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ABSTRACT

Signal Processing for Wireless Power and
Information Transfer

Shan Zhong

The rapid development of the Internet of Things (IoT) and wireless sensor network

(WSN) technologies enable easy access and control of a variety forms of information

and data from numerous number of smart devices, and give rise to many novel ap-

plications and research areas such as smart home, machine type communications,

etc. However due to the small sizes, sophisticated environment, and large number

of devices in network, it is hard to directly power the devices from grid. Hence the

power connectivity remains one of the major issues that needs to be addressed for

related IoT applications. Wireless power transfer (WPT) and backscatter communi-

cations are provisioned to be prominent solutions to overcome the power connectivity

challenge, but they suffer strong efficiency limitation which becomes the barrier to

universally popularize such technologies. On the other hand, network optimization is

also a research focus of such applications which significantly affects the performance

of the system due to the high volume of connected devices and different features.

In this thesis we propose advanced techniques to overcome the challenges on the

low efficiency and network design of the wireless information and power transfer

systems. The thesis consists of two parts. In the first part we focus on the power

transmitter design which addresses the low efficiency issue associated with backscatter

communication and WPT. In Chapter 2, we consider a backscatter RFID system

with the multi-antenna reader and propose a blind transmit and receive adaptive

beamforming algorithm. The interrogation range and data transmission performance



are both investigated under such configuration. In Chapter 3 we study wireless power

transfer by the beamspace large-scale MIMO system with lens antenna arrays. We

first present the WPT model for the beamspace MIMO which is derived from the

spatial MIMO model. By constraining on the number of RF chains in the transmitter,

we formulate two WPT optimization problems: the sum power transfer problem and

the max-min power transfer problem. For both problems we consider two different

transmission schemes, the multi-stream and uni-stream transmissions, and we propose

different algorithms to solve both problems in both schemes respectively.

In the second part we study the network optimization problems in the WPT and

backscatter systems. In Chapter 4, we study the resource allocation problem for a

RF-powered network, where the objective is to maximize the total data throughput

of all sensors. We break the problem into two subproblems: the sensor battery energy

utilization problem and the charging power allocation problem of the central node,

which is an RF power transmitter that transmits RF power to the sensors. We analyze

and show several key properties of both problems, and then propose computationally

efficient algorithms to solve both problems optimally. In Chapter 5, we study the

time scheduling problem in RF-powered backscatter communication networks, where

all transmitters can operates in either backscattering mode or harvest-then-transmit

(HTT) mode. The objective is to decide the operating mode of each transmitter and

minimize the total transmission time of the network. We also consider both ideal

and realistic transmitters based on different internal power consumption models for

HTT transmitters. Under both transmitter models we show several key properties,

and propose bisection based algorithms which has low computational complexity that

solves the problem optimally. The results are then extended to the massive MIMO

regime.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Background and Motivation

In the past decade, we have witnessed the rapid development of the Internet of Things

(IoT) and wireless sensor network (WSN). These technologies enable easy access and

control of a verity forms of information and data from numerous number of smart

devices, and give rise to many novel applications and research areas such as smart

home, machine type communications (MTC), etc. In fact, IoT has been recognized as

one of the key applications for 5G communications, and many efforts have been made

to standardize the communication interface within the Third-Generation Partnership

Project and using long-term evolution (LTE) bands to address the requirements of

the IoT, e.g., narrowband (NB) IoT [1]. The advantages of the IoT technology include

improved coverage, support of massive number of devices, low latency, low device cost

and power consumption, and optimized network architecture.

However, the new opportunity is accompanied by challenges. Due to the small

sizes, sophisticated environment, and large number of devices in network, it is hard

to directly power the devices from grid. Using batteries is an alternative solution,

but battery recharging or replacement has the same limitations since it still requires

connection to the grid, and replacing them manually can be even more problematic.
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Hence the power connectivity is one of the major issues that needs to be addressed

for related IoT applications.

One solution is to employ wireless power transfer (WPT) technique with radio-

frequency (RF) energy harvesting transmitters. RF energy harvesting transmitters

mainly consist of an energy harvesting module, an energy storage module, and a

communication module, as shown in Fig. 1.1. They harvest incoming RF energy to

support its internal operation in the self-sustainable way, without access to external

power source. WPT has become an active research area as the technology has been

provisioned to replace the traditional wired power transfer in many applications [2].

For example, WPT is able to extend the battery lifetime of energy constrained wire-

less sensor nodes [3] in applications such as health monitoring of patients, aircraft

structural monitoring, and hazardous environment monitoring. On the other hand,

WPT can also be employed to charge low power devices such as thermometers, motion

sensors, and displays [4]. Even small-scale computation, sensing and communications

can be powered by WPT [5]. It can be clearly seen that WPT will potentially play

a significant role in IoT applications by eliminating the connecting wires, leading to

higher degrees of freedom in the placement of IoT devices.

Another solution is to employ the backscatter communication technique. A backscat-

ter system typically consists of a reader (a.k.a. interrogators), backscatter transmit-

ters (a.k.a. transponders or tags) and data processing module. The universally used

radio frequency identification (RFID) system is a practical example of backscatter sys-

tem. Rather than transmitting information and data signals actively, the backscatter

transmitters convey information by modulating then reflecting back the incoming sig-

nals passively from the reader, as illustrated in Fig. 1.2. In this case the transmitter

features low cost and simple structure since batteries are eliminated, and latency is

low due to its reflecting mechanism. Hence the backscatter system has been wildly

used in many applications such as supply chain, logistics, asset tracking, etc [6–9].

Currently studies on backscatter communication have emerged, and new system archi-
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RF Energy
Harvesting

Module

Energy
Storage
Module

(Battery)

RF Module

Baseband
Processor

Sensor

Communication Module

Incoming
RF Energy

Power Link

Information Link

RF Information Signal

Figure 1.1: System architecture of energy harvesting transmitters.

Carrier Wave

Backscattered Signal

Reader
Backscatter
Transmitter

Figure 1.2: Flow diagram of backscatter communication.

tecture has been proposed such as ambient backscattering[10, 11], LoRa backscatter

[12], etc.
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It can be seen that both wireless power transfer and backscatter communication

are prominent solutions to address the power connectivity issue and each method

has unique features. WPT method is more flexible and does not require a reader to

constantly provide carrier wave during its operation, while the backscatter system

requires lower device cost and simple structure, and its delay is low. However, both

methods suffer strong path loss and low efficiency. In WPT applications the low

efficiency leads to high input power consumption and severely restricts the coverage

range [13]. Similarly, in backscatter systems the interrogation range and reliability

are capped. Therefore, it is clear that the low efficiency issue is the bottleneck and it

strongly limits the performance of these techniques, which needs to be addressed be-

fore the popularization of the related applications. On the other hand, due to the high

volume of the connected devices, the network architecture and design strongly affect

the performance of the system. Hence, network optimization is also an important

topic and active research area in all kinds of IoT applications [14–21].

1.2 Outline and Contributions

Motivated by the tremendously rising demand of WPT and backscatter applications,

in this thesis we will present advanced techniques to overcome the challenges on the

low efficiency and network design. The thesis consists of two parts. In the first part

we focus on the power transmitter design which addresses the low efficiency issue

associated with backscatter communication and WPT. In the second part we focus

on the network optimization problems for WPT and backscatter based systems.

1.2.1 Multi-Antenna Transmitter Design for Backscatter Com-

munication and Wireless Power Transfer

Multiple-input multiple-output (MIMO) system has been proven to be one of the key

inventions in the past two decades in wireless communications. It has become an
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essential element in wireless communication standards including 3G, 4G, 5G, WiFi,

etc. With beamforming, MIMO system can enhance the performance of signal trans-

mission to achieve higher transmission capacity. In this thesis, we employ the MIMO

beamforming to improve the energy transmission efficiency and overcome the limita-

tion on power delivery distances.

In Chapter 2, we consider a backscatter RFID system with the multi-antenna

reader, whereas each tag has a single antenna. The interrogation range and data

transmission performance are both investigated under such configuration. A blind

transmit and receive adaptive beamforming algorithm is proposed. Following the ba-

sic idea in [22], a tag quantity estimator is proposed. Multiple antennas are shown

to improve the estimation performance. Simulation results illustrate that without

increasing the total transmit power, the interrogation range and the data transmis-

sion performance are significantly improved thanks to multiple antennas and effi-

cient beamforming. Readers with the proposed simple adaptive beamforming scheme

is able to reach reading distances close to readers with optimal beamforming, and

makes the data transmission performance near-optimal even without channel estima-

tion. A multiple-antenna half-duplex reader prototype is implemented using USRP

platform. Experimental results demonstrate the interrogation range improvement

over a single-antenna reader and especially the proposed blind adaptive beamforming

scheme outperforms other traditional beamforming schemes.

In Chapter 3 we study wireless power transfer by the beamspace large-scale MIMO

system with lens antenna arrays. We first present the WPT model for the beamspace

MIMO which is derived from the spatial MIMO model. By constraining on the num-

ber of RF chains in the transmitter, we formulate two WPT optimization problems:

the sum power transfer problem and the max-min power transfer problem. For both

problems we consider two different transmission schemes, the multi-stream and uni-

stream transmissions. For the sum power transfer problem, We theoretically show

that the uni-stream scheme can achieve the same performance as the multi-stream
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counterpart, and propose two algorithms for the uni-stream power transfer. For the

max-min power transfer problem, we present a semidefinite relaxation (SDR)-based

greedy algorithm and a Riemannian conjugate gradient algorithm for the multi-stream

and uni-stream case respectively.

1.2.2 Network Optimization for Wireless Power Transfer and

Backscatter Communication Systems

In the second part of the thesis we study the WPT and backscatter system from

the network point of view. In Chapter 4, we study the resource allocation problem

for a RF-powered network. In this network there is a central node and multiple RF

powered sensor devices. The central node is an RF power transmitter (charger), and

it transmits RF power to the sensors. Each sensor is equipped with a battery. The

sensors harvest the RF power from the central node, and stores the energy in their

batteries. On the other hand, the sensors utilize the energy stored in their batteries

to transmit data to the central node. The objective is to maximize the total data

throughput of all sensors, and we break the problem into two subproblems: the sensor

battery energy utilization problem and the charging power allocation problem of the

central node. We formulate the sensor energy utilization problem as a finite-horizon

Markov decision process (MDP) problem. We show several important properties of

the value function based on which we propose an optimal energy utilization algorithm

with reduced search space of possible actions. We show that the total value function

of the sensors under a given power allocation satisfies the M-EXC property [98]. We

then propose an optimal power allocation algorithm based on the discrete steepest

ascent method that has a significantly lower complexity than exhaustive search.

In Chapter 5, we study the time scheduling problem in RF-powered backscatter

communication networks. We consider a system network with one single-antenna

reader and multiple RF powered backscatter transmitters. The transmitters can

operates in either backscattering mode or harvest-then-transmit (HTT) mode, and
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the reader acts as a power transmitter and information receiver and supports both

operating modes. The objective is to decide the operating mode of each transmitter

and minimize the total transmission time of the network. We consider the ideal

transmitters where it is assumed that no power is required for non transmission-

related operations in the HTT mode, such as coding, baseband processing etc. We

also consider practical transmitters under realistic power consumption model. Under

both transmitter models we show several key properties, and show that the optimal

transmission time of each transmitter can be calculated, and their optimal operating

modes can be found by using a bisection based algorithm which has significantly

lower complexity than that the exhaustive search method. We then extend the result

to the massive MIMO regime, and propose an algorithm to solve the corresponding

problems in linear time complexity.
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Part I

Multi-Antenna Transmitter Design

for Backscatter Communication

and Wireless Power Transfer
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Chapter 2

Multi-Antenna Backscatter Reader

Design with Blind Adaptive

Beamforming

2.1 Introduction

In this chapter, we consider a backscatter radio frequency identification (RFID) sys-

tem with the reader equipped with multiple antennas, and design a blind adaptive

beamforming algorithm which cooperates well with the existing protocol. Specifically,

we consider the ultra-high frequency (UHF) RFID, which operates in the frequency

range of 860-960 MHz. As an example of backscatter communication, in passive UHF

RFID systems, tags absorb energy from the RF field generated by the signals trans-

mitted by the reader to be powered up. Therefore, tags (backscatter transmitters)

feature rather low cost and small size. However, the interrogation range and read

reliability of the passive UHF RFID system are limited due to the lack of built-in

power source of the tag, especially in fading environments.

Several works have addressed the issue of interrogation range or transmission per-

formance improvement of passive UHF RFID with single antenna [23, 24] and with
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multiple antennas [25–29]. In particular, in [25], the reverse link interrogation range of

the UHF RFID is increased by employing multiple antennas at the reader, where max-

imal ratio combining (MRC) is adopted to achieve the optimal range improvement.

Note that MRC requires the channel state information (CSI), so channel estimation

should be performed before applying MRC. If the distance between the reader and tag

is the maximum range that can be achieved by applying MRC, since at the beginning

the reader cannot apply MRC due to the lack of CSI, the delivered power from the

reader may not be sufficient to power up the tag. If the tag is not powered up, channel

estimation cannot be performed and hence MRC cannot be applied. In [26], multiple

RF antennas are equipped at the tag while the reader has single antenna. However,

tags are supposed to be as simple and low-cost as possible, so employing multiple

antennas at the tag may not be practically feasible. Bistatic RFID is considered in

[29] where the reader employs multiple receive antennas and the multi-antenna re-

ceiver algorithm requires complex processing and channel estimation. Several works

have discussed the feasibility of MIMO RFID systems, [27] and [28] present channel

estimation methods for the MIMO RFID systems, but they also contradict to the sim-

ple and low-cost feature. However, none of the works mentioned above provides any

practical solutions for improving the interrogation range that comply with existing

RFID standards.

Within the interrogation zone of a reader, there may exist many tags, which are

ready to communicate with the reader. The slotted ALOHA [30–33] protocol is widely

used in current RFID systems for multiple access. It is known that the throughput

is maximized if the frame size is set equal to the number of tags in the range. But

the number of tags is unknown to the reader at the beginning, this motivates the

estimation of the number of tags in the interrogation range of the reader [22, 34, 35].

In this chapter, we consider an RFID system with the reader equipped with mul-

tiple antennas, whereas each tag has a single antenna, which is an effective way to

reduce the overall cost, since for typical RFID applications such as objects identifi-
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cation in warehouses, there are usually hundreds or thousands of tags. The inter-

rogation range and data transmission performance are both investigated under the

new configuration. A blind transmit and receive adaptive beamforming algorithm is

proposed. Following the basic idea in [22], a tag quantity estimator is proposed. Mul-

tiple antennas are shown to improve the estimation performance. Simulation results

illustrate that without increasing the total transmit power, the interrogation range

and the data transmission performance are significantly improved thanks to multi-

ple antennas and efficient beamforming. Readers with the proposed simple adaptive

beamforming scheme is able to reach reading distances close to readers with opti-

mal beamforming, and makes the data transmission performance near-optimal even

without channel estimation. A multiple-antenna half-duplex reader prototype is im-

plemented using USRP. Experimental results demonstrate the interrogation range

improvement over a single-antenna reader and especially the proposed blind adaptive

beamforming scheme outperforms other traditional beamforming schemes.

2.2 Reader Interrogation Range

An RFID system mainly consists of a reader and a set of tags. The block diagram of

the system is shown in Fig. 2.1(a), where M transmit/receive antennas are employed

at the reader whereas each tag has a single antenna. In Fig. 2.1(a) the transmitter

and receiver use a common set of antennas, which is referred to as a full-duplex

reader, and the transmitter and receiver are connected via a circulator or a coupler

[6]. On the other hand, if different sets of antennas are employed for transmitting

and receiving, it is referred to as a half-duplex reader, shown in Fig 2.1(b).

For a full-duplex reader, we assume that the forward link and the corresponding

reverse link observe the same channel coefficients (see Fig. 2.1(a)). On the other

hand, for a half-duplex reader, forward and reverse links observe independent channel

coefficients.
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Figure 2.1: (a) A passive full-duplex multiple-antenna UHF RFID system and (b) a

half-duplex reader.

Before analyzing the interrogation range of the multiple-antenna RFID system,

we first consider the single-antenna case.

2.2.1 Single-antenna Case

We first consider the full-duplex case. At the very beginning, the reader transmits a

continuous wave (CW) to power up the passive tag in the forward link. The received

power by a tag can be written as

P tag
RX

(d) = PTXGrGtPL(d) |h|2, (2.1)

where PTX is the transmit power of the reader, Gr is the reader antenna gain, Gt is

the tag antenna gain, h is the channel coefficient, PL(d) is the path loss given by

PL(d) =

(
λ

4πd

)2

, (2.2)

where λ is the wavelength of the carrier and d is the distance between the reader and

the tag.

In order to activate the tag, the received signal power at the tag should be no less
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than the tag sensitivity PTS, i.e.,

PTXGrGtPL(d) |h|2 ≥ PTS, (2.3)

which is the constraint of the forward link.

In the reverse link, after the tag is powered up, it scatters the signal back to the

reader by modulating the received CW. The backscattered power received by the

reader is given by

P reader
RX (d) = ηP tag

RX
(d)GrGtPL(d) |h|2

= ηPTXG
2
rG

2
tP

2
L(d) |h|4, (2.4)

where η is the backscattering modulation efficiency of the tag.

In order to successfully demodulate the backscattered signal, the received backscat-

tered power should be no less than the reader sensitivity PRS, i.e.,

ηPTXG
2
rG

2
tP

2
L(d) |h|4 ≥ PRS, (2.5)

which is the constraint of the reverse link.

It is clear that both constraints (2.3) and (2.5) should be satisfied to determine

the reader interrogation range d. From (2.3) and (2.5), we have

PL(d) ≥
(
PTXGrGt |h|2

)−1
PTS (2.6)

and PL(d) ≥
(√

ηPTXGrGt |h|
2
)−1√

PRS. (2.7)

Denote α ,
(
PTXGrGt |h|2

)−1
PTS, β ,

(√
ηPTXGrGt |h|

2)−1√
PRS, and

δ , α/β = (PTXPRS)−
1
2
√
ηPTS. (2.8)

If δ > 1, we have α > β, so once (2.6) is satisfied, (2.7) is always satisfied. In this

case, the system is forward-link-limited (FLL) which means the interrogation range

is the forward link range determined by (2.6). From δ > 1 and (2.8), it can be easily

derived that PTS >
√
η−1PTXPRS. The interrogation range is determined by (2.6).
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By substituting (2.2) into (2.6), we have (λ/4πd)2 ≥
(
PTXGrGt |h|2

)−1
PTS, so it

follows that the maximum interrogation range is

dFLL =

√
(16π2PTS)−1 PTXGrGtλ2 |h|2. (2.9)

If δ < 1, we have α < β. In this case, the system is reverse-link-limited (RLL)

which means the interrogation range is determined by the reverse link range. From

δ < 1 and (2.8), it can be easily derived that PTS <
√
η−1PTXPRS. The interrogation

range is determined by (2.7). By substituting (2.2) into (2.7), we have (λ/4πd)2 ≥(√
ηPTXGrGt |h|

2)−1√
PRS, so it follows that the maximum interrogation range is

dRLL =

√(
16π2

√
PRS

)−1√
ηPTXGrGtλ2 |h|2. (2.10)

For half-duplex readers, the forward and reverse links observe different channel

gains h1 and h2 respectively. The forward-link-limited and reverse-link-limited max-

imum interrogation ranges are

dFLL =

√
(16π2PTS)−1 PTXGrGtλ2 |h1|2 (2.11)

and

dRLL =

√(
16π2

√
PRS

)−1√
ηPTXGrGtλ2 |h1| |h2|, (2.12)

respectively, under the assumption that the distance from the transmitter antenna

to the tag and that from the tag to the receiver antenna are identical, which holds

in practice when antennas are placed next to each other and the tag is relatively far

from the antennas.

