3,943 research outputs found

    Modeling and Control of Multi-Arm and Multi-Leg Robots: Compensating for Object Dynamics during Grasping

    Get PDF
    Dehio N, Smith J, Wigand DL, et al. Modeling & Control of Multi-Arm and Multi-Leg Robots: Compensating for Object Dynamics during Grasping. In: IEEE/RSJ Int. Conf. on Robotics and Automation. 2018

    Vision-based trajectory control of unsensored robots to increase functionality, without robot hardware modication

    Get PDF
    In nuclear decommissioning operations, very rugged remote manipulators are used, which lack proprioceptive joint angle sensors. Hence these machines are simply tele-operated, where a human operator controls each joint of the robot individually using a teach pendant or a set of switches. Moreover, decommissioning tasks often involve forceful interactions between the environment and powerful tools at the robot's end-effector. Such interactions can result in complex dynamics, large torques at the robot's joints, and can also lead to erratic movements of a mobile manipulator's base frame with respect to the task space. This Thesis seeks to address these problems by, firstly, showing how the configuration of such robots can be tracked in real-time by a vision system and fed back into a trajectory control scheme. Secondly, the Thesis investigates the dynamics of robot-environment contacts, and proposes several control schemes for detecting, coping with, and also exploiting such contacts. Several contributions are advanced in this Thesis. Specifically a control framework is presented which exploits the constraints arising at contact points to effectively reduce commanded torques to perform tasks; methods are advanced to estimate the constraints arising from contacts in a number of situations, using only kinematic quantities; a framework is proposed to estimate the configuration of a manipulator using a single monocular camera; and finally, a general control framework is described which uses all of the above contributions to servo a manipulator. The results of a number of experiments are presented which demonstrate the feasibility of the proposed methods

    Towards Human-Robot Collaboration with Parallel Robots by Kinetostatic Analysis, Impedance Control and Contact Detection

    Get PDF
    Parallel robots provide the potential to be lever-aged for human-robot collaboration (HRC) due to low collision energies even at high speeds resulting from their reduced moving masses. However, the risk of unintended contact with the leg chains increases compared to the structure of serial robots. As a first step towards HRC, contact cases on the whole parallel robot structure are investigated and a disturbance observer based on generalized momenta and measurements of motor current is applied. In addition, a Kalman filter and a second-order sliding-mode observer based on generalized momenta are compared in terms of error and detection time. Gearless direct drives with low friction improve external force estimation and enable low impedance. The experimental validation is performed with two force-torque sensors and a kinetostatic model. This allows a new identification method of the motor torque constant of an assembled parallel robot to estimate external forces from the motor current and via a dynamics model. A Cartesian impedance control scheme for compliant robot-environmental dynamics with stiffness from 0.1-2N/mm and the force observation for low forces over the entire structure are validated. The observers are used for collisions and clamping at velocities of 0.4-0.9 m/s for detection within 9–58 ms and a reaction in the form of a zero-g mode.© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Research and technology: 1994 annual report of the John F. Kennedy Space Center

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program

    Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    Get PDF
    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues

    Human factors in space telepresence

    Get PDF
    The problems of interfacing a human with a teleoperation system, for work in space are discussed. Much of the information presented here is the result of experience gained by the M.I.T. Space Systems Laboratory during the past two years of work on the ARAMIS (Automation, Robotics, and Machine Intelligence Systems) project. Many factors impact the design of the man-machine interface for a teleoperator. The effects of each are described in turn. An annotated bibliography gives the key references that were used. No conclusions are presented as a best design, since much depends on the particular application desired, and the relevant technology is swiftly changing

