6 research outputs found

    Online Mixed Packing and Covering

    Full text link
    In many problems, the inputs arrive over time, and must be dealt with irrevocably when they arrive. Such problems are online problems. A common method of solving online problems is to first solve the corresponding linear program, and then round the fractional solution online to obtain an integral solution. We give algorithms for solving linear programs with mixed packing and covering constraints online. We first consider mixed packing and covering linear programs, where packing constraints are given offline and covering constraints are received online. The objective is to minimize the maximum multiplicative factor by which any packing constraint is violated, while satisfying the covering constraints. No prior sublinear competitive algorithms are known for this problem. We give the first such --- a polylogarithmic-competitive algorithm for solving mixed packing and covering linear programs online. We also show a nearly tight lower bound. Our techniques for the upper bound use an exponential penalty function in conjunction with multiplicative updates. While exponential penalty functions are used previously to solve linear programs offline approximately, offline algorithms know the constraints beforehand and can optimize greedily. In contrast, when constraints arrive online, updates need to be more complex. We apply our techniques to solve two online fixed-charge problems with congestion. These problems are motivated by applications in machine scheduling and facility location. The linear program for these problems is more complicated than mixed packing and covering, and presents unique challenges. We show that our techniques combined with a randomized rounding procedure give polylogarithmic-competitive integral solutions. These problems generalize online set-cover, for which there is a polylogarithmic lower bound. Hence, our results are close to tight

    Solving Difficult Multicommodity Problems with a Specialized Interior-Point Algorithm

    Full text link

    Online Mixed Packing and Covering

    Get PDF
    Recent work has shown that the classical framework of solving optimization problems by obtaining a fractional solution to a linear program (LP) and rounding it to an integer solution can be extended to the online setting using primal-dual techniques. The success of this new framework for online optimization can be gauged from the fact that it has led to progress in several longstanding open questions. However, to the best of our knowledge, this framework has previously been applied to LPs containing only packing or only covering constraints, or minor variants of these. We extend this framework in a fundamental way by demonstrating that it can be used to solve mixed packing and covering LPs online, where packing constraints are given offline and covering constraints are received online. The objective is to minimize the maximum multiplicative factor by which any packing constraint is violated, while satisfying the covering constraints. Our results represent the first algorithm that obtains a polylogarithmic competitive ratio for solving mixed LPs online. We then consider two canonical examples of mixed LPs: unrelated machine scheduling with startup costs, and capacity constrained facility location. We use ideas generated from our result for mixed packing and covering to obtain polylogarithmic-competitive algorithms for these problems. We also give lower bounds to show that the competitive ratios of our algorithms are nearly tight

    Online Mixed Packing and Covering

    Full text link
    corecore