2.2.2 Multiple-antenna Case

Under full-duplex configuration, in the forward link, for the multiple-antenna case,

the received power at the tag is given by

P tag
RX (d) = PTXGrGtPL(d)

∣∣wHh
∣∣2, (2.13)
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where h = [h1, . . . hM ]T is channel vector with hi being the channel coefficient from

the ith reader antenna to the tag antenna, M is the number of antennas, w =

[w1, . . . , wM ]T is the antenna weight vector, i.e., beamformer, with ‖w‖ = 1. Thus the

constraint of the forward link with multiple-antenna configuration can be expressed

as

PTXGrGtPL(d)
∣∣wHh

∣∣2 ≥ PTS. (2.14)

In the reverse link, the received backscattered power at the reader is given by

P reader
RX (d) = ηP tag

RX
(d)GrGtPL(d)

∣∣wHh
∣∣2

= ηPTXG
2
rG

2
tP

2
L(d)

∣∣wHh
∣∣4 . (2.15)

So we have the constraint of the reverse link for the multiple-antenna case as

ηPTXG
2
rG

2
tP

2
L(d)

∣∣wHh
∣∣4 ≥ PRS. (2.16)

Similar to the single-antenna case, we have that the system is forward-link-limited

if PTS >
√
η−1PTXPRS, with the corresponding maximum interrogation range

dFLLMA =

√
(16π2PTS)−1 PTXGrGtλ2 |wHh|2. (2.17)

And the system is reverse-link-limited if PTS <
√
η−1PTXPRS, with the corresponding

maximum interrogation range

dRLLMA =

√(
16π2

√
PRS

)−1√
ηPTXGrGtλ2 |wHh|2. (2.18)

From (2.9), (2.10), (2.17), and (2.18), it can be derived that the interrogation

range gain of the multiple-antenna case over the single-antenna case is
|wHh|
|h| for both

FLL and RLL systems. Similarly, the maximum interrogation ranges for half-duplex

systems are

dFLLMA =

√
(16π2PTS)−1 PTXGrGtλ2 |wH

1 h1|
2

(2.19)

and

dRLLMA =

√(
16π2

√
PRS

)−1√
ηPTXGrGtλ2 |wH

1 h1| |wH
2 h2| (2.20)
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respectively, where w1 and w2 are antenna weights for the transmitter and receiver,

respectively.

The proper choice of the antenna weights w or (w1,w2) increases the interro-

gation range. There are several beamforming schemes in common use: equal-weight

beamforming (EBF), random beamforming (RBF), and optimal beamforming (OBF).

For EBF, the weight vectors are a normalized all-one vector i.e., w = w1 = w2 =

1√
M

[1, · · · , 1]T where M is the number of antennas. For RBF, the weight vectors

are generated randomly following certain distribution and then normalized, e.g.,

w̃ ∼ Nc(0, IM), w = w̃/‖w̃‖. Both EBF and RBF are simple to implement, but

their performances may be far from the optimum since they do not make use of the

channel state information h or (h1,h2). On the other hand, the optimal beamform-

ers are channel-matched, i.e., the OBF is given by w = h/ ‖h‖ for full-duplex and

w1 = h1/ ‖h1‖ ,w2 = h2/ ‖h2‖ for half-duplex. Therefore, the OBF requires perfect

knowledge of the channel state which is unavailable at the reader at the startup of

the system but is typically obtained by estimating the channel based on the reply

signal from the tag. In other words, the tag must have been powered up before the

reader is about to estimate the channel. In this sense, it is clear that there is no need

to estimate the channel in order to improve the interrogation range since the tag has

been powered up and the distance between the reader and tag has been physically

determined. Moreover, introducing the channel estimation functionality will signif-

icantly increase the complexity of the RFID system. In next section, we propose

a blind adaptive beamforming (BABF) technique [36, 37] that exploits the channel

state information but does not perform explicit channel estimation.
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Algorithm 2.1 - Blind adaptive beamforming algorithm for full-duplex systems

1: Initialize n = 0 and w(0) ∼ Nc(0, IM );

Repeat

2: n = n+ 1;

3: Generate Kp perturbation vectors pi ∼ Nc(0, I), i = 1, . . . ,Kp;

4: Form Kp new weight vectors w̃i = w(n−1)+βpi
‖w(n−1)+βpi‖ , i = 1, . . . ,Kp;

5: Measure the received power P readerRX,i = ηPTXG
2
rG

2
tP

2
L

∣∣w̃H
i h
∣∣4, i = 1, . . . ,Kp;

6: Update w(n) = w̃I , where I = arg max
i

P readerRX,i ;

7: Until
∣∣P readerRX

(
w(n)

)
− P readerRX

(
w(n−1)

)∣∣ < ε, where ε is the threshold.

2.3 Blind Adaptive Beamforming for RFID Reader

2.3.1 Full-duplex Reader

The goal for the BABF algorithm is to find the antenna weight vector that enables the

reader to probe the tags at a given distance, and maximizes the received backscattered

power from the tag. In full-duplex systems, the BABF scheme starts by sending the

CW from the reader for probing the tag, i.e., evaluating the backscattered power from

the tag. At the nth iteration, given the weight vector w(n−1), Kp perturbation vectors

pi are generated where pi ∼ Nc(0, IM), i = 1, . . . , Kp to form Kp new weight vectors

w̃i ⇐
w(n−1) + βpi
‖w(n−1) + βpi‖

, i = 1, . . . , Kp (2.21)

where β is the weight adaptation step size. Then for each of these Kp generated

weight vectors, the corresponding received backscattered power (2.15) is measured

at the reader. Finally, the weight vector is updated as the one that has the largest

backscattered power among the Kp vectors in (2.21). The iteration terminates when

the received backscattered power fluctuates below a tolerance threshold. The algo-

rithm is summarized as Alg. 2.1.
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Algorithm 2.2 - Blind adaptive beamforming algorithm for M ×N half-duplex systems

1: Initialize n⇐ 0 and w(0) ∼ Nc(0, IM+N );

Repeat

2: n = n+ 1;

3: Generate Kp perturbation vectors pi ∼ Nc(0, IM+N ), i = 1, . . . ,Kp;

4: Form Kp new weight vectors w̃i ⇐ w(n−1) + βpi, i = 1, . . . ,Kp;

5: Partition and normalize weight vectors:

w̃1,i ⇐ w̃i[1:M ]
‖w̃i[1:M ]‖ , w̃2,i ⇐ w̃i[M+1:M+N ]

‖w̃i[M+1:M+N ]‖ , i = 1, . . . ,Kp;

6: Measure P readerRX,i = ηPTXG
2
rG

2
tP

2
L

∣∣∣w̃H
1,ih1

∣∣∣2 ∣∣∣w̃H
2,ih2

∣∣∣2, i = 1, . . . ,Kp;

7: Update w(n)⇐ [w̃1,I ; w̃2,I ], where I=arg max
i

P readerRX,i ;

8: Until
∣∣P readerRX

(
w(n)

)
− P readerRX

(
w(n−1)

)∣∣ < ε, where ε is the threshold.

2.3.2 Half-duplex Reader

The BABF algorithm for half-duplex systems updates both w1 and w2 simultane-

ously, and it is a variant of Alg. 2.1. Suppose that the half-duplex reader has M

transmit antennas and N receive antennas. Then we will use Alg. 2.1 to generate

(M + N)-dimensional weight vectors, and break them into an M -dimensional trans-

mit beamformer and an N -dimensional receive beamformer. At the nth iteration,

Kp new weight vectors are formed. The blind adaptive beamforming algorithm for

half-duplex systems is shown in Alg. 2.2.

Note that the BABF algorithm can not only extend the interrogation range, but

also improve the ID data transmission reliability, which will be discussed in Chapter

2.4.
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Figure 2.2: Interactions between the reader and the tag.

2.4 Data Backscattering Transmission

After the tag has been powered up by the CW, the reader sends commands (e.g.,

Query) to communicate with the tag. The tag replies to the reader based on the

backscattering modulation of the received CW. Fig. 2.2 illustrates the interaction

between the reader and the replying tag during the inventory process. The Select

command is used to select a tag population. An inventory process starts by the

reader sending a Query command to the tag, which broadcasts a frame consisting of

F time slots. After receiving the Query command, each tag randomly selects a slot.

The tag that picks the 0 th slot replies to the reader with RN16, which is a sequence of

16 bits randomly generated. Then, the reader decodes the received RN16, and sends

the decoded 16 bits as the ACK to the tag. Next, the tag extracts the 16 bits from

the ACK. If the extracted 16 bits are the same as the originally generated RN16, the

tag then sends its ID, i.e., the electronic product code (EPC) to the reader. After

receiving the ID of the current tag, the reader will send the QueryRep command to

read the next tag. In this section, we assume that the process before the tag replying

its EPC is perfectly done, and we focus on the EPC transmission performance of

the tag. Note that the EPC is incorporated in a packet during the transmission

and besides the EPC, the whole packet, which is 128-bit long, also includes protocol

control / extended protocol control (PC/XPC) and cyclic redundancy check (CRC)

[38]. In the following, PC/XPC+EPC+CRC is denoted as ID for simplicity. For

simplicity, only the full-duplex system is considered in this section.

In the baseband, a tag encodes the backscattered data using the FM0 encoding
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Figure 2.3: (a) FM0 symbols and (b) FM0 sequences.

scheme illustrated in Fig. 2.3. For FM0 encoding, there is always one phase inverse at

every symbol boundary, and an extra phase inverse appears in the middle of symbol

0. Thus, the FM0 sequence is decoded by judging whether there is a phase inverse in

the middle of each symbol.

2.4.1 Single-Antenna Case

Let r(ID)(t) denote the received complex baseband FM0 encoded ID signal by the

reader after passing through the direct-conversion receiver filter:

r(ID)(t) = hs(ID)(t) + nr(t), (2.22)

where s(ID)(t) is the complex baseband FM0 encoded ID signal replied from the tag

and nr(t) is the complex Gaussian noise of the reverse link. Since the tag replies

the signal to the reader by modulating the received CW sent by the reader, in the

baseband, s(ID)(t) could be expressed as

s(ID) (t) =
√
ηf (ID) (t)

(
h+ nf (t)

)
, (2.23)

where f (ID) (t) is the FM0 encoded ID and nf (t) is the complex Gaussian noise of the

forward link.

Suppose the timing synchronization is perfect and the sampling rate is 2
T

. To

decode the kth bit replied by the tag, the reader receiver performs the following
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differential demodulation operation:

y(ID)(k) = Re
{
r(ID)(kT + T/4)[r(ID)(kT + 3T/4)]∗

}
, (2.24)

where Re {x} denotes the real part of x, * is the conjugation operator, k is the symbol

index, and T is the symbol duration of the backscattered signal.

Then the symbol a(k) is decoded according to the following:

â (k) =

 1, if y(ID)(k) > 0

0, if y(ID)(k) ≤ 0
. (2.25)

2.4.2 Multiple-antenna Case

For the multiple-antenna case, (2.23) can be rewritten as

s(ID) (t) =
√
ηf (ID) (t)

(
wHh + nf (t)

)
. (2.26)

Thus, the received complex baseband signal at the ith antenna of the reader after

passing through the filter is represented as

r
(ID)
i (t) = his

(ID)(t) + nri (t), (2.27)

where nri (t) is the complex Gaussian noise at the ith antenna of the reverse link.

Similar to (2.24), for the multiple-antenna case, the receiver computes

y(ID)(k)= Re

{
M∑
i=1

[
wir

(ID)
i

(
kT+

T

4

)][
wir

(ID)
i

(
kT+

3T

4

)]∗}

= Re

{
M∑
i=1

|wi|2 r(ID)
i

(
kT+

T

4

)[
r

(ID)
i

(
kT+

3T

4

)]∗}
, (2.28)

where wi denotes the receive beamforming weight. Finally, the symbol a(k) is decoded

according to (2.25).

We now consider the choice of the antenna weight wi. Although the OBF would be

the best choice, it requires channel estimation which is hard to implement under the

current RFID standard. Therefore, the BABF algorithm can also improve the data
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Figure 2.4: A MIMO RFID protocol with BABF algorithm.

transmission effectively as an approximation to the OBF weights. The beamformer

vector w should be chosen to maximize the received SNR at the reader receiver, or

equivalently, to maximize the received backscattered power (2.15) from the tag.

To this end, we need to point out that the BABF algorithm is a reader-tag in-

teraction process that needs to be appended to the current RFID standard [38].

Specifically, the BABF algorithm should be executed before the Select command for

tag activation and initial reading. In case that the channel state information changes

during the communication with a tag, another round of weight updates can also be

carried out before sending the QueryRep commands. A MIMO RFID protocol frame-

work with the BABF algorithm that is compatible with the current RFID standard

is shown in Fig. 2.4.

2.5 Tag Quantity Estimation

Upon interrogating the tags, the reader starts by broadcasting an initial frame con-

sisting F time slots. Then each tag selects a slot at random from [0, F -1]. If more

than one tag select the same slot, these tags will collide, so no tag could be read

successfully. Since the number of tags to be identified is unknown to the reader in the

initial interrogation round, if the issued frame size (i.e., the total number of slots) is

much larger than the tag quantity, more slots of the frame will be empty which wastes

the limited channel resource and decreases the system throughput; if the frame size
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Figure 2.5: RCS plots based on the reception of the replied RN16s of tags: (a) two

tags replying simultaneously resulting in four clusters and (b) three tags replying

simultaneously resulting in eight clusters.

is much smaller than the tag quantity, more collisions will occur which also decreases

the system throughput. It is known that the system achieves the optimal throughput

when the assigned frame size equals to the number of tags in the interrogation range.

A number of works have addressed the estimation of the tag quantity. A collision

ratio estimation (CRE) algorithm is proposed in [34] by searching the number of

tags to make the actual collision ratio equal to the expected one. Three Bayesian

methods are proposed in [35] to estimate the tag quantity with reduced complexity.

In [22] the number of tags in a collision slot is estimated according to the tag’s radar

cross-section (RCS) plot.

After the initial interrogation round, the reader may experience three kinds of

time slots: empty slot where there is no tag replying, single-tag slot where there is

only one tag replying, and collision slot where there are more than one tag replying

simultaneously. Since those unsuccessfully read tags due to the erroneous transmission

in the single-tag slot or due to the collision in the collision slot will participate in
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the next interrogation round, if the number of those unsuccessfully-read tags in the

current frame could be estimated, the frame size of the next interrogation round

could be determined according to the estimation result so as to maximize the system

throughput. Suppose that the current frame contains N unsuccessfully-read slots due

to the erroneous transmission or the collision. At each slot, the reader estimates the

number of tags replying, say ni for the ith slot. Then the total number of the tags

participating in the next interrogation round could be estimated as n1 + . . .+nN , and

the frame size of the next interrogation round could be set accordingly. For simplicity

we consider only full-duplex systems.

In the following, we assume that the reader knows there is one tag in each

unsuccessfully-read single-tag slot and we focus on the estimation of the number

of tags in each collision slot based on the collided signal.

Instead of the tag ID, it is a sequence of FM0 encoded random 16 bits (RN16) that

is firstly replied to the reader by the tag upon receiving the Query command. The

reader should be able to successfully receive and decode this sequence to enable the

subsequent communication. But if collision happens, which means multiple RN16s

from different tags are sent to the reader simultaneously, the reader is unable to decode

the received overlapped RN16s. Thus the collided tags cannot be read successfully

and will reply in the next available interrogation round.

It is noticed that one tag’s response RN16 signal contributes two clusters in the

RCS plot [22], and R simultaneously replying tags produce 2R clusters in the plot

ideally, as illustrated in Fig. 2.5, where the sampling rate is two samples per bit.

Consequently, if the reader is able to estimate the number of clusters, the number of

the collided tags can be easily derived. Based on this idea, we next develop a tag

quantity estimator.
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2.5.1 Single-antenna Case

In this subsection, we propose a clustering algorithm to estimate the number of tags

involved in the collision slots. We focus on the single receive antenna case first. The

clustering algorithm is described as follows.

We consider a specific collision slot. Let r(RN16)(t) denote the received overlapped

complex baseband RN16 signal in this slot after passing through the filter, which can

be expressed as

r(RN16)(t) =

Ntag∑
n=1

hns
(RN16)
n (t) + nr(t), (2.29)

where Ntag ≥ 2 is the number of tags replying in the slot, hn is the channel coefficient

from the nth tag to the reader and s
(RN16)
n (t) is the replied RN16 signal from the nth

tag, which is given as

s(RN16)
n (t) =

√
ηf (RN16)

n (t)
(
hn + nf (t)

)
, (2.30)

where f
(RN16)
n (t) is the FM0 encoded RN16 generated by the nth tag.

Suppose the timing synchronization is perfect and the sampling rate is 2
T

at the

reader receiver. Then the received signal sample set in this collision slot is

S =

{
r(RN16)

(
2k + 1

4
T

)
, k = 0, ..., 31

}
. (2.31)

After obtaining S, the reader starts clustering the samples by first selecting one

element in S at random. Then the distances between the selected element and all

other elements are calculated. Those elements with distances from the selected ele-

ment being no larger than r form a cluster together with the selected element, where

r = ρσ and ρ is a parameter. Next, the reader repeats the above clustering steps

for the elements which have not been clustered until all elements in S are clustered.

Finally, the number of tags in this slot can be derived by counting the number of

clusters Nc in S. The proposed tag quantity estimator is summerized in Alg. 2.3.
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Algorithm 2.3 - Tag quantity estimation algorithm

1: For j = 1, ...,Mcs, where Mcs is the number of collision slots in the current frame;

2: Nc = 0;

3: Obtain S according to (2.31) in the jth slot;

4: While S is not empty, DO:

5: Randomly pick one element sk ∈ S;

6: Calculate dh = |sk − sh|, where h = 1, ..., |S|;

7: Choose elements {sg : dg ≤ ρσ} to form a cluster and remove them from S;

8: Nc = Nc + 1;

End While

9: Estimate the number of tags in the jth collision slot as dlog2Nce;

End For

2.5.2 Multiple-antenna Case

Although the reader could observe 2R clusters with R tags involved in a collision

slot ideally, it is possible that the actual number of observed clusters is less than 2R.

The reason is that the clusters may overlap with each other due to the impact of

channel and noise. For example, the reader may observe only four clusters due to

the overlapping effect, albeit there are three tags replying simultaneously and 23 = 8

clusters are supposed to be observed ideally.

Multiple receive antennas may help overcome the overlapping effect. Suppos-

ing that multiple antennas are spatially well separated, while one antenna observes

overlapped and indistinguishable clusters, other antennas may observe well-separated

clusters.

For the multiple-antenna case, (2.30) can be rewritten as

s(RN16)
n (t) =

√
ηf (RN16)

n (t)
(
wHhn + nf (t)

)
, (2.32)

where hn = [h1n, ..., hMn]T is the channel vector with hin being the channel coefficient
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from the ith reader antenna to the nth tag. And (2.29) now becomes

r
(RN16)
i (t) =

Ntag∑
n=1

hins
(RN16)
n (t) + nri (t), (2.33)

which is the received overlapped complex baseband RN16 signal in a collision slot

from the ith receive antenna after passing through the filter. Stacking the received

RN16 signals (2.33) of each antenna, we have the vector

r(RN16)(t) = Hs(RN16)(t) + nr(t), (2.34)

where r(RN16)(t) = [r
(RN16)
1 (t), ..., r

(RN16)
M (t)]T , s(RN16)(t) = [s

(RN16)
1 (t), ..., s

(RN16)
Ntag

(t)]T ,

nr(t) = [nr1(t), ..., nrM(t)]T , and

H =


h11 · · · h1Ntag

...
. . .

...

hM1 · · · hMNtag

 . (2.35)

Then, the signal sample set in (2.31) becomes

S =

{
r(RN16)

(
2k + 1

4
T

)
, k = 0, ..., 31

}
. (2.36)

The clustering algorithm is similar to Alg. 2.3, except that it is now applied to the

vector samples in (2.36) and the corresponding distances between vectors are used.

2.6 Simulation Results

In this section, simulation results are presented. The system parameters are set as

follows. Carrier frequency fc = 915 MHz, the total transmit power PTX = 1W (30

dBm), reader antenna gain Gr = 2 dBi, tag antenna gain Gt = 0 dBi, reader sensitivity

PRS = 3.16×10−8 mW (-75 dBm), modulation efficiency η = 0.25, weight adaptation

step size β = 0.05, the number of tags in the reader interrogation range is uniformly

distributed in [50, 500] and the initial frame size Finit = 256. Finally, the Rician

channel with the Rician factor K = 2.8 dB is adopted as [39].
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Figure 2.6: The convergence of the proposed BABF algorithm with different values

of Kp in full-duplex setting, M = 2.

