, and < 0.0001. Now in defining values of 𝑝 we set up a
test to explore whether our optimal set 𝛿 ∈ {3, 6, 10} is significantly different.
Similarly, one-way ANOVA yields 0.7590, 0.9599, 0.7830, and 0.7495 for Cora,
suggesting that there is no significant difference between the three contrastive
strengths. For MIMIC, a similar test yields 0.2391, 0.0664, 0.1902, and 0.1164,
also proving insignificant. Thus, we employ the value 𝛿 = 6.0 for the secondary
dataset, and 𝛿 = 10.0 for the MIMIC dataset.

The results of table 7.5 contradict our hypothesis as both Cora and MIMIC
proved to benefit from increased contrastive weight to a similar digree. For
Cora all sets of runs had minimum mean clustering losses at epoch 40. For the
MIMIC dataset, however, the optimal epochs were at 35, 10, 15, 25, and 30
(from top to bottom in the table). This makes contrastive loss comparisons for
the latter dataset more difficult, as contrast may optimise at a different rate
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Table 7.6: Results of replacing the number of layers in our graph encoder while in-
creasing the number of steps in our Markov prior. We use batch size 512 to
get the desired sample space using GraphSAINT with 𝑘𝑔𝑠 = 4.

Cora Dataset ACC NMI ARI 𝐹1
Mean SD C.I. Mean SD C.I. Mean SD C.I. Mean SD C.I.

𝑛 = 150: 𝐿 = 1 & 𝑘𝑚𝑐 = 4 0.649 0.053 (0.641, 0.657) 0.524 0.025 (0.520, 0.528) 0.452 0.041 (0.445, 0.459) 0.236 0.163 (0.210, 0.262)
𝑛 = 150: 𝐿 = 2 & 𝑘𝑚𝑐 = 2 0.630 0.057 (0.621, 0.639) 0.505 0.026 (0.501, 0.509) 0.422 0.043 (0.415, 0.429) 0.211 0.138 (0.189, 0.233)
𝑛 = 150: 𝐿 = 4 & 𝑘𝑚𝑐 = 1 0.612 0.051 (0.604, 0.620) 0.474 0.025 (0.470, 0.478) 0.395 0.039 (0.389, 0.401) 0.199 0.136 (0.177, 0.221)

than the clustering loss. Analysing the losses of Cora, however, we assess that
only 𝛿 = 0.1 is significantly higher than others. We reason that this suggests
that the full contrastive potential is not utilised. The clustering loss does seem
to be affected by the increase in 𝛿 , observing significantly higher clustering
losses for higher-valued 𝛿 . Considering the insignificant difference between
corresponding setups in normalised contrastive loss, we suggest that this may
be due to varying convergence times: that clustering optimisation adapts to
the contrastive optimisation rather than the opposite, thus limiting the loss
landscape of the DDC.

7.4.5 Reducing Over-smoothing

Having made the hypothesis that the Markov chain attention may lessen the ef-
fect for deep GCNs causing over-smoothing [76], we will perform experiments
to strenghten this hypothesis. Considering our GraphSAINT sampling approach
(as described in section 3.3.2), we know that our batch space is within a set
number of steps 𝑘𝑔𝑠 from randomly sampled nodes. We have previously set this
value to equal 𝐿 — the number of graph attention embedding layers in our
network — by the reasoning that 𝐿 layers will be able to include every sampled
point in batch space. However, using our Markov chain prior, we may alter the
number of layers required to span 𝑘𝑔𝑠 neighbours11 through the parameter
𝑘𝑚𝑐 , thus potentially reduce the significance of over-smoothing as is common
in deep GCNs. The experiment is therefore set using 𝑘𝑔𝑠 = 4, requiring 𝐿 = 4
layers to cover for the common GCN. We run our model using 𝑘𝑚𝑐 = 4 and
𝐿 = 1, 𝑘𝑚𝑐 = 2 and 𝐿 = 2, and 𝑘𝑚𝑐 = 1 and 𝐿 = 4 — all corresponding to a
potential reach of 4 steps from any random node. If our hypothesis is correct,
we expect there to be a significant performance difference between the three
setups, favouring shallower models.

Table 7.6 shows that fewer layers with higher markov chain connections yields
significantly better results for the Cora dataset. The table may be interpreted in
a number of ways. As covered, the sample space and the receptive field of the
graph encoder are equal in all runs, leading to one assumption that our Markov

11. The number of random walk steps taken by our sampling method.
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Table 7.7: Comparing the our graph-induced model with its CoMVC and SiMVC coun-
terparts using the full MIMIC dataset with batch size 512 and no dropout.

MIMIC Dataset ACC NMI ARI 𝐹1
Graph Mean SD C.I Mean SD C.I Mean SD C.I Mean SD C.I
𝑛 = 316: SiMVC (no graph) 0.545 0.028 (0.542, 0.548) 0.008 0.008 (0.007, 0.009) 0.011 0.011 (0.010, 0.012) 0.502 0.053 (0.496, 0.508)
𝑛 = 150: CoMVC (no graph) 0.586 0.028 (0.582, 0.590) 0.024 0.015 (0.022, 0.026) 0.032 0.020 (0.029, 0.035) 0.492 0.091 (0.477, 0.507)
𝑛 = 123: Our model 0.609 0.038 (0.602, 0.616) 0.042 0.023 (0.038, 0.046) 0.052 0.030 (0.047, 0.057) 0.606 0.039 (0.599, 0.613)

prior reduces the need for deeper networks for the sake of increasing the graph
receptive field, while yielding superior clustering results. It is hard to uncover
the direct causal effect for this, but we speculate that the over-smoothing caused
by repeated graph convolutions [76] may be lessened as attention is applied
over the full receptive field, rather than the set of immediate neighbours. It is
also worth noting that for each graph convolution layer, every node is given
as a fusion of all its attentions. Thus, the receptive field will lose strength as 𝐿
increases12, while our model allows for stronger connections to more distant
neighbours.

7.4.6 Clustering on Real-world Medical Data

7.4.6.1 Comparative Results

We will now cover the results from the constructed medical dataset (detailed
in section 6). This section aims to answer questions regarding our DRAGMVC’s
ability to deal with complex, multi-modal data. We will perform this evaluation
by comparing our proposed method with previous methods, graph-based and
not, and analyse the resulting clusters. In addition, we aim to explore the
contents of the MIMIC dataset by evaluating pairs of views, and finally, we wish
to explore the effects and potential of applying a semi-supervised loss term to
our model on our dataset. To begin, we evaluate the effects on performance by
utilising graph attention convolutions in a representation-aligned multi-view
clustering model. We run the MIMIC dataset on the SiMVC, CoMVC, and DRAG-
MVC purely to establish the difference in clustering accuracy. Subsequently,
we will evaluate the results in comparison to another graph-based MVC model
to establish its prediction performance compared to a similar approach.

Table 7.7 display a clear improvement by DRAGMVC in peak performance for
all metrics. For mean values, DRAGMVC increases or performs similarly to
Si-/CoMVC in all metrics except for macro-𝐹1. We do note that better metrics
may not directly reflect a superior clustering performance as the clustering
may be high in quality, yet unrelated to our predefined labels. We will explore

12. Each attention layer will attend to a set of neighbours by averaging its feature vectors
weighted by its attentions. Thus, the expanding receptive field will extend through a
fraction of the fused feature vector from the previous layer.
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Table 7.8: Comparing MAGCN and our model on the MIMIC sample dataset

Mini-MIMIC ACC NMI ARI 𝐹1
Batch size 1747 Max. Mean SD C.I. Max. Mean SD C.I. Max. Mean SD C.I. Max. Mean SD C.I.
𝑛 = 54: MAGCN𝑜𝑢𝑟𝑠 0.731 0.553 0.032 (0.544, 0.562) 0.244 0.011 0.047 (-0.002, 0.024) 0.212 0.007 0.034 (-0.002, 0.016) 0.708 0.348 0.066 (0.330, 0.366)
𝑛 = 100: Our model 0.649 0.576 0.036 (0.569, 0.583) 0.067 0.021 0.015 (0.018, 0.024) 0.088 0.028 0.021 (0.024, 0.032) 0.649 0.574 0.038 (0.567, 0.581)

this motion more closely in section 7.4.6.3 by dissecting the clusterings made
by both DRAGMVC and CoMVC.

