55 research outputs found

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    High-resolution Direction-of-Arrival estimation

    Get PDF
    Direction of Arrival (DOA) estimation is considered one of the most crucial problems in array signal processing, with considerable research efforts for developing efficient and effective direction-finding algorithms, especially in the transportation industry, where the demand for an effective, real-time, and accurate DOA algorithm is increasing. However, challenges must be addressed before real-world deployment can be realised. Firstly, there is the requirement for fast computational time for real-time detection. Secondly, there is a demand for high-resolution and accurate DOA estimation. In this thesis, two state-of-the-art DOA estimation algorithms are proposed and evaluated to address the challenges. Firstly, a novel covariance matrix reconstruction approach for single snapshot DOA estimation (CbSS) was proposed. CbSS was developed by exploiting the relationship between the theoretical and sample covariance matrices to reduce estimation error for a single snapshot scenario. CbSS can resolve accurate DOAs without requiring lengthy peak searching computational time by computationally changing the received sample covariance matrix. Simulation results have verified that the CbSS technique yields the highest DOA estimation accuracy by up to 25.5% compared to existing methods such as root-MUSIC and the Partial Relaxation approach. Furthermore, CbSS presents negligible bias when compared to the existing techniques in a wide range of scenarios, such as in multiple uncorrelated and coherent signal source environments. Secondly, an adaptive diagonal-loading technique was proposed to improve DOA estimation accuracy without requiring a high computational load by integrating a modified novel and adaptive diagonal-loading method (DLT-DOA) to further improve estimation accuracy. An in-depth simulation performance analysis was conducted to address the challenges, with a comparison against existing state-of-the-art DOA estimation techniques such as EPUMA and MODEX. Simulation results verify that the DLT-DOA technique performs up to 8.5% higher DOA estimation performance in terms of estimation accuracy compared to existing methods with significantly lower computational time. On this basis, the two novel DOA estimation techniques are recommended for usage in real-world scenarios where fast computational time and high estimation accuracy are expected. Further research is needed to identify other factors that could further optimize the algorithms to meet different demands

    Adaptive and Robust Beam Selection in Millimeter-Wave Massive MIMO Systems

    Get PDF
    Future 6G wireless communications network will increase the data capacity to unprecedented numbers and thus empower the deployment of new real-time applications. Millimeter-Wave (mmWave) band and Massive MIMO are considered as two of the main pillars of 6G to handle the gigantic influx in data traffic and number of mobile users and IoT devices. The small wavelengths at these frequencies mean that more antenna elements can be placed in the same area. Thereby, high spatial processing gains are achievable that can theoretically compensate for the higher isotropic path loss. The propagation characteristics at mmWave band, create sparse channels in typical scenarios, where only few paths convey significant power. Considering this feature, Hybrid (analog-digital) Beamforming introduces a new signal processing framework which enables energy and cost-efficient implementation of massive MIMO with innovative smart arrays. In this setup, the analog beamalignment via beam selection in link access phase, is the critical performance limiting step. Considering the variable operating condition in mmWave channels, a desirable solution should have the following features: efficiency in training (limited coherence time, delay constraints), adaptivity to channel conditions (large SNR range) and robustness to realized channels (LOS, NLOS, Multipath, non-ideal beam patterns). For the link access task, we present a new energy-detection framework based on variable length channel measurements with (orthogonal) beam codebooks. The proposed beam selection technique denoted as composite M-ary Sequential Competition Test (SCT) solves the beam selection problem when knowledge about the SNR operating point is not available. It adaptively changes the test length when the SNR varies to achieve an essentially constant performance level. In addition, it is robust to non-ideal beam patterns and different types of the realized channel. Compared to the conventional fixed length energy-detection techniques, the SCT can increase the training efficiency up to two times while reducing the delay if the channel condition is good. Having the flexibility to allocate resources for channel measurements through different beams adaptively in time, we improve the SCT to eliminate unpromising beams from the remaining candidate set as soon as possible. In this way, the Sequential Competition and Elimination Test (SCET) significantly further reduces training time by increasing the efficiency. The developed ideas can be applied with different codebook types considered for practical applications. The reliable performance of the beam selection technique is evident through experimental evaluation done using the state-of-the-art test-bed developed at the Vodafone Chair that combines a Universal Software Radio Peripheral (USRP) based platform with mmWave frontends

    The Road to Next-Generation Multiple Access: A 50-Year Tutorial Review

    Full text link
    The evolution of wireless communications has been significantly influenced by remarkable advancements in multiple access (MA) technologies over the past five decades, shaping the landscape of modern connectivity. Within this context, a comprehensive tutorial review is presented, focusing on representative MA techniques developed over the past 50 years. The following areas are explored: i) The foundational principles and information-theoretic capacity limits of power-domain non-orthogonal multiple access (NOMA) are characterized, along with its extension to multiple-input multiple-output (MIMO)-NOMA. ii) Several MA transmission schemes exploiting the spatial domain are investigated, encompassing both conventional space-division multiple access (SDMA)/MIMO-NOMA systems and near-field MA systems utilizing spherical-wave propagation models. iii) The application of NOMA to integrated sensing and communications (ISAC) systems is studied. This includes an introduction to typical NOMA-based downlink/uplink ISAC frameworks, followed by an evaluation of their performance limits using a mutual information (MI)-based analytical framework. iv) Major issues and research opportunities associated with the integration of MA with other emerging technologies are identified to facilitate MA in next-generation networks, i.e., next-generation multiple access (NGMA). Throughout the paper, promising directions are highlighted to inspire future research endeavors in the realm of MA and NGMA.Comment: 43 pages, 38 figures; Submitted to Proceedings of the IEE
    • …
    corecore