77,033 research outputs found

    Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements

    Full text link
    Localized surface plasmon resonances possess very interesting properties for a wide variety of sensing applications. In many of the existing applications only the intensity of the reflected or transmitted signals is taken into account, while the phase information is ignored. At the center frequency of a (localized) surface plasmon resonance, the electron cloud makes the transition between in- and out-of-phase oscillation with respect to the incident wave. Here we show that this information can experimentally be extracted by performing phase-sensitive measurements, which result in linewidths that are almost one order of magnitude smaller than those for intensity based measurements. As this phase transition is an intrinsic property of a plasmon resonance, this opens up many possibilities for boosting the figure of merit (FOM) of refractive index sensing by taking into account the phase of the plasmon resonance. We experimentally investigated this for two model systems: randomly distributed gold nanodisks and gold nanorings on top of a continuous gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles

    Nonradiating Photonics with Resonant Dielectric Nanostructures

    Get PDF
    Nonradiating sources of energy have traditionally been studied in quantum mechanics and astrophysics, while receiving a very little attention in the photonics community. This situation has changed recently due to a number of pioneering theoretical studies and remarkable experimental demonstrations of the exotic states of light in dielectric resonant photonic structures and metasurfaces, with the possibility to localize efficiently the electromagnetic fields of high intensities within small volumes of matter. These recent advances underpin novel concepts in nanophotonics, and provide a promising pathway to overcome the problem of losses usually associated with metals and plasmonic materials for the efficient control of the light-matter interaction at the nanoscale. This review paper provides the general background and several snapshots of the recent results in this young yet prominent research field, focusing on two types of nonradiating states of light that both have been recently at the center of many studies in all-dielectric resonant meta-optics and metasurfaces: optical {\em anapoles} and photonic {\em bound states in the continuum}. We discuss a brief history of these states in optics, their underlying physics and manifestations, and also emphasize their differences and similarities. We also review some applications of such novel photonic states in both linear and nonlinear optics for the nanoscale field enhancement, a design of novel dielectric structures with high-QQ resonances, nonlinear wave mixing and enhanced harmonic generation, as well as advanced concepts for lasing and optical neural networks.Comment: 22 pages, 9 figures, review articl

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Integrated collinear refractive index sensor with Ge PIN photodiodes

    Full text link
    Refractive index sensing is a highly sensitive and label-free detection method for molecular binding events. Commercial implementations of biosensing concepts based on plasmon resonances typically require significant external instrumentation such as microscopes and spectrometers. Few concepts exist that are based on direct integration of plasmonic nanostructures with optoelectronic devices for on-chip integration. Here, we present a CMOS-compatible refractive index sensor consisting of a Ge heterostructure PIN diode in combination with a plasmonic nanohole array structured directly into the diode Al contact metallization. In our devices, the photocurrent can be used to detect surface refractive index changes under simple top illumination and without the aid of signal amplification circuitry. Our devices exhibit large sensitivities > 1000 nm per refractive index unit in bulk refractive index sensing and could serve as prototypes to leverage the cost-effectiveness of the CMOS platform for ultra-compact, low-cost biosensors.Comment: 21 pages, 6 figures, supporting information with 11 pages and 11 figures attache

    First observation of electric-quadrupole infrared transitions in water vapour

    Get PDF
    Molecular absorption of infrared radiation is generally due to ro-vibrational electric-dipole transitions. Electric-quadrupole transitions may still occur, but they are typically a million times weaker than electric-dipole transitions, rendering their observation extremely challenging. In polyatomic or polar diatomic molecules, ro-vibrational quadrupole transitions have never been observed. Here, we report the first direct detection of quadrupole transitions in water vapor. The detected quadrupole lines have intensity largely above the standard dipole intensity cut-off of spectroscopic databases and thus are important for accurate atmospheric and astronomical remote sensing
    corecore