
Online Mixed Packing and Covering∗

Yossi Azar† Umang Bhaskar‡ Lisa Fleischer§ Debmalya Panigrahi¶

Abstract

Recent work has shown that the classical framework of
solving optimization problems by obtaining a fractional
solution to a linear program (LP) and rounding it to
an integer solution can be extended to the online set-
ting using primal-dual techniques. The success of this
new framework for online optimization can be gauged
from the fact that it has led to progress in several long-
standing open questions. However, to the best of our
knowledge, this framework has previously been applied
to LPs containing only packing or only covering con-
straints, or minor variants of these. We extend this
framework in a fundamental way by demonstrating that
it can be used to solve mixed packing and covering LPs
online, where packing constraints are given offline and
covering constraints are received online. The objective
is to minimize the maximum multiplicative factor by
which any packing constraint is violated, while satisfy-
ing the covering constraints. Our results represent the
first algorithm that obtains a polylogarithmic competi-
tive ratio for solving mixed LPs online.

We then consider two canonical examples of mixed
LPs: unrelated machine scheduling with startup costs,
and capacity constrained facility location. We use ideas
generated from our result for mixed packing and cov-
ering to obtain polylogarithmic-competitive algorithms
for these problems. We also give lower bounds to show
that the competitive ratios of our algorithms are nearly
tight.

∗Yossi Azar was supported in part by the Israel Science

Foundation grant 1404/10, Umang Bhaskar and Lisa Fleischer
by NSF grants CCF-0728869 and CCF-1016778, and Debmalya
Panigrahi by NSF grant CCF-1117381.
†Blavatnik School of Computer Science, Tel-Aviv University,

Tel-Aviv 69978, Israel. Email: azar@tau.ac.il. Part of this work
was done while visiting Microsoft Research, Redmond.
‡Department of Computing and Mathematical Sciences, Cali-

fornia Institute of Technology, Pasadena, CA 91125, USA. Email:
umang@caltech.edu. Work done while a student at Dartmouth

College.
§Department of Computer Science, Dartmouth College, 6211

Sudikoff Lab, Hanover NH 03755. Email: lkf@cs.dartmouth.edu.
¶Microsoft Research, Redmond, WA 98052. Email:

depan@microsoft.com. Work done as a graduate student at MIT
and as an intern at Microsoft Research, Redmond.

1 Introduction

Mixed packing and covering linear programs (LPs)
model a wide range of problems in combinatorial opti-
mization and operations research, including well-studied
problems such as facility location, machine scheduling,
and circuit routing. The input to such problems con-
sists of a set of resources and a set of requests for these
resources, and the goal is to find an allocation of re-
sources that satisfies the requests. In many situations,
while the overall set of resources (packing constraints)
is known offline, the requests (covering constraints) ar-
rive online and must be satisfied immediately on arrival.
Further, resource allocations are typically impossible (or
prohibitively expensive) to revoke. This gives rise to the
OMPC problem.

Online Mixed Packing and Covering (OMPC).
We are given an LP on a set of variables x, λ with
packing constraints Px ≤ λp given offline, and covering
constraints Cx ≥ c that arrive online one at a time.
All coefficients and variables are non-negative. On the
arrival of a new covering constraint, we must increment
the values of x, λ so that all constraints are satisfied.
The goal is to minimize the final value of λ.

An increasingly popular approach for solving pack-
ing or covering problems online is the following: in each
online step, we first update the variable values to ob-
tain a feasible fractional solution, and then round the
current fractional solution to obtain an integer solution
(see, e.g., [1, 2, 8, 9]). Our OMPC algorithm solves
the first step in this framework, i.e. obtains a frac-
tional solution, for problems that can be expressed as
a mixed packing and covering LP. Unlike in the offline
case where LPs can be optimally solved in polynomial
time, obtaining a fractional solution to an LP online of-
ten turns out to be a significant challenge. This has led
to extensive research over the last few years in obtaining
fractional solutions to online LPs. However, to the best
of our knowledge, the proposed techniques apply only to
LPs that either contain only packing constraints or only
covering constraints, or minor variants of these. There-
fore, an important open question was whether one could
extend this framework of solving LPs online to mixed
packing and covering LPs. We answer this question in
the affirmative in this paper by giving the first algo-

85 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216236495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

rithm to obtain a polylogarithmic competitive ratio for
the OMPC class of problems.

We also consider two natural problems that fall in
this category.

Unrelated Machine Scheduling with Startup
Costs (UMSC). We are given a set of m machines
M with startup cost ci for machine i. A set of jobs J
arrives online, one at a time. Each job j requires pij
time to be processed on machine i. When job j arrives,
we must determine whether to open new machines by
paying their startup cost, and then assign the job to one
of the open machines. A schedule is an assignment of
jobs to machines. Our objective is to obtain a schedule
of minimum startup cost, subject to the constraint that
the makespan — the maximum over machines of the
sum of processing times of the jobs assigned to a ma-
chine — of the schedule is at most a target makespan
L.

Note that the UMSC problem generalizes online
set cover [2] (when all processing times are either 0
or ∞) and online unrelated machine scheduling [5]
(when all costs are 0). In addition to its theoretical
significance, one of the motivations for this problem
comes from the need to minimize energy consumption
in large data centers, such as those used by Google and
Amazon (see [12, 29] for the practical significance of
this problem). This problem has been studied earlier in
both the offline [19, 29] and online [17, 27, 28] models.
While near-optimal algorithms were known in the offline
model, we give the first near-optimal online algorithm
for this problem.

Capacity Constrained Facility Location (CCFL).
We are given offline a set of facilities F with opening cost
ci and capacity ui for each facility i in F . Clients arrive
online, and each client j in C has an assignment cost
aij and a demand pij on being assigned to facility i. As
each client arrives, we must determine whether to open
new facilities by paying their opening cost, and then
assign the client to an open facility. The congestion of a
facility is the ratio of the sum of the demands of clients
assigned to the facility, to the capacity of the facility.
Our goal is to assign clients to facilities to minimize the
sum of opening costs and assignment costs subject to
the constraint that the congestion on any facility is at
most 1.

This problem generalizes online (non-metric) facil-
ity location [1] (when all capacities are ∞) and online
unrelated machine scheduling [5] (when all costs are 0
and all capacities are identical). Both the offline [35]
and online [1, 20] versions of the uncapacitated facility
location have been studied earlier. Capacitated facil-
ity location has been studied in the offline model both

with soft capacities (allows multiple facilities at a lo-
cation) and hard capacities (at most one facility per
location) [37, 43].

Note that if we map facilities to machines and
clients to jobs, then the UMSC problem is a special
case of the CCFL problem where all assignment costs
are 0 and all capacities are L.

1.1 Our Results. We give polylogarithmic compet-
itive ratios for the problems discussed. Our results are
the first sublinear guarantees for these problems. We
also give lower bounds to show that our results are
nearly tight.

For OMPC, we show the following result in Sec-
tion 2.

Theorem 1.1. There is a deterministic
O(logm log(dρκ))-competitive algorithm for the
OMPC problem, where m is the number of packing
constraints, d is the maximum number of variables
in any constraint, and ρ (resp., κ) is the ratio of the
maximum to the minimum non-zero packing (resp.,
covering) coefficient respectively.

If all coefficients are either 0 or 1, this yields an
O(logm log d)-competitive algorithm. We also show a
strong lower bound (details deferred to the full version
of the paper) which implies that our algorithm is nearly
optimal.

Theorem 1.2. There is a lower bound of
Ω(logm log(d/ logm)) on the competitive ratio on
any deterministic algorithm for the OMPC problem.

Next, we consider the UMSC and CCFL problems.
We give a randomized online algorithm with a poly-
logarithmic bicriteria∗ competitive ratio for the CCFL
problem, which implies an identical result for the UMSC
problem as well (Section 3). Let α be the minimum sum
of opening and assignment costs of a schedule with con-
gestion 1.

Theorem 1.3. There is a randomized online algorithm
for the CCFL problem that has a bicriteria competitive
ratio of (O(log(mn) logm), O(log(mα) logm)).

If the cost of an optimal solution α is given in advance,
then our algorithm is (O(log(mn) logm), O(logm))-
competitive. As noted earlier, UMSC (and therefore
CCFL) generalizes online set cover and online unre-
lated machine scheduling, which respectively have lower

∗An online randomized algorithm for the CCFL problem with
a bicriteria competitive ratio of (α, β) produces a solution with

congestion at most β and expected cost at most α times the cost
of an optimal solution with congestion 1.

