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Vision-based framework to estimate robot
configuration and kinematic constraints

Valerio Ortenzi1,∗, Naresh Marturi1,2, Member, IEEE, Michael Mistry3, Member, IEEE,
Jeffrey Kuo4 and Rustam Stolkin1,4, Member, IEEE

Abstract—This paper addresses the problem of estimating
the configuration of robots with no proprioceptive sensors and
with kinematic constraints while performing tasks. Our work
is motivated by the use of unsensored (industrial) manipu-
lators, currently tele-operated in rudimentary ways, in haz-
ardous environments such as nuclear decommissioning. For
such robots, basic proprioceptive sensors are often unavailable.
Even if radiation-hardened sensors could be retrofitted, such
manipulators are typically deployed on a mobile base, while
equipped with powerful end-effector tools for forceful contact
tasks, which significantly perturb the robot base. This work con-
tributes a step towards enabling advanced control and increased
autonomy in nuclear applications, but could also be applied
to mechanically compliant, under-actuated arms and hands,
and soft manipulators. Our proposed framework: estimates the
robot configuration by casting it as an optimisation problem
using visually tracked information; detects contacts during task
execution; triggers an exploration task for detected kinematic
constraints, which are then modelled by comparing observed
versus commanded velocity vectors. Unlike previous literature,
no additional sensors are required. We demonstrate our method
on a Kuka iiwa 14 R820, reliably estimating and controlling robot
motions and checking our estimates against ground truth values,
and accurately reconstructing kinematic constraints.

Index Terms—Robots, Robot kinematics, Robot vision systems

I. INTRODUCTION

IN robotics research laboratories, accurate proprioception
(in the form of rotation encoders at the robot’s joints) is

usually taken for granted. In contrast, industrial manipulators
(e.g., Brokk type arms) that are deployed to perform heavy-
duty tasks such as demolition, heavy loading, drilling and
grinding of concrete etc. typically lack any proprioceptive
sensors. A societally important use of such manipulators is in
nuclear decommissioning, safely disposing of nuclear waste to
remediate the environment for future generations [1]. The UK
alone contains 4.9million tonnes of nuclear waste, which will
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take more than 100 years and order $200billion to remediate.
Worldwide decommissioning costs are of order $trillion. Many
contaminated zones cannot be entered by humans, however,
a human operator must directly teleoperate the machine, by
pushing a separate switch or lever to control each joint,
while guessing the inverse kinematics from experience. An
inability to automate such operations not only means that task
performances are sub-optimal, but also that humans are being
exposed to high risks in hazardous environments.Also, it is not
considered feasible to retrofit proprioceptive sensors because
electronics are vulnerable to different types of radiation; and
because the installation of new sensors on trusted machinery
would compromise long-standing certification. Moreover, dur-
ing the execution of tasks, robots must interact with contact
surfaces, which are typically unknown a-priori. Understanding
which directions of motion are not feasible is important: (i) for
not causing damage in a high-consequence environment; and
(ii) for enabling planning and execution of trajectories which
minimise torques on the robot’s joints [2], [3]. Minimising
joint torques is critically important in nuclear facilities, where
a robot cannot be removed from its working environment
for repair, without extremely expensive, difficult and time-
consuming decontamination (sometimes impossible).

Our thesis is that adopting external vision offers an effective
means to solve these problems. Cameras can be radiation-
hardened, and the distance of a remote sensor, away from
the radiation source, greatly reduces impact on electronics via
inverse-square law. Vision-based proprioceptive feedback can
enable advanced trajectory control and increased autonomy.
This can help remove humans from harm, improve operational
safety, improve task performance, and reduce maintenance
costs [4]. We also believe that a much larger community
can benefit from this work. This framework can be applied
to: underactuated fingers, hands and arms [5]–[7]; inherently
backdrivable robots, such as Sybot [8]; and “soft” manipula-
tors, e.g., in [9] or in pneumatic snake-arm type devices such
as in [10] or as in [11].

This paper extends our recent work on vision-based pro-
prioception and control [12]; and detection and estimation of
kinematic constraints [13]. More specifically, in this paper,
we show how to combine these two capabilities in a new
overarching control framework to address the more general
problem of visually controlling an undersensored robot arm,
while simultaneously using visual proprioception to detect,
explore and model kinematic constraints arising from obstruc-
tions encountered by the robot. The main contributions of this
work are summarised as follows:



(c) 2018 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2018.2865758, IEEE/ASME
Transactions on Mechatronics

2 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. XX, NO. XX, MONTH YEAR

(i) The joint configuration of the robot is estimated by solv-
ing an optimisation problem, using vision information
along with the robot kinematic model (Sec. III). These
vision estimates are then fed to a controller to perform
positioning tasks.

(ii) Contacts with the environment are detected analising the
desired and the estimated configurations of the robot
(Sec. IV). A significant difference is an indicator of a
possible contact.

(iii) Finally, we propose a method for estimating the kine-
matic constraints arising from contacts with the envi-
ronment (Sec. V). This method also relies only on the
vision-based estimates of the robot’s configuration and
motions.