2.6.1 Interrogation Range Performance

We first illustrate the convergence of the proposed BABF algorithm. Fig. 2.6 shows

the received power metric
∣∣wHh

∣∣4 as in (2.15) versus the iteration number in one

simulation for a full-duplex system with the number of antennas M = 2. The perfor-

mance of OBF with ideal CSI is also plotted as a benchmark. It can be observed that

the performance of the proposed BABF approaches that of OBF, and the convergence

rate increases with the number of perturbations Kp. A similar plot for the half-duplex

system with M = N = 2 is given in Fig. 2.7. In this setting, the number of antenna

weights that need to be optimized doubles, so a larger Kp and more iterations are

needed to achieve the benchmark OBF performance.

The tag sensitivity varies from tag to tag. In the following simulations, we fix the

reader sensitivity and vary the tags with different sensitivities. Assume there is only

one tag in in each round of interrogation range simulation.

2.6.1.1 Interrogation Range for Full-duplex Systems

For full-duplex systems, we choose the tag sensitivity PTS = 0.04 mW (-14 dBm)

so that PTS >
√
η−1PTXPRS and the system is FLL. Fig. 2.8(a) shows the average
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Figure 2.7: The convergence of the proposed BABF algorithm with different values

of Kp in half-duplex setting, M = N = 2.

interrogation range versus the number of antennas under this setup. Although only

BABF, EBF and RBF can be employed in practice as they do not require the channel

state information, as a performance upper bound, we also present OBF performance

assuming the reader has the channel state information at the startup of the system.

It can be observed that OBF is able to read at the longest distances. While the

interrogation range generally increases with the number of antennas, the reader with

BABF has the closest performance to that of OBF among others. Specifically, the

interrogation range is increased from 4.76 m (M = 1) to 6.84 m (M = 2), then to

10.05 m (M = 4) and to 14.11 m (M = 8) for BABF; and for EBF, the interrogation

range is increased from 4.76 m (M = 1) to 5.83 m (M = 2), then to 7.76 m (M =

4) and to 10.73 m (M = 8). Interestingly, unlike other beamforming schemes, for

RBF the average interrogation range decreases slightly as the number of antennas

increases.

Next, we choose the tag sensitivity PTS = 0.01 mW (-20 dBm) so that PTS <√
η−1PTXPRS and the system is RLL. Fig. 2.8(b) shows the average interrogation

range versus the number of antennas under this setup. We observe similar range

improvements as in FLL systems. Moreover, under the same antenna configuration,
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Figure 2.8: Average interrogation range versus number of antennas under full-duplex

setting.
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the interrogation range of the RLL system is larger than that of the FLL system.

This is due to the improvement of the tag sensitivity in RLL systems, which enables

the tags to detect weaker signals.

2.6.1.2 Interrogation Range for Half-duplex Systems

In the half-duplex setting, the channel state information at the transmitter and re-

ceiver is not balanced, and the power transfer efficiency is not equivalent for the

forward link and reverse link. Therefore, using tags with 0.01 mW tag sensitivity

does not simply imply that the system is absolute RLL anymore. In this case, though

for most of the time the system is still RLL, there is a small portion of instances that

it is FLL. It is the same case for tags with 0.04 mW sensitivity. Hence, we continue

using 0.04 mW and 0.01 mW tag sensitivities in the simulation, but the results are

not classified as FLL and RLL here.

We observe similar pattern in the average interrogation range plot shown in Fig.

2.9 for symmetric half-duplex systems, which means the numbers of transmit and

receive antennas are the same. For the OBF scheme, the average ranges of half-

duplex readers are close to those of full-duplex readers. The average ranges for the

BABF scheme are not as long as those in full-duplex configuration, but they are still

much better than EBF. Finally, RBF does not show interrogation range improvement

as the number of antennas grows for the half-duplex setting as well.

Table 2.1 presents the numerical results for half-duplex readers with asymmetric

settings. In all antenna settings, BABF has the best performance in interrogation

range as expected. One feature that can be drawn from this table is that when the

total number of antennas are fixed, readers with more antennas on the transmitter

outperform readers with more antennas on the receiver. For instance the 2 × 1 and

3×2 settings in Table 2.1, all the beamforming schemes have longer reading distances

than those in the 1× 2 and 2× 3 settings.

In mobile environment where Doppler drift is considered, the proposed MIMO
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Figure 2.9: Average interrogation range versus number of antennas under half-duplex

setting.
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Table 2.1: Average interrogation range for different numbers of antennas

and BF schemes in half-duplex systems.

Antenna setting BF scheme Tag sensitivity

0.04 mW 0.01 mW

1× 2

OBF 4.6541 8.9858

BABF 4.6528 8.9487

EBF 3.7925 7.6469

RBF 4.5888 7.6469

2× 1

OBF 6.8128 9.9277

BABF 6.7124 9.7842

EBF 6.5830 8.8297

RBF 4.6682 7.5358

2× 3

OBF 7.1437 12.9182

BABF 6.9281 12.5044

EBF 5.3290 9.3442

RBF 4.6033 7.4134

3× 2

OBF 8.6924 14.1891

BABF 8.3997 13.6904

EBF 7.4709 11.3799

RBF 4.4826 7.6450
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RFID reader system with BABF shows stable result as well. Fig. 2.10 presents the

average interrogation range as a function of the velocity of the reader for a 2-antenna

and a 4-antenna system. PTS = 0.04 mW is considered for both systems. It is

observed that the range declines when the velocity increases, but the interrogation

range can always be maintained and more than 90% of the reading range in the

stationary environment can be achieved. The range reduction of the 4-antenna reader

is greater than that of the 2-antenna system, which can be explained by the fact that

every antenna link is slow varying, and therefore the total channel variation is stronger

for the 4-antenna system. In practice, considering a scenario that the RFID reader

is carried by a technician and makes readings with walking speed, the interrogation

range is almost constant according to Fig. 2.10.

2.6.2 Data Transmission Performance

Once a tag successfully receives the ACK command sent by the reader, it will reply to

the reader using a 128-bit packet that includes PC/XPC, EPC, and CRC. If the packet

is not received successfully by the reader, the tag will then enter the arbitration state

to wait for replying to the reader in the next interrogation round. In this subsection,

instead of the bit error rate (BER) performance (e.g., [12] [13]), the more appropriate

packet error rate (PER) performance of the system is evaluated and the performance

gain of employing multiple antennas is examined.

Fig. 2.11 shows the PER performance versus the transmit signal-to-noise ratio

(SNR) for data transmission. For BABF, we set Kp = 8 and the number of iterations

is 30. It can be observed that the PER performance is significantly improved as the

number of antennas M increases. With M = 2, BABF has better PER performance

than RBF and EBF. The performance offered by BABF is very close to the optimum,

i.e., OBF with perfect CSI. One can also observe that the proposed BABF scheme

offers about 21 dB gain over the single-antenna case at the PER of 10−2 with M = 2

.
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BF schemes.
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Figure 2.12: Normalized MSE of the estimated number of tags versus SNR.

2.6.3 Tag Quantity Estimation Performance

We suppose that the reader has the knowledge of the noise variance σ2 and the collided

tags have the same distance from the reader. In Alg. 2.3, ρ should be specified in

advance. We resort to simulations to find the optimal value of ρ by making 5000

simulation runs to evaluate the performance for each ρ value in the interval of [1.5, 5.5]

with step size 0.1.

Fig. 2.12 shows the normalized MSE of the estimation versus SNR. It is seen that

the multiple-antenna configuration (M = 2) leads to much more accurate estimation

than the single-antenna one.

2.7 Experimental Validation

To evaluate the performance of the multiple-antenna RFID system, a number of exper-

iments have been carried out. The goal of these experiments is to show the readability
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of the different beamforming schemes at various interrogation ranges, and compare it

with that of the single antenna system. Since commercially available RFID readers do

not support MIMO or beamforming functionality, a 2×1 half-duplex reader prototype

is built using the Universal Software Radio Peripheral (USRP) with SBX daughter-

boards. The setup has a wide bandwidth that cover 400 to 4400 MHz, and it can

provide up to 100 mW of output power. This prototype consists of three S9028PCR

circular polarity panel antennas by Larid Technologies : two for transmitting, and

one for receiving. The antennad have a gain of 8 dBic. Each antenna is connected

to an Ettus Research USRP N210. All the USRPs are connected to a computer, and

LabView 2014 is the software used to control and interface. The reader operates at

carrier frequency of 915 MHz, IQ rate of 1 MHz, and LabView program gain of 17.

The RFID tag tested in this experiment is a UPM Raflatac FROG tag. Note that all

the measurements in our experiments should be collected from the tag responses to

the EPC commands in the current EPC standard [38], which is the only protocol the

commercial tag complies with. In our case, Query commands are transmitted, then

the RN16 responses are recorded as measurements.

The experiments are set up in a lab environment shown in Fig. 2.13. In order to

compare the different beamforming schemes together with the single antenna reader,

the tag is read at a series of distances, and its responses are recorded at each position.

Specifically, eight evenly spaced points are selected along the center line illustrated

in Fig. 2.14. The tag is placed and pointed horizontally to the antennas with a line

of sight path in between.

In real RFID readings it takes at least a timeout interval [38] to judge if the tag

has been activated. Hence it is not practical to find the exact maximum interrogation

range within limited time like in Fig. 2.9. The power received by the tag is also largely

affected by the channel state which varies from rounds to rounds. Therefore, in this

experiment a large number of readings are tested at each marked location in Fig.

2.14. For each setting, the number of the RN16 tag responses and the total number
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Figure 2.13: Experiment setup.
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Figure 2.15: Probability of successful RFID tag reading.

of reader Query attempts are counted. Thus instead of the average interrogation

range in Chapter 2.6, the percentages of successful Query-RN16 interaction calculated

from the collected data are compared among all the beamforming settings. The tag’s

backscattered signal strength is also measured in the experiments. It is clear that

higher percentage of successful reading indicates better beamforming scheme is at a

given position, and so does the stronger signal strength. Therefore, in the experiment

we use both the percentage and the signal strength as measures of reader performance.

Fig. 2.15 shows the probabilities of successful RFID tag reading with the different

beamforming schemes at selected positions. Obviously, BABF has the largest and

most consistent chance to read a tag at all positions. It guarantees successful tag

reading at the first 6 points (270 cm), and maintains high probability (0.9 and 0.7) to

read the tag at longer distances. Readers with EBF and RBF have similar probability

performance; the EBF curve is slightly higher than that of RBF. For these two beam-

forming settings, neither of these tag positions has zero readings or guarantee perfect

readings. Contrast to EBF and RBF, the single-antenna settings (transmitting with

either antenna 1 or antenna 2) almost ensure reading when the tag is relatively close

to the antenna. However, single antenna readers almost miss all the readings at dis-

tances farther than the 3rd point (180 cm). This result illustrates that RFID reader
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Figure 2.16: Backscattered signal strength received

with single antenna is less sensitive to the channel state, but long distance readings

require MIMO settings. For all these antenna settings the probability of successful

reading decreases as the tag moves away from the antennas. This trend matches with

the simulation results as well. It is interesting that the probabilities for the readers

at the 5th point (240 cm) using EBF, RBF and single-antenna 2 are slightly higher

than those at the 4th point, which act against the overall trend. This may be caused

by environmental factors, e.g., the electromagnetic wave reflection in the laboratory

amplifies the signal reception at the 5th point. Nevertheless, the results clearly show

that the multiple-antenna RFID reader is more reliable at long distances, and in par-

ticular the proposed blind adaptive beamforming algorithm leads the tag reading rate

at all distances.

Fig. 2.16 is the plot of backscattered signal amplitude received by the reader.

Similar to the probability plot, the reader receives the strongest signal response from

the tag when it employs BABF. Readers using EBF and RBF generally can obtain

stronger signal at long distances, but have close readings to single antenna reader in

short range.

From both the probability and signal strength plots, it is seen that the MIMO

RFID reader exhibits a clear advantage in long range interrogation compared with the
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standard single-antenna readers. Moreover, the BABF algorithm is validated as an

effective and stable technique to find the near-optimal antenna weights, and enhance

the reader performance at all distances. Note that the difference of interogation range

values in the experiment and the simulation is mainly caused by the difference of

transmit power in each case. However, RFID systems with multiple antennas always

outperform the single antenna systems in both cases.

2.8 Conclusions

We have proposed a passive multiple-antenna UHF RFID system with the reader

equipped with multiple antennas and each tag equipped with a single antenna. The

reader interrogation range, data transmission performance and the estimation of tag

quantity have been investigated. In particular, the proposed BABF algorithm is

performed to optimize the beamforming weights of the reader. As shown in Fig. 2.4,

the improvement of the interrogation range is achieved during the transmission of CW

before the Select command is sent for the FLL system and during the backscattering

transmission of the tag for the RLL system.

Our results indicate that under the multiple-antenna configuration, especially with

the BABF scheme, the interrogation range extends substantially. The PER perfor-

mance of the data transmission approaches the optimal beamforming performance

with BABF algorithm as well without channel estimation. Finally, we note that

the proposed MIMO RFID reader with blind adaptive beamforming complies with

the current RFID standard and hence they can be readily implemented in existing

systems.
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Chapter 3

Wireless Power Transfer by

Beamspace MIMO with Lens

Antenna Array

3.1 Introduction

In this chapter we design a wireless power transfer (WPT) system using beamspace

MIMO, a recently proposed MIMO architecture with lens antenna array. One major

challenge is that the efficiency of WPT is low, which leads to high input power con-

sumption and severely limits the coverage range [13]. One key approach to increasing

the power transfer efficiency is to employ MIMO and massive MIMO technologies,

which has emerged as the key 5G technology to provide higher data rate and spectral

efficiency [40]. The appliaction of MIMO to WPT has also been considered. In partic-

ular, in [41] the feasibility of a WPT system using multi-antenna array is studied, and

it shows that by adding more antennas at the base-station (BS), the range of WPT

can be extended. In [42] the authors study the optimal design of channel training for

a MIMO WPT system, and propose a method to maximize the harvested energy at

the receiver. The superimposed pilot aided channel estimation is considered in [43]
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for WPT-enabled massive MIMO system, where the uplink channel estimation and

information transmission that powered by WPT can be performed simultaneously.

The hybrid analog beamforming is considered in [44] for simultaneous wireless infor-

mation and power transfer (SWIPT), and [45] shows that the energy beamforming

gain, i.e., the end-to-end power transfer efficiency increases linearly with the number

of antennas at the transmitter, even with reverse-link based channel training. Wire-

less power transfer using millimeter wave (mmWave) is studied in [46] for cellular

networks, and its performances in energy coverage probability and average harvested

power are analyzed in [47]. Wireless power transfer for the phase shifting and se-

lection network is studied in [48] and the effect of rain attenuations is investigated.

A compact mmWave wireless power transfer system is prototyped in [49] and it was

demonstrated to power smart sensors with relatively high efficiency. The linear en-

ergy conversion model is employed in most wireless power transfer works [40, 45, 50].

Some recent works propose non-linear energy transfer models in [51, 52]. Another line

of work focuses on the SWIPT [53] where the receivers harvest energy and decode

information separately from the signal sent by a common transmitter. Along this

line multiple works show that massive MIMO can improve the system performance

in different settings [44, 54–57]. However, realizing large-scale MIMO in practice has

a key challenge that each antenna element needs to be equipped with a RF chain.

Hence, the transmitter requires a large number of RF chains, which leads to high

hardware cost and circuit energy consumption.

Recently, the concept of beamspace MIMO has attracted significant attention

[58, 59], and the discrete lens array (DLA) is the key component. Essentially, the

DLA acts as an analog beamformer, which can transform the spatial channel to the

beamspace domain with negligible performance loss. As a result, it enables direct

operation in the beamspace which often exhibits strong structural properties, i.e., the

beamspace channel is sparse in mmWave band due to the sparse scattering [60]. Since

each beam represents one antenna in this system, only a small number of antennas
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need to be active to achieve the performance of a conventional mmWave massive

MIMO system, and therefore the number of RF chains can be significantly reduced.

It has been demonstrated that the DLA-based prototype can achieve a spectral effi-

ciency of 10-20 bits/s/Hz with a 17-31 dB power advantage over the state-of-the-art

design at mmWave band [58]. A number of works have addressed various aspect of

the DLA-based beamspace MIMO communications. A near-optimal beam selection

scheme is proposed to optimize the sum-rate performance for beamspace mmWave

massive MIMO systems [61]. The channel estimation problem for beamspace massive

MIMO system is investigated in [62]. The work in [63] designs schemes with the

lens antenna array at BS to achieve lower signal processing complexity and hardware

power cost, while maintaining comparable performance as the conventional MIMO

systems. Note that the DLA-based beamspace MIMO is fundamentally the same

as the phase shifting and selection hybrid beamforming system in[48]. However, the

beamspace MIMO uses completely different hardware components, resulting in sig-

nificantly lower hardware cost and energy consumption.

In this chapter we study wireless power transfer by the beamspace large-scale

MIMO system with lens antenna arrays. We first present the WPT model for the

beamspace MIMO which is derived from the spatial MIMO model. By constraining

on the number of RF chains in the transmitter, we formulate two WPT optimization

problems: the sum power transfer problem and the max-min power transfer problem.

The key challenges of the problems are to select the optimal active set of antennas

and to compute the corresponding optimal beamformers, which are NP hard. The

main contributions of the chapter are summarized as follows.

• We present the system model of wireless power transfer for beamspace MIMO,

and formulate two important power transfer problems, the sum power transfer

problem and the max-min power transfer problem.

• For the sum power transfer problem we consider two different transmission

schemes, the multi-stream and uni-stream transmissions. The multi-stream
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scheme forms multiple beamforming vectors which cover all groups of receivers

in different locations. In contrast the uni-stream scheme has a single beam-

forming vector, but the variation in power reception is higher among receivers.

We theoretically show that the uni-stream scheme can achieve the same per-

formance as the multi-stream counterpart, and propose two algorithms for the

uni-stream power transfer. The first algorithm employs greedy search and eigen-

decomposition whereas the second is a truncated power iteration algorithm

which is computationally more efficient.

• Similarly for the max-min power transfer problem, both the multi-stream and

uni-stream schemes are considered. For the multi-stream scheme, a semidef-

inite relaxation (SDR)-based greedy algorithm is proposed; and for the uni-

stream scheme a Riemannian conjugate gradient algorithm is proposed, which

is computationally more efficient and stable compared to the SDR-based greedy

algorithm.

3.2 System Model

We consider a mmWave massive MIMO wireless charging system. The power trans-

mitter (PT) is equipped with N antennas, and serves K single-antenna 1 power re-

ceivers (PR). We assume that the PT has MRF (≤ N) RF chains due to the practical

cost-efficient considerations, and MRF antennas are selected to pair with these RF

chains. The system therefore can transmit MS(≤MRF ) streams for power transfer. In

the spatial domain, for each stream, a beamforming vector forms a beam which brings

in the power gain to those PRs in the beam direction. Multiple streams can simulta-

neously serve PRs in different locations, but also result in high baseband processing

1We consider single-antenna receiver in this work, and the results in this chapter can be general-

ized to multiple-antenna receivers by alternatively optimizing for the receive beamformers and the

transmit beamformer.
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complexity. Hence the number of streams MS is an important system parameter and

we will consider the multi-stream (i.e., MS > 1) and uni-stream (i.e., MS = 1) cases

separately.

3.2.1 MmWave MIMO Channel Model in Spatial Domain

The first part of this thesis (Chapter 2 and Chapter 3) aims to optimize the perfor-

mance of the multi-agent sequential test under these two constraints.