Due to memory issues with MAGCN from to a lack of mini-batch sampling,
the comparison with MAGCN must be performed on a smaller dataset. We
use GraphSAINT to create a dataset of 1 747 samples from the full MIMIC
dataset. The dataset will be referred to as Mini-MIMIC to separate it from the
full dataset. We predict that there are a number of dissimilarities between our
method and previous comparable methods. Sample-to-sample representation
alignment could improve stability in fusion space and thus affect predictions
as compared to solely using distribution-wide view alignment as in MAGCN.
The reason for this assumption is that sample-to-sample alignment could push
representations to be placed in relation to other samples based on their similar-
ities, i.e. a representation in cluster space could contain different information
towards one end of the cluster as compared to the other end. We reason that
the positions of samples in clusters by distribution-wide alignment will be more
random, allowing for a larger degree of variation within the cluster space. This
intuition is at the core when reasoning what effect contrast parameter 𝛿 has
on complex datasets (see section 7.4.4). Also, provided that sample-to-sample
representation alignment could allow for improved encoder training, we may
observe differences in terms of general accuracy.

Table 7.8 shows interesting results in that MAGCN yields higher peaks than our
model, yet DRAGMVC shows significantly better overall performance through-
out. We interpret the results as sample-to-sample alignment providing more
stable grounds for learning as compared to the distribution-wise alignment.
However, we observe that the MAGCN model is much more sensitive to de-
viations. This strengthens our hypothesis that within-cluster variation may
be higher for the MAGCN model, as random variations could allow for more
optimal decision boundaries by purely random deviation. We observe during
training that the clusters of the MAGCN model regularly collapses, explaining
the exceedingly poor mean performance in table 7.8. We reason that this is
another consequence of the instability hypothesised by their alignment. The
reasoning being that their lacking contrastive loss do not allow for sufficient
feature extraction for highly complex data.
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Table 7.9: Comparing the full graph with the 𝑘-NN graph on the MIMIC dataset using
our model. No dropout is applied to allow for full graph utilisation.

MIMIC Dataset ACC NMI ARI 𝐹1
Our model (dropout 𝑝 = 0.5) Mean SD C.I. Mean SD C.I. Mean SD C.I. Mean SD C.I.
𝑛 = 150: Full graph 0.600 0.032 (0.595, 0.605) 0.034 0.018 (0.031, 0.037) 0.044 0.025 (0.040, 0.048) 0.594 0.042 (0.587, 0.601)
𝑛 = 150: 𝑘-NN graph 0.624 0.034 (0.619, 0.629) 0.061 0.026 (0.057, 0.065) 0.065 0.031 (0.060, 0.070) 0.619 0.041 (0.612, 0.626)

Table 7.10: Optimal DRAGMVC runs on MIMIC by DDC (runs 1, 2, & 3) and contrastive
(runs 3, 5, & 4) loss.

MIMIC dataset Loss
L𝑑𝑑𝑐 L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ACC NMI ARI 𝐹1

Run 1 0.775 7.578 0.528 0.002 0.003 0.526
Run 2 0.778 12.705 0.644 0.062 0.083 0.642
Run 3 0.778 5.790 0.653 0.072 0.094 0.652
Run 4 0.782 7.072 0.670 0.088 0.115 0.668
Run 5 0.786 6.314 0.572 0.015 0.020 0.569

7.4.6.2 Effects of 𝑘-NN graph

Given that both graph attention and sampling are based on non-zero values of
our graph, having a sparse graph, rather than the full graph computed in sec-
tion 6.4, may allow for easier recognition of significant neighbours. A 𝑘 = 140
nearest neighbour graph will significantly reduce the number of possible atten-
tion subjects down from 𝑁 = 3 520.

From table 7.9, we see that the 𝑘-NN graph described in section 6.4 significantly
outperforms the full graph in every metric. Thus, we implement the model
using the 𝑘-NN graph dataset in every following experiment.

7.4.6.3 Analysing the Clusters

In order to detail the clustering performance on our proposed MIMIC dataset,
we should display its capabilities in terms of view mixing, separability, and
diagnostics. We will perform analysis on a small selections of runs, allowing
for deeper analysis of the qualities mentioned. In our analysis, we will employ
the tools described in section 7.2. We select the 3 runs that minimises overall
DDC loss

L𝑑𝑑𝑐 = L1 + L2 + L3,

referred to as runs 1, 2, & 3; as well as 3 runs that minimises contrastive loss
L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 , being runs 3, 5, & 4, respectively.
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Details of the runs are shown in table 7.10. We will analyse and compare these
five runs with two runs for CoMVC from table 7.2 minimising the DDC and
contrastive loss, having L𝑑𝑑𝑐 = 0.833 and L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = 6.394, respectively. For
both loss terms we observe that our model yields far lower minimum loss values
than CoMVC — possibly suggesting that our graph may improve on both the
natural cluster structure as well as the resulting view mixing. The CoMVC runs
will be referred to as CoMVC DDC and CoMVC Contrast, respectively.

7.4.6.3.1 Fusion Plots The runs in fig. 7.3 all display a high level of mixing
of views — particularly of views vital signs (view 1) and lab tests (view 2). In
addition, the pre-fusion space display an indication of natural groupings in
having full separation in run 1, and a weak connection in runs 2 and 3. For
the fusion space, we observe well-separated clusters in all runs. Ideally we
would like to see full separation in pre-fusion space for all runs as this would
indicate that there are certain underlying trends of groupings that are fully
recognisable in all views.

For the optimum runs in terms of contrastive loss (fig. 7.4) we observe a
slight increase in the image view (view 0) spread within pre-fusion clusters.
Ideally, we would prefer all views to cover the entirety of the space defining
the pre-fusion clusters — thus implying that the views are properly able to
recognise some level of commonality sample-to-sample. We will later go over
our reasoning as to why this is not the case. Firstly, for the sake of comparison,
we look at the optimum runs’ fusion plots using CoMVC (see fig. 7.5).

The difference between figs. 7.3 & 7.4 and 7.5 is evident. The fusion plots by
CoMVC show far less separability in fused representation and no separability
in pre-fusion space at all. Suggesting that the model struggle to identify and
learn any commonality for views. In addition, we observe far inferior view
mixing for all CoMVC runs’ views — even for the most optimal contrastive loss
(fig. 7.5b). Thus, we state that the graph information appears to add a very
significant amount of contextual information to the data pool, allowing for a
far superior ability to extract commonality and separate clusters.

7.4.6.3.2 X-ray Samples Figure 7.6 displays samples drawn from their
respective pre-fusion plots 7.3a & 7.4a (where they are illustrated by red data
points). Lacking the subject knowledge required to properly analyse X-rays, we
restrict the analysis to strictly surface-level observations. Due to the high vari-
ation of quality in real-world data, images appear to differ greatly by patients’
physical differences in addition to the image angle and contrast. We reason
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(a) Run 1 fusion plot.

(b) Run 2 fusion plot.

(c) Run 3 fusion plot.

Figure 7.3: Runs by DDC loss fusion plots (dimensionality reduced by 𝑡 -SNE) from
best (top) to worst (bottom).
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(a) Run 3 fusion plot.

(b) Run 5 fusion plot.

(c) Run 4 fusion plot.

Figure 7.4: Runs by contrastive loss fusion plots (dimensionality reduced by 𝑡 -SNE)
from best (top) to worst (bottom).
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(a) CoMVC DDC fusion plot.

(b) CoMVC Contrast fusion plot.

Figure 7.5: Best CoMVC runs fusion plots (dimensionality reduced by 𝑡 -SNE).
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(a) Run 1 samples.

(b) Run 3 samples.