In the remainder of this paper, in Sec. VI, we report the
experiments targeted at showing the behaviour of each mod-
ule of the proposed framework. For demonstration purposes,
we have used the Kuka iiwa 7 degrees of freedom (DoF)
collaborative manipulator in our laboratory facilities. Though
the used robot is equipped with positional encoders, we have
used this information only as ground truth in evaluating
our framework’s performance quantitatively. Finally Sec. VII
concludes the paper with directions for future work.

II. RELATED WORK

Our framework solely relies on vision information to esti-
mate the configuration of an undersensored manipulator. Nei-
ther visual tracking nor visual servoing form the primary focus
of our contribution. Another important difference between our
work and most classical visual servoing approaches [14]–[17],
is that the latter tend to use joint encoders readings when
mapping camera velocities to joint velocities.

This work is more related to [18], but overcomes the
redundancy problem by simultaneously tracking multiple parts
of the robot, consequently having more relationships constrain-
ing the configuration, making our method applicable to high
DoF robots. Our approach is marginally related also to [19],
however, the major differences are that we simultaneously
track parts of an articulated object and separately define an
optimisation problem to estimate the joint values using the
tracked poses. A variety of ways to track articulated bodies
in monocular images can be found in [19]–[22]. In contrast
to our work, these authors mainly focused on localising parts
of the articulated bodies in each image frame, and not on
the estimation of joint angles among the connected parts.
Additionally, most of these works focused on tracking robot
parts, but made use of information from robot’s joint encoders
to do so, in contrast to the problem posed in this paper.

A real-time system to track multiple articulated objects us-
ing RGB-D and joint encoder information is presented by [23].
A similar approach was used by [24] to track and estimate the
pose of a robot manipulator. Recently, Pauwels and Kragic
[25] have proposed SimTrack, a framework for real-time robot
tracking using RGB-D images from a Kinect along with the
recorded joint angles. A marker-tracking method to identify
the joint origins of robots was used in [26]. Other notable
examples can be found in [27] and [28], where the authors

propose to use depth information for better tracking of objects.
Recently, an approach based on regression forests has been
proposed to directly estimate joint angles using single depth
images in [29]. Ma et al. proposed an adaptive penalty-based
method using discrete structures to track human body poses
in video frames [30], [31]. In summary, the use of depth
information alongside standard RGB images can improve the
tracking performances. However, it also increases the compu-
tational burden and decreases robustness in many real-world
applications. Our choice of using simple commercial cameras
is motivated by cost, robustness to real-world conditions, and
also in an attempt to be as computationally fast as possible.

Recently in [13], we presented a method for reliably es-
timating the kinematic constraints arising from contacts that
limit the free motion space of the robot. There we relied on
the kinematic observations derived directly from basic proprio-
ception (rotation encoders at joints). However, in this work we
will use vision-based configuration estimates to accomplish the
same. Therefore, in contrast to much of the related literature,
no added sensors are needed such as force-torque sensors
or tactile sensors at the contact points, and we will be
using feedback from a single camera to estimate the robot
configuration, so neither to detect contacts nor to reconstruct
surface normals. In [32], a quadrupedal robot estimates the
inclination of a planar surface on which it is trotting, by fusing
data from inertial measurement unit (IMU) accelerometers
with optical force sensors at each foot and the kinematics
of each leg. In the context of hybrid motion/force control
[33], a method for estimating the local shape of a constraint
surface was proposed in [34], by combining position and end-
effector force measurements. Another method for estimating
constraints is proposed in [35]; however, this method learns
the null space projector of an unknown task constraint from
human demonstration. In contrast to the above approaches,
our method locally estimates the kinematic constraints due to
contacts, without using any additional sensors (force, torque,
tactile), only relying on vision-based configuration estimates.

III. VISION-GUIDED STATE ESTIMATION

Our framework, shown in Fig. 1, is composed of three
main components: visual tracking; state estimation; and a
controller. We concentrate on state estimation and subroutines
of the control component (contact detection and kinematic
constraint estimation), and choose available methods for other
components.

A. Visual Tracking

We use a very classical approach exploiting fiducial mark-
ers. For this purpose, we custom designed a marker that
consists of four dots on a plain background, out of which
one dot is made deliberately out-of-plane to resolve pose
ambiguity. Four such markers are placed on different links of
the robot arm as shown in Fig. 2(a). The 3D world coordinates
of each dot’s centroid are measured in the marker’s reference
frame i.e., its center point and their corresponding 2D image
coordinates are obtained using Freeman chain coding-based
blob tracker available in ViSP library [36]. Consequently using
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Fig. 1. Illustration of the proposed framework pipeline. The overall schema is divided into 3 main components: vision (orange), estimation (blue) and control
(green). The vision component is responsible for tracking robot poses in acquired images. The estimation component uses these poses along with the robot
model to solve an optimisation problem to estimate the robot’s current joint configuration. These estimates are used by the controller to servo the robot and
also to detect possible contacts. When a contact is detected, an exploratory phase starts and the kinematic constraints are estimated. The controller generates
the motion control commands to the robot. Here, we assume that the object models to track and the kinematic model of the robot are known beforehand.