86 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

bounds of Ω(logm log n) (assuming BPP 6= NP) [3] and
Ω(logm) [5]. Thus, our algorithm is nearly-optimal in
its competitive ratio.

On the other hand, if the optimal cost α is not
given, then we give a lower bound on the competitive
ratio of any deterministic algorithm for UMSC, even for
fractional solutions (details deferred to the full version
of the paper). This lower bound on deterministic
fractional solutions is relevant to our technique since
our algorithm first produces a deterministic fractional
solution, and then uses randomization to round it to an
integer solution.

Theorem 1.4. No deterministic online algorithm for
the UMSC problem can obtain a fractional solution
with makespan o(logα)L and startup cost within a
polylogarithmic factor of the optimal.

Previous work in online machine scheduling also
considered the objective of minimizing the sum of the
makespan and startup costs [16, 17] when no tar-
get makespan is given. Our bicriteria algorithm for
CCFL also yields an algorithm that minimizes the sum
of makespan, startup/opening, and assignment costs,
called the total cost. Let β∗ be the total cost of the
optimal schedule. We start with an estimate β to the
optimal total cost, and run our algorithm for CCFL with
all capacities and the optimal cost α set to β. When-
ever the algorithm fails, i.e. α is too small, we double
β. Since the algorithm is (O(log(mn) logm), O(logm))-
competitive, when β = β∗ the algorithm succeeds, giv-
ing an assignment of total cost O(log(mn) logm)β∗.
The previous failures at most double the cost of the
solution obtained.

Theorem 1.5. There is an O(log(mn) logm)-
competitive randomized online algorithm for CCFL
with the objective of minimizing the sum of opening
costs, assignment costs, and makespan.

Since this problem generalizes online set cover, the
competitive ratio obtained is nearly optimal.

1.2 Our Techniques. Our key technical contribu-
tion in this paper is an extension of the multiplicative
weight updates method to LPs with both packing and
covering constraints. For these LPs, we replace the
packing constraints with a potential function that is
exponential in the maximum violation of any packing
constraint. When a covering constraint arrives, we use
multiplicative updates to increase the values of the vari-
ables to satisfy the covering constraint. The update to
each variable is inversely proportional to the potential
function. Our work is the first to use an exponential

potential function to drive multiplicative updates that
yield provably good competitive ratios for online algo-
rithms.

For OMPC, we replace the packing constraints
Px ≤ λ by the potential function Φ := log

∑
k e

(Px)k ,
where (Px)k is the value of the kth packing constraint.
For any variable xj , define ratej as the rate of change
of Φ with respect to xj . In every update, the increment
to xj is inversely proportional to ratej . Section 2
describes the complete algorithm. Our analysis follows
the primal-dual schema, although we need to account
for the nonlinearity of Φ. A key step in our analysis is
to upper bound ratej .

Multiplicative weight updates are used in [14] to ob-
tain O(log n)-competitive fractional solutions for cover-
ing LPs when the constraints arrive online. In [14], the
cost is a simple linear function of the variables. The
update to each variable is inversely proportional to the
sensitivity of the cost function relative to the variable,
given by the variable’s coefficient in the cost function.
In our problem, however, the cost is the maximum vi-
olation of any packing constraint. The cost function is
thus nonlinear, and since its sensitivity relative to a vari-
able changes, it is not apparent how to extend the tech-
niques from [14]. The algorithm in [14] is also extended
to the case when box constraints of the form xi ≤ ui
are given offline. These are inviolable constraints that
must be satisfied by any solution, and are dealt with
in [14] by simply ceasing to increment variables when
they reach their upper bound. The rest of the algo-
rithm remains unchanged, though the analysis differs
somewhat. In contrast, our packing constraints consist
of multiple variables and our objective is to minimize the
maximum violation of any packing constraint. Thus in
our case, there is no natural value where we can cease
incrementing variables.

A large body of work uses Lagrangean-relaxation
techniques to obtain approximate algorithms for solv-
ing LPs offline, e.g., [39, 42]. In these papers, the
constraints in the LP are replaced by an exponential
penalty function. In each update, the update vector
for the variables minimizes the change in the penalty
function. In this sense, the updates in these offline al-
gorithms are greedy. Since the constraints are avail-
able offline, this gives ε-approximate solutions. In our
case, since covering constraints arrive online, greedy al-
gorithms perform very poorly, and we must use differ-
ent techniques. We use an exponential penalty func-
tion similar to offline algorithms. However, instead of a
greedy strategy as used in [39, 42], we hedge our bets
and increment all variables that appear in the covering
constraint. The increment to each variable is inversely
proportional to its contribution to the penalty function.

87 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

For CCFL, our algorithm has two steps, both of
which are performed in any online round. We first
obtain a fractional assignment of clients to facilities, and
then use a randomized rounding scheme to obtain an
integer solution. For the fractional solution, we design
a somewhat more complicated potential function that
combines the two objectives: for each facility i, it is
linear in the opening cost ci and exponential in the
congestion li. Our algorithm creates a dynamic list of
facilities in increasing order of its change in potential
if the current job were assigned to it, and then uses
multiplicative updates to assign larger fractions of the
client to facilities that appear earlier in the order. The
analysis for this algorithm involves proving a bound
on the value of the cumulative potential function over
all the facilities. We then adapt randomized rounding
techniques used for offline machine scheduling with
startup costs [29] and online set cover [15] to round the
fractional solution and obtain an integral assignment of
jobs to machines.

While a reduction exists from uncapacitated non-
metric facility location to set cover [31] (and this
reduction can be made online), such a reduction from
CCFL to UMSC seems more challenging. The addition
of demands complicates things since we can no longer
assign each client to an open facility of minimum
assignment cost as in [31], but must consider the
demand placed on the facility as well. Instead of
obtaining such a reduction, we give an algorithm that
works directly with assignment costs.

1.3 Related Work. Multiplicative updates are used
in a wide variety of contexts. They are used in
both offline approximation algorithms for packing and
covering problems [11, 18, 21, 24, 25, 26, 30, 32, 33,
39, 41, 42], and online algorithms for problems with
only packing or only covering constraints such as set
cover [15], caching [9], paging [8], ad allocations [13],
and network optimization [1, 2]. Multiplicative weight
updates also have a long history in learning theory;
these results are surveyed in [4].

The (offline) UMSC problem was first studied in [19,
29]. They give offline algorithms for the problem us-
ing different techniques. For the online problem with
identical machines, [17, 28] give O(1)-competitive algo-
rithms where the objective is the sum of the makespan
and startup cost. These are extended to the case where
machines have speed either 1 or s, with more general
startup costs, by Imreh [27]. We give the first results
for the online setting with unrelated machines.

Many variants of the machine scheduling (or
load balancing) problem have been extensively stud-
ied. The best known of these is perhaps offline min-

imum makespan scheduling, for which [34] give a 2-
approximation. In the online setting, Graham [22, 23]
showed that the natural greedy heuristic achieves a com-
petitive ratio of 2− 1/m for m identical machines. The
competitive ratio of this problem has been subsequently
improved in a series of results (see, e.g., [10] and subse-
quent improvements). For the more general restricted
assignment problem where the processing time of each
job j on any machine is either some value pj or ∞,
an online algorithm having competitive ratio O(logm)
was designed by Azar, Naor and Rom [7]. This algo-
rithm was later generalized to the unrelated machines
scenario by Aspnes et al [5] with the same competitive
ratio. Various other models and objectives have been
considered for the machine scheduling problem; for a
comprehensive survey, see [6] and [40].

2 Algorithm for the OMPC Problem

We now give an algorithm for the OMPC problem and
prove Theorem 1.1. A mixed packing and covering LP
consists of packing constraints Px ≤ 1 and covering
constraints Cx ≥ 1. Our problem is to obtain a solution
x for (2.1) that minimizes λ, the maximum amount by
which any packing constraint is violated.

min λ(2.1)

s.t. Cx ≥ 1 ,

Px ≤ λ ,

x, λ ≥ 0 .

Packing constraints are given to us initially, and cover-
ing constraints Cx ≥ 1 are revealed one at a time. Our
algorithm assigns fractional values to the variables. The
variable values can be increased, but not decreased.