Figure 7.6: X-rays from the two optimal runs from table 7.10.
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(a) Run 1 Bonferroni-adjusted
𝑝-value histogram.

(b) Run 2 Bonferroni-adjusted
𝑝-value histogram.

(c) Run 3 Bonferroni-adjusted
𝑝-value histogram.

(d) Run 4 Bonferroni-adjusted
𝑝-value histogram.

(e) Run 5 Bonferroni-adjusted
𝑝-value histogram.

Figure 7.7: Bonferroni-adjusted 𝑝-value histogram.

Table 7.11: Proportion of significant diagnoses post-Bonferroni correction.

Run E𝑟𝑢𝑛
[
𝑃 (sign. diag. diff.;𝛼 = 0.05)

]
Run 1 0.176
Run 2 0.461
Run 3 0.315
Run 4 0.339
Run 5 0.188

that views lacking a sufficient number of informative samples will struggle with
representation alignment, yielding bundles of a single view within a cluster, as
may be the cause in the contrastive run fusion plots (fig 7.5) and to a lesser
degree in the DRAGMVC fusion plots (figs. 7.3 & 7.4). One interpretation of
the main challenge of view mixing is therefore that of insufficient images in
terms of quantity and/or quality. We will explore this further in section 7.4.6.4.

7.4.6.3.3 Diagnostics We may assert that the clusters are related to a set
of diagnoses. This is apparent by the left-shift as compared to the expected flat
𝑝-value distribution of a randomly generated and fully uncorrelated set (stan-
dard 𝑝-value histograms are displayed in the appendix, fig. A.2). From figure
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7.7 we observe that there is a significant degree of separation in the number of
(post-correction) significant diagnoses for each run, which is strengthened by
the significant proportions shown in table 7.11. This suggests that the model
recognises data patterns that are related to a set of diagnoses. We should
note, however, that it should not be interpreted as the model recognising any
of these diagnoses specifically. What is recognised by the model could be
diagnosis-related correlations and not exact features of any statistically sig-
nificant diagnosis. Run 1 has the lowest number significant diagnoses with
17.6% of all diagnoses in the sample being significantly different in the two
clusters (where 𝛼 = 0.05). Run 1 also has the highest degree of separability
as seen in fig. 7.3a. This may suggest a high degree of independence in the
variables recognised across views. The same is observed for run 5 (with the
second lowest proportion of significant diagnoses) having the second most
pronounced pre-fusion separability (fig. 7.4b). Clusters with correlated diag-
noses will likely yield representations that appear more diffuse due to their
many interpretations and unclear separation boundaries. Examples of this are:
model 2 from the DDC selection (figs. 7.3b & 7.7b) and run 4 from the contrast
selection (figs. 7.4c & 7.7d).

Figure 7.8 displays word clouds for all DRAGMVC sample runs. There are
similarities in clusters based on recurring words. Words hemorrhage and cere-
bral appear in all negative clusters except for run 1. This imply that there
may be a strong natural grouping for these diagnoses is our dataset. Similarly,
acute kidney failure appear to be words with strong natural groups, seeing as
they appear to be common words for the positive prediction clusters for runs
2, 3, and 4. Finding these natural groupings indicate that the model likely
possesses an ability to recognise strong underlying patterns related to patient
diagnoses.

7.4.6.4 Exploring Dataset Partitions

In order to evaluate the contribution of each view to the total model perfor-
mance, we compare results from every pair of views in the MIMIC dataset, and
analyse how they compare to the complete set. By comparing subsets, we aim
to discover which views fulfil and maximise the two multi-view principles: the
consensus principle and the complementary principle, as covered in chapter 4.
If any view were to contain redundant and/or non-infomative data, we expect
to see worse results for the complete set of views as compared to the pair not
containing the subpar view. Another potential drawback of using 3 views as
compared to 2 is the weakened contrastive strength. The force of any single
view embedding on its contrastive counterparts will weaken as any added
views will provide an additional force on the points. In addition to having less
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geometric significance, contrastive loss is scaled by the minimum fusion weight,
thus further reducing the loss significance for any given view for high view
counts. In combination with the multi-view principles, this will result in added

(a) Word cloud of run 1 diagnoses.

(b) Word cloud of Run 2 diagnoses.

(c) Word cloud of Run 3 diagnoses.

Figure 7.8: Word cloud of the most common diagnoses in the output clusters. Figure
continues on the next page.
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(d) Word cloud of Run 4 diagnoses.

(e) Word cloud of Run 5 diagnoses.

Figure 7.8: (Cont.) Word cloud of the most common diagnoses in the output clusters.

noise to the contrastive module — making clean clustering increasingly hard
as contrative strength lessen and noise increase.

From table 7.12 and fig. 7.9, we may suggest two interpretations: (i) the vital
signs view does not fulfil the multi-view principles and is solely adding redun-
dant noise to the data; (ii) added information in vital signs does not out-weigh
the loss of contrastive force between the two remaining, stronger views. Finally,
we reason that the encoders required for various views may differ greatly in
complexity. Therefore — with 3 views — the optimisation time for view en-
coders may be unbalanced, allowing the two easier views to optimise by each
other, while the most complex view lags behind limited by the abilities of its
encoder. We hypothesise that the resulting effect of the uneven convergence
times is that the image viewmay develop sufficiently to provide representations
that provide some clusters, however, being insufficiently developed to mix on
a sample-to-sample level. In this case, most multi-view clustering runs with
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𝑉 > 2 will suffer for this issue of uneven convergence.

We observe that the viewmixing of pairs of MIMIC data surpass the viewmixing
observed for all views (figs. 7.3 & 7.4). Yet, we observe that the contrastive
loss surpasses that of the full dataset in both CXR & vital signs and CXR & lab
tests. This may be due to the limiting factor of having the contrastive loss be
scaled bymin{𝑤1, ...,𝑤𝑉 } and/or the previously mentioned geometric limiting
contrastive force. In addition, the weighted averaging over views that occurs
in the contrastive loss function (eq. 4.14) results in the possibility that high-
quality representation alignment among two views lessens the significance of
bad mixing for the third view. The result of this is that the model may allow
bad mixing for outlier views as long as the remaining views mixes well.

7.4.6.5 The Deep Semi-supervised Approach

For our semi supervised approach,wewish to combine the advantages of cluster-
ing with those of semi-supervised learning. As such, we add a semi-supervised
loss term to the preexisting clustering loss with the intention of generating
a more significant representation space that may be utilised in further data
analysis. We will compare these to various other loss term combinations and
compare fusion spaces. We implement the semi-supervised loss by determining
a number of labeled samples, 𝑁𝑠𝑠 , determined when initiating the model. The
loss function will be applied to these samples for all epochs in the run. The
loss function selected is the binary cross-entropy (eq. 3.11).

Table 7.13 displays results for DRAGMVC with added semi-supervised loss.
As expected, performance metrics are positively affected by the increasing
number sampled labels, peaking at 70.0% mean validation accuracy at our
minimum mean DDC loss. We observe that the contrastive loss provides a
significant positive impact over the non-contrastive runs. This suggests that
representation-alignment does not negatively interfere with the added infor-
mation of having access to labels. This notion is further strengthened by the
fact that the contrastive loss is unaffected by increasing 𝑁𝑠𝑠 . In the case of
interference between the losses, we would instead expect a tradeoff between
contrastive loss, DDC loss, and semi-supervised loss. Considering the non-
contrastive runs, we note that DDC loss is superior without contrast and not
significantly affected by the number of semi-supervised labels. This is, how-
ever, not the case for the contrastive runs, where clustering loss significantly
worsens for higher 𝑁𝑠𝑠 , suggesting that the clustering may be replaced by the
available supervision. On the other hand, L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 is significantly improving
with added semi-supervised labels. This may suggest that the available labels
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(a) CXR & vital signs fusion plot.

(b) CXR & lab tests fusion plot.

(c) Vital signs & lab tests fusion plot.