(a)

c1-1

c1-2
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(b) (c)
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Fig. 2. Illustration of visual tracking and object’s pose estimation. (a) Four
custom designed markers are placed on different links of the robot. Each
marker has four dots (one out-of-plane) whose position with respect to the
marker reference frame is known a priori. In the image, markers are named
1 · · · 4 and the cameras by which they are tracked are indexed as c1 and c2.
(b) Automatically initialised dots for visual tracking in the initial frame. (c)-(e)
Tracked poses of each object in later frames while the robot is in motion.

the camera calibration, the corresponding poses of the markers
cMo(i) (i = 1 · · · 4 are marker indexes) are computed. The
updated poses in each iteration are propagated to the next
frame. A more detailed description can be found in [37].

We assume that the robot is always in a pre-defined home
position before task initialisation such that the world locations
of each marker are known in the first frame of tracking i.e.,
at t = 0. This assumption is not restrictive since a predefined
home position for the robot will not add any new constraints.
We have used two cameras (each one for two objects) to
accomplish tracking in this work. Our choice to use two
commercial cameras stems from the fact that it proved difficult
to track four markers simultaneously using only one camera,
mostly because for the markers to be all visible, the only
camera would have to be placed farther from the robot, thus

compromising the performances. We could consider using
more cameras and markers. A redundancy of sensors and
markers might alleviate the problem of possible occlusions,
however it would increase the complexity and the cost of
the system. Fig. 2b shows automatically initialised tracking
in the first frame and Figs. 2c-2e show tracked dots along
with individual marker’s poses.

B. Robot Configuration Estimation

We use the following key idea to estimate the configuration
of the robot. We note that two kinematic paths exist from
the camera to each of the markers, i.e., the direct relationship
given by the trackers and the kinematic path through the robot,
parametrised over the configuration q of the robot. Thus we
can write
CMobj1 = CT0

0T1(q1)1T2(q2)2Tobj1 (1)
CMobj2 = CT0

0T1(q1)1T2(q2)2T3(q3)3Tobj2 (2)
CMobj3 = CT0

0T1(q1)1T2(q2)2

T3(q3)3T4(q4)4T5(q5) 5T6(q6) 6Tobj3 (3)
CMobj4 = CT0

0T1(q1) 1T2(q2) 2T3(q3)
3T4(q4) 4T5(q5) 5T6(q6) 6T7(q7) 7Tobj4 (4)

where, CMobji is the pose relating marker i to the camera,
CT0 is the transformation from camera to world frame and
0Tobji(q) represents the transformation from world to marker
i frame, parametrised over the joint values q, i.e., 0Tobji(q)
embeds the kinematic model of the robot. The state of the
robot is now estimated by imposing these equalities, casting
an optimisation problem. As already explained, we assume to
know the initial configuration of the robot and its kinematic
model. The robot’s initial configuration is used as a seed for
the first iteration of the optimisation problem and the kine-
matic model is used to compute 0Tobji(q). The optimisation
problem is then stated as

minimize
q

∑
i

ei(q) subject to |qj | ≤ qmaxj
(5)
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where,
ei(q) = v(CMobji −C T0

0Tobji(q)) (6)

represents an error in the difference of the two kinematic paths,
and qmaxj is the joint limit for joint j. In order to compute
0Tobji(q), we use the convention of Denavit-Hartenberg [38].
The v operator stands for the sum of the square of each
element of the matrix between parentheses.

Because of the better performances achieved in [12], we
decided to use the chained method. This method uses each
marker to estimate only a subset of joint values. These, in turn,
are used as known parameters in the successive estimation
problems.

C. Controller

For proof of concept, we implemented a classical joint
controller of the form

q̇r = KP ẽ + q̇d , (7)

to validate our methodology and also to demonstrate how the
vision-derived state estimates can be used to servo the robot’s
end-effector. Here, q̇r is the desired/reference velocity. The
error ẽ = qd − q̃ has been defined as the difference between
desired and estimated joint positions, q̃. Finally, KP is the
proportional gain matrix. We send position commands to the
robot, hence (7) is integrated numerically as

qcmd = q̃ + ∆t q̇r , (8)

where qcmd are the commands sent to the robot, q̃ is the
estimated robot configuration, ∆t is the integration time and
q̇r is as defined in (7). Note that the availability of only esti-
mates of the configuration - imperfect feedback - jeopardises
the convergence of the error ẽ to zero, which is not guaranteed
anymore.

IV. CONTACT DETECTION

We implemented two methods to check contacts with the
environment. Such checks use the configuration estimates
computed as in the previous section. The first method is based
on the concept of residuals, while the second method is based
on the difference between desired configuration and current
configuration. We rely on estimates of the configuration of
the robot, which are possibly imprecise and noisy.