First we consider the classic fully digital MIMO architecture with N = MRF as

shown in Fig. 3.1(a). Let h̃k ∈ CN denote the channel vector of the k-th PR. It

is known that the mmWave channel exhibits sparse scattering [60]. We employ the

classic Saleh-Valenzula channel model to describe h̃k with a line-of-sight (LoS) path

and L scattering paths as [58, 60]

h̃k =

√
N

% k

(
αk,0a(θk,0) +

L∑
l=1

αk,la(θk,l)
)
, (3.1)

where %k is the path-loss, αk,0 and αk,l are the complex channel gains of the LoS

and the l-th scattering path of PR k with the signal physical directions θk,0 and

θk,l respectively, and a(θ) is the steering vector. For uniform linear arrays (ULA)

the steering vector can be expressed as a(θ) = 1√
N

[1, ej
2π
λ
d sin(θ), · · · , ej(N−1) 2π

λ
sin(θ)]H ,

where λ is the wavelength and d is the distance between adjacent antenna elements.

Typically d = λ/2, which yields a(θ) = 1√
N

[1, ejπ sin(θ), · · · , ej(N−1)π sin(θ)]H . Denote

H̃ = [h̃1, · · · , h̃K ] ∈ CN×K as the channel matrix of all PRs.

Let vm ∈ CN be the beamforming vector of the power stream m, and V̂ =

[v1, · · · ,vMS
] ∈ CN×MS be the beamforming matrix. To satisfy the transmit power

constraint, we have Tr(Ṽ HṼ ) ≤ P where P is the total power supply at the PT. Let

s ∈ CMS be the power signal vector with E(ssH) = IMS
. Hence, the received signal

vector for all PRs is

ỹ = H̃HV̂ s ∈ CK . (3.2)
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Figure 3.1: Illustration of the two types of multi-agent systems.
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3.2.2 Beamspace MIMO with Lens Antenna Array

The channel model of beamspace MIMO can be transformed from the conventional

MIMO in the spatial domain with carefully designed lens antenna array [58, 62]. As

shown in Fig. 3.1(b), N antenna elements are attached to the lens to form a discrete

lens array (DLA), and such DLA acts as an N ×N discrete Fourier matrix U which

transforms between the spatial domain and beamspace domain. In other words, the

DLA turns an omni-directional signal into a beam. Specifically, the DLA matrix

is U = [ã(1), · · · , ã(N)], where column ã(m) = 1√
N

[1, ejmπ, ejm2π, · · · , ejm(N−1)π]H

represents the orthogonal array steering vector of the m-th antenna elements in the

DLA. Hence, for any PR k, the channel vector for the beamspace MIMO becomes

hk = UHh̃k. The received signal vector for the beamspace MIMO is

y = HHV̂ s = H̃HUV̂ s ∈ CK , (3.3)

where H = UHH̃ is the beamspace MIMO channel matrix. We assume that the

channel matrix H is known to the transmitter 2.

So far we have considered the beamspace MIMO system with full deployment

of the N antennas, which requires N individual RF chains. In this chapter, we

consider the hybrid beamforming architecture with MRF (≤ N) RF chains using an-

tenna selection. There are two main reasons. The first is for cost efficiency, since

reducing the number of RF chains will lower the total cost of the RF circuits given

that the RF chain module is expensive. Secondly, the mmWave channel has lim-

ited and sparse scattering, especially for the beamspace MIMO since the channel

is sparse under the Fourier bases. This means that it is not necessary to use ev-

ery antenna for power transmission, and it suffices to use the dominant beams.

As a result, MRF antennas are selected, which form the effective channel matrix

H(A) = H [n, :]{n∈A} = U [n, :]H{n∈A}H̃ ∈ CMRF×K where A is the set of indices of se-

lected antennas, and the corresponding beamforming matrix becomes V ∈ CMRF×MS .

2Channel estimation can be efficiently performed for beamspace MIMO[62].
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The final signal model is then

y = H(A)HV s ∈ CK . (3.4)

The received power vector of all PRs is

p = diag(V HH(A)H(A)HV ), (3.5)

where diag(·) returns a vector consisting of the diagonal elements of the input ma-

trix. Note that in (3.5) we employ the linear RF energy harvesting model[45, 50].

Recent experiments in[64] show that the linear model is justified and can accurately

characterize the relationship between the transmitted and received power.

Note that in wireless power transfer systems all PRs can harvest power from a

common RF power stream, hence it is not necessary to restrict that K ≤ MS. In

fact, it is preferable to design a system with MS as low as possible since this would

make the beamformer design and baseband processing tasks much more efficient.

3.3 Maximum Sum Power Transfer

In this section we treat the beamformer design for maximizing the sum power transfer

in the beamspace MIMO system.

3.3.1 Problem Formulation

Given the power signal model in (3.4), the sum power delivered to all users is

Tr(V HH(A)H(A)HV ) with selected antenna set A ⊂ {1, · · · , N}. The objective is

to select the best MRF antennas and design the corresponding beamformer matrix

V ∈ CMRF×MS to maximize the total delivered power, i.e.,

P3.1 : max
A,V

Tr(V HH(A)H(A)HV ) (3.6)

s.t. |A| = MRF ,

Tr(V HV ) ≤ P.
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Problem P3.1 is hard to solve. First, the optimization over the cardinality-

constrained discrete set A is NP-hard. Secondly, the objective is to maximize a

quadratic function in V which is non-convex. Next we show that uni-stream trans-

mission is optimal, i.e., MS = 1. We then propose two algorithms for uni-stream sum

power maximization.

3.3.2 Optimality of Uni-stream Transmission

Due to the difficulty of P3.1, we decompose it into two subproblems: the beamformer

optimization subproblem and the antenna selection subproblem. First in the beam-

former optimization subproblem, a set of antennas A′ with cardinality |A′| ≤ MRF

is given as input. As a result, the dimension of the beamforming matrix Ṽ becomes

|A′| ×MS. The beamformer optimization problem can be expressed as

ρ(A′) = max
{Ṽ ∈C|A′|×MS :Tr(Ṽ H Ṽ )≤P}

fA′(Ṽ ), (3.7)

where fA′(Ṽ ) , Tr(Ṽ HH(A′)H(A′)HṼ ) is the amount of power delivered using Ṽ

with antenna set A′. Note that the problem in (3.7) is non-convex. A straight-forward

method to solve this problem is to introduce a semi-definite matrix W = Ṽ Ṽ H ∈

S|A
′|

+ , where S|A
′|

+ denotes the set of semi-definite matrices with dimension |A′| × |A′|.

By dropping the rank constraint on W we obtain a semi-definite relaxed problem,

which can be solved by any convex solver. An approximate solution to Ṽ can then

be obtained by eigen-decomposition of W . However, the optimal solution to (3.7)

can be found analytically, as shown in the following results.

Lemma 1. For any channel matrix H(A′) with a given antenna set A′, the op-

timizer of fA′(Ṽ ) is in the eigenspace corresponding to the largest eigenvalue of

H(A′)H(A′)H .

Proof. See Appendix 3.7.1.
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Theorem 1. For any channel matrix H(A′) with a given A′, there always exists a

rank-1 optimal solution to (3.7). That is, the uni-stream transmission is optimal.

Proof. See Appendix 3.7.2.

Lemma 1 and Theorem 1 show that problem (3.7) can be efficiently solved by

performing eigen-decomposition on H(A′)H(A′)H . The optimal objective value in

(3.7) is given by ρ(A′) = λ∗P , where λ∗ is the largest eigenvalue of H(A′)H(A′)H .

The optimizer is any one of the eigenvectors corresponding to λ∗. Compared to the

suboptimal semi-definite relaxation method, this solution is not only optimal but also

more efficient as it only performs eigen-decomposition instead of convex optimization.

3.3.3 Sum Power Maximization - Algorithm 1

The antenna selection subproblem is to find the set of antennas that maximizes the

total power throughput, i.e.,

max
|A|=MRF

ρ(A). (3.8)

This problem is NP-hard. The most straightforward approach is the exhaustive search

over all possible A. However, the search space of this problem has size of
(

N
MRF

)
, which

is computationally prohibitive for systems with large number of antennas, e.g., the

search space is over 4.88 × 1018 for N = 64 and MRF = 16. Hence, we employ

a greedy algorithm to solve the antenna selection problem in (3.8). The first sum

power maximization algorithm is summarized as the SUM1 algorithm in Alg. 3.1.

The SUM1 algorithm initiates with an empty antenna set. In the first iteration,

the algorithm tests the sum power transfer with a single transmit antenna. In step 1,

it evaluates the system performance ρ(n) where n ∈ {1, · · · , N}, and selects the one

which enables the highest power transfer, and then adds it to the antenna set in step

2. This antenna is the strongest antenna. In the next iteration, the algorithm adds

another one to the antenna set such that it can generate the largest power transfer
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Algorithm 3.1 (SUM1) - Max sum power transfer algorithm

Input: beamspace channel matrix H ;

Initialization: A0 = ∅;

For j = 1, 2, · · · ,MRF :

1: Compute n∗j = argmax
n∈{1,··· ,N}\Aj−1

ρ(Aj−1 ∪ n), where function ρ outputs the

largest eigenvalue of (H(Aj−1 ∪ n)H(Aj−1 ∪ n)H);

2: Set Aj = Aj−1 ∪ n∗j ;

End

Output: Antenna set AMRF
, beamformer v∗ ∈ CMRF which is any eigenvector

corresponding to the largest eigenvalue of (H(AMRF
)H(AMRF

)H).

together with the antenna found in the first iteration. In other words, in each iteration

the algorithm looks for the antenna which brings in the largest marginal gain to the

existing antenna set. The size of the antenna set grows by 1 after each iteration, and

finally it terminates when the set has size MRF .

3.3.4 Sum Power Maximization - Algorithm 2

Note that in the i-th iteration of SUM1 algorithm, (N − i) eigen-decompositions

are computed. Here we develop an alternative solution that does not require eigen-

decomposition.

In the uni-stream setting, the overall problem P3.1 in (3.6) can be rewritten as

max
v∈CN

f(v) = vHHHHv, s.t. ‖v‖2
2 = P, ‖v‖0 = MRF , (3.9)

where ‖v‖0 is the zero norm or cardinality, i.e., the number of non-zeros elements of v.

Note that the set A in (3.6) corresponds to the non-zero elements of v in (3.9). This

problem is known as the sparse principal component analysis (SPCA) problem in the
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Algorithm 3.2 (SUM2) - Max sum power transfer

Input: beamspace channel H , RF chain number MRF ;

Initialization: v = v(0) as the dominant eigenvector

of the solution to P3.2 in (3.12), t = 1;

Repeat

1: Compute ṽ(t) = (HHHv(t−1))/‖HHHv(t−1)‖2;

2: Truncate v̂(t) = Trun(ṽ(t),MRF ) defined in (3.10);

3: Set v(t) = v̂(t)/‖v̂(t)‖2;

4: t← t+ 1;

Until convergence

Output: final beamformer vector v(t).

optimization literature [65–68]. In [66], a semi-definite programming (SDP)-based

method was proposed. The authors further proposed a greedy algorithm in [67] which

improves the computational efficiency. Recently, [68] proposed an iterative truncated

power method that has recovery performance guarantee. In this chapter, we solve

(3.9) by the SUM2 algorithm in Alg. 3.2 based on the truncated power method [68]

with a carefully designed initial point.

The SUM2 algorithm is an iterative method. At iteration t, the algorithm first

computes the new normalized beamformer ṽ(t) using the beamformers obtained in the

previous iteration, according to step 1. In step 2, the new beamformer is truncated

to keep only the top MRF elements and set the rest to 0, i.e., Trun(ṽ(t),MRF ) returns

an N × 1 vector whose i-th element is given as

Trun(ṽ(t),MRF )[i] =

ṽ
(t)[i], if |ṽ(t)[i]| ≥ α;

0, otherwise,

(3.10)

where α is the absolute value of the MRF -th largest element in ṽ(t). In step 3, the
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beamformer of the current iteration is updated as the normalized truncated vector

v̂(t) from step 2, and passed to the next iteration. The algorithm terminates when

the following stopping criterion is satisfied,

‖v(t) − v(t−1)‖2 ≤ ε, (3.11)

where ε is the error tolerance parameter.

Choosing the initial point v(0) is important for the SUM2 algorithm since it often

determines where v(t) converges to. To that end, we solve the following problem to

obtain our initial point.

P3.2 : max
W∈SN+

Tr(HHHW ) (3.12)

s.t. Tr(W ) = P

1T |W |1 ≤MRFP, (3.13)

where 1 is the all-1 vector and |W | takes the absolute value of W element-wisely.

The optimal value of problem P3.2 is known as a tight upper bound of the prob-

lem in (3.9) [66]. In fact, this is an SDP problem after several steps of relax-

ation. In particular, the constraint ‖v‖0 = MRF in (3.9) is relaxed to two con-

straints: Card(W ) ≤ M2
RF , where Card(W ) outputs the number of non-zeros el-

ements in matrix W , and Rank(W ) = 1. Then, because ‖v‖0 = MRF implies

‖v‖1 ≤
√
MRF‖v‖2 by Cauchy-Schwartz inequality, and by using the fact that

‖W ‖F =
√

Tr(WWH) =
√

Tr(vvHvvH) =
√
PTr(W ) = P , given that W = vvH ,

the non-convex constraint Card(W ) ≤M2
RF can be replaced by a weaker but convex

constraint in (3.13). Further dropping the rank-1 constraint of W yields the semidef-

inite programming problem P3.2. Since the optimal function value of problem P3.2

gives a good estimate of the optimal value in (3.9), it is reasonable to assume that the

optimizer of (3.9) is in the neighborhood of the rank-1 approximation to the optimal

W . Hence, the initial point of the SUM2 algorithm is set as the dominant eigenvector

of the optimizer of problem P3.2. In practice, it is reported that the solution to P3.2

tends to have a rank very close to 1 [66].
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In each iteration the SUM2 algorithm essentially solves the following problem

v(t) = argmax
‖v‖22=P,‖v‖0≤MRF

g(v,v(t−1)), (3.14)

where g(v,v(t−1)) = v(t−1)HHHH(v−v(t−1)). Then using the fact that g(v(t),v(t−1)) ≥

g(v(t−1),v(t−1)) = 0 and HHH is positive definite,

f(v(t))− f(v(t−1)) = 2g(v(t),v(t−1)) + (v(t) − v(t−1))H×

HHH(v(t) − v(t−1))

≥ 0,

where f(v) is the sum power transfered using beamformer v defined in (3.9). Hence,

the objective function is non-decreasing over the iterations and the SUM2 algorithm

converges to a local maximizer [68].

Compared with the SUM1 algorithm, the SUM2 algorithm has a simpler structure

where the search for the antenna set is replaced by the truncation step to enforce

the sparsity requirement of v in (3.9), which significantly reduces the computational

complexity. In particular, in each iteration of the SUM2 algorithm, the dominant

complexity is due to the matrix multiplication in step 1. In contrast, in the i-th

iteration of the SUM1 algorithm, it requires to perform (N− i) eigen-decompositions,

which has much higher complexity.

It is worth mentioning that the lens antenna array plays an important role in the

wireless power transfer system under consideration since it transforms the channel

matrix from the spatial domain to the sparse beamspace domain, which allows the

transmitter to efficiently concentrate the transmit power on fewer transmit antennas

and achieves higher power throughput. In fact, both SUM1 and SUM2 algorithms

can be applied to the conventional wireless power transfer system without employing

the lens antenna array. However, the system performance is significantly improved

for the beamspace MIMO, as will be illustrated via simulations in Chapter 3.5.
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3.4 Max-Min Power Transfer

In many other scenarios, we are interested in maximizing the minimum received

power among all power receivers, to maintain fairness. In this section we study the

transmission schemes for max-min power transfer.

3.4.1 Problem Formulation

We denote hk(A) = hk[n]{n:n∈A} ∈ CMRF as the effective beamspace channel vector

for PR k. The max-min power transfer problem is formulated as follows

Q1 : max
A,V ∈CMRF×MS

min
k∈{1,··· ,K}

Tr(V Hhk(A)hk(A)HV )

s.t. |A| = MRF , (3.15)

Tr(V HV ) ≤ P.

Problem Q1 is non-convex and NP-hard.

Note that for the max-min power transfer problem, when all receivers are homo-

geneous or use the same energy harvesting components, the solutions under the linear

energy conversion model and the non-linear energy conversion model (e.g. in [51]) are

the same. To see this, under the non-linear model, the harvested energy of receiver k

is f(Tr(V Hhk(A)hk(A)HV )), where f is a monotonically increasing non-linear func-

tion. For the max-min power transfer problem, i.e., maxA,V mink f(Tr(V Hhk(A)hk(A)HV )),

the performance is bounded by the worst receiver. Since f is monotonically increas-

ing, the worst receiver is the one with the lowest value of

Tr(V Hhk(A)hk(A)HV ). Therefore the problem is equivalent to maxA,V mink Tr(V Hhk(A)

hk(A)HV ), which is the max-min power transfer problem Q1 under the linear model.

3.4.2 Multi-Stream Max-Min Power Transfer

As in the SUM1 algorithm, problem Q1 is decomposed into two subproblems: the

beamformer design subproblem and the antenna selection subproblem. For a given
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set of selected antennas A′, the beamformer design subproblem is

γ(A′) = max
{Ṽ ∈C|A′|×MS :Tr(Ṽ H Ṽ )≤P}

gA′(Ṽ ), (3.16)

where gA′(Ṽ ) , mink Tr(Ṽ Hhk(A′)hk(A′)HṼ ) is the lowest received power by all

PRs. Different from the sum power transfer problem in (3.7), (3.16) has no closed-

form solution. Since gA′ is a point-wise minimum of a convex quadratic function, it is

not convex nor concave. Hence, we relax the problem by introducing the semi-definite

matrix variable W = Ṽ Ṽ H . By dropping the rank constraint of W , problem γ(A′)

is relaxed to

max
W

min
k

Tr(hk(A′)hk(A′)HW ) (3.17)

s.t. Tr(W ) ≤ P,W � 0,

where the objective is now the point-wise minimum of a set of linear functions, which

is concave. To handle the max-min objective, we introduce an auxiliary variable

β > 0, and rewrite (3.17) as the following equivalent SDP

max
W ,β

β (3.18)

s.t. Tr(hk(A′)hk(A′)HW ) ≥ β, k = 1, · · · , K,

Tr(W ) ≤ P,W � 0, β ≥ 0.

The physical meaning of β is the power achievable by all PRs, and the non-smooth

objective is now replaced by K linear constraints, which is a convex optimization

problem and can be solved efficiently by any convex solver, e.g., [69]. To recover Ṽ

from W , we use eigen-decomposition, i.e., W = DΣDH where Σ is a matrix with

eigenvalues on the diagonal in decreasing order, and D is a unitary matrix with the

d-th column being the normalized eigenvector corresponding to the d-th eigenvalue.

Hence, the final beamforming matrix for (3.7) is extracted as Ṽ ∗ = DΣ′ where Σ′ is

the left min(MS, |A′|) columns of Σ
1
2 . By Eckart-Young-Mirsky theorem[70], Ṽ ∗Ṽ ∗H

is the best rank-MS approximation to W in terms of both the spectral and Frobenius
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Algorithm 3.3 (MM-multi) - Multi-stream max-min power transfer

Input: beamspace channel matrix H ;

Initialization: A0 = ∅;

For j = 1, 2, · · · ,MRF

1: Compute n∗j = argmaxn∈{1,··· ,N}\Aj−1
γ(Aj−1 ∪ n), where γ(·) is calculated by

solving the SDR problem in (3.18), followed by low rank extraction;

2: Set Aj = Aj−1 ∪ n∗j ;

End

Output: Antenna set AMRF
, beamformer V ∗ ∈ CMRF×MS , which is extracted from

the solution of the SDR problem in (3.18) with antenna set AMRF
.

norms. The multi-stream max-min power transfer algorithm is summarized in the

MM-multi algorithm in Alg. 3.3.

3.4.3 Uni-Stream Max-Min Power Transfer

For the uni-stream case, i.e., MS = 1, one approach is to apply the MM-multi algo-

rithm and extract the rank-1 solution from the optimalW of the SDR problem (3.18).

However, there are two major drawbacks of the rank extraction approach. First, it is

computationally inefficient since it requires to solve an SDP problem just for optimiz-

ing a single vector. Secondly, problem (3.18) does not guarantee a low-rank solution,

which results that the extracted beamformer has poor performance especially when

MRF is large. Hence, in this subsection we propose to employ a Riemannian conju-

gate gradient (RCG) algorithm [71, 72] in Alg. 3.4 to solve the uni-stream max-min

beamforming problem. The formulation of this problem is

Q2 : max
ṽ∈C|A′|

gA′(ṽ) = mink ṽ
Hhk(A′)hk(A′)H ṽ, (3.19)

s.t. ‖ṽ‖2
2 = P,
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for the given set A′.