Figure 7.9: Runs by contrastive loss fusion plots (dimensionality reduced by 𝑡 -SNE)
from best (top) to worst (bottom).
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(a) Fusion plot of the minimum L𝑑𝑑𝑐 semi-supervised run with 𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =

500.

(b) Fusion plot of the minimum L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 semi-supervised run with
𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = 500.

(c) No contrastive loss. Fusion plot of the minimum L𝑑𝑑𝑐 semi-supervised
run with 𝑁𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = 500 and.

Figure 7.10: 𝑡 -SNE reduced fusion plots by the semi-supervised DRAGMVC models.
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help in extracting relevant features from views, contributing to improved view
mixing. Figure 7.10 displays the fusion plots of minimum loss runs. We observe
that the level of mixing resemble that of earlier fusion plots (figs. 7.3 & 7.4).
This reinforces earlier analyses of the clustering setting: view counts 𝑉 > 2
will yield sub-optimal mixing or views may not adhere to the multi-view prin-
ciples. The no contrast run (fig. 7.10c) displays poor pre-fusion separability,
which is to be expected. This could also result in a less informative subspace
as the positions of representations will lose their similarities to surrounding
representations.

7.5 Final Discussion & Future Work

7.5.1 Key Findings

In light of the tasks listed in section 7.4, we may list our key model findings as
such:

1. Performance on well-evaluated datasets: We have displayed that our model
surpasses MAGCN [13], the established state-of-the-art, in performance
on three well-evaluated bibliographic graph datasets.

2. Performance on complex medical data, compared to other SOTA: We have
displayed that our model yields significantly better mean performance
metrics when compared to the current SOTA within fully unsupervised
graph-based multi-view clustering.

3. Performance on complex medical data, compared to non-graph counterpart:
We have compared our model to its non-graph counterparts to determine
significant advantages of utilising graph data to strengthen underlying
pleural effusion-associated clusters in terms of separability, view mixing,
and classification.

4. View mixing & cluster separability on complex data: Through visualisation
of the pre-fusion and fusion spaces in figs. 7.3, 7.4, & 7.10 as compared
to the model’s non-graph counterpart (fig. 7.5), we observe a very clear
benefit of the utilisation of graph data to improve (i) viewmixing through
the use of contrastive loss; (ii) separability in both pre-fusion and fusion
space.

5. Semi-supervised performance: We managed to achieve 70.0% mean vali-
dation accuracy in the semi-supervised setting, using 𝑁𝑠𝑠 = 500 labels.
The performance was achieved having a significant positive effect on
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contrastive loss, suggesting that supervision strengthen existing repre-
sentation alignment.

6. Semi-supervised effect on view mixing and clustering ability: Separability
of the semi-supervised approach appear to be negatively affected by
the added semi-supervised loss term. Correspondingly, we observe that
the added term significantly increased clustering loss. We interpret the
weakened separability as the DDC loss and the semi-supervised loss
limiting each other in regards to their respective objectives.

7. Effects on GCN over-smoothing: The hypothesis that our Markov prior
assist in reducing over-smoothing is strengthened by the significant per-
formance improvement seen by reducing the number of graph embedding
layers in exchange for increasing the number of steps in our Markov prior
(see table 7.6).

8. Effects of using dropout: We observe that by using dropout in both linear
transformations and attentions in our graph attention embedding layers,
we observe a significant improvement in performance both for the Cora
and MIMIC datasets.

9. Effects of the DDC encoder: Using the graph attention layer in our DDC
module has been shown to significantly improve performance over the
original linear layer used in [50].

With regards to our constructed dataset, our key findings have been:

1. Multi-view principles: The results in table 7.12 may suggest that certain
views do not add non-redundant and informative information to the
dataset. However, we may not be certain of the cause for this result, as
the contrastive effect for view counts𝑉 > 2was argued to possibly be sub-
optimal due to geometric reasons and reasons based on the contrastive
loss used (see section 7.4.6.4).

2. Diagnostic significance & separability: The dataset showed clear separa-
bility when employing graph data (see figs. 7.3, 7.4, & 7.10) while being
limited in the non-graph multi-view approach (see fig. 7.5).

3. Pairs of views: We identify that not all pairs of views appear to contain
strong natural clusters in regards to the underlying pleural effusion dis-
tribution. The weakest pair of views was CXR & vital signs, yielding the
highest contrastive loss of all pairs, possibly implying that these may
contain little common information related to the underlying distribution.
The strongest view, CXR & lab tests, outperformed the full dataset by a
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significant margin.

4. 𝑘-NN graph: From comparing the 𝑘-NN graph with the full MIMIC graph
(from section 6.4), we found significant improvements in using the former.

7.5.2 Discussion

Seeing as the view mixing did not sufficiently incorporate all views in sample-
to-sample alignment for view counts𝑉 > 2 (see figs. 7.3, 7.4, & 7.10) we aim to
discuss possible causes for this shortcoming: (i) the data is lacking in informa-
tiveness or non-redundant data; (ii) concurrent training of encoders leading to
instability; (iii) a suboptimal contrastive loss solution, not properly accounting
for outlier views. The first of which is hard to determine the likeliness of with
our dataset being new and untested prior to this thesis. Seeing the results from
pairs of views (table 7.12) we observe that vital signs appear to be a limiting
factor. However we cannot assert this without considering the limitations of the
model (to be discussed). Considering the performance potential assessed in
section 7.3.1.1, we observe a limitation of 73.2% accuracy. Higher than that of
chest X-rays (66.8%). The best performance potential was observed in lab tests
at 86.2%. Taking this into consideration along with the superior performance
of chest X-rays & lab tests, we raise the suggestion that hard-to-cluster views
(such as the CXRs) may learn from easy-to-cluster views (being lab tests). This
allows for one fast converging view and one slow converging view that is learn-
ing from the former. This hypothesis explains the limitations in the other pairs
of views, as vital signs & lab tests contain two equally easy-to-cluster views,
both assumed (by their performance potential) to be superior in contained
information to the CXRs. Extending the situation to 𝑉 > 2, we experience
multiple views attempting to concurrently learn from the other views. Our
intuitive understanding is that two arbitrary views will be the first to discover
some existing commonality, which will thereafter limit other views as the two
views with commonality will seek to strengthen the identified similarities. This
will force the additional views to attempt to learn traits corresponding to a
predetermined common trait in the two fastest converging views — rather
than concurrently strengthen innate traits to find common similarities to other
views. We reason that this could be optimised by exploring an alternating
optimisation scheme for views in an attempt to control convergence times. We
will revisit this concept in section 8.1 covering potential future work.

Considering our model design choices, shortcomings may occur in our view
encoders, graph embedding layers, or the clustering module employed. Firstly,
our of our view encoders the image view seems to suffer the most with feature
extraction (in figs. 7.3, 7.4, & 7.10). A possible weakness of our model is the
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lack of a deeper, pretrained model for the image view. This would assist in
the representation alignment for this view. In addition, this could aid in the
problem with uneven view encoder learning as previously discussed, seeing
as it would improve image convergence time. Secondly, considering our graph
embedding layers, we establish its success by the improved cluster structure,
as observed in figs. 7.3 & 7.4 as opposed to its non-graph counterpart in fig.
7.5. Yet, one apparent shortcoming of the graph convolution layers implemen-
tation is its lack of multi-head attention. The exclusion of multi-head attention
was deliberate as it (using mean fusion and a comparable integration to [91])
was found to be insignificant in terms of clustering performance. Yet, other
multi-head attention approaches may be employed, e.g. using concatenated at-
tentions. Lastly, while the DDC clustering module is performing well, we reason
that applications within graph clustering may be worth exploring. Particularly
regarding the possibility of unifying feature-based and graph-based clustering.
This could be utilised in the semi-supervised loss as e.g. label propagation for
deep semi-supervised models [43].