For a vector v, both vi and (v)i denote its ith
component. The set {1, 2, . . . , n} is denoted by
[n]. The number of variables, packing constraints,
and covering constraints in the LP are n, m, and
mc respectively. Define ρ = max

k,j
pkj/ min

k,j:pkj>0
pkj and

κ = max
i,j

cij/ min
i,j:cij>0

cij . κ is used only in the analysis

of the algorithm; we do not need to know its value
during execution. Define κ1 = maxj c1j , i.e., κ1 is the
maximum coefficient in the first covering constraint to
arrive. We use d to denote the maximum number of
variables in any constraint, and d1 for the maximum
number of variables in any packing constraint, and the

first covering constraint. Define µ = 1 +
1

3 ln(em)
,

and σ = e2 ln(µd2ρκ) (e is the base of the natural
logarithm.) opt is the value of the optimal solution
to (2.1). For our analysis, we consider the dual of (2.1):

88 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

max
∑
i

yi(2.2)

s.t. CTy ≤ PTz ,
m∑
k=1

zk ≤ 1 ,

y, z ≥ 0 .

We assume that
1

4σ
≤ opt ≤ 1

2σ
. This can be

achieved by dividing the matrix of packing coefficients

P by a parameter Γ that satisfies 2opt ≥ Γ

2σ
≥ opt.

Without scaling P, our algorithm obtains an additive
O(logm) term in the competitive ratio. Scaling the
matrix P allows us to convert the additive term into a
multiplicative term for the competitive ratio. The lower

bound on Γ ensures
opt

Γ
≤ 1

2σ
, and is used to obtain

meaningful bounds on the competitive ratio. Without
this estimate Γ , we can use a “doubling procedure”
commonly used in online algorithms, which increases
the competitive ratio by a factor of 4. This doubling
procedure is discussed in detail in Section A.

Given vector x, let λ(x) = maxk∈[m](Px)k. Our
goal is to obtain x that is feasible for (2.1) and minimizes
λ(x). Since λ(x) is the maximum of the packing
constraints, it is non-differentiable. We therefore define
the potential function

Φ(x) := ln

 ∑
k∈[m]

exp(Px)k

 .

Φ(x) is a differentiable estimate of λ(x), since
maxk(Px)k ≤ Φ(x) ≤ maxk(Px)k + lnm. In our
algorithm, the multiplicative update to each variable xj
is inversely proportional to the rate of change of Φ(x)
relative to xj , given by

ratej(x) =
∂Φ(x)

∂xj
(2.3)

=

∑
k∈[m] pkj exp(Px)k∑
k∈[m] exp(Px)k

.

For covering constraint i, define

(2.4) εi(x) = (µ− 1) min
j:cij>0

ratej(x)/cij ,

so that for all j ∈ [n], εi(x)cij/ratej(x) ≤ µ− 1.
Our algorithm is as follows. When the first covering

constraint arrives, initialize xj ← 1/(d21ρκ1) for all

j ∈ [n]. Each covering constraint is assigned a new
dual variable yi when it arrives. For covering constraint
i, while (Cx)i < 1, we execute the following steps:

• Let xl be the current value of x. Increase each xj

to xj

(
1 + εi(x

l)
cij

ratej(xl)

)
.

• Increment dual variable yi by eεi(x
l).

A single iteration of the while loop is a phase,
indexed by l. The first phase is phase 0. The value
of the variables before they are incremented in phase l
is xl. x0 denotes the values after initialization. For
covering constraint i, Li is the set of indices of the
phases executed from its arrival until (Cx)i ≥ 1, and
L = ∪iLi.

Lemma 2.1 follows from the initialization for vari-
ables xj .

Lemma 2.1. For the variables as initialized, λ(x0) ≤
opt, and hence Φ(x0) ≤ opt + lnm.

Proof. Let x∗j be the values for the variables in an
optimal solution. After the first covering constraint is
received, 1 ≤

∑
j c1jx

∗
j ≤ maxr c1r

∑
j x
∗
j . Since the

first covering constraint has at most d1 variables, there
exists variable x∗b ≥ 1/(d1 maxr c1r), and hence

opt = max
k∈[m]

(Px∗)k ≥ min
k,j:pkj>0

pkjx
∗
b

≥ min
k,j:pkj>0

pkj/(d1 max
r
c1r)

= min
k,j:pkj>0

pkj/(d1κ1) .

Using ρ = maxk,j pkj/mink,j:pkj>0 pkj ,

(2.5) opt ≥
maxk,j:pkj>0 pkj

d1ρκ1
.

Our algorithm initializes x0j = 1/(d21ρκ1), and hence

λ(x0) = max
k∈[m]

(Px0)k ≤
d1 maxk,j pkj

d21ρκ1
(2.6)

=
maxk,j pkj
d1ρκ1

(2.5)

≤ opt ,

where the first inequality is because any packing con-
straint has at most d1 variables. Thus, Φ(x0) ≤ λ(x0)+
lnm ≤ opt + lnm, proving the lemma.

Corollary 2.1. In any phase l, λ(xl) ≤ 3 ln(em).

89 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Proof. By (2.6), λ(x0) ≤ 1/(2σ) ≤ 1. Thus the lemma
is satisfied for the first phase. For any phase l > 0, the
algorithm would have failed at the end of phase l − 1
if λ(x) ≥ 3 ln(em). Since the algorithm did not fail in
phase l − 1, in any phase l, λ(xl) ≤ 3 ln(em).

Lemma 2.1 thus bounds the initial value of the
primal objective. Our proof of the competitive ra-
tio follows from a primal-dual analysis. We show in
Lemma 2.2 that the dual objective is an upper bound
on the increase in the primal objective. Corollary 2.2
and Lemma 2.5 show how the dual variables maintained
by the algorithm can be scaled down to obtain feasible
dual values. We use these results together with weak
duality in Theorem 2.1 to prove the bound on the com-
petitive ratio.

Lemma 2.2 follows from our choice of multiplicative
updates.

Lemma 2.2. The increase in
∑
i yi is an upper bound

on the increase in Φ(x) in every phase.

To prove this lemma, we will use the following
technical lemma.

Lemma 2.3. Given x′ and x′′ with λ(x′) ≤ 3 ln(em)
and x′j ≤ x′′j ≤ µx′j where µ = 1 + 1

3 ln(em) ,

ratej(x
′′) ≤ e ratej(x

′).

Proof. By definition of ratej(x) in (2.3), and since x′j ≤
x′′j ≤ µx′j ,

ratej(x
′′) =

∑
k∈[m] pkj exp(Px′′)k∑
k∈[m] exp(Px′′)k

(2.7)

≤
∑
k∈[m] pkj exp(µ(Px′)k)∑

k∈[m] exp(Px′)k
.

Since λ(x′) ≤ 3 ln(em), ∀k, (Px′)k ≤ 3 ln(em), and
hence µ(Px′)k = (Px′)k+(Px′)k/(3 ln(em))≤ (Px′)k+
1. Substituting (Px′)k + 1 for µ(Px′)k in (2.7) yields

ratej(x
′′) ≤

∑
k∈[m] pkj exp((Px′)k + 1)∑

k∈[m] exp(Px′)k

= e

∑
k∈[m] pkj exp(Px′)k∑
k∈[m] exp(Px′)k

= e ratej(x
′) ,

proving the lemma.

We are now ready to prove Lemma 2.2.
Proof of Lemma 2.2. Let Φl and Φl+1 denote the values
of Φ(x) before and after the variables are incremented
in phase l, respectively. We will show that Φl+1 −Φl ≤
eεi(x

l), which is the increase in
∑
i yi in phase l.

Let xl and xl+1 be the values of x before and after
being incremented in phase l. For each xj , let gj(t) :=
xlj+(xl+1

j −xlj)t for 0 ≤ t ≤ 1. Note that gj(0) = xlj and

gj(1) = xl+1
j . Define g(t) = (g1(t), g2(t), . . . , gm(t)).

With some abuse of notation, any function of x, say
h(x), can be viewed as a function of t, with h(t) :=
h(g(t)). Thus, the functions Φ(x) and ratej(x) can be
written as functions of t: Φ(t) = ln

∑
k∈[m] exp(Pg(t))k,

and

ratej(t) = ratej(g(t)) =
∂Φ(t)

∂gj(t)

=

∑
k∈[m] p̃kj exp(Pg(t))k

exp(Φ(t))
.

We use these alternate expressions in the remainder of
the proof. By the chain rule,

dΦ(t)

dt
=

n∑
j=1

∂Φ(t)

∂gj(t)

dgj(t)

dt
,

and hence,

Φl+1 − Φl =

∫ 1

t=0

dΦ(t)

dt
dt(2.8)

=

n∑
j=1

∫ 1

t=0

ratej(t)
dgj(t)

dt
dt .

In a phase, each variable is incremented by at most
a factor of µ. Therefore xl+1 ≤ µxl. Then by
Corollary 2.1, λ(xl) ≤ 3 ln(em) in any phase l. Thus
ratej(t) ≤ e ratej(0) for 0 ≤ t ≤ 1 by Lemma 2.3. Hence

Φl+1 − Φl ≤ e

n∑
j=1

ratej(x
l)

∫ 1

t=0

dgj(t)

dt
dt

= e

n∑
j=1

ratej(x
l)(xl+1

j − xlj) .