In Q2, the variable ṽ is on the surface of an |A′|-dimensional complex sphere

with radius
√
P . Without loss of generality, we assume P = 1 and define S = {ṽ ∈

C|A′||ṽH ṽ = 1}. Then Q2 is equivalent to the unconstrained optimization on S, i.e.,

maxṽ∈S gA′(ṽ). Since the objective gA′(ṽ) is non-smooth and non-differentiable in ṽ,

we replace it with a smooth exponential penalty function [73] g̃A′(ṽ) and the problem

becomes

Q2′ : γ̃(A′) = max
ṽ∈S

g̃A′(ṽ), (3.20)

where

g̃A′(ṽ) , −1

q
log
( K∑
k=1

exp{−qṽHhk(A′)hk(A′)H ṽ}
)
,

and q ≥ 0 is a smoothing parameter which satisfies

g̃A′(ṽ) ≤ gA′(ṽ) ≤ g̃A′(ṽ) + 1/q log(K). (3.21)

When q is set appropriately, problem Q2′ well approximates the original problem Q2,

and it can be solved by the RCG algorithm [71].

Starting from an initial point, in each iteration the RCG algorithm first computes

the gradient of the objective function at the current point ṽ(j) in the Euclidean space,

which is given by

∂

∂ṽ
g̃A′(ṽ

(j)) =
2
∑K

k=1 exp{−qṽ(j)Hhk(A′)hk(A′)H ṽ(j)}
(
hk(A′)hk(A′)H ṽ(j)

)
exp{−qṽ(j)Hhk(A′)hk(A′)H ṽ(j)}

.

(3.22)

In step 2, the Riemannian gradient [71] is calculated based on the Euclidean gradient.

Define the tangent space of a point on the spherical manifold ṽ ∈ S as

TṽS = {x ∈ C|A′||ṽHx+ xH ṽ = 0}, (3.23)

and the Riemannian gradient is given by

w(j) = RgradṽgA′(ṽ
(j)) = (I − ṽ(j)ṽ(j)H)

∂

∂ṽ
g̃A′(ṽ

(j)). (3.24)
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Algorithm 3.4 (RCG) - Riemannian conjugate gradient

Input: beamspace channel matrix H(A′) with given A′, initial point ṽ(0);

Initialization: compute w(0) using (3.24), let d(0) = w(0), ṽ(1) = ṽ(0), j = 1;

Repeat

1: Compute Euclidean partial derivative ∂
∂ṽ
g̃A′(ṽ

(j)) using (3.22)

2: Compute Riemannian gradient w(j) using (3.24);

3: Compute search direction d(j) using (3.26) and (3.27),

If Real(〈w(j),d(j)〉) < 0, Then d(j) = w(j);

4: Compute Armijo step size θ(j) via backtracking line-search;

5: Update ṽ(j+1) using (3.28);

6: j ← j + 1;

Until convergence

Output: converged beamformer vector ṽ(j).
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Essentially, the Riemannian gradient is the projection of the Euclidean gradient onto

the tangent space at ṽ(j).

In the key step 3, the conjugate gradient d(j) is computed, which is also the search

direction of the RCG algorithm. The conjugate gradient combines the Riemannian

gradient vector w(j) calculated in step 2 at the current iteration and the search

direction vector d(j−1) in the previous iteration. Since the two vectors belong to

different tangent spaces, d(j−1) needs to be transported to the tangent space of w(j)

to ensure the operation is meaningful. Define the vector transport operation from u

to the tangent space of ṽ as

HTṽS(u) = (I − ṽṽH)u. (3.25)

The conjugate gradient is then calculated by

d(j) = w(j) + βx, (3.26)

where x = HT
ṽ(j)S(d(j−1)), and β is a weight coefficient given by

β = max
(

0,−Real{(w(j) − z)Hw(j)}
Real{(w(j) − z)Hx}

)
, (3.27)

where z = HT
ṽ(j)S(w(j−1)). The choice of weight β is known as the modified Hestens-

Stiefel rule [74]. Then, the RCG algorithm checks if the search direction computed

in step 3 is gradient related [71], i.e., its inner product with w(j) is positive, and is

reset to w(j) if it is negative. This step ensures that d(j) is aligned with w(j), which

is an ascending direction. The algorithm then updates the beamformer vector as

ṽ(j+1) =
ṽ(j) + θ(j)d(j)

‖ṽ(j) + θ(j)d(j)‖
, (3.28)

where θ(j) is an adaptive step size according to the Armijo rule [71]. In particular,

θ(j) is initialized as 1. It keeps decreasing its value, i.e., θ(j) ← µθ(j) with µ� 1, until

the following Armijo rule is satisfied:

g̃A′(ṽ
(j+1))− g̃A′(ṽ(j)) ≥ 10−4θ(j)Real{w(j)Hd(j)}. (3.29)
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T~v(j)S

Figure 3.2: Geometric interpretation of the RCG algorithm.

This procedure of tuning the step size is often referred to as the backtracking line-

search, which not only guarantees that the algorithm is non-decreasing, but also pre-

vents slow convergence due to the step size being too small. The RCG algorithm stops

when the norm of the Riemannian gradient falls below a threshold, i.e., ‖w(j)‖2 < ε.

The algorithm is geometrically illustrated in Fig. 3.2.

The RCG algorithm guarantees that every limit point of the sequence {ṽ(j)} gen-

erated is a stationary point according to the convergence results on the backtracking

line-search [71, Th. 4.3.1]. The final output beamformer is thus a stationary point of

the objective function g̃A′(ṽ) in (3.20).

As in the SUM1 algorithm, by employing the greedy-based outer loop to select

the antenna set, we present the MM-uni algorithm for uni-stream max-min power

transfer. The initial beamforming vector is set to 1. In each iteration, it searches

for the best antenna to add to the existing set similar to the MM-multi algorithm.

The difference is that now the RCG algorithm is employed. In this step, the same

initial point is used for all candidates antennas to start with. The antenna which

brings in the highest power gain is added in step 2, and the optimal beamforming

vector is updated as the output of the RCG algorithm with the current antenna

set. The optimal beamforming vector is also set as the initial point of the next



CHAPTER 3. WIRELESS POWER TRANSFER BY BEAMSPACE MIMO
WITH LENS ANTENNA ARRAY 63

Algorithm 3.5 (MM-uni) - Uni-stream max-min power transfer

Input: beamspace channel matrix H ;

Initialization: A0 = ∅, v(0)
1 = 1;

For j = 1, 2, · · · ,MRF :

1: Compute n∗j = argmaxn∈{1,··· ,N}\Aj−1
γ̃(Aj−1 ∪ n), where function γ̃(·)

is calculated by the RCG algorithm with initial point v
(0)
j ;

2: Set Aj ← Aj−1 ∪ n∗j ;

3: Set vj as the output of the RCG algorithm with input H(Aj);

4: Set v
(0)
j+1 ← [vj; 0];

End

Output: Antenna set AMRF
, beamformer ṽ∗ ∈ CMRF which maximizes g̃AMRF

in (3.20).

iteration. Since the vector size is increased by 1 in the next iteration, a 0 is padded

to the end of the current beamforming vector. The reason to use the beamforming

vector in the previous iteration as the initial point is that the antennas in the current

set are supposed to contribute most of the power transfer, which means that the

current beamforming vector still plays a dominant role when more antennas are added,

and hence the updated beamformer with one more antenna is believed to be in the

neighborhood of the previous iteration.

The MM-uni algorithm in Alg. 3.5 has a much lower computational complexity

than the MM-multi algorithm for single stream power transfer due to the efficient

RCG algorithm. The difference can be clearly seen by comparing the variable sizes

of the two algorithms. In each iteration, e.g., at the final iteration j = MRF , for

the MM-uni algorithm, the optimization variable is the beamformer vector ṽ, whose

size is MRF × 1. On the other hand in the SDR based MM-multi algorithm, each

beamformer vector is transformed into a semidefinite matrixW which has size MRF×
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MRF . One can clearly observe that the variable size of the MM-multi algorithm is

the square of that of the MM-uni algorithm, and so does the size of the gradient.

As a result, even using the first-order method, the SDR approach has significantly

higher computational complexity than the RCG algorithm. Second-order methods

will be even worse due to the large-size Hessian matrices. Therefore, the MM-uni

algorithm has much lower complexity than the MM-multi algorithm. Furthermore,

the MM-uni algorithm guarantees that the objective value is non-decreasing as the

size of the antenna set grows, and this does not hold for the SDR approach. This is

because when the set size increases, the rank of the SDR solution tends to increase

as well. As a result, it can often be observed that the rank-1 extraction solution of

the SDR approach exhibits worse performance even when the antenna size increases.

Hence, the MM-uni algorithm has advantages over the MM-multi algorithm in both

computational complexity and performance for uni-stream power transfer.

3.5 Simulation Results

In this section, we illustrate the power transfer performance via simulations. We

consider the following general simulation settings unless specified otherwise. The

simulations were run on a desktop with 20 GB RAM and 3.5 GHz CPU, and all

results were averaged over 100 channel realizations.

System Setting: We employ the lens antenna array beamspace MIMO system

presented in Section 3.2 with N = 32 antennas and MRF = 8 RF chains. All transmit-

ting and receiving antennas have 10 dBi gains. There are K = 8 PRs. The distance

between each PR k and the PT, dk, is uniformly distributed in the range of 10-15

meters.

Channel Setting: For the mmWave channel model in (3.2), there is a LoS path

and L = 2 scattering paths with αk,0 ∼ CN (0, 2) and αk,l ∼ CN (0, 0.4), l = 1, 2.

The signal directions {θk,l} are i.i.d. uniformly distributed in [0, 2π]. The system
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(b) Conventional MIMO

Figure 3.3: Channel gain of each antenna-PR pair for both MIMO systems.

is assumed to operate at fcarrier = 24 GHz carrier frequency, and the path-loss is

calculated as %k = (4πfcarrierdk/c)
2 where c is the speed of light.

First of all we illustrate the channel sparsity of the beamspace MIMO system.

Fig. 3.3 shows the matrices of channel gains between the transmitter antenna array

and receivers for the beamspace MIMO and conventional MIMO systems in one real-

ization. It can be clearly observed that for the beamspace MIMO most antenna-PR

pairs have very small gains and only a few ones have large values. In contrast for

the conventional MIMO system, the variations of channel gains are much smaller,

thus the channel is less sparse. This result can also be illustrated by comparing their

empirical CDF plots in Fig. 3.4.

3.5.1 Sum Power Transfer

We first consider the sum power transfer problem, and we compare the proposed

SUM1 and SUM2 algorithms, and the following baselines.

• MC-ED: the maximum channel gain criterion [58] is considered, where the an-

tennas are selected based on the channel gains. Specifically, the norm of the

channel gain vector of each antenna element to all K receivers is calculated,
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Figure 3.4: Empirical CDF of the channel gain for beamspace MIMO and conventional

MIMO.

and the antennas with the top MRF gains are selected. Given this set of anten-

nas, the beamformers are optimized using eigen-decomposition as discussed in

Section 3.3.2.

• MIMO1 & MIMO2: in these two baselines the transmitter is not equipped with

the lens array, and the conventional uniform linear array is employed. The

SUM1 and SUM2 algorithms are employed respectively for antenna selection

and beamformer design.

Two performance upper bounds are also illustrated as benchmarks.

• FD: in this fully digital baseline the transmitter has N RF chains, and all

antennas are used. This gives the overall performance upper bound of the

system. The optimal beamformer is obtained by eigen-decomposition.

• U-UB: this is the performance upper bound of the uni-stream transmission

which is given by solving the semidefinite program P3.2 in (3.12)-(3.13).
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Figure 3.5: Sum power transferred versus varying input power P.

In the first simulation we let MRF = 8 and vary the input power P . The result is

shown in Fig. 3.5. It can be observed that the energy transfer increases linearly with

the input power for all baseline methods. Among all baselines, the FD system achieves

the highest power transfer, which is in fact the upper bound of the whole system since

it enables the maximum degrees of freedom in the beamformer design. The U-UB is

slightly lower than FD due to the constraint on the number of RF chains. The SUM1

algorithm shows very impressive power transfer performance: when the input power

is P =30 W, it achieves 94.4% of the FD bound. The SUM2 algorithm achieves even

better performance, i.e., it achieves 96.5% of the U-UB bound and 95.6% of the FD

bound.

As discussed earlier, the SUM2 algorithm has a much lower complexity than the

SUM1 algorithm. In this case it also demonstrates superior power transfer perfor-

mance mainly due to two reasons. The first reason is that the initial point of the

SUM2 algorithm corresponds to the upper bound of the problem, and the local op-

timum near the upper bound solution yields near-optimal performance. The second
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reason is that the SUM2 algorithm yields monotonically increasing objective function

value, and hence finds the local optimum efficiently. Specifically, we demonstrate the

convergence of the SUM2 algorithm for one channel realization in Fig. 3.6. It can be

observed that it converges very fast, i.e., within 12 iteration. Since the computation

complexity in each iteration is very low, the overall running time of the SUM2 algo-

rithm is much shorter than that of the SUM1 algorithm which needs to perform a

series of eigen-decompositions. In this example the SUM2 algorithm takes less than

5% of the running time of the SUM1 algorithm. Specifically, the running time of the

SUM1 algorithm is 65.9 ms while that of the SUM2 algorithm is only 3.25 ms.

Back to Fig. 3.5, we can easily see that both proposed algorithms outperform

the MC-ED baseline. The performance gain of the SUM1 algorithm over the MC-ED

baseline is essentially the improvement of the greedy-based antenna selection over the

maximum channel gain criterion. On the other hand, all the beamspace MIMO base-

lines, which equip the transmitter with the lens antenna array, significantly outper-

form and almost double the power throughput of the MIMO1 and MIMO2 baselines

that employ the conventional multi-antenna transmitter. The performance improve-

ment comes from the fact that the channel is more sparse in the beamspace domain,

i.e., for each PR there are only a few antenna elements that have strong channel gains.

Hence, when the number of RF chains is small the beamspace MIMO system can be

much more efficient as the transmitter just needs to focus on those antennas with

strong gains. Therefore, the beamspace MIMO with lens antenna array considered in

this chapter can significantly increase the efficiency of wireless power transfer.

In Fig. 3.7 the blockage effect [75] is studied. In this simulation, we set P = 30

W and MRF = 12, and vary the blockage probability. When the blockage probability

is 0, there is no block and the channel model is the same as that in Fig. 3.5. When

the blockage probability is 1, the LoS path of each receiver is blocked and only the

scattering paths exist. It can be seen that the performances of all schemes decrease as

the blockage probability increases, since the LoS path that has the dominant channel
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Figure 3.6: Convergence of the SUM2 algorithm.

0 0.2 0.4 0.6 0.8 1
Blockage probability

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
um

 p
ow

er
 tr

an
sf

er
 (

m
W

)

SUM1
SUM2
MC-ED
U-UB
FD
MIMO1
MIMO2

Beamspace MIMO

Conventional MIMO

Figure 3.7: Sum power transferred versus blockage probability.

gain is more likely to be blocked, which results in system performance degradation.

Similarly as in Fig. 3.5 the beamspace MIMO outperforms the conventional MIMO.

In the next simulation the power input is fixed as P = 30 W and we investigate the
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Figure 3.8: Sum power transferred versus number of RF chains MRF .

system performance with varying number of RF chains. In Fig. 3.8, it can be seen that

the total amount of transferred power increases as the number of RF chains increases

for all baselines, because increasing the number of RF chains allows higher degrees

of freedom in beamformer design, which leads to higher power transfer. However,

the extra performance gain diminishes as more RF chains are added. The reason is

that the beamspace mmWave channel model is sparse, such that only a few beams

dominate the capacity of power transfer. That is, a small number of antenna elements

which are associated with strong channel gains contribute to the majority portion

of the power delivery, and the other antennas play a less important role compared

with those dominant ones. Same as in Fig. 3.5, the SUM2 algorithm exhibits the

best performance for all values of MRF , and the SUM1 algorithm outperforms the

baseline approach using the MC antenna selection criterion. Finally, it is clear that

the beamspace MIMO baselines outperform the conventional MIMO systems.

In Fig. 3.9 we set MRF = 16 and P = 30 W and increase the total number of

antenna elements N . The result is shown using SUM2 algorithm. It is clear that the
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Figure 3.9: Sum power transferred versus number of antennas N (SUM2 algorithm).

beamspace MIMO outperforms the conventional MIMO. Specifically, the sum power

increases linearly with respect to N for the beamspace MIMO, while the performance

gain diminishes for the conventional MIMO. This result illustrates that large-scale

beamspace MIMO is a particularly well suited for WPT application, since increasing

the number of antennas can improve the performance while the costly RF chain

circuits remain unchanged.

The effect of the non-linearity in power conversion [51, 76] is investigated in Fig.

3.10. These works suggest that for practical energy harvesting circuits, the harvested

power has a non-linear relationship to the incident power at the antennas. In this

simulation, we set MRF = 8 and P = 30 W, and we employ the non-linear power

conversion model in [51] to compare its performance to the linear model considered

in this chapter. It can be observed that for all baselines, the sum power throughput

under the non-linear model is a fraction of the counterparts under the linear model

due to practical limits. However, the proposed SUM1 and SUM2 algorithms, which

generate higher transferred power in linear model, also enable higher power through-
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Figure 3.10: Comparison to non-linear energy conversion models.

put in the non-linear model. This is because the harvested power is monotonically

increasing with respect to the incident power, and that is what SUM1 and SUM2

algorithms are optimized for. Hence, the proposed methods can be extended to the

power transfer problems in non-linear energy conversion models.

From the above simulation results, it is important to note that the beamspace

MIMO system with lens antenna array is very cost efficient in terms of power transfer.

For example in Fig. 3.5 the system with only 1/4 active antenna elements can achieve

over 90% of the system output with fully deployed antennas, which is far beyond the

reach of the conventional MIMO system with ULA. Hence, the beamspace MIMO

system shows its great potential in wireless power transfer applications.

3.5.2 Max-Min Power Transfer

In this subsection we evaluate the system performance in terms of max-min power

transfer. Both multi-stream (MS = 3) and uni-stream transmissions are considered.

We demonstrate the performances of the proposed MM-multi and MM-uni algorithms

and compare them with the following baselines.
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• MC-SDR: the maximum channel gain criterion [58] is used. Given the chosen

set of antennas, the multi-stream beamformers are optimized by solving the

SDR problem in (3.17).

• MIMO-multi: in this baseline the transmitter is not equipped with the lens, and

the conventional uniform linear array transmitter is employed. Multi-stream

power transfer with MS = 3 is considered in this baseline and MM-multi algo-

rithm is employed for antenna selection and beamformer design.

• MIMO-uni: similar to the MIMO baseline the conventional ULA transmitter is

employed. Uni-stream power transfer is considered and the MM-uni algorithm

is employed.

Similar to the sum power transfer case, two performance upper bounds are illustrated

as benchmarks.

• FD: the transmitter has N RF chains, and all antennas are used. The optimal

beamformer is obtained by solving the SDR problem in (3.17).

• U-UB: this is the performance upper bound of the uni-stream transmission

which is given by solving the following semidefinite program

max
W∈CN×N ,β

β

s.t. Tr(hkh
H
k W ) ≥ β, k = 1, · · · , K,

Tr(W ) ≤ P,W � 0, β ≥ 0,

1T |W |1 ≤MRFP. (3.30)

We first show the result of the max-min power transfer versus the number of RF

chains MRF in Fig. 3.11. The system parameters are the same as those in Fig. 3.8.