For our medical data, the MIMIC dataset contained 3 520 nodes, and the Mini-
MIMIC dataset contained 1 747. When comparing the performance metrics
registered by DRAGMVC in table 7.7 as compared to table 7.8, it is a significant
increase in performance with the increase in dataset size. Having graph data,
we suggest that larger datasets could prove especially beneficial in the complex
clustering case. Expanding on this, performance limitations in our evaluation
of the MIMIC dataset may be further restricted by the size of our dataset, as was
the case with the Mini-MIMIC dataset. We have also discussed the possibility
of dataset size being a possible contributing factor in the poor spread of the
CXR view in fusion plots.

We have shown that certain clusters were well-confined to a set of diagnoses by
having a high degree of separation, as well as high separability in significant
𝑝-values. We believe to have displayed that applications using expert-evaluated
data, informative and non-redundant views could show potential even in a fully
unsupervisedmanner given its performance consistency due to the sample-level
contrastive alignment. While showing promising results, employing DRAGMVC
on our custom MIMIC dataset did not yield sufficient alignment to be able to
consider model interpretability and between-sample relations for medical anal-
ysis. However, in the case of proper view alignment and high-level predictions,
we hypothesise that the analysing the similarities between sets of view-aligned
samples to nearby view-aligned samples could yield promising results for a
range of possible applications, e.g.: (i) risk stratification; (ii) the recognition
of sub-groups within diagnosis clusters; (iii) the progression of a diagnosis
over time. Nevertheless, for our constructed MIMIC dataset, fully unsupervised
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solutions has been shown to be unrealistic due to the lack of proper view
alignment for view counts 𝑉 > 2 — and, based on predictive performance in
table 7.7 & 7.13, assumed to be insufficient dataset information in the case of
𝑉 = 2.
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Conclusion
In summary, this thesis reviews the field of graph-based multi-view cluster-
ing to lay the groundwork for a novel dataset and a state-of-the-art machine
learning model within the field of deep multi-view clustering on one view-
invariant graph. We achieved 76.2% maximum accuracy, 58.6% maximum
geometric NMI, 56.8% maximum ARI, and 64.0% maximum macro-𝐹1 on
the Cora dataset; 72.4% maximum accuracy, 47.8% maximum NMI, 49.0%
maximum ARI, and 56.8% maximum 𝐹1 on CiteSeer; 75.0% maximum ac-
curacy, 34.9% maximum NMI, 39.0% maximum ARI, and 72.0% maximum
𝐹1 on PubMed, thus surpassing the established state-of-the-art within graph-
based multi-view clustering on a single view-invariant graph. Additionally,
we achieved 63.0% mean unsupervised accuracy, 6.1% mean unsupervised
NMI, 7.1% mean unsupervised ARI, and 62.8% mean unsupervised 𝐹1 on
our constructed pleural effusion/not pleural effusion graph-based multi-modal
medical dataset. On the same dataset we achieved 70.0%mean accuracy using
500 labels in a semi-supervised approach. Experiments performed and their
interpretations has been detailed, as well as a final discussion which covered
possible limitations and areas of improvement. Being highly specialised and
wide-reaching in subject matter, graph-based multi-view clustering require
thorough background theory to properly cover. Our method is built upon the
existing CoMVC [104]model by implementing a new interpretation of the graph
attention convolution as seen in GATE [91] and, extended to the MVC case:
MAGCN [13]. Our graph-embedding layer used shared weights, and utilises
an attention graph weighted by a Markov prior with weights as probabilites of
having visited a node in random walk process over a set number of steps. The
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Markov prior approach to graph attention convolutions has been unexplored
within the realm of graph-basedmulti-view clustering to the best of the author’s
knowledge. The advantage of using a Markov prior is two-fold: (i) it provides
a more informative initialisation for graph attention; (ii) it allows for farther-
reaching attention than the traditional graph masking which only attends to
graph neighbours, as well as more specialised attention than the unmasked
attention struggling with over-smoothing as datasets increase with number of
graph convolution layers 𝐿 [76]. This hypothesis was strengthened by exper-
iments replacing graph attention convolution layers with additional Markov
prior steps, showing significant improvements for the additional Markov prior
steps with a shallower model.

Another significant contribution was the creation of the pleural effusion/not
pleural effusion MIMIC dataset described in section 6. We extracted, com-
bined, and pre-processed data from the MIMIC-IV and MIMIC-CXR databases
[47; 49; 24]. Extending the dataset to graph applications, we computed a 𝑘-NN
affinity matrix (section 6.4) based on radiology reports in a fully unsuper-
vised manner. Other datasets gathered for evaluation were Cora, CiteSeer, and
PubMed [93; 73]: relational datasets of papers containing attributes by words
used and a graph computed from their respective references. Using our MIMIC
dataset,we explored the clustering capabilities of ourmodel, displayingmassive
improvements over the base model in separability, view alignment, clustering
optimisation, in addition to performance. Thus suggesting that our contribution
successfully embed graph information in a clustering context. From thorough
analysis of the MIMIC dataset, we uncover of weaknesses and areas of potential
improvement of our model and the dataset used. Most prominent was the issue
of uneven view alignment. We argue that the issue stems from an unstable
concurrent encoder optimalisation and a contrastive loss that is too relaxed
in regards to outlier views (for view counts 𝑉 > 2). Yet, aligning representa-
tions on a sample-to-sample level was shown to yield superior results when
compared to the distribution-wide alignment in MAGCN [13]. For the semi-
supervised approach we have discovered that semi-supervised loss does not
interfere with our main clustering objective, allowing the model to be used in a
semi-supervised settings as well. The semi-supervised models yielded equally
view-mixed subspaces as well as superior performance in comparison to the
fully unsupervised DRAGMVC. The semi-supervised setting did also benefit
from representation alignment, significantly improving in both clustering loss
as well as accuracy for the contrastive model, while positively impacting the
contrastive loss, suggesting that the two loss objectives align.

Due to the nature of medical data in diagnostics, correlation is a strong pres-
ence in our MIMIC dataset. DRAGMVC displayed an ability to — in certain
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cases — recognise the more isolated diagnosis clusters (see run 1 in fig. 7.3a):
a difficult task considering the many challenges when employing imperfect
health data. From running supervised performance potential tests on eval-
uation sets of each view (chest X-rays: 66.8%; vital signs: 73.2%; and lab
tests: 86.2%), we discovered the limitations of each view separately. Then,
employing DRAGMVC on pairs of views shown that the chest X-rays and lab
tests may contain the most non-redundant, complementary information for
clustering — outperforming the full dataset with all three views. This does not
necessarily contradict the multi-view principles, as we have discussed with re-
gards to the limitations of DRAGMVC for complex views and view counts𝑉 > 2.

With regards to the lists describing our hypothesised model and dataset in the
introduction (see section 1.2), we attend to every item, while having thoroughly
discussed the weaknesses, doubts, and ambiguities associated with: (i) the
extraction of diagnostically relevant information for all views separately; (ii)
the nuance between data points in representation space; (iii) the dataset’s
adherence to the multi-view principles. Finalising the thesis we summarise
the contributions undertaken in key words: (i) the examination of relevant
literature; (ii) the hypothesising and developing of a novel machine learning
model; (iii) construction and processing of a real-life medical dataset containing
chest X-rays; (iv) the analysis, evaluation, anddiscussion of the proposed dataset
and the proposed model.

8.1 Future Work

Other approaches that builds on DRAGMVC include the extension into similar
representation learning approaches, e.g. inspired by the work of Hassani &
Khasahmadi [33]. Another potentially interesting extension in the medical
sense is to extend the network to account for multiple graphs [64; 78] or other
heterogeneous graph approaches [94]. Considering the dataset, the image
view is thoroughly limited and noise-affected by the details surrounding the
lungs. Far lacking in sufficient medical knowledge1, the task of segmenting
lungs in the X-ray images was — in our case — deemed to difficult to accom-
plish in an unsupervised manner while lacking expertise for manual evaluation.
One potential development directed towards interpretability is to apply e.g.
Grad-CAM [92] in order to recognise any determining properties of the image
view. Furthermore, successful masking of the image data could improve on its
informativeness by removing a likely significant source of noise. This could

1. Recognising the borders of lungs in chest X-rays prove challenging for pleural effusion
data given the diffuse edges.
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potentially be accomplished unsupervised by e.g. utilisation of SLICO super-
pixels [118]. For our vectorial medical data, we selected the zero imputation
method for missing data. The effectiveness of various imputation methods is
worth exploring more closely, along with any potential differences between
these methods in multi-view versus single view learning approaches.
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Appendix
A.1 Dimensionality Reduction

The task of building an understanding of big data is often challenged by high-
dimensional feature vectors that cannot be visualised directly. Thus, having
ways of reducing data dimensionality becomes an important mechanism. These
methods are often referred to as feature reduction or dimensionality reduction
methods. In this section, two of these methods are presented as they will be
utilised to visualise otherwise difficult-to-interpret data.