A. Residuals

The idea behind the method of the residuals is to model
contacts as faults of the system. This method was first pro-
posed in [39], however their definition of residuals assumes
knowledge of the dynamic model and assumes that the robot
is controlled in torque. Differently, we use only kinematics in
our definition. Hence we equivalently define

q̇ = q̇r − q̇C . (9)

q̇r is the commanded velocity, while q̇C can be interpreted as
a virtual velocity induced by contacts. We define the residuals
r as

r = K[

∫ t

0

(q̇r − r) dt− q] , (10)

with K > 0 and r = 0 at t = 0. Differentiating we obtain

ṙ = −Kr + Kq̇C . (11)

Analysing the dynamics of r, r converges to 0 when q̇C = 0,
while this is not true when q̇C 6= 0.

1) Kinematic Residuals using Estimates: Up until now,
the formulations assumed perfect knowledge of the state of
the robot, i.e., configurations and velocities. In our scenario,
only estimates of the configurations are available. Because of
the error in the estimation process, q is not known but an
estimate of it, q̃, is available. If we express the commanded
configuration as qcmd = q̃t−1 + ∆t q̇r, then we model the
system as

q̃t = qcmd + ε , (12)

where,
ε = ε∆ + qC , (13)

i.e., the mismatch between real configuration and estimates is
due to the error in the estimation process (ε∆) and a possible
contact (qC). If we substitute qcmd into (12), we obtain

˙̃q = q̇d + ˙̃ε , (14)

where, q̇d is the desired velocity as in q̇r = K (qd− q̃) + q̇d

and ε̃ = K∆t (qd− q̃) + ε∆ + qC . If we define the residuals
as

r = K

[∫ t

0

(q̇d − r) dt− q̃

]
, (15)

then

ṙ = −Kr + K ˙̃ε = −Kr + K(α((qd − q̃), ε̃) + q̇C) , (16)

where, α((qd−q̃), ε̃) is the derivative over time of K∆t (qd−
q̃) + ε∆. Hence, the residuals become different than zero
when there is an error in the estimates, or when there is a
contact, or when both these two situations happen. Thus it is
not easy to discern when a contact occur, and the introduction
of thresholds for detection is necessary and critical.

B. Sheer difference
The idea behind this method is that if the robot is in a

different position with respect to the expected/desired position,
then it is possible that a contact has occurred and that such
contact has prevented the robot to go to the desired position.
We propose to compute the norm of the difference between the
current configuration and the configuration the robot should be
in to perform the task. When this difference is greater than a
threshold, then a contact is detected. In other words

|q̃− qdes| > qthresh → contact. (17)

This is a naive approach since a contact is not the only possible
explanation for such difference, e.g., the robot might have hit
a joint limit. However, joint limits mean kinematic constraints,
which are also necessary to know.

This method is very inexpensive computationally and rep-
resents a further check for collisions. Moreover, the use of
configuration estimates affects negatively this check, since it
introduces a difference between estimated configuration and
desired configuration even when there is no contact. For this
reason, the threshold becomes of key importance.
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V. CONSTRAINT ESTIMATION

We proposed a method to estimate kinematic constraints in
[13]. This work applies those methods to the case where only
estimates of the configuration are available. We consider that
the contact Jacobian JC(q) can be described as

JC(q) = ΛJ(q) , (18)

where Λ is a matrix that specifies which dimension(s) in the
task-space is (are) constrained due to contacts and J(q) is the
task Jacobian of the robot. Λ is independent of the dimension-
ality of the configuration space of the robot and independent
of the current configuration of the robot. However, the number
of independent rows depends on the number of independent
constraints. Λ represents the Cartesian directions of motion
which are unfeasible for motion due to the contact(s). It is
also possible to derive equivalent equations in the joint space.
We define the constraints as

Λq(q)q̇ = 0 . (19)

In this case Λq(q) can be regarded also as a constraint
Jacobian. Λq(q) is dependent on the configuration of the robot,
in contrast to the definition of Λ.

In real-world tasks involving constraints, it will be non-
trivial to compute Λ and Λq(q) generally. However, we know
that Λẏ = 0 and equivalently, ẏTΛT = 0. Thus, ΛT is the
solution to the homogeneous system

ẏTΛT = 0 . (20)

Let BẏT be a set of observed ẏT , i.e., the end-effector veloc-
ities where the end-effector is in contact with the constrained
surface. Then the solution set of the homogeneous system in
(20) can be found by computing the right null space of BẏT ,
using singular value decomposition

BẏT = USVT , (21)

where, U is the matrix of left singular vectors, S is a diagonal
matrix such that Si,i is the ith largest singular value, and V is a
matrix of the right singular vectors. ΛT can then be computed
by taking the columns of V with corresponding singular values
smaller than a threshold value ε.

To compose this BẏT , we propose to perform an exploration
when the robot is in contact with the environment. The
exploration is a set of predefined motions whose goal is to
sample the space. In this implementation, we sample the space
uniformly, as in [13]. Hence, there are two possibilities for the
expected ẏexp and the observed ẏobs:

(i) in the free motion subspace, i.e., when the motion is not
in the direction of any contact: ẏexp = ẏobs;

(ii) in the constrained motion subspace, i.e., when the motion
is in the direction of any contact: ẏexp 6= ẏobs.