Since in phase l each variable xj gets multiplied by
1 + εi(x

l)
cij

ratej(xl)
,

90 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Φl+1 − Φl ≤ eεi(x
l)

n∑
j=1

ratej(x
l)

cijx
l
j

ratej(xl)

= eεi(x
l)

n∑
j=1

cijx
l
j

≤ eεi(x
l)

where the last inequality follows since, on entering the
for loop, (Cx)i < 1. Since eεi(x

l) is the increase in the
dual objective, this proves the lemma.

The following results obtain bounds on the infeasi-
bility of the constraints in the dual linear program (2.2).

Lemma 2.4. For any j ∈ [n],

(CTy)j ≤ σ max
l∈L

ratej(x
l) .

Proof. In any phase l, xj is multiplied by 1 +

cijεi(x
l)/ratej(x

l) ≥ exp
(
cijεi(x

l)
e ratej(xl)

)
, where the in-

equality uses 1 + a ≥ exp(a/e) for 0 ≤ a ≤ 1.
The initial value of xj is 1/(d21ρκ1), and finally xj ≤
µ/mini:cij>0 cij . Thus over all phases,

∑
i∈[mc]

∑
l∈Li

cijεi(x
l) ≤ e ln

(
µd21ρκ1

mini:cij>0 cij

)
(2.9)

×max
l∈L

ratej(x
l) .

From the algorithm, the dual variable yi is exactly
e
∑
l∈Li

εi(x
l). Hence the expression on the left in (2.9)

is (CTy)j/e. Since σ ≥ e2 ln
µd21ρκ1

mini:cij>0 cij
, the lemma

follows.

From Lemma 2.4, if we set dual variables zk so that∑
k∈[m] pkjzk is at least maxl∈L ratej(x

l), then the dual

constraint (CTy)j ≤ (PTz)j is violated by a factor of
at most σ. By definition of ratej(x),

max
l∈L

ratej(x
l) = max

l∈L

∑
k∈[m] pkj exp(Pxl)k∑
k∈[m] exp(Pxl)k

≤
∑
k∈[m]

pkj max
l∈L

exp(Pxl)k∑
k∈[m] exp(Pxl)k

.

We now define our dual variables zk as

zk := max
l∈L

exp(Pxl)k∑
k∈[m] exp(Pxl)k

.

Corollary 2.2 follows from Lemma 2.4 and by definition
of zk.

Corollary 2.2. For any j ∈ [n],

(CTy)j ≤ σ(PTz)j .

Lemma 2.5.
∑
k∈[m]

zk ≤ ln(em) + max
l∈L

λ(xl).

Proof. For each packing constraint k, define

φ(k) := arg max
l

exp((Pxl)k)∑
k∈[m] exp(Pxl)k

.

Thus zk attains its value in phase φ(k). We index the
packing constraints so that if k < k′, then φ(k) < φ(k′).
To prove Lemma 2.5 we make use of the following bound
on the sum of a sequence that we prove in Section A.

Lemma 2.6. For m ∈ Z+ and a1, a2, . . . , am ∈ R≥0

with a1 > 0,
∑
i∈[m]

ai∑
j≤i aj

≤ 1 + ln

∑m
i=1 ai
a1

.

Let ak := exp((Pxφ(k))k). We claim that zk ≤
ak/

∑
l≤k al. Given this claim, Lemma 2.5 follows from

Lemma 2.6 since a1 = exp((Pxφ(1))1) ≥ 1 and hence

1 + ln

∑
i∈[m] ai

a1
≤ 1 + ln

∑
i∈[m]

ai

≤ 1 + lnm+ (Pxφ(k))k

≤ ln(em) + max
l
λ(xl) .

To show that zk ≤ ak/
∑
l≤k al, observe that the

denominator of zk is given by
∑
l∈[m] exp((Pxφ(k))l)

≥
∑
l≤k exp((Pxφ(k))l). Fix k. For each l < k,

φ(l) < φ(k). Since variables are non-decreasing,

exp((Pxφ(l))l) ≤ exp((Pxφ(k))l). Hence,

∑
l∈[m]

exp((Pxφ(k))l) ≥
∑
l≤k

exp((Pxφ(l))l) =
∑
l≤k

al .

The denominator of zk is thus at least
∑
l≤k al. Since

the numerator of zk is ak, the claim follows.

91 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

We now use the previous lemmas to prove the bound
on the competitive ratio of our algorithm.

Theorem 2.1. The algorithm is 8σ ln(em)-
competitive.

Proof. The dual objective
∑
i yi is an upper bound on

the total increase in Φ(x) in each phase, and initially,
Φ(x0) ≤ lnm+ opt. Since Φ(x) is an upper bound on
λ(x), λ(x) ≤

∑
i yi + lnm+opt. Define ν := ln(em) +

maxl λ(xl). The dual is a maximization problem, and
Corollary 2.2 and Lemma 2.5 show that z/ν and y/(σν)
are feasible values for the dual variables. By weak
duality, any feasible dual solution is a lower bound on
the optimal primal solution, and hence

∑
i yi/(σν) ≤

opt. For λ(x), we thus obtain

(2.10) λ(x) ≤ σνOPT +OPT + lnm.

We first show that λ(x) ≤ 3 ln(em), and then obtain
the bound on the competitive ratio. Since opt ≤ 1

2σ ,
substituting in (2.10),

λ(x) ≤ ν

2
+

1

2σ
+ lnm,

and substituting ν = ln(em) + λ(x) yields λ(x) ≤
3 ln(em).

For the competitive ratio, since λ(x) ≤ 3 ln(em),
hence ν = ln(em) + λ(x) ≤ 4 ln(em). Further, lnm ≤
4σ lnmopt. Substituting in (2.10) yields

λ(x) ≤ 4σ ln(em)opt + opt + 4σ lnmopt

≤ 8σ ln(em)OPT .

3 Algorithm for the CCFL Problem

In this section, we give an algorithm for the CCFL
problem and prove Theorem 1.3. In describing the
algorithm, we assume that the number of clients n and
the optimal cost α are given offline. If n is not known
offline, each client estimates n by assuming that it is the
last client; this incurs additive factors of O(log log n) in
the makespan and O(log n log(mn)) in the cost. If α is
not known offline, then we can guess the value of α using
standard techniques; this incurs multiplicative factors of
O(log(mα)) in the makespan and O(1) in the cost. We
also assume that all facilities have capacity 1, which can
be achieved by scaling each demand by the capacity of
the corresponding facility.

As described earlier, our algorithm produces a
fractional solution which is then rounded online to
obtain an integer solution.

Minimize
∑
i∈F

cixi +
∑
j∈C

∑
i∈F

aijyij subject to:

∑
j∈C

pijyij ≤ xi ∀i ∈ F(3.11)

yij ≤ xi ∀ i ∈ F , j ∈ C(3.12) ∑
i∈F

yij ≥ 1 ∀ j ∈ C(3.13)

xi, yij ∈ {0, 1} ∀i ∈ F , j ∈ C(3.14)

Figure 1: The Integer Scheduling LP (ISLP) for the
CCFL problem

3.1 Fractional Algorithm. An integer LP formula-
tion of CCFL (called integer scheduling LP or ISLP) is
given in Figure 1. The variable xi is 1 if and only if facil-
ity i is open, and yij is 1 if and only if client j is assigned
to facility i. In the fractional relaxation (FSLP), these
variables are constrained to be in the range [0, 1] instead
of Eqn. (3.14). Note that we have both covering (3.13)
and packing (3.11) constraints in these relaxations.

We will now describe the online updates to the
fractional solution to maintain feasibility for FSLP on
receiving a new client j. This involves updating the
values of yij (the fraction of client j assigned to facility
i) so as to satisfy (3.13), and corresponding updates
to the values of xi if (3.11) or (3.12) is violated. In
fact, we relax the constraints in FSLP in two ways. Let
facility i be said to be closed, partially open or fully
open depending on whether xi = 0, 0 < xi < 1 or xi = 1
respectively. First, for technical reasons, we relax (3.11)
and (3.12) to∑

j∈C
pijyij ≤ 9xi ∀ i ∈ F(3.15)

yij ≤ 2xi ∀ i ∈ F , j ∈ C(3.16)

Further, we enforce (3.15) only if xi < 1, i.e. if facility i
is not fully open. The congestion on a fully open facility
will be bounded separately in the analysis. We call this
the relaxed fractional scheduling LP or RFSLP.