A.1.1 Principal Component Analysis

The idea behind Principal Component Analysis (PCA) — otherwise known as
the Karhunen-Loève transform [51] — is to spread the variance of multivariate
data over its dimensions in a way such that as much information is contained
in as few dimensions as possible. This is done by removing correlation between
variables. An intuitive understanding of this process can be described as trying
to picture a three-dimensional object from a view which maximises the size
the object. Then creating a two-dimensional drawing from that perspective.
Capturing a 3D object in a 2D representation from this view would therefore
maximise variance in a lower-dimensional representation. When applying di-
mensionality reduction by PCA this is essentially what one is doing. Trying to
find an angle in reduced dimensionality in which the spread of the data is max-
imal. However, as higher-dimensional objects cannot be visualised effectively,
one must resort to mathematics.

A.1.1.1 De-correlation

Now, to decorrelate the components. Let 𝒙 ∈ R𝑝 be a random vector with
mean 𝝁𝒙 and covariance matrix

𝚺𝒙 = E
[
(𝒙 − 𝝁𝒙) (𝒙 − 𝝁𝒙)𝑇

]
. (1)
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Defining some transformation matrix 𝑨, as such

𝒚 = 𝑨𝑇𝒙 (2)

having parameters 𝝁𝒚 and 𝚺𝒚 found by

𝝁𝒚 = E
[
𝑨𝑇𝒙

]
= 𝑨𝑇E

[
𝒙
]

= 𝑨𝑇 𝝁𝒙 (3)

and

𝚺𝒚 = E
[
(𝒚 − 𝝁𝒚) (𝒚 − 𝝁𝒚)𝑇

]
= E

[
(𝑨𝑇𝒙 −𝑨𝑇 𝝁𝒙) (𝑨𝑇𝒙 −𝑨𝑇 𝝁𝒙)𝑇

]
= E

[
𝑨𝑇 (𝒙 − 𝝁𝒙) (𝒙 − 𝝁𝒙)𝑇𝑨

]
= 𝑨𝑇E

[
(𝒙 − 𝝁𝒙) (𝒙 − 𝝁𝒙)𝑇

]
𝑨

= 𝑨𝑇𝚺𝒙𝑨. (4)

For our new, transformed vector 𝒚 to be uncorrelated the covariance between
variables must be zero, which requires a zero off-diagonal, i.e. Σ𝒚 (𝑖, 𝑗) =

0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, ..., 𝑝. We obtain the diagonal matrix from orthogonal basis𝑨
— which is composed of the normalised eigenvectors of 𝚺𝒙 , i.e. 𝒂0, 𝒂1, ..., 𝒂𝑁−1
[103]

𝚺𝒚 = 𝚲 (5)

where the diagonal values of 𝚲 are the eigenvalues of 𝚺𝒙 , _0, _1, ..., _𝑁−1, com-
monly ordered such that _0 > _1 > ... > _𝑁−1. From most significant basis
vector to the least significant. Now, with 𝚺𝒙 being positive definite2 [103], we
know that all eigenvalues of 𝚺𝒙 , _0, _1, ..., _𝑁−1 must be positive.

2. A symmetric matrix 𝑨 where 𝒙𝑇𝑨𝒙 > 0 for all real and non-zero 𝒙 [1].
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Knowing that the basis 𝑨 constructs a transformation such that
𝑝∑︁
𝑖=1

Var
(
𝑥𝑖

)
= Trace

(
𝚺𝒙

)
= Trace

( (
𝑨𝑇

)−1
𝚲𝑨−1

)
= Trace(𝑨𝑇𝑨𝚲

)
= Trace

(
𝚲

)
=

𝑝∑︁
𝑗=1

_ 𝑗

=

𝑝∑︁
𝑗=1

Var
(
𝑦 𝑗

)
, (6)

we may assert the proportionally contained variance in a dimensionality re-
duced representation by the sum of its eigenvalues. Let 𝑙 < 𝑝 where 𝑙 is the
number of dimensions in the reduced space. We may construct a new basis

�̃�𝑇 =


𝒂𝑇0
...

𝒂𝑇
𝑙

 ∈ R
𝑙×𝑝 (7)

from which we deduce our vector 𝒚 ∈ R𝑙 in reduced space

𝑦 = �̃�𝑇𝒙 (8)

which we know will retain a proportional
∑𝑙
𝑖=1 _𝑖

/
Trace

(
𝚲

)
of the variance

from 𝒙.

Figure A.1 illustrates the PCs of random data points. The data shown in A.1b
can be reduced from 𝑝 = 2 dimensions down to 𝑙 = 1 dimension by applying
the Karhunen-Loève transform (PCA) by projecting the data points onto the
most significant axis, in this case shown as the horizontal axis.

A.1.2 𝑡 -SNE

𝑡 -distributed stochastic neighbour embedding (𝑡 -SNE) is a data visualisation
tool used for visualising high-dimensional data in low dimensions [66]. It is
based on the normal distributed Stochastic Neighbour Embedding (SNE) [37],
but with a 𝑡 -distributed representation in lower dimensions. We will get back
to why this is the case. While PCA aims to find the angle at which variance is
maximised, 𝑡 -SNE is not a coordinate-based representation of the data but a
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(a) Illustrating the principal components (PCs)
of the data (the size of the vectors corre-
sponds to their respective standard devia-
tions). (b) The rotated data by its most significant PCs.

Figure A.1: A randomly generated dataset from a multinormal distribution with pa-

rameters 𝝁 =
[
0 0

]𝑇 and 𝚺𝒙 =

[
1 0.6
0.6 1

]
statistical one. Therefore, the resulting representation will not be informative
regarding exact relative placement of data points, but rather their statistical
similarity [66]. This means that points are not transformed to represent their
proximity to other points, but by a statistical measure. This is often helpful as
many data distributions tend to be skewed along dimensions due to a correla-
tion in its variables (such as in fig. A.1a). Using 𝑡 -SNE in these cases will better
help propagate the statistical similarity through dimensionality reduction.

Given a set of objects in higher dimensions, 𝒙1, ..., 𝒙𝑁 , we may from one vector
𝒙𝑖 find its similarity to another vector 𝒙 𝑗 through the Gaussian distribution,
which may be normalised as follows [66]:

𝑝𝑖 | 𝑗 =
exp {−||𝒙𝑖 − 𝒙 𝑗 | |2/2𝜎2

𝑖 }∑
𝑘≠𝑖 exp {−||𝒙𝑖 − 𝒙𝑘 | |2/2𝜎2

𝑖
}

(9)

where 𝜎2
𝑖 is the variance of the Gaussian distribution on 𝒙𝑖 and letting 𝑝𝑖 |𝑖 = 0.

The variance, 𝜎2
𝑖 , should be varying depending on each datapoint, as density

in high-dimensional space may vary — reasoning that the variance should
be lower in dense regions and higher in sparse regions [66]. For this, 𝑡 -SNE
utilise a fixed hyperparameter perplexity. The process of finding 𝜎2

𝑖 is then
a process of selecting the distribution in which perplexity is equal to the set
value. Perplexity for a given probability 𝑃𝑖 is given as:

Perp(𝑃𝑖) = 2𝐻 (𝑃𝑖 ) , (10)
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where 𝐻 (𝑃𝑖) is defined as the Shannon entropy:

𝐻 (𝑃𝑖) = −
∑︁
𝑗

𝑝 𝑗 |𝑖 log2 𝑝 𝑗 |𝑖 . (11)

The effect of perplexity will thus be regarding the ”pulling” force by the statis-
tical distribution. Higher Perp values will therefore find connections between
points separated by large distances, while low Perp values will look at the
immediate surrounding area from each point.