We collect a set of ẏobs into BẏT from the latter case and use
the method based on (21) to estimate the selection matrix Λ.

In the joint space q̇TΛqT (q) = 0. Similarly to the Cartesian
case, predefined exploratory motions can be defined directly
in the joint space. Specifically:

(i) in the free motion subspace: q̇exp = q̇obs;
(ii) in the constrained motion subspace: q̇exp 6= q̇obs.

Camera 2

Camera 1

Robot with markers

Fig. 3. Experimental set-up illustrating the used KUKA robot with attached
markers on its various links and the cameras. The cameras are positioned in
the workspace such that each camera can successfully track two markers.

We collect a set of q̇obs from the latter case, and use singular
value decomposition to estimate the selection matrix Λq(q).

VI. EXPERIMENTAL VALIDATION

The proposed framework has been evaluated using the
experimental setup shown in Fig. 3. As mentioned before, we
used the industrial collaborative robot, Kuka iiwa 14 R820 and
our vision system consists of two commercial Logitech c920
cameras. The cameras are placed outside the robot task space
and each camera can view a set of two fiducial markers. Each
marker comprises 4 dots of 20 mm diameter each, glued to
cardstocks. One of them has been deliberately made to locate
out-of-plane to facilitate pose estimation. All the hardware
components of our set-up are interfaced with a work computer
(master) running Linux (Intel Core i7-4810MQ CPU with
15.3 GB of RAM) through their respective interfaces. The
overall framework has been implemented in C++ on the master
computer. We have used ViSP for all matrix computations
and NLopt for optimisation. The asynchronous communication
between the robot controller running Kuka Sunrise.OS and
master has been realised over UDP/IP with a communication
speed of ≈ 2 ms.

Overall, we conducted three sequences of experiments
which are summarised as follows:

(a) we assess the precision of the proposed framework in
estimating the robot configuration and we use the vision-
derived state estimates as feedback in a control loop.

(b) Next, we detect contacts occurring when the robot is
performing a task.

(c) Finally, we show how our method to estimate constraints
due to contact works when using configuration estimates.
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TABLE I
RMSE OF ESTIMATES WITH RESPECT TO GROUND TRUTH VALUES DURING
EXPERIMENTS WITH TRAJECTORIES INVOLVING ONLY A JOINT AT A TIME.

joint RMSE (in degrees (◦))

traj 1 traj 2 traj 3 traj 4 traj 5 traj 6 traj 7

q1 2.289 2.687 0.293 0.416 0.212 0.213 0.288
q2 2.743 0.468 0.076 0.063 0.096 0.071 0.122
q3 1.129 1.269 2.204 0.813 0.693 0.426 0.496
q4 4.534 4.091 4.419 1.199 10.648 0.355 0.345
q5 2.782 5.409 3.029 1.957 3.215 0.636 0.409
q6 3.400 3.523 5.061 0.950 10.170 0.562 0.228
q7 1.947 2.148 1.719 2.046 2.511 1.785 5.791

TABLE II
RMSE OF ESTIMATES WITH RESPECT TO GROUND TRUTH VALUES DURING

EXPERIMENTS WITH TRAJECTORIES INVOLVING MULTIPLE JOINTS.

Joint RMSE (in degrees (◦))

traj 8 traj 9 traj 10 traj 11 traj 12 traj 13 traj 14

q1 3.633 2.139 0.579 0.180 2.610 1.868 2.803
q2 2.590 1.170 1.601 0.129 0.568 1.734 1.542
q3 2.789 1.450 0.794 0.466 1.137 0.867 1.619
q4 5.278 5.263 4.812 3.878 3.409 5.638 4.180
q5 2.268 3.209 2.261 1.164 5.208 5.188 6.062
q6 2.753 4.564 3.802 4.127 3.212 4.347 3.968
q7 2.415 2.823 7.734 1.622 3.025 3.346 4.135

A. Vision-based Estimation

1) Estimating joint configurations: this first set of experi-
ments focus only on the estimation of the robot’s configura-
tion. The robot was asked to perform 14 different trajectories.
The first 7 trajectories excite only one joint each, i.e., trajectory
1 uses only joint 1, trajectory 2 only joint 2, and so on. The
remaining 7 trajectories contain motions for multiple joints at
a time. We report each joint root-mean-square error (RMSE)
between real values and estimates for each trajectory and also
the average RMSE and standard deviation over the RMSE of
all the trajectories. Tables I and II show the RMSE values of
each joint for each of the 14 trajectories. Table III provides
the reader with mean and standard deviation of such RMSEs
as computed over the results presented in Tables I and II. Fig.
4 shows results for trajectory 11, where the real trajectory of
the joint is in blue, and the estimated trajectory is in green.