By the same reason as in the sum power problem, the performance of the max-min

power transfer improves as MRF increases, and the performance gain diminishes as

MRF becomes closer to N for all baselines except for MM-multi (MS = 1). However,
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Figure 3.11: Max-min power transferred versus number of RF chains MRF .

there are several significant differences from the sum power transfer problem. First

of all, we observe that the performance of the MM-multi algorithm degrades for uni-

stream transmission (MS = 1) when MRF increases from 20 to 32. Interestingly on

the other hand, for multi-stream transmission (MS = 3), its performance improves

and converges to the FD upper bound. Indeed, the only difference between these

two cases is that the beamformer design subproblem enforces to extract the rank-1

solution for MS = 1 and rank-MS solution for MS = 3. This result illustrates that

when MRF is close to N , the optimal solution of the beamformer design problem

in (3.18) tends to have rank great than 1, the uni-stream transmission actually de-

grades the performance compared to the result corresponding to smaller MS. On

the other hand, the performance of the proposed MM-uni algorithm is more stable.

It has better performance when the number of RF chain is small, and it guarantees

the power throughput grows monotonically as MRF increases. Moreover, the com-

putational complexity is much lower for the MM-uni algorithm. For example, for

uni-stream transmission with MRF = 12, the average running time of the MM-uni
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Figure 3.12: Max-min power transferred versus number of PRs K.

algorithm is only 14.7 s and that of the MM-multi algorithm is 123.5 s. Fig. 3.11

also illustrates another feature of the max-min power transfer that multi-stream out-

performs uni-stream. This is because a single stream can hardly serve all PRs with

different channel gains, and additional streams provide higher spatial multiplexing

gain. Another observation from Fig. 3.11 is that the upper bound of the uni-stream

max-min power transfer is not as tight as that of the sum power transfer when MRF

is small. This is also due to the fact that the solution to (3.30) tends to have rank

greater than 1, which leads to large gap between the optimal solution of the relaxed

problem and a rank feasible solution. Finally, the beamspace MIMO outperforms the

conventional MIMO again for the max-min power transfer, especially when MRF is

small for the multi-stream case, e.g., when MRF = 12 the beamspace MIMO system

achieves 13% higher power output than the conventional MIMO baselines.

In the next simulation, we set P = 30 W and MRF = 16, and vary the number

of PRs K. All other parameters are the same as in Fig. 3.11. The result is shown

in Fig. 3.12. As expected, the max-min power transferred decreases as K increases
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for all baselines, since when K increases it is more difficult to maintain the same

power throughput for all PRs with the same level of power supply. An interesting

observation is that the gap between the uni-stream case (MM-multi (MS = 1) or MM-

uni) and multi-stream case (MM-multi (MS = 3)) increases as K increases. This is

because the optimal solution tends to have higher rank as K increases, which is due

to the increasing size of the channel matrix. Therefore in general, the system should

adopt the uni-stream scheme when K is small and the multi-stream scheme when K

is large.

3.6 Conclusions

In this chapter, we have studied wireless power transfer (WPT) by beamspace MIMO

systems with lens antenna arrays. By taking advantage of the channel sparsity of

the beamspace MIMO, fewer RF chains are required to achieve comparable power

throughput as the conventional MIMO system, which effectively reduces the hard-

ware cost and circuit power consumption. We have formulated two WPT design

problems for the beamspace MIMO with constraints on the number of RF chains, the

sum power maximization problem and max-min power problem, and both of them are

NP-hard. For maximum sum power transfer, we showed that the uni-stream trans-

mission is optimal and the proposed SUM2 algorithm based on the truncated power

method is efficient for joint antenna selection and beamformer design. For the max-

min power transfer, we proposed algorithms for both multi-stream and uni-stream

transmissions. Extensive simulation results demonstrate that for both problems, the

proposed algorithms outperform a number of heuristic approaches. More importantly,

the beamspace MIMO significantly outperforms the conventional MIMO, in terms of

WPT efficiency especially when the number of RF chains is limited.
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3.7 Appendices

3.7.1 Proof of Lemma 1

For convenience we denote H = H(A′). It is obvious that fA(Ṽ ) achieves the

optimum on the boundary, i.e., Tr(Ṽ HṼ ) = P . Hence, the Lagrange function of the

problem in (3.7) with equality constraint is

L(Ṽ , λ) = Tr(Ṽ HHHHṼ ) + λ(P − Tr(Ṽ HṼ )), (3.31)

where λ is the Lagrange multiplier. According to the KKT conditions, Ṽ is optimal

only if

∂

∂Ṽ
L(Ṽ , λ) = HHHṼ + (HHH)HṼ − 2λṼ

= 2HHHṼ − 2λṼ

= 0.

Hence, HHHṼ = λṼ , which means that λ is an eigenvalue of HHH and columns of

Ṽ are eigenvectors corresponding to λ. Therefore we have fA(Ṽ ) = λ∗Tr(Ṽ HṼ ) =

λ∗P where λ∗ is the largest eigenvalue of HHH , and the optimal Ṽ is in the

eigenspace of HHH corresponding to λ∗.

3.7.2 Proof of Theorem 1

By Lemma 1, the optimal Ṽ is in the eigenspace of HHH which corresponds to its

largest eigenvalue λ∗. Suppose that the multiplicity of λ∗ is M , and v1, · · · ,vM are

the orthonormal eigenvectors corresponding to λ∗. Then we can simply choose, e.g.,

Ṽ = [
√
Pv1,0, · · · ,0] so that

fA(Ṽ ) = PvH1 HH
Hv1 = λ∗P.

Therefore, single-stream transmission using any of the dominant eigenvectors as

the beamformer is optimal.



78

Part II

Network Optimization for Wireless

Power Transfer and Backscatter

Communication Systems



CHAPTER 4. ENERGY ALLOCATION AND UTILIZATION FOR WIRELESS
POWERED NETWORKS 79

Chapter 4

Energy Allocation and Utilization

for Wireless Powered Networks

4.1 Introduction

In this chapter, we study energy allocation and utilization for wireless powered sen-

sor networks. The rapid development of the IoT technologies enables easy access

and control of a variety forms of information and data, and leads novel applications

such as smart home, smart factory, etc. However, due to the small sizes and different

operating environments of the IoT sensors, it is hard to directly power the sensors

from the grid and batteries are usually employed to power the sensors. Hence, sen-

sor charging and efficient energy utilization become key challenges and are currently

under active research. A significant amount of works consider the energy harvesting

communication models, where the wireless sensor devices can harvest energy from an

external source in their natural environment, for example in the form of sun light [77],

vibration [78], etc. Specifically, when the full knowledge of energy arrival is assumed

to be known in advance, the throughput maximization problem is studied in [79].

When such information is not observable in advance, online scheduling methods are

considered. Water filling algorithm is used in [80] to find the optimal policy that
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maximizes the data throughput for a single sensor. In [14] the learning theoretic

approaches are considered to find the optimal transmission policy for point-to-point

communication. Based on channel state and energy queue length, the work in [81]

considers the successful packets delivery maximization problem. Some works consider

the power allocation between data acquisition and transmission [82] [83]. Also, en-

ergy cooperation is studied in multi-sensor network [84]. The transmission scheme

optimization problem is considered in [85] such that the data transmission with finite-

length can be completed in the shortest time. Recently, an interesting work further

takes into account the non-ideal characterization of the batteries with internal resis-

tance [86]. The user association and power allocation problems are studied in [87]

where the base stations harvest energy to improve the transmission efficiency. How-

ever this work does not consider energy harvesting as the power source. However,

such energy harvesting model has several limitations. Firstly, the stochastic nature of

the energy arrival makes the model less controllable or stable. Secondly, the resource

of the natural energy may not be immediately available in the ambient surroundings

of the sensors, and this is particularly true for some scenarios of the IoT applications.

Consider the smart home application as a motivating example. All sensors are con-

nected to form an IoT network, i.e., thermo sensors for air conditioning and heating

systems, signal detect sensors for smart lock system, motion and sound sensors for

security and surveillance systems, etc. Since this is an indoor environment, the net-

work sensors cannot be charged by the unavailable external sources like sunlight or

vibration. Hence, other forms of energy transmission are urgently demanded to serve

such scenarios.

On the other hand, the development of RF power transfer in the past few decades

provides another paradigm. In particular, recent advancement shows that the wireless

power transfer efficiency and distance can be improved using multi-antenna setup

[41][88][89], millimeter wave [90], etc. Long distance wireless power transfer has

been enabled, and network architecture has been proposed based on the technique.
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Recently, RF energy harvesting and transfer for spectrum sharing IoT network is

studied in [91]. The RF power transfer has several nice characteristics. Firstly, the

wireless power transfer essentially enables more flexibility in IoT sensor placement

planning. Secondly, the RF power transfer is controllable. The rate of power transfer

can be effectively controlled by changing the strength of the radiating power. Hence,

the RF power transfer is more reliable and easily managed than the energy harvesting

model.

In this chapter, we consider an RF powered IoT network system, where there is

a central node and multiple RF powered sensors. The central node is an RF power

transmitter (charger), and it transmits (RF) power to the sensors. Each sensor is

equipped with a battery. The sensors harvest the RF power from the central node,

and store the energy in their batteries. On the other hand, the sensors utilize the

energy stored in their batteries to transmit data to the central node. The objec-

tive is to maximize the total data throughput of all sensors. The remotely powered

communication model is studied in [92] from an information-theoretic point of view.

Note that our considered model is fundamentally different from another line of work,

the SWIPT [93] [53]. For SWIPT, the transmitter transmits both information and

power, while in this model the power transmitter is the information receiver and vice

versa. In this problem, too many factors are coupled which makes the overall objec-

tive complicated to analyze. We break the problem into two subproblems: the sensor

battery energy utilization problem and the charging power allocation problem of the

central node, and the technical challenges are to find efficient methods to solve both

subproblems. The main contributions of this chapter are summarized as follows.

• To the best of our knowledge, this is the first work on resource allocation for

wirelessly powered IoT system.

• We formulate the sensor energy utilization problem as a finite-horizon MDP.

We show several important properties of the value function based on which we

propose an optimal energy utilization algorithm with reduced search space of
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possible actions.

• We show that the total value function of the sensors under a given power al-

location satisfies the M-EXC property. We then propose an optimal power

allocation algorithm based on the discrete steepest ascent method that has a

significantly lower complexity than exhaustive search.

4.2 System Descriptions

Power link
Information Link

Central Node

Sensor 1

Sensor 2

Sensor N

Figure 4.1: System model for Chapter 4.

We consider a wireless connected system shown in Fig. 4.1 with one central node

and N sensor nodes. The central node is a power station that transfers RF power

to the sensor nodes. Each sensor node has a battery of capacity bmax, which can be

recharged by the RF power from the central node. Each sensor transmits information

signal to the central node when its battery is not depleted. Hence, the central node

acts as both the power charger and information receiver, while each sensor node is a

power receiver and information transmitter.

We assume that time is divided into time frames, and each frame has T time

slots. The wireless channel between the central node and any sensor i is modeled as
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a finite-state Markov channel (FSMC) [94] for both information and power transfer.

Rather than modeling the channel gain as a continuous random variable, the FSMC

model partitions the channel gain into a finite number of intervals with thresholds

ρiγ0 < ρiγ1 < · · · < ρiγK , where ρi is the path loss factor between sensor i and the

central node. The channel gain, with certain distribution, is in state k if it falls in

the interval [ρiγk−1, ρiγk). Hence, the channel state hti of sensor i in time slot t, is

a discrete random variable that takes values in the set H = {1, 2, · · · , K}. Using

pilot signal, it is not hard to find out which interval the channel gain falls in, thus we

assume that at the beginning of time slot t each sensor i knows its current channel

state hti. Note that this work can be extended to the case when the channel state is

not perfectly known. Moreover, the statistical information of the channel state, i.e.,

the channel transition probability P (ht+1
i |hti) from time slot t to t+ 1 is known. Each

sensor only has its own channel state information (CSI) but not the CSI of other

sensors.

The sensors transmit information in different frequency bands to avoid signal

interference. The energy stored in each sensor battery is measured by discrete battery

levels {0, δ, 2δ, · · · , bmaxδ}, where δ is the amount of energy increment per level and

bmaxδ is the capacity of the sensor battery. Thus, we denote the battery state in slot

t as bti ∈ B, B = {0, 1, · · · , bmax}, when its battery level is btiδ. Each sensor can utilize

etiδ energy from the battery for data transmission, where eti ∈ {0, 1, · · · , bti}. Both bti

and eti are known only to sensor i at time t. The average transmit power of sensor i

in slot t is etiδ/τ , where the duration of each time slot is τ . Suppose each sensor has

infinite data backlog. Hence, the average transmission rate in channel state hti is

r(eti, h
t
i) = Eγ[Bi log2

(
1 +

ρiγe
t
iδ

BiN0τ

)
|hti] (4.1)

=

∫ γk

γk−1

Bi log2

(
1 +

ρiγe
t
iδ

BiN0τ

)
fk(γ)dγ, if hti = k, k = 1, · · · , K (4.2)

where γ is the channel gain coefficient, Bi is the bandwidth of sensor i, N0 is the noise

power spectral density, and fk(γ) is the conditional probability density function of γ
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given hti = k.

On the other hand, we assume that each sensor is charged by a RF power signal

with a unique frequency, and hence the central node needs to allocate its power to

different sensors. Let the total power of the central node be pmax∆, and the power

allocated to sensor i be pi∆, where pi ∈ {0, 1, 2, · · · pmax} and
∑N

i=1 pi ≤ pmax. The

amount of energy delivered to sensor i is modeled as (τpi∆ρ
2
i d
t
i)δ, where dti is a ran-

dom power transfer efficiency coefficient. We assume that in each channel state k

there are L possible transfer efficiency coefficients, Dk,1 < · · · < Dk,L, with probabil-

ity qk,1, · · · , qk,L respectively. To enforce valid battery energy transition, {Dk,l} are

quantized such that τ∆ρ2
iDk,l is an integer for any i, k, l. The power transfer efficiency

coefficient determines the range of the energy transfer gain for each channel state,

and the amount of energy received at each sensor depends on its channel state. We

require that for k′ > k, Dk,L ≤ Dk′,1 because the power transfer efficiency monotoni-

cally increases as the channel gain increases [88]. Denote Dk = {Dk,1, · · · , Dk,L}. To

simplify the expression, let wi = τ∆ρ2
i . Thus, the transition of the battery states can

be expressed as

bt+1
i = min{bti − eti + piwid

t
i, bmax}. (4.3)

The evolution of the system state over time is illustrated in Fig. 4.2.

1 2 3 ...4 T-1 TTime Slot

1 Time Frame

hi
1 hi

2 hi
3 hi

4 hi
T-1 hi

TChannel
State

bi
1

ei
1

bi
2 bi

3Battery
State

bi
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T-1 bi
Tbi

3bi
3

pi wi d i
1

Figure 4.2: System state evolution over time.
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It is clear that large eti results in higher data rate, but it also leaves less battery

energy for future transmission. Aggressive usage of battery causes the system to

heavily rely on the energy transfered from the central node in each time slot; while

conservative usage leads to low data rate and energy dissipation when the battery

is saturated and part of the incoming energy is wasted. On the other hand, the

power allocation at the central node controls the battery charging rate. An efficient

allocation strategy is important to achieve higher system data throughput and to

minimize the energy waste.

4.3 Problem Formulation

In this chapter, we consider the problem of the joint design of the power allocation

at the central node and transmission energy utilization policy at the sensors in one

time frame, with the objective of maximizing the expected total data throughput.

At the beginning of the time frame, the central node chooses the power allocation

{pi, i = 1, · · · , N} for the entire time frame, and computes an energy utilization policy

for sensor i which determines the amount of energy eti for data transmission in slot t

given the system state (hti, b
t
i). Therefore, the whole problem is decomposed into two

subproblems: 1) computing the energy utilization policy for sensors given the power

allocation {pi, i = 1, · · · , N}, and 2) computing the power allocation by the central

node.

4.3.1 Energy Utilization Planning Subproblem

We notice that the components of the energy utilization policy of each sensor, i.e., the

state, state transition, action and reward which will be elaborated in this subsection,

are independent from those of the other sensors. Hence, the energy utilization plan-

ning subproblem for the entire system can be further broken down to N independent

ones where each corresponds to one sensor. Thus, in this subsection we consider the
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energy utilization planning subproblem for any sensor, and we drop the subscript in-

dex i for simplicity. For each sensor, the energy utilization planning subproblem aims

to optimize its own battery usage policy for signal transmission given the charging

rate p. The subproblem is formulated as a finite-horizon Markov decision process

(MDP) problem. The MDP consists of the following elements: system state, action

set, reward function and state transitions, which are described as follows.

1) System State: The state of the sensor at time slot t consists of the battery state

bt ∈ B and the channel state ht ∈ H, i.e., st = (bt, ht). The sensor also observes the

allocated charging power p, which is fixed in the current time frame.

2) Action Set : In time slot t the sensor utilizes etδ amount of energy for data

transmission, where the action

et ∈ A(bt) = {0, 1, · · · , bt}. (4.4)

3) State Transition: The transition of the sensor state s involves the transitions

of the channel state and the battery state. The channel state transition probability

is P (ht+1|ht). On the other hand, the battery state transition is given in (4.3). Since

dt in (4.3) is random, the transition probability of the battery state is

P (bt+1|bt, ht, et) =
∑
dt∈Dht

P (bt+1|bt, dt, et)P (dt|ht) (4.5)

where

P (dt = Dk,l|ht = k) = qk,l (4.6)

as explained in the energy arrival model, and

P (bt+1|bt, dt, et) =

1, if (4.3) holds,

0, otherwise.

(4.7)

Note that the battery transition is also affected by the channel transition. For ex-

ample, the energy harvested in time slot (t+ 1) depends on both the random energy

arrival and the channel transition, i.e., P (dt+1|ht) = P (dt+1|ht+1)P (ht+1|ht). This is

important for the optimization of the energy utilization policy.
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4) Reward Function: At time slot t, the immediate reward of the sensor is the

data rate in the current time slot r(et, ht) in (4.2) given the channel state ht and

action et.

An energy utilization policy is a sequence of decisions π = {π1, π2, · · · , πT}, where

πt is a mapping from a state to an action at time slot t. The value of a policy π for

the given p and initial state s1 is defined as

Vπ(s1, p) = E
[ T∑
t=1

r(ht, et)|s1
]
, (4.8)

which is the expected total data throughput in one time frame. The energy utilization

problem is then to maximize the policy value, i.e.,

P4.1: max
π

Vπ(s1, p). (4.9)

A classic approach to solving the finite-horizon MDP problem is the value iteration

(backward induction) algorithm [95]. Define the value function at the t-th time slot

as

V t(st, p) = max
πt,πt+1,··· ,πT

E
[ T∑
n=t

r(hn, en)|st
]
, (4.10)

the value function for the previous time slot can then be written as

V t−1(st−1, p) = max
et−1∈A(bt−1)

[r(ht−1, et−1) + E[V t(st, p)|st−1]], (4.11)

and if (et−1)∗ minimizes V t−1(st−1, p), the action (et−1)∗ is optimal for st−1 [96, Propo-

sition 1.3.1]. As a special case, the value function of the last time slot is

V T (sT , p) = max
eT∈A(bT )

[
r(hT , eT )

]
. (4.12)

Hence, the MDP problem of finding the optimal energy utilization policy can be

solved by the value iteration algorithm as shown in Alg. 4.1. The algorithm starts

from the last time slot of a time frame. For any battery state bT ∈ B and channel

state hT ∈ H, the value function and optimal policy πT are calculated by solving the

problem in (4.12). Once we find the optimal policy in the last step, we can calculate
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Algorithm 4.1 - Value iteration algorithm for solving P4.1 in (4.9)

1: Input: initial channel state h1, battery state b1, allocated charging power p;

for t = T to 1

for bt ∈ B, t 6= 1

for ht ∈ H, t 6= 1

2: Calculate the value function V t(st, p) using (4.11) or (4.12);

3: Find the optimal energy utilization policy which maximizes V t(st, p)

in (4.11) or (4.12);

end

end

end

the value function and optimal policy πT−1 by solving (4.11). Repeat this process for

time slots t = T −2, T −3, · · · , 1, and eventually the value V 1(s1, p) is the solution to

P4.1, together with the optimal policy, π∗. The computational complexity of value

iteration is O(|B|2|H|2|A|)) = O(K2b3
max).