L. van der Maaten and G. Hinton [66] reasons that the Student’s 𝑡 -distribution
will be beneficial for the lower representation, rather than the original Gaussian
distribution. This follows from its tails being heavier. This properties allows
moderate distances in higher-dimensional space to be represented as larger
distances in reduced space. This will avoid the strong attractive forces found in
SNE. The distribution in reduced dimensionality can thus be defined as

𝑞𝑖 𝑗 =

(
1 + ||𝒚𝑖 −𝒚 𝑗 | |2

)−1∑
𝑘

∑
𝑙≠𝑘

(
1 + ||𝒚𝑘 −𝒚𝑙 | |2

)−1 . (12)

From eqs. 9 and 12 the dimensionality reduced data 𝒚1, ...,𝒚𝑁 are determined
by minimising the Kullback–Leibler (KL) divergence of the two distributions,
i.e. maximising the distributions’ overlap

KL(𝑃 | |𝑄) =
∑︁
𝑖≠𝑗

𝑝𝑖 𝑗 log
𝑝𝑖 𝑗

𝑞𝑖 𝑗
. (13)

This is accomplished by employing the optimisation tool gradient descent, which
will be covered in detail in chapter 3.

A.2 Clustering Performance

A.2.1 Initialisation

A.2.1.1 K-means initialisation

Defining the initial 𝑘 centroids 𝜽 𝑗 , may be executed in a a variety of ways.
The original approach is simply to randomly select points within input space.
However, to improve the loss landscape alternate initialisation methods may be
utilised. One such example is the K-means++ initialisation [4]. Having

𝐷 (𝒙𝑖) = min
𝑗
𝑑 (𝒙𝑖, 𝜽 𝑗 ) = min

𝑗

{
(𝒙𝑖 − 𝜽 𝑗 )2

}
,



156 appendix

the algorithm may be described as follows:

1. Centroid 𝜽1 is initialised uniformly from input space.

2. Centroids 𝜽 𝑗 , 𝑗 = 2, ..., 𝑘 are sampled from input space with probabil-

ities given by
𝐷 (𝒙𝑖)∑
𝒙𝑞 𝐷 (𝒙𝑞)

. As new clusters are set, values 𝐷 (𝒙𝑖) are

recalculated.

This algorithm ensures that centroids are likely to be more evenly spread than
a fully randomised initialisation. This is due to the fact that the sampling

probability
𝐷 (𝒙𝑖)∑
𝒙𝑞 𝐷 (𝒙𝑞)

will be maximised in areas where 𝐷 (𝒙𝑖) is the highest,

i.e. areas further from other centroids.

A.2.2 Metrics

As clustering is an unsupervised machine learning method, evaluation will
be dependent on the circumstance of what data is available. In order to de-
termine the quality of separation, we must first establish what information is
available beforehand. The question is whether the aim is to measure known
characteristics in the dataset or to measure some property entirely without
external information. Recognising this difference, there exists two categories
of clustering performance metrics or Cluster Validity Indices (CVIs): external
CVIs and internal CVIs [103].

As our method is drawn from a dataset with ground truth information known
a priori, our main focus will be directed at external CVIs. Some alternatives
within the field of internal CVIs include the Calinski-Harabasz (CH) index [8].
This measure relates the Euclidean distances between cluster means with the
global mean of Euclidean distances between clusters and their corresponding
observations. Another internal CVI is the Davies-Bouldin (DB) index [18] which
measures similarity between each cluster and its most similar ones [103].

A.2.2.1 Unsupervised Clustering Accuracy (ACC)

The first external CVI we will tackle is the unsupervised clustering accuracy
(ACC). This index simply represents the best accuracy achievable when assign-
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ing predictions to the set of labels.

ACC = max
𝑚∈𝑀

1
𝑁

𝑁∑︁
𝑖=1

𝛿 (𝑚(𝑦𝑖), 𝑦𝑖), (14)

where 𝑀 is the set of all mappings from the labels to each cluster by utilising
the Hungarian algorithm [59], and 𝛿 (·) is the Kronecker delta function. The
Hungarian algorithm aims to maximise the weight-matching in a matrix —
in our case, alter the prediction classes to maximise the number of accurate
clusters. This is performed as unsupervised methods have no way of knowing
the correct class number. Due to this class assignment, the minimum clustering
accuracy of any balanced dataset with |𝐶 | different classes will always be
1/|𝐶 |.

A.2.2.2 Normalised Mutual Information (NMI)

The normalised mutual information (NMI) is a measure of mutual dependence
between two variables. A high NMI suggests that the ground truth labels are
explained by the cluster memberships which indicates a high-grade clustering
with regards to recognising some underlying ground truth distribution. NMI is
defined as [110]

NMI = 2
𝐼 (𝒚,𝒚)

𝐻 (𝒚) + 𝐻 (𝒚) , (15)

where 𝐼 (·, ·) denotes the mutual information and 𝐻 (·) denotes the entropy of
𝒚, respectively [110]

𝐼 (𝒚,𝒚) =
𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑃
�̂�,𝒚
𝑖 𝑗

log
𝑃
�̂�,𝒚
𝑖 𝑗

𝑃
�̂�
𝑖
𝑃
𝒚
𝑗

(16)

𝐻 (𝒚) = −
𝑘∑︁
𝑖=1

𝑃
�̂�
𝑖
log 𝑃 �̂�

𝑖
, (17)

with 𝑃 denoting the mean occurrence of indices given by

𝑃
�̂�
𝑖
=

1
𝑁

𝑁∑︁
𝑙=1

𝛿 (𝒚𝑙 , 𝑖) (18)

𝑃
�̂�,𝒚
𝑖 𝑗

=
1
𝑛

𝑁∑︁
𝑖=1

𝛿 (𝒚𝑙 , 𝑖)𝛿 (𝒚𝑙 , 𝑗), (19)

where 𝛿 (·) is the Kronecker delta.
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The geometric variation of the NMI metric is similar to eq. 15, but puts an
increased emphasis on lower values by dividing by the geometric mean rather
than the arithmetic one [105], as such:

NMI𝑔𝑒𝑜 =
𝐼 (𝒚, 𝒓)√︁
𝐻 (𝒚)𝐻 (𝒚)

. (20)

A.2.2.3 Confusion Matrix & the 𝐹1-score

The confusion matrix is a square matrix of data points’ predictions along one
axis and their labels along the other, e.g.

Positive Negative
Predicted positive #TP #FP
Predicted negative #FN #TN

(21)

Where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 are true positive, true negative, false positive, and
false negative, respectively. The true denotes whether the prediction agrees with
the label, and the positive / negative determines the class predicted. Confusion
matrices may be applied in amulti-class scenario as well. Many commonmetrics
may be calculated from the confusion matrix such as [103] accuracy

ACC =
#TP + #TN
#FP + #FN ,

precision
𝑃 =

#TP
#TP + #FP ,

recall
𝑅 =

#TP
#TP#FN

,

and lastly the 𝐹1 score, being a balance between the two latter

𝐹1 = 2 · 𝑃 · 𝑅
𝑃 + 𝑅 .

Similarly to previous metrics, the Hungarian algorithm [59] is utilised to best
map predictions to classes.

In the multi-class case3, variants of the 𝐹1-score may differ by their averaging
method. We will consider the macro 𝐹1-score — due to ambiguity around the
macro-𝐹1 formula, it is also known as the averaged 𝐹1 [77]. It is given as the
arithmetic average of 𝐹1-scores for all classes:

𝐹1𝑚𝑎𝑐𝑟𝑜 =
∑
𝐶𝑖 ∈C 𝐹1𝐶𝑖

|C| . (22)

3. Multi-view variations of the 𝐹1 consider each class𝐶𝑖 , denoted 𝐹1𝐶𝑖
, considering negatives

by every class 𝐶 𝑗 where 𝑗 ≠ 𝑖.
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A.2.2.4 Adjusted Rand Index (ARI)

The Rand score is a between-sample metric rather than a class-based metric
such as the confusion matrix metrics.