    Kontextsensitive Körperregulierung für redundante Roboter

    Get PDF
    In the past few decades the classical 6 degrees of freedom manipulators' dominance has been challenged by the rise of 7 degrees of freedom redundant robots. Similarly, with increased availability of humanoid robots in academic research, roboticists suddenly have access to highly dexterous platforms with multiple kinematic chains capable of undertaking multiple tasks simultaneously. The execution of lower-priority tasks, however, are often done in task/scenario specific fashion. Consequently, these systems are not scalable and slight changes in the application often implies re-engineering the entire control system and deployment which impedes the development process over time. This thesis introduces an alternative systematic method of addressing the secondary tasks and redundancy resolution called, context aware body regulation. Contexts consist of one or multiple tasks, however, unlike the conventional definitions, the tasks within a context are not rigidly defined and maintain some level of abstraction. For instance, following a particular trajectory constitutes a concrete task while performing a Cartesian motion with the end-effector represents an abstraction of the same task and is more appropriate for context formulation. Furthermore, contexts are often made up of multiple abstract tasks that collectively describe a reoccurring situation. Body regulation is an umbrella term for a collection of schemes for addressing the robots' redundancy when a particular context occurs. Context aware body regulation offers several advantages over traditional methods. Most notably among them are reusability, scalability and composability of contexts and body regulation schemes. These three fundamental concerns are realized theoretically by in-depth study and through mathematical analysis of contexts and regulation strategies; and are practically implemented by a component based software architecture that complements the theoretical aspects. The findings of the thesis are applicable to any redundant manipulator and humanoids, and allow them to be used in real world applications. Proposed methodology presents an alternative approach for the control of robots and offers a new perspective for future deployment of robotic solutions.Im Verlauf der letzten Jahrzehnte wich der Einfluss klassischer Roboterarme mit 6 Freiheitsgraden zunehmend denen neuer und vielfältigerer Manipulatoren mit 7 Gelenken. Ebenso stehen der Forschung mit den neuartigen Humanoiden inzwischen auch hoch-redundante Roboterplattformen mit mehreren kinematischen Ketten zur Verfügung. Diese überaus flexiblen und komplexen Roboter-Kinematiken ermöglichen generell das gleichzeitige Verfolgen mehrerer priorisierter Bewegungsaufgaben. Die Steuerung der weniger wichtigen Aufgaben erfolgt jedoch oft in anwendungsspezifischer Art und Weise, welche die Skalierung der Regelung zu generellen Kontexten verhindert. Selbst kleine Änderungen in der Anwendung bewirken oft schon, dass große Teile der Robotersteuerung überarbeitet werden müssen, was wiederum den gesamten Entwicklungsprozess behindert. Diese Dissertation stellt eine alternative, systematische Methode vor um die Redundanz neuer komplexer Robotersysteme zu bewältigen und vielfältige, priorisierte Bewegungsaufgaben parallel zu steuern: Die so genannte kontextsensitive Körperregulierung. Darin bestehen Kontexte aus einer oder mehreren Bewegungsaufgaben. Anders als in konventionellen Anwendungen sind die Aufgaben nicht fest definiert und beinhalten eine gewisse Abstraktion. Beispielsweise stellt das Folgen einer bestimmten Trajektorie eine sehr konkrete Bewegungsaufgabe dar, während die Ausführung einer Kartesischen Bewegung mit dem Endeffektor eine Abstraktion darstellt, die für die Kontextformulierung besser geeignet ist. Kontexte setzen sich oft aus mehreren solcher abstrakten Aufgaben zusammen und beschreiben kollektiv eine sich wiederholende Situation. Durch die Verwendung der kontextsensitiven Körperregulierung ergeben sich vielfältige Vorteile gegenüber traditionellen Methoden: Wiederverwendbarkeit, Skalierbarkeit, sowie Komponierbarkeit von Konzepten. Diese drei fundamentalen Eigenschaften werden in der vorliegenden Arbeit theoretisch mittels gründlicher mathematischer Analyse aufgezeigt und praktisch mittels einer auf Komponenten basierenden Softwarearchitektur realisiert. Die Ergebnisse dieser Dissertation lassen sich auf beliebige redundante Manipulatoren oder humanoide Roboter anwenden und befähigen diese damit zur realen Anwendung außerhalb des Labors. Die hier vorgestellte Methode zur Regelung von Robotern stellt damit eine neue Perspektive für die zukünftige Entwicklung von robotischen Lösungen dar
    corecore