4.3.2 Power Allocation Subproblem

On the other hand, the central node aims to find the power allocation policy for each

sensor at the beginning of the time slot, such that the total expected data throughput

is maximized. Let the allocated power pi be in the set P = {0, · · · , pmax}. The total

data throughput of all sensors using power allocation policy p = [p1, · · · , pN ] is thus

F (p) =
N∑
i=1

V 1
i (s1

i , pi) (4.13)
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given the initial sensor states {s1
1, · · · , s1

N}. The formulation for the power allocation

subproblem is then

P4.2: max
p

F (p) (4.14)

s.t.
N∑
i=1

pi ≤ pmax,

pi ∈ P , i = 1, · · · , N.

Problem P4.2 can be solved by exhaustive search. However, it requires to perform

the value iteration algorithm for all possible power allocations p, which is prohibitively

complex.

In this chapter, we propose efficient algorithms for solving P4.1 and P4.2. In

particular, we propose an accelerated value iteration algorithm to solve the energy

utilization problem that can efficiently reduce the size of the action set in every time

slot without loss of optimality. For the power allocation subproblem, we propose

a discrete steepest descent algorithm which guarantees to find the optimal power

allocation policy with a much lower computational complexity than exhaustive search.

4.4 Optimal Energy Utilization Policy

In this section, we reduce the search space in value iteration by showing that in

each state some actions in the action set are non-optimal and therefore need not be

considered.
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The value function at time t in (4.11) can be expanded as

V t(bt, ht, p)

= max
et∈A(bt)

[
r(ht, et) +

∑
bt+1∈B,ht+1∈H

P (ht+1|ht)P (bt+1|bt, ht, et)

× V t+1(bt+1, ht+1, p)
]

= max
et∈A(bt)

[
r(ht, et) +

∑
ht+1∈H

P (ht+1|ht)×

∑
dt∈Dht

P (dt|ht)V t+1(min{bt − et + pwdt, bmax}, ht+1, p)
]
. (4.15)

We now show that the value function (4.15) has the following properties.

Lemma 2. Given the channel state ht, V t(bt, ht, p) is non-decreasing in (a) the battery

state bt and (b) the charging rate p.

Proof. See proof in Appendix 4.8.1

Lemma 2 shows that the value function is non-decreasing in both the battery state

and charging rate. The next result shows that the value function is concave in the

battery state and charging rate.

Lemma 3. Given the channel state ht in time slot t, V t(bt, ht, p) is concave in (a)

the battery state bt and (b) the power allocation p.

Proof. See proof in Appendix 4.8.2.

The non-decreasing and concave properties lead to an important feature of the

value function, which can be used to reduce the search space in the action set.

Theorem 2. The optimal energy utilization action is non-decreasing in bt for given

ht and p.

Proof. See proof in Appendix 4.8.3.
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Algorithm 4.2 - Optimal energy utilization (OEU) algorithm

1: Input: Initial channel state h1, current battery state b1,

charging power p;

for t = T to 1

for ht ∈ H, t 6= 1

2: Set eLB = 0

for bt ∈ B in increasing order, t 6= 1

3: Calculate the value function V t(st, p) using (4.16) or (4.17);

4: Output the energy utilization action πt(bt) = (et)∗ which maximizes

V t(st, p) in (4.16) or eT = bT for t = T ;

5: Set eLB = (et)∗;

end

end

end

Theorem 2 reveals the fact that the optimal energy utilization action for a given

battery state is lower bounded by the optimal actions of all lower battery states.

Suppose we have found the optimal action (et)∗ for bt. For any battery state b̃t ≥ bt

we can search the optimal action in the range of {(et)∗, · · · , b̃t} rather than A(b̃t) =

{0, · · · , b̃t} in value iteration algorithm. This fact can significantly reduce the search

space and speed up the algorithm. Hence, we propose an optimal energy utilization

(OEU) algorithm based on Theorem 2 in Alg. 4.2.

In the OEU algorithm, at each time slot, the action is evaluated and optimized in

the increasing order of the battery state bt. When the battery is empty, the feasible

action set and optimal action are both 0. Suppose the optimal action for the state

bt − 1 has been found as eLB. In the battery state bt, the optimal action is in the set
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{eLB, · · · , bt}. The value function effectively becomes

V t(bt, ht, p)

= max
et∈{eLB ,··· ,bt}

[
r(ht, et) +

∑
ht+1∈H

P (ht+1|ht)×

∑
dt∈Dht

P (dt|ht)V t+1(min{bt − et + pwdt, bmax}, ht+1, p)
]
, (4.16)

and for t = T ,

V T (bT , hT , p) = Eγ[B log2

(
1 +

ργbT δ

BN0τ

)
|hT ] (4.17)

which has optimal action eT = bT . Step 2 initializes the lower bound of the energy

utilization for each ht. Step 3 and Step 4 optimize the value function and action for

the current bt, and Step 5 passes the current optimal action and sets as the lower

bound of the energy utilization for the next value of bt.

Same as the traditional value iteration algorithm, the OEU algorithm guarantees

to find the optimal policy for given charging rate p, but it is much more efficient.

The computational complexity of the OEU algorithm is upper bounded by the value

iteration algorithm. That is, the OEU algorithm can achieve the same computational

complexity only in the worst case scenario. On average, however, the running time

of the OEU algorithm is significantly lower than that of the value iteration algorithm

since the size of the search space is reduced. We illustrate the improvement of the

OEU algorithm using a simple example. Suppose bmax = 9, we want to find the policy

for a given ht at time slot t. The search space and the optimal actions are shown in

Fig. 4.3. It is seen that the size of the search space is significantly reduced from 55

to 28 in this example, and 27 actions are eliminated.

4.5 Optimal Power Allocation Algorithm

In this section, we show that the optimal total throughput F (p) in (4.13) is a dis-

crete concave function which will be defined in this section, then we propose a dis-
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Figure 4.3: Search space of Alg. 4.2.

crete steepest-ascent algorithm to optimally solve the power allocation subproblem

in (4.14).

We first introduce the concept of discrete concave functions. For a vector x,

define the positive support of x as supp+(x) = {u|x[u] > 0}, and similarly the

negative support is supp−(x) = {u|x[u] < 0}. Define the basis vector as zi =

[0, · · · , 0, 1, 0, · · · , 0] where the non-zero element is at the i-th entry. Assuming the

vector p ∈ ZN , a function F (p) is called M-concave if it satisfies the following M-

concavity exchange (M-EXC) property [97].

Definition 1. (M-EXC) For any p, p′ ∈ domF and u ∈ supp+(p − p′), there exists

v ∈ supp−(p− p′) such that

F (p) + F (p′) ≤ F (p− zu + zv) + F (p′ + zu − zv). (4.18)

We use a two-dimensional example to illustrate the M-EXC property in Fig. 4.4.

Intuitively, for a discrete concave function F (p), the sum of the function values eval-

uated at two points, p1 and p2, does not decrease if the two points move towards
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Figure 4.4: Exchange property of M-concavity.

each other. The concept is similar to the standard concave function defined in the

continuous domain, but is stronger due to the discreteness of the function domain.

An important property of the M-concave function is that local optimality is necessary

and sufficient for global optimality [98], i.e., for the M-concave function F (p), p∗ is a

maximizer if and only if F (p∗) ≥ F (p∗− zu + zv) for all u, v. Therefore, the discrete

steepest ascent algorithm can be employed to find the maximum [97]. The algorithm

starts from any point p in the function domain. It then evaluates all points in the

neighborhood of the current point, i.e., F (p+ zu− zv) for all u, v, and moves toward

the point with the largest value. For example, at point p1 in Fig. 4.4, it moves to

p1 − zu + zv if it has higher function value than p1 + zu − zv. The algorithm contin-

ues until it terminates at a point where all neighboring points have smaller or equal

function values. The final point is guaranteed to be the maximizer of F (p).

In what follows, we first show that F (p) in (4.13) is M-concave. Then we present

the discrete steepest descent algorithm to solve the power allocation problem P4.2

in (4.14).

Theorem 3. The function F (p) in (4.13) is M-concave.

Proof. See proof in Appendix 4.8.4.
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Algorithm 4.3 - Optimal power allocation (OPA) algorithm for central node

1: Pick a random charging policy p = {p1, · · · , pN} ∈ domF ,

initialize empty V ;

2: For i, j = 1, · · · , N, i 6= j

If V [i, (pi − 1)],V [j, (pj + 1)],V [i, pi], or V [j, pj ] empty

3: Evaluate the missing policies;

4: Record the policy values in the table;

End

End

If
(
V 1
i∗(s

1
i∗ , pi∗ − 1) + V 1

j (s1
j∗ , pj∗ + 1)− V 1

i∗(s
1
i∗ , pi)− V 1

j∗(s
1
j∗ , pj∗) ≤ 0

)
Stop;

Else

5: Update p where pi∗ = pi∗ − 1, pj∗ = pj∗ + 1 ;

6: Return to Step 2;

End

Now we propose the optimal power allocation (OPA) algorithm. We start from a

random power allocation p. In each iteration, we find the optimal search direction p̃

in the neighborhood of p, i.e.,

p̃ = argmax
p′∈ neighborhood of p

F (p′)− F (p), (4.19)

or equivalently

(i∗, j∗) = argmax
i,j∈{1,··· ,N}

V 1
i (s1

i , pi − 1) + V 1
j (s1

j , pj + 1)−

V 1
i (s1

i , pi)− V 1
j (s1

j , pj), (4.20)

where V 1
i (s1

i , pi− 1) and V 1
j (s1

j , pj + 1) can be evaluated using the OEU algorithm in

Alg. 4.2. If F (p̃) > F (p), then we set p← p̃ and repeat the process. Otherwise, the

current p is the optimum.
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In order to avoid repetitive calculation of V 1
i (s1

i , pi), we use a table V to record

the values of all evaluated policies.The table has N rows and (pmax + 1) columns.

Each row of V corresponds to a sensor, and each column corresponds to an input

power. For example, V [1, 2] corresponds to the optimal policy value of sensor 1

when the charging rate is p1 = 2, i.e., V [1, 2] = V 1
1 (s1

1, 2). Once a power allocation is

evaluated, the value is filled in the table. In this way we can keep track of the evaluated

power allocation policies for each sensor and avoid repeated calculations. The OPA

algorithm is summarized in Alg. 4.3. The number of iterations to converge is bounded

by ‖p0−p∗‖1/2 ≤ pmax by [97, Lemma 2], where p0 is the initial power allocation and

p∗ is the optimal solution. Note that the table is partially filled when the optimum

is found. On the other hand, the exhaustive search requires to evaluate all possible

power allocations for all sensors, which is equivalent to exhaustively evaluate the

entire table of V . Then, it needs to find the optimal power allocation from the

totally
(
pmax+N

N

)
possible p that satisfies

∑N
i pi = pmax by the occupancy theorem

[99]. Thus, it is clear that the OPA algorithm is computationally much more efficient

than the exhaustive search.

In practice, the system implementation consists of a planning phase and a func-

tioning phase for each time frame. The planning phase is at the beginning of the

time frame. In this phase the central node carries out Alg. 4.3 and Alg. 4.2 to find

the optimal power allocation and energy utilization scheme. Then the system goes

into the functioning phase. The central node charges the sensor nodes according to

the optimal power allocation plan for the entire time frame. In each time slot, each

sensor acquires its channel state and battery state, and transmits data to the central

node according to its energy utilization policy. The functioning phase terminates at

the end of the current time frame. The process repeats for all time frames.
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4.6 Simulation Results

In this section we evaluate of the performance of the proposed algorithms through

simulations. We consider a system with N = 5 sensors. The channel between each

sensor and the central node follows Rayleigh distribution, with the probability density

function f(γ) = 1
γ̄
e−

γ
γ̄ , where γ̄ = 1 is the mean. The channel is then modeled as

an FSMC with 3 states, where γ1 = 0.25, γ2 = 1.5, γ3 = 3, and the path loss of each

sensor is ρ1 = 0.017, ρ2 = 0.017, ρ3 = 0.014, ρ4 = 0.01, ρ5 = 0.01. According to the

FSMC channel model [94], the transition probability of the channel states is set as

P =


0.38 0.62 0

0.245 0.595 0.16

0 0.54 0.46

 ,
where P [a, b] represents that the transition probability from state a to state b. The set

of power transfer efficiency coefficients is D1 = {1, 2} with probability q1,1 = 0.8 and

q1,2 = 0.2 when the channel is in state 1, D2 = {2, 3} with q2,1 = 0.5 and q2,2 = 0.5

when channel is in state 2, and D3 = {3, 4} with q3,1 = 0.2 and q3,2 = 0.8 when

channel is in state 3. Let w1 = 3, w2 = 3, w3 = 2, w4 = 1, w5 = 1. The battery

increment is δ = 1J, and the size of the battery is bmax = 40. The central node has

total power pmax = 10. The bandwidth of each sensor is 100kHz. The channel has

noise spectrum density N0 = 10−5. Each time slot has duration 1s and the policies

are planned for T = 20 time slots.

We first evaluate the performance of the proposed algorithms in terms of the total

transmission rate F (p). All sensors are initially in channel state 2 and battery state

0. In this example, the exhaustive search method needs to evaluate the full V matrix

of size of (10 + 1) × 5 = 55. That is, the exhaustive search method has to run Alg.

4.1 or Alg. 4.2 55 times.

On the other hand, Fig. 4.5 shows the convergence of the OPA algorithm. It can

be seen that it converges very fast and reaches optimum in 5 iterations. After the

OPA algorithm converges, the V matrix is only partially filled as shown in Table I.
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Figure 4.5: Convergence of Alg. 4.3.

Only 21 power allocations are evaluated, which is less than 40% of the exhaustive

search space. To compare with the value iteration algorithm, the running time of all

schemes are shown in Table II. The OEU algorithm in Alg. 4.2 speeds up the value

iteration algorithm in Alg. 4.1, and it takes 43% of the time that Alg. 4.1 takes. On

the other hand, the OPA algorithm in Alg. 4.3 significantly reduce the computational

load, with a running time that is about 40%. Together the two algorithms can speed

up the computation by a factor of 4 compared with the method based on exhaustive

search and standard value iteration.

Now we evaluate the system performance in different settings. First we fix the

capacity of the power source to be pmax = 10 and vary the size of sensor batteries

bmax. All other parameters are kept the same as in Fig. 4.5. We compare the system

performance with different policy baselines. For the energy utilization policy of each

sensor, we compare our result with the aggressive utilization baseline (AG) where each

sensor always utilize 75% of the energy in the battery in each time slot, and we also

compare with the conservative utilization baseline (CON) where each sensor always

utilizes 25% of the energy in the battery. On the other hand, for the power allocation
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@
@

@
@@

i

pi
0 1 2 3 4 5 6 7 8 9 10

1 27.9 48.5 65.0 73.5

2 27.9 48.5 65.0 73.5

3 15.5 27.3 37.8 46.9 54.9

4 0 4.6 8.6 12.2

5 0 4.6 8.6 12.2

Table 4.1: Value of power allocations (×104).

Scheme Running time (s)

Proposed Scheme (Alg.4.2+Alg.4.3) 2.5

Alg. 4.1 + Alg. 3 5.7

Alg. 4.2 + Exhaustive search 4.2

Alg. 4.1 + Exhaustive search 10.5

Table 4.2: Running time of different methods

of the central node, we compare with the uniform power allocation baseline (UA),

where the central node allocates the total power evenly over all sensors. To specifically

show the performance gain of each policy, we compare the proposed scheme with the

following combination of baselines: UA with the optimal energy utilization policy

using Alg. 4.2 (UA-OEU), UA with AG, and UA with CON. The result is averaged

over 2000 time slots, which is 100 policy planning frames.

The result is illustrated in Fig. 4.6. For all baselines, the amount of data trans-

mitted increases as the battery size increases. The reason is when the battery size

increases, the battery will be less likely to be charged to saturation, and less energy

will be wasted. Hence more energy can be used for transmission, which increases the

data throughput. From the figure it is clear that the proposed scheme outperforms

all other baselines. By comparing the UA-OEU baseline with the UA-AG and UA-
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Figure 4.6: Data throughput versus the size of sensor battery.

CON baselines, it is clear that the optimal energy utilization policy for the sensors

achieves higher data throughput than both the aggressive baseline and the conserva-

tive one. In this example, the aggressive baseline shows better performance than the

conservative one. By comparing the proposed scheme with UA-OEU, we see that the

optimal power allocation outperforms the uniform allocation policy, and interestingly

the gap increases as the battery size increases. To discover the reason that magnifies

the difference and understand the underlying characteristics of the system, we look

into the detail of the optimal policies.

Fig. 4.7 illustrates the optimal power allocation versus the battery size. When

the sensor battery size is bmax = 10, the difference of the power allocation for each

sensor is not large, and the OPA is similar to the uniform baseline. In this case

the total data throughput is very close. As the sensor battery size increases, more

power is allocated to sensor 1, 2 and 3, and less power is allocated to sensors 4 and

5. When bmax is greater than 20, the OPA stops allocating power to sensors 4 and 5,

and all power is shared among the other 3 sensors. The unbalanced power allocation

enables more data throughput in the large battery size settings. The reason is that
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Figure 4.7: Optimal power allocation versus the battery size.

sensors 1-3 have higher channel gain than sensors 4 and 5. In this case, allocating

more power to those sensors with high gains enables high energy transfer efficiency,

which in turn can let them utilize more energy for data transmission. In Fig. 4.8,
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Figure 4.8: Average transmit energy of each sensor versus the battery size.

we observe that the average energy utilization per slot increases rapidly for sensors

1 and 2 as the battery size increases. Moreover, their high channel gains further

improve the data throughput. Hence, high channel gain leads to better performance

in both energy and information transfer, and therefore the OPA focuses power on the

sensors with strong channels, so as to achieve high data throughput when the battery

size is large. On the other hand, when the battery size is small the OPA distributes
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power more evenly among all sensors. The reason is that the batteries can easily

been charged in full due to the limited battery size, and those sensors with strong

channel gain will experience high battery discharge when they are assigned with high

charging power. That is, although sensors with strong channels may transmit more

data with unit energy, allocating more power to them will result in increasing energy

waste and limit their data transmission performance. This can be clearly illustrated

by the battery discharges in Fig. 4.9. When the battery size is small, sensors 1 and 2
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Figure 4.9: Average battery energy discharge per slot versus the battery size.

experience high battery discharges even when they are allocated with a small portion

of the power resource. The discharge rate decreases as the battery size increases.

Similar result is observed if we fix the battery size at bmax = 25 and vary the total

power at the central node. As shown in Fig. 4.10, when the total power is low, it needs

to be spent efficiently on sensors 1 and 2. In this case, the power allocation policy

is unbalanced and these two sensors have priority to use the total power. Hence, the

difference between the proposed scheme and the uniform baseline is large. As the

total power increases, the OPA becomes more balanced among all sensors, and the

gap becomes smaller. On the other hand, the gap between the UA-OEU and UA-

CON baselines becomes greater, which illustrates that the energy utilization policy

becomes more aggressive when the total power increases. This is because as the
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sensors receive more energy from the central node, and aggressive utilization policy

not only increases the data throughput, but also reduces the energy discharge.
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Figure 4.10: Data throughput versus total charging power.

We also investigated the performance of the time frame length T . In Fig. 4.11,

we show the total number of bits transmitted in 1000 time slots with T is 20, 50,

and 100 respectively. In this example, Pmax = 25 and other parameters are set as

in Fig. 4.10. We can see that as T increases, the total number of bits transmitted

in the same period of time increases. This is because during the transition of time

frames, the optimal energy utilization action is to use all available energy at the

end of the previous slot, and will leads to low battery initial states in the next time

frame. This results in performance reduction. By increasing T , the number of time

frame transitions will reduce in the same period of time, and thus improve the system

throughput. However, the throughput gain is very small because the improvement

over the transitions is very limited comparing with the overall performance. On the

other hand, increasing the number of time slots in a time frame also increases the

running time for Alg. 4.2 and Alg. 4.3 to search for the optimal policy, which may

result in a timeout in practical implementations. Hence, T can be set based on the
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Figure 4.11: Total number of bits transmitted in 1000 time slots.

size of system and computation capability.