RI =
#SS + #DD

#SS + #DD + #SD + #DS . (23)

Having predictions 𝑃𝒙𝑖 and 𝑃𝒙 𝑗
, and actual classes 𝐶𝒙𝑖 and 𝐶𝒙 𝑗

, a pair of data
vectors (𝒙𝑖, 𝒙 𝑗 ) is defined as [103]:

• 𝑆𝑆 if 𝑃𝒙𝑖 = 𝑃𝒙 𝑗
and 𝐶𝒙𝑖 = 𝐶𝒙 𝑗

.

• 𝐷𝐷 if 𝑃𝒙𝑖 ≠ 𝑃𝒙 𝑗
and 𝐶𝒙𝑖 ≠ 𝐶𝒙 𝑗

.

• 𝑆𝐷 if 𝑃𝒙𝑖 ≠ 𝑃𝒙 𝑗
and 𝐶𝒙𝑖 = 𝐶𝒙 𝑗

.

• 𝐷𝑆 if 𝑃𝒙𝑖 = 𝑃𝒙 𝑗
and 𝐶𝒙𝑖 ≠ 𝐶𝒙 𝑗

.

We defined 𝑛𝑖 𝑗 as the number of common objects (predictions and classes) for
pair (𝒙𝑖, 𝒙 𝑗 ), i.e. 𝑛𝑖 𝑗 = 2 for 𝑆𝑆 , 𝑛𝑖 𝑗 for 𝑆𝐷 and 𝐷𝑆 , and 𝑛𝑖 𝑗 = 0 for 𝐷𝐷. We
also have that 𝑛𝑖 · =

∑
𝑗 𝑛𝑖 𝑗 . Now, when correcting for chance, the Rand Index

of eq. 23 may extend to the Adjusted Rand Index (ARI) [42]:

ARI =
RI − E[RI]

Max. RI − E[RI]

=

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2
)
−∑

𝑖

(
𝑛𝑖 ·
2
) ∑

𝑗

(𝑛·𝑗
2
)
/
(
𝑛
2
)

1
2
[ ∑

𝑖

(
𝑛𝑖 ·
2
)
+∑

𝑗

(𝑛·𝑗
2
) ]
−∑

𝑖

(
𝑛𝑖 ·
2
) ∑

𝑗

(𝑛·𝑗
2
)
/
(
𝑛
2
) , (24)

where the binomial coefficient
(
𝑘
2
)
is defined as 0 for 𝑘 = 0 and 1. The metric

spans from −1 to 1 and has a value of 0 for completely random predictions
and 1 for perfect predictions.

A.3 Experiments

A.3.1 Reconstruction Loss Setup

To assess the usefulness of reconstruction loss in DRAGMVC, we run trial
experiments using the weighted Frobernius norm for both feature and graph
reconstructions:

L𝑟𝑒,𝑠𝑡 =
1
𝑁

𝑉∑︁
𝑖=1

𝑤𝑖 | |𝑿𝑖 − �̂�𝑖 | |2𝐹
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L𝑟𝑒,𝑓 𝑡 =
1
𝑁

𝑉∑︁
𝑖=1

𝑤𝑖 | |𝑨 − �̂�𝑖 | |2𝐹 .

The graph decoder were constructed using tied weights (as in [13]). View
encoders were created by using the direct inverse of the encoder (with sepa-
rate weights), exchanging pooling with bilinear upsampling and convolution
operations with transposed convolutions. Batch normalisation and activation
functions were employed as in the encoder, merely altering the order such that
they follow the main operation. Reconstructed graphs �̂�𝑖 are computed by
inner product following eq. 4.22.

Table A.1: Analysing the effects of reconstruction loss on accuracy and contrastive
iteration loss for the MIMIC dataset. All runs had 𝛿 = 6.0. The numbers of
samples taken are (from top to bottom) 72, 65, 53, and 151.

Metrics ACC L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
Added loss terms Max. Mean Min. Mean C.I.
L𝑟𝑒,𝑠𝑡 0.638 0.568 3.331 4.440 (4.109, 4.771)
L𝑟𝑒,𝑠𝑡 + L𝑟𝑒,𝑓 𝑡 0.664 0.568 3.365 4.219 (3.955, 4.483)
L𝑟𝑒,𝑓 𝑡 0.686 0.568 3.317 4.433 (4.235, 4.631)
None 0.696 0.589 1.791 2.911 (2.823, 2.998)

A.3.2 𝑝-value histograms

Un-adjusted 𝑝-value histograms to assess the skewness of significant values. A
flat distribution is expected for true null hypotheses, as 𝑝-values naturally falls
within the entire range of probabilities, i.e. 𝐻0 : 𝑝 ∈ (0, 1) ∼ 𝑈 (0, 1).
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(a) Model 1 𝑝-values. (b) Model 2 𝑝-values. (c) Model 3 𝑝-values.

(d) Model 4 𝑝-values. (e) Model 5 𝑝-values.

Figure A.2: DRAGMVC 𝑝-value histograms.

(a) Model 4 𝑝-values. (b) Model 5 𝑝-values.

Figure A.3: CoMVC models 𝑝-value histograms.
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A.4 Dataset

A.4.1 Experiment Tables

Table A.2: Words removed from the word cloud visualisation tool in section 7.

Words removed from word cloud
unspecified

other
without mention

and
of
the

with
in
to
for
at
or

A.4.2 MIMIC Tables

The database mimic-core (MIMIC-IV)
consists of the tables:

• admissions

• patients

• transfers

The database mimic-hosp (MIMIC-IV)
consists of the tables:

• d_hcpcs (excluded from figure)

• d_icd_diagnoses

• d_icd_procedures (excluded from
figure)

• d_labitems

• diagnoses_icd

• drgcodes (excluded from figure)

• emar (excluded from figure)

• emar_detail (excluded from figure)

• hcpcsevents (excluded from figure)

• labevents

• microbiologyevents

• pharmacy

• poe

• poe_detail (excluded from figure)

• prescriptions

• procedures_icd (excluded from fig-
ure)

• services (excluded from figure)

The database mimic-icu (MIMIC-IV)
consists of the tables:

• chartevents
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• d_items

• datetimeevents

• icustays

• inputevents

• outputevents

• procedureevents

The database mimic-cxr (MIMIC-CXR)
consists of the tables:

• chexpert

• dicom_metadata_string

• record_list

• study_list

The database mimic-derived⁴ (MIMIC-
IV) consists of the tables:

• age

• antibiotic

• apsiii

• bg

• blood_differential

• cardiac_marker

• charlson

• chemistry

• coagulation

• complete_blood_count

• creatinine_baseline

• crrt

• culture

• dobutamine

• dopamine

• enzyme

• epinephrine

• first_day_bg

• first_day_bg_art

• first_day_gcs

• first_day_height

• first_day_lab

• first_day_rrt

• first_day_sofa

• first_day_urine_output

• first_day_vitalsign

• first_day_weight

• gcs

• height

• heparin

• icp

• icustay_details

• icustay_hourly

• icustay_times

• inflammation

• invasive_line

• kdigo_creatinine

• kdigo_stages

• kdigo_uo

• lods

• meld

• milrinone

• neuroblock

• norepinephrine

• nopepinephrine_equivalent_dose

• oasis

• oxygen_delivery

• phenylephrine

4. excluded from figure due to their information being drawn from other tables.
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• rhythm

• rrt

• sapsii

• sepsis3

• sirs

• sofa

• suspicion_of_infection

• suspicion_of_infection_v2

• urine_output

• urine_output_rate

• vasoactive_agent

• vasopressin

• ventilation

• ventilator_setting

• vitalsign

• weight_durations
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