The algorithm has two phases — an offline pre-
processing phase, and an online phase that (fractionally)
schedules the arriving clients.
Pre-processing. First, we discard all facilities with
opening cost greater than α (recall that α is the optimal
cost) and redefine m to be the number of remaining
facilities. Next, we multiply all costs (opening and
assignment) by m/α so that the new optimum is m.
Further, for every facility i with ci ≤ 1, we increase ci
to 1. Finally, we initialize xi for all facilities i to 1/m.
At the end of the pre-processing phase, we have the

92 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

following properties:

• The optimal cost is between m and 2m.

• The opening cost of every facility is at least 1 and
at most m.

• Every facility i has xi = 1/m.

•
∑
i∈F xi = 1.

The Algorithm. To describe the online updates, we
need the following definitions. We define the virtual cost
of client j on facility i as

ηi(j) =

 ciA
`i−1pij + aij , if facility i is fully open,

i.e., xi = 1
cipij + aij , otherwise

where A is a constant that we will fix later, and `i
represents the congestion on facility i, i.e.

`i =
∑
j∈C

pijyij .

Let M(j) denote an ordering of facilities in non-
decreasing order of virtual cost ηi(j) for client j. Let
P (j) denote the maximal prefix of M(j) such that∑
i∈P (j) xi < 1. (Note that P (j) may be empty.) Let

k(j) denote the first facility in M(j) that is not in P (j).
(Since

∑
i∈F xi = 1 after the pre-processing phase and

the values of xi’s are non-decreasing during the course
of this algorithm, P (j) 6= M(j) and therefore, k(j) is
well-defined.)

We now describe the online updates. Suppose client
j arrives online. We increase the values xi’s and yij ’s in
multiple iterations until

∑
i∈F yij ≥ 1, i.e. Eqn. (3.13)

is satisfied. To describe a single iteration, let us first set
up some notation. Let ∆xi be the total increase in the
value of xi over all iterations for client j. We say that
the effective capacity created on facility i for client j is

min

(
2xi,

9 ∆xi
pij + (aij/ci))

)
.

Note that the effective capacity created by the increase
in xi gives a value of yij that preserves the feasibility of
the fractional solution for RFSLP.

Now, we are ready to define a single iteration (called
an algorithmic step) of the updates. Let δxi = xi/cin
for facility i. We increase xi (and correspondingly ∆xi)
by δxi for each facility i ∈ P (j).† Further, for each

†This introduces a minor technical issue since the value of xi
can exceed 1, but this can be easily dealt with by capping the

value of xi at 1. We will ignore this issue to avoid unnecessary
notational complexity.

facility i ∈ P (j), we set the value of yij to the effective
capacity created on facility i for client j. For facility
k(j), we have two cases:

• xk(j) < 1 (i.e. facility k(j) is partially open).
We increase xk(j) (and correspondingly ∆xk(j)) by
δxk(j) for facility k(j); further, we set the value of
yk(j)j to the effective capacity created on facility
k(j) for client j. We call this an algorithmic step
of type A.

• xk(j) = 1 (i.e. facility k(j) is fully open). We
keep the value of xk(j) unchanged at 1 but increase
yk(j)j by 9/ηk(j)(j)n. We call this an algorithmic
step of type B.

As noted earlier, the above algorithmic steps are repeat-
edly undertaken until

∑
i∈F yij ≥ 1.

Analysis. Our goal is to show the following bounds
on the maximum congestion and cost of the fractional
assignment.

Lemma 3.1. The fractional assignment produced by the
online algorithm satisfies∑

j∈C
yijpij = O(logm)

for each facility i, and∑
i∈F

cixi +
∑
j∈C

∑
i∈F

aijyij = O(m logm).

We introduce a potential function φi for facility i defined
as

φi =

ciA

`i−1 + 1
9

∑
j∈C aijyij , if facility i is fully open,

i.e., xi = 1
cixi + 1

9

∑
j∈C aijyij , otherwise.

The cumulative potential function φ =
∑
i∈F φi. Our

goal will be to show that φ = O(m logm). Note that
the potential function φi may not be monotonically
increasing at xi = 1; however, the following fact ensures
that proving a bound on the final value of φ implies
Lemma 3.1.

Fact 3.1. For any facility i, let the final value of the
potential function φi be T . Then, the total increase in
the value of φi during the course of the algorithm is
O(T).

Proof. If facility i is partially open at the end, then the
total increase in the value of φi is at most T since φi is
non-decreasing. On the other hand, if facility i is fully
open at the end, then the decrease in the value of φi

93 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

when facility i is fully opened (i.e. when xi reaches 1)
is at most (

1− 1

A

)
ci ≤ (A− 1)T,

since T ≥ ci/A. Hence, the total increase in the value
of φi is at most A · T .

We prove the bound on φ in three steps. First,
we bound the increase of φ in the pre-processing phase
(Lemma 3.2); next, we bound the increase of φ in each
algorithmic step of either type A or type B (Lemma 3.3);
and finally, we bound the total number of algorithmic
steps.

Pre-processing

Lemma 3.2. At the end of the pre-processing phase,
φ ≤ m.

Proof. Note that each facility i has ci ≤ m and xi =
1/m after pre-processing.

Single Algorithmic Step

Lemma 3.3. For any constant 1 < A < 19/18, the
increase in potential in a single algorithmic step of
either type A or type B is at most 4/n.

We prove Lemma 3.3 by considering algorithmic steps
of type A and type B separately.

Lemma 3.4. The increase in potential in a single algo-
rithmic step of type A is at most 4/n.

Proof. The total increase in potential in an algorithmic
step of type A (due to increase in the value of xi for
facilities i ∈ P (j) ∪ {k(j)}) is at most∑

i∈P (j)∪{k(j)}

(
ci δxi +

aij
9

(
9 δxi

pij + aij/ci

))

≤
∑

i∈P (j)∪{k(j)}

(
ci +

aij
aij/ci

)(
xi
cin

)
=

∑
i∈P (j)∪{k(j)}

2xi
n

< 4/n .

In the first inequality, we drop the term pij from the
denominator and replace δxi = xi/cin.

Lemma 3.5. For any constant 1 < A < 19/18, the
increase in potential in a single algorithmic step of type
B is at most 3/n.

Proof. The total increase in potential for facilities i ∈
P (j) due to an algorithmic step of type B is at most∑

i∈P (j)

(
ci δxi +

aij
9

(
9 δxi

pij + aij/ci

))

≤
∑

i∈P (j)}

(
ci +

aij
aij/ci

)(
xi
cin

)
=

∑
i∈P (j)}

2xi
n

< 2/n.

In the first inequality, we drop the term pij from the
denominator and replace δxi = xi/cin.

The other source of increase in potential is the
assignment of a fraction of client j to facility k(j). Let

B = ηk(j)(j)/pk(j)j = (ck(j)A
`k(j)−1) + (ak(j)j/pk(j)j).

Then, the congestion on facility k(j) increases by δ` =
5/Bn. The resulting increase of potential φk(j) is

ck(j)(A
`k(j)−1+δ` −A`k(j)−1) +

ak(j)j

9

(
δ`

pk(j)j

)
= ck(j)A

`k(j)−1(Aδ` − 1) + δ`

(
ak(j)j

9pk(j)j

)
= ck(j)A

`k(j)−1
(

(1 + (A− 1))
9/Bn − 1

)
+

(
9

Bn

)(
ak(j)j

9pk(j)j

)
< ck(j)A

`k(j)−1
(

18(A− 1)

Bn

)
+

(
1

Bn

)(
ak(j)j

pk(j)j

)
<

(
ck(j)A

`k(j)−1 + ak(j)j/pk(j)j
)(1

Bn

)
=

1

n
.

The penultimate inequality follows from the property
that (1 + x)1/y < ex/y < 1 + 2x/y, for any y ≥ x > 0.

This completes the proof of Lemma 3.3.

Number of Algorithmic Steps

We classify the algorithmic steps according to a fixed
optimal offline (integer) assignment that we call opt.
Suppose opt assigns client j to facility opt(j), and
let Mopt denote the facilities that are fully open in the
optimal offline schedule. The three categories are:

1. opt(j) ∈ P (j).

2. opt(j) /∈ P (j) and opt(j) is partially open.

94 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

3. opt(j) is fully open.

We now bound the total increase in potential due to
algorithmic steps in each of the three categories above.
(Lemma 3.6 for category 1, Lemma 3.8 for category 2,
and Lemma 3.9 for category 3.)