Analysis of results: Despite using a different tracking
algorithm and a different robot, results are comparable to [12].
The used robot poses a difficult challenge to track using any
model-based trackers mainly due to its repetitive appearance

TABLE III
MEAN AND STANDARD DEVIATION (EXPRESSED IN DEGREES) COMPUTED

FOR THE TRAJECTORY RMSE VALUES DEPICTED IN TABLES I AND II.

joint(#) Mean(◦) Std. (◦)

q1 1.4441 1.2409
q2 0.9270 0.9659
q3 1.1542 0.6834
q4 4.1467 2.5694
q5 3.0573 1.8139
q6 3.6195 2.4143
q7 3.0752 1.7520
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Fig. 4. Trajectory 11. Blue dashed line represents the real trajectory, while
the estimated trajectory is in green solid line.

and texture-less links, which convinced us to use markers
instead. This proves our framework is versatile and usable in
distinct situations. From the results, in most of the cases the
RMSE values are < 3◦ except for joint 4, which is the most
challenging joint (elbow of the manipulator) to estimate. For
very few cases, RMSE values reached > 5◦, which we believe
are due to the problems associated with tracking such as inac-
curate tracker intialisations caused by the camera and marker
placements, and pose confusions when camera viewing axis
becomes orthogonal to marker axis. This is true particularly
for the last two markers and results are consequently affected
negatively. Also, the errors are higher when the joint values
are far from the zero position. Nevertheless, such errors are
highly tolerable for the decommissioning tasks that motivated
this work.

2) Using estimates as feedback in a joint controller: the
robot was asked to follow trajectories specified in the joint
space. Difficulty of placement for markers 3 and 4 and the
relative errors induced on the estimations of joints 4, 5, 6 and
7, and the propagation of the errors in estimating the first 3
joints make the control of the remaining axes of the robot
very challenging. Consequently we first focus on the first 2
markers, thus limiting the motion of the robot to the first 3
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TABLE IV
RMSE OF ESTIMATES WITH RESPECT TO GROUND TRUTH VALUES.

joint RMSE (in degrees [◦])

traj 1 traj 2 traj 3 traj 4 traj 5 traj 6

q1 2.1895 2.3207 2.6822 2.9667 3.6575 2.7492
q2 2.6638 0.8453 0.7577 2.0913 1.1689 1.6167
q3 4.2416 3.2690 4.5955 4.5042 5.0706 3.5712

TABLE V
RMSE VALUES OF REAL JOINT VALUES AND REFERENCE MOTION.

ERRORS ARE EXPRESSED IN DEGREES.

joint(#)
RMSE (in degrees [◦])

traj 1 traj 2 traj 3 traj 4 traj 5 traj 6

q1 2.1665 2.3003 2.6762 2.9561 3.6405 2.7670
q2 2.6606 0.8421 0.7547 2.1028 1.1752 1.7797
q3 4.1938 3.2269 4.5817 4.4774 5.0540 3.5266

joints, as proof of concept. The robot performs 6 trajectories:
the first 3 trajectories exciting each joint singularly. The
other 3 trajectories presented simultaneous motions for all
the 3 joints. Table IV reports errors between the estimates
used in the controller and the ground truth values as read
from the encoders. Table V presents task errors computed as
difference between reference positions and ground truth values
as read from the encoders. Notice that the controller uses
only the difference between estimates and reference positions.
Fig. 5 shows the evolution of estimates (red), ground truth
values (blue) and references (green) during the performance
of trajectories 2 and 5.

Analysis of results: estimates can be used to control the
robot and task errors induced by errors in the estimates are
of the same magnitude of the estimation errors. This is clear
comparing Table IV and Table V. Also, task errors do not
go to zero because of the errors in the estimations. This is
to be expected because, although such a controller guarantees
convergence with precise feedback, we are using estimates of
the state, thus convergence to zero is not guaranteed anymore.
Additionally, we also conducted experiments controlling all
the joints. The results are reported in Tables VI and VII. It can
be seen from the results that the errors of estimation and task
regarding the last 4 joints are higher than the first 3 joints,
as we expected. This is due to the difficulty in positioning
precisely the two markers (as described earlier). However,
errors are never higher than 8 degrees.

B. Contact Detection

During the experiments, we detect a contact only when both
methods i.e., kinematic residuals and sheer difference, detect
a contact. This has been done to achieve a higher robustness.

1) With encoder readings: we apply our methods to detect
contacts to situations where encoder readings are available.
An operator physically pushed the robot (relying on the partial
back-drivability of the used robot) for 5 times every 10 seconds
starting from 20 seconds in each experiment. Every experiment
is 1 minute long, and there are 5 contacts at 20 s, 30 s, 40
s, 50 s and 60 s. Table VIII shows the results of the 5 trials.
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(b) Trajectory 5.

Fig. 5. These figures show the evolution of the estimates (blue solid), real
values (red dotted) and reference (green dashed) for each experiment.

TABLE VI
RMSE VALUES OF ESTIMATES WITH RESPECT TO GROUND TRUTH

VALUES. ERRORS ARE EXPRESSED IN DEGREES.

joint(#)
RMSE (in degrees [◦])

traj 1 traj 2 traj 3

q1 2.5402 2.0437 2.5011
q2 2.3265 1.9597 2.2247
q3 3.4943 3.3668 3.8382
q4 4.0870 4.1576 7.4786
q5 4.5054 3.4631 6.6244
q6 2.4200 3.3296 5.2717
q7 5.0569 3.6256 4.9288

False positives detected in those 5 trials are due to the bounces
created by compliant reaction of the robot to the operator
pushes.