Lemma 3.6. The total increase in potential due to all
algorithmic steps in the first category is O(m logm).

Proof. In any algorithmic step of the first category,

the value of xopt(j) increases to xopt(j)

(
1 + 1

copt(j)n

)
.

Since xi is initialized to at least 1/m for each facil-
ity i in the pre-processing phase, there are at most∑
i∈Mopt

cin logm = O(mn logm) algorithmic steps
of the first category. The lemma now follows from
Lemma 3.3.

For the second and third categories, we need the
following property.

Lemma 3.7. The total number of algorithmic steps (of
either type A or type B) in the second and third cate-
gories for a client j is at most 2ηopt(j)(j)n/9.

Proof. We want to show that after at most
2ηopt(j)(j)n/9 algorithmic steps in the second or
third category for client j, we will have

∑
i∈F yij ≥ 1.

To show this, we will use the fact that

(3.17) ηi(j) ≤ ηopt(j)(j)

for every facility i ∈ P (j) ∪ {k(j)}.
First, note that each algorithmic step of type B

creates an effective capacity of 9/ηk(j)(j)n in facility
k(j). By Eqn. (3.17), the total effective capacity created
by each such algorithmic step is at least 9/ηopt(j)(j)n.

Now, we will show that for any algorithmic step
of type A, either the total effective capacity created is
at least 9/ηk(j)(j)n or it is the last algorithmic step for
client j. Let R(j) be the set of facilities i ∈ P (j)∪{k(j)}
such that

2xi <
9 ∆xi

pij + (aij/ci)
.

If
∑
i∈R(j) xi ≥ 1/2, then the total effective capacity

created for client j is at least∑
i∈R(j)

2xi ≥ 1,

and therefore, the current step is the last algorithmic
step for client j. Otherwise, the total effective capacity
created by the current algorithmic step on facilities

i ∈ (P (j) ∪ {k(j)}) \R(j) is∑
i∈(P (j)∪{k(j)})\R(j)

9 δxi
pij + (aij/ci)

=
∑

i∈(P (j)∪{k(j)})\R(j)

9xi
(cipij + aij)n

=
∑

i∈(P (j)∪{k(j)})\R(j)

9xi
ηi(j)n

(type A)

≥
∑

i∈(P (j)∪{k(j)})\R(j)

9xi
ηopt(j)(j)n

(Eqn. (3.17))

=
9

(ηopt(j)(j)n

∑
i∈(P (j)∪{k(j)})\R(j)

xi

>
9

2ηopt(j)(j)n
.

The last inequality follows from the fact that∑
i∈(P (j)∪{k(j)}\R(j) xi > 1/2 when

∑
i∈R(j) xi < 1/2

since
∑
i∈P (j)∪{k(j)} xi ≥ 1.

Lemma 3.8. The total increase in potential due to all
algorithmic steps in the second category is O(m).

Proof. Note that for algorithmic steps in the second
category for client j, the virtual cost

ηopt(j)(j) = copt(j)popt(j)j + aopt(j)j .

By Lemmas 3.3 and 3.7, the total increase in potential
due to algorithmic steps in the second category for client
j is at most

4

n
×

2ηopt(j)(j)n

9
=

8ηopt(j)(j)

9

=
8(copt(j)popt(j)j + aopt(j)j)

9
.

To complete the proof, note that

(3.18)
∑
j∈C

copt(j)pij + aopt(j)j = O(m).

Lemma 3.9. The total increase in potential due to all
algorithmic steps in the third category is at most m +
(8/9)

∑
i∈FA

cia
Li−1, where Li is the final congestion

on facility i in the assignment produced by the algorithm
and FA is the set of facilities that are fully opened by
the algorithm.

Proof. Since the congestion of facilities is monotonically
non-decreasing,

ηopt(j)j ≤ copt(j)ALopt(j)−1popt(j)j + aopt(j)j .

95 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

for every algorithmic step in the third category. There-
fore, summing over all clients, the total increase in po-
tential due to algorithmic steps in the third category is
at most (using Lemmas 3.3 and 3.7)

8

9

∑
j∈C

(
copt(j)A

Lopt(j)−1popt(j)j + aopt(j)j
)

< m+
8

9

∑
i∈Mopt∩FA

ciA
Li−1

∑
j:opt(j)=i

pij

(since
∑
j∈C

aopt(j)j ≤ m)

≤ m+
8

9

∑
i∈Mopt∩FA

ciA
Li−1

(since
∑

j:opt(j)=i

pij ≤ 1)

≤ m+
8

9

∑
i∈FA

ciA
Li−1.

Finally, we bound the total potential φ; this imme-
diately yields Lemma 3.1.

Lemma 3.10. The online fractional algorithm produces
a schedule that satisfies φ = O(m logm).

Proof. Note that the final value of φ is the total increase
in φ over all the algorithmic steps for all the clients
minus the decrease in φi’s when xi’s reach 1. Thus, the
final value of φ is at most the total increase in φ over
all the algorithmic steps. By Lemmas 3.2, 3.6, 3.8 and
3.9, we conclude that

φ ≤ O(m logm) + (8/9)φ

⇒ φ = O(m logm).

3.2 Online Randomized Rounding. In this sec-
tion, we give an online randomized rounding scheme for
the fractional solution produced by the algorithm.

The Algorithm. For each facility i, we select (offline) a
number ri uniformly at random and independently from
[0, 1]. In response to a new client j arriving online, the
algorithm updates the assignment in three steps:

• Fractional step. The fractional solution is up-
dated (via multiple algorithmic steps) as described
in the fractional algorithm. Let xi(j) be the value
of xi after this update.

• Activation step. Each facility i that satisfies
5xi(j) ln(mn) ≥ ri (and is not already open) is
opened. Let M(j) denote the set of open facilities
after this step.

• Assignment step. Let

zij =

{ yij
2xi(j)

if xi(j) <
1

5 ln(mn)

yij otherwise

and
qij =

zij∑
i∈FA(j) zij

for any facility i ∈ FA(j). We assign client j to a
facility i ∈ FA(j) with probability qij .

Analysis. The next lemma is an immediate conse-
quence of the fact that facility i is open in the integer
solution with probability min(5xi ln(mn), 1).

Lemma 3.11. The total opening cost of all facilities
opened in the integer schedule is O(m logm log(mn)) in
expectation.

Proof. The expected opening cost of facility i in the
integer schedule is at most 5cixi ln(mn); the lemma now
follows from Lemma 3.1 and linearity of expectation.

To bound the total assignment cost and the maximum
congestion of the integer solution, we first bound the
probabilities qij . (This lemma also shows that with
high probability, FA(j) is non-empty even if j is the
first client.)

Lemma 3.12. With probability at least 1 − 1/m, qij ≤
zij for all facilities i ∈ F and clients j ∈ C.

Proof. We show that
∑
i∈FA(j) zij ≥ 1 with probability

at least 1−1/mn for any client j; the lemma then follows
using the union bound over all clients. Let F1(j) denote
the set of facilities i with xi(j) ≥ 1/5 ln(mn), and let
F2(j) = F \ F1(j). We have∑

i∈FA(j)

zij <
∑
i∈F

yij

if and only if
∑

i∈F2(j)∩FA(j)

zij <
∑

i∈F2(j)

yij ,

since zij = yij for each facility i ∈ F1(j).
Define a random variable Zij for any facility i ∈

F2(j) as

Zij =

{
1 with probability

5yij ln(mn)
2

0 otherwise.

Note that for any facility i ∈ F2(j),

E[Zij] =
5yij ln(mn)

2

=
yij

2xi(j)
× 5xi(j) ln(mn)

= zij × P[i ∈ FA(j)].(3.19)

96 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Note that zij ∈ [0, 1] since yij ≤ 2xi(j) and Zij ∈
{0, 1} by definition. Therefore,

P

 ∑
i∈FA(j)

zij <
∑
i∈F

yij

= P

 ∑
i∈F2(j)∩FA(j)

zij <
∑

i∈F2(j)

yij

≤ P

 ∑
i∈F2(j)

Zij <
∑

i∈F2(j)

yij

(by Eqn. (3.19) and since zij ∈ [0, 1])

<
1

mn
,

by Chernoff bounds (cf. e.g. [38]).

Now, we bound the total assignment cost.

Lemma 3.13. The total assignment cost of all clients
in the integer assignment is O(m logm log(mn)) in
expectation.

Proof. We will first prove that the expected assignment

cost is O
(∑

i∈F
∑
j∈C yijaij ln(mn)

)
, conditioned on

the event that qij ≤ zij for all facilities i ∈ F and clients
j ∈ C. If xi(j) ≥ 1/5 ln(mn), then the probability that
client j is assigned to facility i is

qij ≤ zij = yij .