Analysis of results: most of the contacts are reliably
detected during the trials. However, our choice of threshold
was conservative and it detected additional false positive
contacts in 60% of the trials. Since we decided to have an
operator push the robot instead of having a real contact with
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TABLE VII
RMSE VALUES OF REAL JOINT VALUES AND REFERENCE MOTION.

ERRORS ARE EXPRESSED IN DEGREES.

joint(#)
RMSE (in degrees [◦])

traj 1 traj 2 traj 3

q1 2.5383 2.0509 2.5088
q2 2.3439 1.9861 2.2505
q3 3.4641 3.3279 3.7986
q4 4.0082 4.0636 7.4306
q5 4.4579 3.4045 6.5923
q6 2.2266 3.2488 5.2017
q7 4.9333 3.4119 4.8382

TABLE VIII
SUMMARY OF RESULTS. THIS TABLE SHOWS THE RESULTS OF THE 5

TRIALS HIGHLIGHTING THE NUMBER OF DETECTED CONTACTS AND THE
NUMBER OF FALSE DETECTIONS.

Trial Detected Contacts Additional false positives

1 5/5 3
2 3/5 0
3 5/5 1
4 5/5 0
5 4/5 4

the environment, the pushing force was always different. This
added to the difficulty of detecting contacts.

2) With vision-based estimates used in the controller: we
restrict the robot to be a 3DoF manipulator for this set of ex-
periments. Results of experiments where the robot was asked
to perform a trajectory with displacements of ∆q1 = −20,
∆q2 = −30, and ∆q3 = 10 are reported in Fig. 6. Residuals
are generally non-zero because of the error in estimating the
configuration. We force joint blocks to emulate contacts, i.e.,
blocks are meant to emulate the result of hitting an object and
preventing the robot to move the joint further. Those blocks are
effectively joint limits, which produce kinematic constraints to
the robot. In detail, we set the block to −5◦ for joint 1 and
whenever the robot was commanded to go to a configuration
minor than that, the robot stayed at −5◦ position. The values
for joint 2 and 3 were respectively 15 and 2. Fig. 6(b), 6(c) and
6(d) report the results of performing the same trajectory while
enabling blocks on one joint at a time. Every graph reports
the residuals and a yellow line has 0 value when no contact
is detected and climbs to 100 when a contact is detected.
When the block was applied to joints 1 or 2, a contact was
detected, as expected. The block in the joint 3 did not trigger
any detection.

Analysis of results: the contact in the last experiment has
not been detected due to the trajectory displacement being not
too important and thus causing the relative residual to not
increase enough. This is an unwanted feature of our methods
and future work will address it to ameliorate the rate of success
of contact detection. Earlier on, we introduced the revised
model for the residuals using estimates, and we stated how
critical thresholds are in order to correctly detect contacts.
Results show that setting the thresholds is particularly hard
and it has to depend on: (i) the trajectory and (ii) the accuracy
of the estimates. It has to be noticed that a high threshold
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Fig. 6. Contact Detection. (a) Reports the residuals while performing
the trajectory in presence of no block. Residuals are non-zero because of
imprecision of estimates. (b) - (d) Results of the performance of same
trajectory but applying blocks respectively to joint 1, 2 and 3. Residuals are
reported in multiple colours and the yellow dashed line represents detection
of contacts: when 0 no contact is detected, whilst when 100, a contact is
detected. In summary, the block applied on joints caused contact detection,
as expected. The block in the joint 3 did not trigger any detection however.

would add tolerance to errors in the estimates, but it would
make the system less sensitive to real contacts. On the other
hand, low thresholds increase the number of false positives due
to the errors in the estimations. A trade-off is complicated but
critical to find, and at this moment, it has to be found on a
case-by-case manner.

C. Contact Constraint Estimation

We continue the line of experiments described in the pre-
vious subsection performing an exploration after detecting
a contact. In this series of experiments, the exploration has
been defined directly in the joint space and has the goal of
estimating the constraint(s) arising from contacts with the
environment or blocks such as joint limits. We investigate
the behaviour of our framework in presence of bilateral and
unilateral constraints. We replicate the blocks introduced in the
previous section to emulate unilateral constraints, e.g., when
the block was on joint 1, the robot was not able to go to
less than −5◦ but it could go to higher values. In another set
of experiments, blocks are hard constraints thus the robot is
not permitted to move from the blocked configuration, e.g.,
the block was set to −5◦ for joint 1 and joint 1 was not
moved at all. This was to emulate bilateral constraints. Three
experiments are run to estimate unilateral constraints and three
for bilateral constraints. In the first experiment of each set,
joint 1 is limited to be more than or equal to−5◦. In the second
experiment joint 2 is blocked to be more than or equal to 15◦.
And finally, in the third experiment both blocks are enabled
at the same time. This is done to investigate the behaviour of
our method in presence of multiple simultaneous constraints.
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TABLE IX
SUMMARY OF RESULTS. THIS TABLE SHOWS THE REAL CONSTRAINT

Λq(q) AND THE ESTIMATED CONSTRAINT Λ̃
q
(q).