On the other hand, if xi(j) < 1/5 ln(mn), this proba-
bility is at most

zij × 5xi(j) ln(mn) = (5/2)yij ln(mn).

To remove the conditioning and complete the proof, we
use Lemma 3.12 and note that the maximum assignment
cost of any assignment is mn.

Finally, we bound the makespan.

Lemma 3.14. The maximum congestion on any facility
is O(logm) with probability 1− 2/

√
m.

Proof. First, we prove that the congestion of any facility
i is O(logm +

∑
j∈C yijpij) with probability at least

1 − 1/m3/2 conditioned on the event that qij ≤ zij
for all facilities i ∈ F and clients j ∈ C. Note that
the congestion on facility i due to client j is pij with
probability at most zij . We have∑

j∈C
zijpij ≤

∑
j∈C:xi(j)<1

yijpij
2xi(j)

+
∑
j∈C

yijpij .

Let client j′ immediately precede client j in the online
order; if j is the first client, xi(j

′) = 1/m. Then,∑
j∈C:xi(j)<1

yijpij
2xij

≤ (9/2)
∑

j∈C:xi(j)<1

xi(j)− xi(j′)
xi(j)

≤ (9/2)
∑

j∈C:xi(j)<1

∫ xi(j)

w=xi(j′)

dw

w

≤ (9/2)

∫ 1

1/m

dw

w

≤ (9/2) lnm.

The first inequality follows from the fractional algorithm
which assigns a fraction yij ≤ 5(xi(j) − xi(j′))/pij of
client j to facility i. Since yijpij ≤ pij ≤ 1 for all clients
j, it follows using Chernoff bounds that the congestion
on machine i is O(logm+

∑
j∈C yijpij) with probability

at least 1− 1/m3/2.
Using the union bound over all facilities and

Lemma 3.12, we can now claim that with probability
at least 1 − 2/

√
m, the congestion on every facility is

O(logm +
∑
j∈C yijpij). The lemma now follows from

Lemma 3.1.

Finally, we note that Lemmas 3.11, 3.13, and 3.14 imply
Theorem 1.3.

4 Conclusion

In this paper, we have presented an algorithm for solving
a mixed packing and covering LP, where the packing
constraints are given offline and the covering constraints
arrive online. The solution produced by our algorithm
satisfies each covering constraint exactly, and violates
each packing constraint by at most a polylogarithmic
factor. We also observed that such violations are
necessary and near optimal from information theoretic
considerations. We employed the ideas developed in
this generic algorithm to solve two canonical problems
represented by mixed packing and covering LPs: the
unrelated machine scheduling problem with startup
costs and the more general capacity constrained facility
location problem.

Our work opens up multiple directions of future re-
search. One concrete question relates to the unrelated
machine scheduling problem with startup costs. Re-
cently, algorithms have been proposed for offline ver-
sions of this problem that can handle cost functions that
are more general than startup costs considered in this
work [36]. A technical challenge would be to extend
our algorithmic framework to handle these more gen-

97 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

eral cost functions. Another compelling direction of re-
search would be to consider alternative input models for
mixed packing and covering LPs. This paper only con-
siders the model where packing constraints are available
offline and covering constraints arrive online. It is feasi-
ble that some natural online optimization problems that
can be expressed as mixed LPs do not conform to this
model, and therefore require new ideas beyond those
developed in this paper.

References

[1] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buch-
binder, and Joseph Naor. A general approach to online
network optimization problems. ACM Transactions on
Algorithms, 2(4):640–660, 2006.

[2] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buch-
binder, and Joseph Naor. The online set cover problem.
SIAM J. Comput., 39(2):361–370, 2009.

[3] Noga Alon, Yossi Azar, and Shai Gutner. Admission
control to minimize rejections and online set cover with
repetitions. ACM Transactions on Algorithms, 6(1),
2009.

[4] Sanjeev Arora, Elad Hazan, and Satyen Kale. The mul-
tiplicative weights update method: a meta algorithm
and applications. Technical report, 2005.

[5] James Aspnes, Yossi Azar, Amos Fiat, Serge A.
Plotkin, and Orli Waarts. On-line routing of virtual
circuits with applications to load balancing and ma-
chine scheduling. J. ACM, 44(3):486–504, 1997.

[6] Yossi Azar. On-line load balancing. In Online Algo-
rithms, pages 178–195, 1996.

[7] Yossi Azar, Joseph Naor, and Raphael Rom. The
competitiveness of on-line assignments. J. Algorithms,
18(2):221–237, 1995.

[8] Nikhil Bansal, Niv Buchbinder, and Joseph Naor. A
primal-dual randomized algorithm for weighted paging.
In FOCS, pages 507–517, 2007.

[9] Nikhil Bansal, Niv Buchbinder, and Joseph Naor.
Randomized competitive algorithms for generalized
caching. In STOC, pages 235–244, 2008.

[10] Yair Bartal, Amos Fiat, Howard J. Karloff, and Rakesh
Vohra. New algorithms for an ancient scheduling
problem. J. Comput. Syst. Sci., 51(3):359–366, 1995.

[11] Daniel Bienstock and Garud Iyengar. Approximating
fractional packings and coverings in o(1/epsilon) itera-
tions. SIAM J. Comput., 35(4):825–854, 2006.

[12] Ken Birman, Gregory Chockler, and Robbert van
Renesse. Toward a cloud computing research agenda.
SIGACT News, 40(2):68–80, 2009.

[13] Niv Buchbinder, Kamal Jain, and Joseph Naor. On-
line primal-dual algorithms for maximizing ad-auctions
revenue. In ESA, pages 253–264, 2007.

[14] Niv Buchbinder and Joseph Naor. Online primal-dual
algorithms for covering and packing problems. In ESA,
pages 689–701, 2005.

[15] Niv Buchbinder and Joseph Naor. Online primal-dual
algorithms for covering and packing. Math. Oper. Res.,
34(2):270–286, 2009.

[16] György Dósa and Yong He. Better online algorithms
for scheduling with machine cost. SIAM J. Comput.,
33(5):1035–1051, 2004.

[17] György Dósa and Zhiyi Tan. New upper and lower
bounds for online scheduling with machine cost. Dis-
crete Optimization, 7(3):125–135, 2010.

[18] Lisa Fleischer. Approximating fractional multicom-
modity flow independent of the number of commodi-
ties. SIAM J. Discrete Math., 13(4):505–520, 2000.

[19] Lisa Fleischer. Data center scheduling, generalized
flows, and submodularity. In ANALCO, pages 56–65,
2010.

[20] Dimitris Fotakis. On the competitive ratio for online
facility location. Algorithmica, 50(1):1–57, 2008.

[21] Naveen Garg and Jochen Könemann. Faster and sim-
pler algorithms for multicommodity flow and other
fractional packing problems. SIAM J. Comput.,
37(2):630–652, 2007.

[22] R. L. Graham. Bounds for certain multiprocessing
anomalies. Bell System Tech. Journal, 45:1563–1581,
1966.

[23] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17:416–429, 1969.

[24] Michael D. Grigoriadis and Leonid G. Khachiyan. Fast
approximation schemes for convex programs with many
blocks and coupling constraints. SIAM Journal on
Optimization, 4(1):86–107, 1994.

[25] Michael D. Grigoriadis and Leonid G. Khachiyan.
An exponential-function reduction method for block-
angular convex programs. Networks, 26(2):59–68,
1995.

[26] Michael D. Grigoriadis and Leonid G. Khachiyan.
Approximate minimum-cost multicommodity flows in

õ(ε-2knm) time. Math. Program., 75:477–482, 1996.
[27] Csanád Imreh. Online scheduling with general ma-

chine cost functions. Discrete Applied Mathematics,
157(9):2070–2077, 2009.

[28] Csanád Imreh and John Noga. Scheduling with ma-
chine cost. In RANDOM-APPROX, pages 168–176,
1999.

[29] Samir Khuller, Jian Li, and Barna Saha. Energy
efficient scheduling via partial shutdown. In SODA,
pages 1360–1372, 2010.

[30] Philip N. Klein, Serge A. Plotkin, Clifford Stein,
and Éva Tardos. Faster approximation algorithms
for the unit capacity concurrent flow problem with
applications to routing and finding sparse cuts. SIAM
J. Comput., 23(3):466–487, 1994.

[31] Antoon Kolen and Arie Tamir. Covering problems. In
P.B. Mirchandani and R.L. Francis, editors, Discrete
Location Theory. John Wiley, 1991.