Experiment Λq(q) Λ̃
q
(q)

1 [1,0,0] [0.9867, 0.1622, -0.0105]
2 [0,1,0] [0.2593, -0.9658, -0.0030]

3
[
1 0 0
0 1 0

] [
−0.9991 −0.0414 0.0006
−0.0414 0.9991 −0.0003

]
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Fig. 7. (a) Evolution of joint configuration and desired configurations during
the exploration. Red circles denote when the configuration error between
desired and estimated configurations is higher than a threshold thus regarded
as due to a contact. (b) Relative velocity set built selecting the estimated
velocities when configuration error is higher than the threshold. Since the
constraints are bilateral, the set of velocity has components only in the q̇3
direction of the graph. Small components in the other directions are due to
configuration estimation errors.

Velocity sets are recorded storing velocity vectors associated
to high positional error and analysed offline. The selection
criterion of such velocity vectors relies on the assumption that
if there is an important positional error this must be due to a
contact.

Bilateral constraints: Bilateral constraints fully constrain
motion, i.e., motion in a specific direction is not admissible.
Table IX reports the estimated Λ̃

q
(q) (refer to Eq. (19)) and

the real Λq(q) in all three experiments. Fig. 7 reports the set of
joint velocities used to compute the estimate of the constraint
in experiment 3. Results show that our method succeeds
in estimating the kinematic constraint to a high degree of
precision. Moreover, the sign inversion between Λq(q) and
Λ̃

q
(q) does not have any influence in this case, since motion

is blocked in the entire direction (Λq(q)q̇ = 0), i.e., [0, 1, 0]
and [0,−1, 0] represent the same constraint.

Unilateral constraints: in these situations, contacts limit
motion only towards the contacts themselves, but the robot is
able to leave the contacts and get back to free motion. Table X
reports the estimated Λq(q) (refer to (19)). Fig. 8 reports
the set of joint velocities used to compute the estimate of
the constraint in experiment 3. Results show that our method
succeeds in estimating the kinematic constraint to a high
degree of precision, although in the case of experiment 1 the
sign is reversed. A check on the sign would ensure that Λq(q)

(a) Joint configuration evolution.

(b) Velocity set.

Fig. 8. (a) Evolution of joint configuration and desired configurations during
the exploration. (b) Relative velocity set built selecting the estimated velocities
when configuration error is higher than the threshold. Since the constraints
are only unilateral, the set of velocity has components not only in the q̇3
direction of the graph, as in the case of Fig. 7(b). However notice that in
the q̇1 and q̇2 directions, only positive velocities are present. This is due to
the fact that during the exploration, a constraint can be active while the other
might not, and vice versa.

TABLE X
SUMMARY OF RESULTS. THIS TABLE SHOWS THE REAL CONSTRAINT

Λq(q) AND THE ESTIMATED CONSTRAINT Λ̃
q
(q).

Experiment Λq(q) Λ̃
q
(q)

1 [1,0,0] [-0.9922, -0.1225, -0.0233]
2 [0,1,0] [-0.1558, 0.9853, 0.0705]

3
[
1 0 0
0 1 0

] [
0.1039 0.9945 −0.0128
0.9752 −0.1044 −0.1949

]

and Λ̃
q
(q) have the same sign (Λq(q)q̇ ≥ 0). However due to

the errors on the estimates, velocities might have components
also in the prohibited direction and a simple check is not
enough. Future work includes a more accurate way to test
the sign of the constraints.
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Analysis of results: results show that our method suc-
ceeds in estimating constraints. Our choice of emulating
contacts with software-induced blocks was motivated by our
will to be conservative with respect to the robot integrity and
to show that our framework can be used to estimate joint limits
too. Also because those blocks did not jeopardise the vision
part, i.e., blocks did not obstruct any of the trackers to be
visible during the entire experiment.

VII. CONCLUSIONS

We presented a control framework which is able to estimate
the robot’s configuration, by tracking markers on robot links
using images from commercial cameras. We set an optimi-
sation problem and used the kinematic model of the robot.
The joint values are retrieved as those which best fit all the
relations. These estimates are used to not only control the
robot, but also to check for contacts. Furthermore, whenever a
contact was detected, the robot performed a predefined set of
exploratory motions, which enable the contact constraints to be
estimated, by comparing the difference between commanded
and observed velocity vectors. We have presented a variety
of experimental results, which showed how our framework
can control the robot and when in contact, can estimate the
kinematic constraints.

We believe it is possible to achieve more precise results
in estimating the joint configuration using more sophisticated
tracking methods. Current and future work includes also the
use of the whole body of the robot for further experiments
on contact detection and constraint estimation. Also, velocity
sets will be analysed online, and constraints will be estimated
in real-time, so that the robot will be able to resume the task
when needed. Finally, we intend to extend this framework to
both discover and control the robots dynamics, in addition to
the kinematic control described in this paper.
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