[32] Christos Koufogiannakis and Neal E. Young. Beating
simplex for fractional packing and covering linear pro-
grams. In FOCS, pages 494–504, 2007.

98 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[33] Frank Thomson Leighton, Fillia Makedon, Serge A.
Plotkin, Clifford Stein, Éva Stein, and Spyros
Tragoudas. Fast approximation algorithms for mul-
ticommodity flow problems. J. Comput. Syst. Sci.,
50(2):228–243, 1995.

[34] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Math. Program., 46:259–271, 1990.

[35] Retsef Levi, David B. Shmoys, and Chaitanya Swamy.
Lp-based approximation algorithms for capacitated
facility location. In IPCO, pages 206–218, 2004.

[36] Jian Li and Samir Khuller. Generalized machine
activation problems. In SODA, pages 80–94, 2011.

[37] Mohammad Mahdian, Yinyu Ye, and Jiawei Zhang.
Approximation algorithms for metric facility location
problems. SIAM J. Comput., 36(2):411–432, 2006.

[38] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1997.

[39] Serge A. Plotkin, David B. Shmoys, and Éva Tardos.
Fast approximation algorithms for fractional packing
and covering problems. In FOCS, pages 495–504, 1991.

[40] Jiri Sgall. On-line scheduling. In Online Algorithms,
pages 196–231, 1996.

[41] Farhad Shahrokhi and David W. Matula. The max-
imum concurrent flow problem. J. ACM, 37(2):318–
334, 1990.

[42] Neal E. Young. Sequential and parallel algorithms for
mixed packing and covering. In FOCS, pages 538–546,
2001.

[43] Jiawei Zhang, Bo Chen, and Yinyu Ye. A multiex-
change local search algorithm for the capacitated facil-
ity location problem. Math. Oper. Res., 30(2):389–403,
2005.

A Additional Details of the OMPC Algorithm

In this section, we will give the missing details of our
OMPC algorithm.

A.1 Proof of Lemma 2.6. Lemma A.1 is a technical
result used in the proof of Lemma 2.6.

Lemma A.1. Let y :=
∑n
i=1 ri, where 0 < ri ≤ 1 for

i ∈ [n], and
∏n
i=1 ri = P . Then y is minimized when

ri = P 1/n ∀i, and the minimum value is nP 1/n.

Proof. The proof is by induction on n. For n =
1, the lemma is obviously true. Let γk(P) be the
minimum value of the sum of k variables, when
the product of the variables is P . Then γn(P) =
min0<r1≤1{r1 +γn−1(P/r1)}. By the inductive hypoth-
esis, γn−1(P/r1) = (n− 1)(P/r1)1/(n−1). Hence

γn(P) = min
0<r1≤1

{
r1 + (n− 1)

(
P

r1

)1/(n−1)
}
.

We will show that the expression on the right is
minimized when r1 = P 1/n. Then by the inductive

hypothesis, each of the other variables is P 1/n as well,
completing the proof.

Let z = r1 + (n− 1)
(
P
r1

)1/(n−1)
. Then

dz

dr1
= 1− 1

n− 1
r
−n/(n−1)
1 (n− 1)P 1/(n−1) ,

and setting dz/dr1 = 0, we obtain r1 = P 1/n. Further,
d2z/dr21 ≥ 0 ∀r1 ≥ 0. Hence, the point r1 = P 1/n is a
minimum. This completes the proof.

Proof of Lemma 2.6. For n = 1, the statement is
trivially true. For n ≥ 2, define bi =

∑
j≤i aj . Then

ai = bi − bi−1 for i ≥ 2, and hence

∑
i∈[n]

ai∑
j≤i aj

= 1 +

n∑
i=2

bi − bi−1
bi

(A.1)

= 1 +

n∑
i=2

(
1− bi−1

bi

)
.

Let ri = bi
bi+1

, and let y =
∑n
i=2(1− bi−1

bi
). Then

y =

n−1∑
i=1

(1− ri) = (n− 1)−
n−1∑
i=1

ri.

Since each ri ≤ 1 and
∏n−1
i=1 ri = b1/bn, we have (by

Lemma A.1)

y ≤ (n− 1)− (n− 1)

(
b1
bn

)1/(n−1)

.(A.2)

Let c = b1
bn

and z = (n − 1) − (n − 1)c1/(n−1).
Differentiating z w.r.t. n,

∂z

∂n
= 1− c1/(n−1) +

c1/(n−1)

n− 1
ln c

and again,

∂2z/∂n2 = −c1/(n−1) ln2 c/(n− 1)3 < 0.

Hence, z is maximized when

(n− 1)− (n− 1)c1/(n−1) = c1/(n−1) ln
1

c
.

Substituting the expression on the left in this equality
in Eqn. (A.2) gives us

y ≤ c1/(n−1) ln
1

c
,

99 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

and since

c =
b1
bn
≤ 1,

we have

(A.3) y ≤ ln
1

c
= ln

bn
b1

= ln

∑n
i=1 ai
a1

.

Then from Eqns. (A.1) and (A.3), and by the definition
of y, ∑

i∈[n]

ai∑
j≤i aj

≤ 1 + ln

∑n
i=1 ai
a1

.

A.2 Bounding opt. We now discuss our doubling
procedure that allows us to bound opt as required
by our algorithm. In our discussion, we use P̃ for
the matrix of packing coefficients without scaling, and

˜opt for the optimal solution to (2.1) with the un-
scaled packing constraints. We initially set Γ =
maxk,j:p̃kj>0 p̃kj/(d1ρκ1) and use this value to scale the
packing constraints. We run our algorithm with the
scaled packing constraints. If during the execution of
the algorithm λ(x) exceeds 3 ln(em), we double Γ , scale
the packing constraints by the new value of Γ and
restart the algorithm. We repeat this each time λ(x)
exceeds 3 ln(em).

Call each execution of the algorithm a trial. Each
trial τ has distinct primal and dual variables (λ(τ),
x(τ)) and (y(τ), z(τ)) that are initialized at the
start of the trial and increase as the trial proceeds.
At the start of the trial, each xj(τ) is initialized to
x0j (τ) = 1/(d21ρκ1). If a trial fails, we double the
value of Γ and proceed with the next trial with new
primal and dual variables. Thus in every trial, Γ ≥
maxk,j:p̃kj>0 p̃kj/(d1ρκ1).

Our final solution (x, λ) is the sum of the values
obtained in each trial. Thus, our variables are non-
decreasing. Let Γ (τ) be the value of Γ used in trial τ ,
and λf (τ) be the value of the primal λ(τ) when trial τ
ends. T is the last trial, i.e., the algorithm does not fail
in trial T . Since x obtained by the algorithm is the sum
of x(τ) in each trial τ , the value of the primal objective
obtained by the algorithm is at most

∑
τ≤T Γ (τ)λf (τ).

Then

Theorem A.1. The value of the primal objective∑
τ≤T Γ (τ)λf (τ) obtained is O(lnm ln(dρκ)) ˜opt.

We first show a bound on Γ in any trial.

Lemma A.2. In any trial, Γ ≤ 4σ ˜opt.

Proof. Initially, Γ = maxk,j:pkj>0 p̃kj/(d1ρκ1) ≤ ˜opt
by (2.5). Hence the lemma is true for the first trial.

Theorem 2.1 proves that if 4σ ˜opt ≥ Γ ≥ 2σ ˜opt, then
λ(x)≤ 3 ln(em) and the algorithm does not fail. Since Γ
is doubled after each failed trial, by Theorem 2.1 some
trial with Γ ≤ 4σ ˜opt will not fail. Hence, for every
trial, Γ ≤ 4σ ˜opt.

Proof of Theorem A.1. By Corollary 2.1, λ(τ) ≤
3 ln(em) at the start of any phase. Within a phase,
each variable gets multiplied by at most a factor of
µ = 1 + 1/(3 ln(em)). Hence when trial τ fails, λf (τ) ≤
1 + 3 ln(em) ≤ 4 ln(em), or Γ (τ)λf (τ) ≤ 4Γ (τ) ln(em).
Since the value of Γ (τ) doubles after each trial,

∑
τ≤T

Γ (τ)λf (τ) ≤ 4 ln(em)
∑
τ≤T

Γ (τ)(A.4)

= 4 ln(em)
∑
τ≤T

2τ−TΓ (T)

≤ 8 ln(em)Γ (T) .

Thus, from Eqn. (A.4) and Lemma A.2,∑
τ≤T

λf (τ) ≤ 32σ ln(em) ˜opt.

100 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

04
/2

0/
16

 to
 1

31
.2

15
.2

25
.1

59
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