To summarize, increasing the battery size or the power source increases the data

throughput. In the large battery size or low power supply settings the optimal power

allocation has nonuniform distribution of total powers as the sensors with strong

channel gains have higher priority to use power source. On the other hand, when the

total power is high or battery size is low, the optimal policy tends to have balanced

power allocation among all sensors. The energy utilization policy becomes aggressive

as the total charging power increases.

4.7 Conclusions

In this chapter, we have considered a wireless powered IoT networks where the sensors

are charged by the RF signal transmitted from a central node. We have formulated the

problem of designing the sensor energy utilization policy and the problem of allocating

the total charging power among the sensors, with the objective of maximizing the total

data throughput. The first problem is an MDP and by showing that optimal action

is non-decreasing in the battery state, we have proposed an algorithm to compute the

optimal energy utilization policy with reduced search space. On the other hand, for
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the power allocation problem we have shown that the total data throughput function

is M-concave with respect to the power allocation, based on which a discrete steepest

ascent algorithm is proposed to find the optimal power allocation.

Simulations show that the proposed algorithms are computationally efficient and

they outperform simple heuristics. In particular, the proposed optimal power alloca-

tion algorithm outperforms the uniform power allocation baseline, and the optimal

energy utilization algorithm outperforms the corresponding aggressive and conserva-

tive baselines.

4.8 Appendices

4.8.1 Proof of Lemma 2

The proof is by induction. First consider the case t = T in (4.12), we have

V T (bT , hT , p) = max
eT∈A(bT )

Eγ[B log2

(
1 +

ργeT δ

BN0τ

)
|hT ]. (4.21)

Since the log function is monotonically increasing as eT increases, it can be easily

seen that the maximizer of V T is (eT )∗ = bT . Hence, Lemma 2 holds for bt when

t = T . Now we assume V t+1(bt+1, ht+1, p) is non-decreasing in bt+1 in time slot t+ 1.

For a given ht and p, suppose that the optimal action for bt is (et)∗, and we have

another battery state (bt)′ > bt. Then (et)∗ is also in the action set A((bt)′). Let
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βt(b, e) = min{b+ pwdt − e, bmax}, we have

V t((bt)′, ht, p)

= max
et∈A((bt)′)

[
r(ht, et) +

∑
ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(βt((bt)′, et), ht+1, p)
]

≥r(ht, (et)∗) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(βt((bt)′, (et)∗), ht+1, p) (4.22)

≥r(ht, (et)∗) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(βt(bt, (et)∗), ht+1, p) (4.23)

=V t(bt, ht, p). (4.24)

Because βt((bt)′, (et)∗) ≥ βt(bt, (et)∗), and V t+1 is assumed to be non-decreasing in

bt+1 by the induction assumption, (4.22) is no less than (4.23). Therefore V t is also

non-decreasing in bt at time t, which completes the proof for part (a).

For part (b) at time T , V T is independent of p in (4.21), so it is non-decreasing in

p. Now assume that V t+1(bt+1, ht+1, p) is non-decreasing in p. For given bt and ht, let

the optimal action under the charging rate p be (et)∗, and β̃t(p, e) = min{bt + pwdt−

e, bmax}. Thus for any p′ > p, we have

V t(bt, ht, p′)

≥r(ht−1, (et)∗) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(β̃t(p′, (et)∗), ht+1, p′) (4.25)

≥r(ht−1, (et)∗) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(β̃t(p, (et)∗), ht+1, p) (4.26)

=V t(bt, ht−1, p),

where (4.26) follows from (4.25) since V t+1 is proved to be non-decreasing in bt+1 in

part (a), and by the induction assumption it is non-decreasing. Hence V t is non-

decreasing in p, which completes the proof for part (b).
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4.8.2 Proof of Lemma 3

We show that V t is concave in both bt and p by induction. From (4.21), it can be

easily seen that when t = T ,

V T (bT , hT , p) = Eγ[B log2

(
1 +

ργbT δ

BN0τ

)
|hT ], (4.27)

which is concave in bT . Since it is independent of p, V T is concave in (bT , p). Now

assume that in time slot (t + 1), V t+1 is concave in (bt+1, p) for given ht+1, we need

to show that V t is concave in (bt, p). That is, for any (bt, p) and ((bt)′, p′), and

λ ∈ [0, 1] such that (bλ, cλ) = λ(bt, p) + (1 − λ)((bt)′, p′) ∈ B × P , we need to show

that V t(bλ, h
t, pλ) ≥ λV t(bt, ht, p)+(1−λ)V t((bt)′, ht, p′), where V t is given in (4.15).

Let the maximizer of V t(bt, ht, p) and V t((bt)′, ht, p′) be e1 and e2 respectively. From

(4.2) r is a concave function of et. Thus for the first term of V t in (4.15), we have

λr(e1, h
t) + (1− λ)r(e2, h

t) ≤ r(eλ, h
t), (4.28)

where eλ = λe1 + (1 − λ)e2. Note that since e1 ≤ bt and e2 ≤ (bt)′, eλ ≤ bλ then

eλ ∈ A(bλ). Next, let βt(b, p) = min{b + pwdt, bmax}, and we check the concavity

of the function V t+1(βt(bt − et, p), ht+1, p). Firstly, V t+1 is concave in (bt+1, p) by

the induction assumption of the induction. Secondly, V t+1 is non-decreasing in each

variable bt+1 and p by Lemma 2. Also, βt(bt − et, p) is the minimum of an affine

function of (bt − et, p) and a constant, hence βt(bt − et, p) is a concave function of

(bt − et, p). Therefore, by the vector composition rule [100, pp. 86], V t+1(βt(bt −

et, p), ht, p) is concave in (bt − et, p), i.e.,

λV t+1(βt(bt − e1, p), h
t+1, p) + (1− λ)V t+1(βt((bt)′ − e2, p

′), ht+1, p′)

≤ V t+1(βt(bλ − eλ, pλ), ht+1, pλ). (4.29)
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By (4.28) and (4.29), we have

V t(bλ, h
t, pλ)

= max
et∈A(bλ)

[
r(ht, et) +

∑
ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(βt(bλ − et, pλ), ht+1, pλ)
]

≥r(ht, eλ) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)V t+1(βt(bλ − eλ, pλ), ht+1, pλ)

≥λr(ht, e1) + (1− λ)r(ht, e2) +
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)

×
[
λV t+1(βt(bt − e1, p), h

t+1, p) + (1− λ)V t+1(βt((bt)′ − e2, p
′), ht+1, p′)

]
=λV t(bt, ht, p) + (1− λ)V t((bt)′, ht, p′). (4.30)

Hence, the concavity of the value function holds for time slot t, and this completes

the proof that V t is concave in (bt, p). To show that V t(bt, ht, p) is concave in each

variable of bt and p, simply fixing one variable of (bt, p) and the concavity still holds

because concavity can be restricted to any line that intersects the domain. This

completes the proof for Lemma 3.

4.8.3 Proof of Theorem 2

For given ht and p, denote (et)∗ as the optimal action. When t = T it can be easily

seen that for any b̃T > bT , the optimal action (ẽT )∗ > (eT )∗. For t < T , the value of

an action et is

Wet(b
t, ht, p) =r(ht, et) +

∑
ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)

× V t+1(βt(bt, et), ht+1, p), (4.31)
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where βt(b, e) = min{b + pwdt − e, bmax}. For bt, the difference of the values of the

action (et)∗ and any non-optimal action et < (et)∗ is

W(et)∗(b
t, ht, p)−Wet(b

t, ht, p) =
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)

× [V t+1(βt(bt, (et)∗), ht+1, p)− V t+1(βt(bt, et), ht+1, p)]. (4.32)

Similarly, consider a larger battery state b̃t > bt. The optimal action (et)∗ of bt is also

in the action set of b̃t, hence

W(et)∗(b̃t, h
t, p)−Wet(b̃t, h

t, p) =
∑

ht+1∈H,dt∈Dht

P (ht+1|ht)P (dt|ht)

× [V t+1(βt(b̃t, (et)∗), ht+1, p)− V t+1(βt(b̃t, et), ht+1, p)]. (4.33)

By Lemma 2(a), Lemma 3(a) and applying the vector composition rule of concavity,

V t+1(βt(b, e), ht, c) is concave in (b, e). Hence, let λ = ((et)∗− e)/(b̃t− b− et + (et)∗),

V t+1(βt(b̃t,(et)∗), ht+1, p) ≥ λV t+1(βt(b̃t, et), ht+1, p)

+ (1− λ)V t+1(βt(bt, (et)∗), ht+1, p), (4.34)

V t+1(βt(bt,et), ht+1, p) ≥ (1− λ)V t+1(βt(b̃t, et), ht+1, p)

+ λV t+1(βt(bt, (et)∗), ht+1, p). (4.35)

Adding both sides of (4.34)-(4.35), we have

V t+1(βt(b̃t, (et)∗), ht+1, p) + V t+1(βt(bt, et), ht+1, p)

≥V t+1(βt(b̃t, et), ht+1, p) + V t+1(βt(bt, (et)∗), ht+1, p), (4.36)

and thus

V t+1(βt(b̃t, (et)∗), ht+1, p)− V t+1(βt(b̃t, et), ht+1, p)

≥V t+1(βt(bt, (et)∗), ht+1, p)− V t+1(βt(bt, et), ht+1, p). (4.37)

Substituting (4.37) in (4.32) and (4.33), we have

Wet(b̃t, h
t, p)−W(et)∗(b̃t, h

t, p) ≤ Wet(b
t, ht, p)−W(et)∗(b

t, ht, p) ≤ 0. (4.38)
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Therefore, the optimal action of b̃t is lower bounded by (et)∗, which means that the

optimal action is non-decreasing in bt. This completes the proof.

4.8.4 Proof of Theorem 3

The domain of F (p) in problem P4.2 is
∑N

i=1 pi ≤ pmax, with pi ∈ P . It is easy to see

that to achieve optimality we should have
∑N

i=1 pi = pmax, because by Lemma 2(b)

V 1
i (s1

i , pi) is non-decreasing in pi. Therefore, the effective domain guarantees that for

any p and p′, the sets supp+(p − p′) and supp−(p − p′) are non-empty, which is a

necessary condition for the M-EXC property.

To show that F (p) is M-concave, let i ∈ supp+(p − p′) and j ∈ supp−(p − p′).

For given s1
i ,

F (p− zi + zj) + F (p′ + zi − zj)− F (p) + F (p′)

=Vi(s
1
i , pi − 1) + Vj(s

1
j , pj + 1) + Vi(s

1
i , p
′
i + 1)+

Vj(s
1
j , p
′
j − 1)− Vi(s1

i , pi)− Vj(s1
j , pj)− Vi(s1

i , p
′
i)− Vj(s1

j , p
′
j). (4.39)

Since i ∈ supp+(p−p′), we have pi > p′i, and hence p′i < p′i+1 ≤ pi and p′i ≤ pi−1 < pi.

Let λ = 1/(pi − p′i), thus λpi + (1− λ)p′i = p′i + 1 and λp′i + (1− λ)pi = pi − 1. Since

Vi(s
1
i , pi) is concave in pi by Lemma 3(b), we have

Vi(s
1
i , p
′
i + 1) ≥ λVi(s

1
i , p
′
i) + (1− λ)Vi(s

1
i , pi), (4.40)

Vi(s
1
i , pi − 1) ≥ (1− λ)Vi(s

1
i , p
′
i) + λVi(s

1
i , pi). (4.41)

Adding both sides of (4.40)-(4.41), we have

Vi(s
1
i , pi − 1) + Vi(s

1
i , p
′
i + 1)− Vi(s1

i , pi)− Vi(s1
i , p
′
i) ≥ 0. (4.42)

Similarly,

Vj(s
1
j , pj + 1) + Vj(s

1
j , p
′
j − 1)− Vj(s1

j , pj)− Vj(s1
j , p
′
j) ≥ 0. (4.43)

Substituting (4.42) and (4.43) in (5.58), we have

F (p− zi + zj) + F (p′ + zi − zj)− F (p) + F (p′) ≥ 0. (4.44)
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This completes the proof that F (p) is M-concave.
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Chapter 5

Time Scheduling in Wireless

Powered Backscatter

Communication Networks

5.1 Introduction

In this chapter we study the time scheduling problem in a wireless-powered backscat-

ter communication network. As discussed in previous chapters, WPT and backscatter

technologies have unique feasibilities. Backscatter communication enables low latency

real-time communications with simple and low cost devices. However it requires an

external reader to constantly provide carrier wave. Also it has fixed transmission rate

and do not support simultaneous transmission. On the other hand, the harvest-then-

transmit (HTT) communication with WPT and RF-energy harvesting transmitters

do not have such limitations and more flexible in transmission rate. As a tradeoff, it

has to harvest enough energy before active transmission, which results in a delay. As a

result, integrating the backscatter technology and HTT system becomes a prominent

solution to address the issues for both methods and achieve flexible and low-latency

wireless network transmission, and it has been an active research area most recently.
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In [101], the network throughput optimization problem is considered for the

wireless-powered backscatter communication networks, where each sensor has a unique

receiver destination. Similarly, the network throughput optimization problem is con-

sidered for RF-powered cognitive radio networks (CRN) and ambient backscatter

communications in [16]. The tradeoff between backscatter communication and HTT

in the RF-powered backscatter CRN is analyzed in [15], and the time ratio between

the two transmission modes are optimized to maximize the overall transmission rate

of the secondary network. The same problem is studied in the reinforcement learning

setting in [20]. The user cooperation schemes are studied to improve the energy trans-

mission efficiency in [102]. The time allocation is studied to maximize the throughput

based on user location in [19]. The relay strategy is considered in [18] to improve ap-

plicability and performance, and the throughput maximization problem is studied

in [17] where the backscatter transmitters act as power relays. Game theoretic ap-

proaches are studied in [103] where the best price and backscatter time optimized to

optimize the profit and utility.

In this chapter, we study the time scheduling problem in RF-powered backscat-

ter communication networks. We consider a system network with one single-antenna

reader and multiple RF powered backscatter transmitters. The transmitters can op-

erates in either backscattering mode or harvest-then-transmit (HTT) mode, and the

reader acts as a power transmitter and information receiver and supports both oper-

ating modes. The objective is to decide the mode of all transmitters and minimize

the total transmission time of the network. We consider the ideal transmitters where

it is assumed that no power is required for non transmission-related operations in

the HTT mode. We also consider practical transmitters under realistic power con-

sumption model where power consumption such as coding, baseband processing are

considered [104, 105]. Under both transmitter models we show several key properties,

and show that the optimal transmission time of each transmitter can be calculated,

and their optimal operating modes can be found by using a bisection based algorithm
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which has significantly lower complexity than that the exhaustive search method. We

then extend the result to the massive MIMO regime, and propose an algorithm to

solve the corresponding problems in linear time complexity.

5.2 System Description and Problem Formulations

5.2.1 System Model

We consider a backscatter communication system with one single-antenna reader and

K RF-powered single-antenna transmitters, as illustrated in Fig. 5.1. The reader

transmits carrier wave which is used for both backscatter modulation and RF energy

harvesting purposes. Each transmitter is equipped with a backscatter circuitry, an

energy harvesting module and a battery. They can operate in either backscattering

(BS) mode or harvest-then-transmit (HTT) mode. The reader also receives and

decodes information from both backscatter and HTT signals.

5.2.1.1 Network Model

All transmitters have messages with size l and they are divided into two groups: a BS

group B and a HTT group H. One time frame denotes the entire transmission period

of the network, and it is divided into two phases, the BS phase and the HTT phase.

In the BS phase, the reader transmits power signal, and each BS group transmitter

transmits its message via backscattering in one of the time slots individually. The

reader receives and decodes the backscatter signal from the BS transmitters. The

HTT group transmitters, which are selected for HTT transmission, harvest the RF

energy and store to the batteries during the entire BS phase. Then in the HTT phase,

these transmitters actively transmit their messages to the reader with the harvested

energy in the time-division fashion. The reader does not transmit and receives signal

from the HTT transmitters during this time. The network model is illustrated in Fig.

5.2.



CHAPTER 5. TIME SCHEDULING IN WIRELESS POWERED
BACKSCATTER COMMUNICATION NETWORKS 115

...
Tx 1 Tx 2 Tx K

h
1

h
2

h
K

Reader

Tx K-1

h
K-1

Power link

Backscattering link

HTT link

Figure 5.1: System model for Chapter 5.
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BS group of transmitters transmit their
messages via backscattering, and HTT
group of transmitters harvest energy
during the backscattering phase.
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using the harvested energy from
the backscattering phase.

Length of a time frame to complete all message delivery tasks

Figure 5.2: Time scheduling of the network.
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5.2.1.2 Channel Model

The environment is static and the channels are assumed to remain constant within

a time frame. Denote hk =
√
δkh̃k ∈ C as the channel gain from the reader to the

k-th transmitter, where δk is the path loss coefficient and h̃k is the fading coefficient

modeled as a complex Gaussian random variable with zero mean and unit variance.

Note that the channels for power downlink and information uplink of each transmitter

are identical, and the fading coefficients for different transmitters {h̃k} are i.i.d.

5.2.1.3 Backscattering Phase

In the BS phase, the reader transmits power signal stream for both backscattering

and energy harvesting. The received RF signal of the k-th transmitter is given by

ỹk =
√
PChks̃+ ñk, (5.1)

where PC is the transmit power of the reader, s̃ ∈ C with E[s̃2] = 1 represents the

signal symbol and ñk ∼ CN (0, σ2
k) denotes the complex additive while Gaussian noise

(AWGN) at the k-th transmitter. Since the AWGN power is negligible compared

with delivered power from the reader, the received power at the k-th transmitter is

given by

pk = E[|ỹk|2] = PC |hk|2. (5.2)

To enable a transmitter operating in the BS mode, its received power must ex-

ceed the backscattering sensitivity PB, i.e., pk ≥ PB. The BS group transmitters

backscatter their messages at a fixed rate rB, and it takes τ = l/rB amount of time

to complete the task. Hence, in Fig. 5.2 each time slot has length τ , and the total

time length for the BS phase is |B|τ , where |B| is the number of transmitters in the

BS group. We assume that the BS group transmitters do not consume energy.
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5.2.1.4 Power Consumption Models for HTT Transmitters

We assume a linear energy conversion model [41, 56, 106] at the HTT transmitters.

The amount of harvested energy of an HTT transmitter k during the BS phase is given

by εk = ηpk|B|τ where η is the energy conversion efficiency. Let tk be its transmission

time, hence the total power consumption is

qk = εk/tk = ηPC |hk|2|B|τ/tk. (5.3)

We consider two power consumption models in this chapter.

a) Ideal Power Consumption Model: Ideal transmitters can use all the harvested

energy for active transmission, and there is no power consumption for other tasks

such as channel coding, modulation mapping, baseband processing, RF link, etc. Let

ρk be the transmit power, and we have ρk = qk in the ideal model.

b) Realistic Power Consumption Model: Based on [104, 105, 107, 108], the realistic

energy consumption model for the HTT transmitters can be expressed as

qk = ρk + ark + vk, (5.4)

where a denotes the average power consumption coefficient (PCC) of coding and

modulation per bit, rk denotes the transmission rate, and vk denotes other fixed

power consumptions. The second term ark accounts for the rate dependent power

consumptions such as channel coding and modulation mapping, and the last term

vk accounts for other forms of fixed power consumption such as RF link, baseband

processing, etc. Hence, the transmission power in the realistic energy consumption

model is given by ρk = qk − ark − vk.

5.2.1.5 HTT Phase

In the HTT phase, the H group transmitters take turns transmitting their messages

to the reader by using their harvested energy stored in the batteries, and we assume

that other transmitters cannot harvest energy from the HTT transmissions due to
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the low transmitting power from the HTT transmitters. The received information

signal of the k-th HTT transmitter at the reader can be expressed as

yk =
√
ρkhksk + nr, k ∈ H, (5.5)

where sk is the information signal symbol and nr ∼ N (0,WN0) denotes the AWGN

at the reader. Its transmission rate is given by

rk = W log(1 +
ρk|hk|2

WN0

), k ∈ H, (5.6)

where W is the channel bandwidth and N0 denotes the noise power spectral density.

Since the message transmission should be completed within tk, we need the constraint

tkrk ≥ l.

5.2.2 Problem Formulations

The objective of this chapter is to optimize the transmitter group selection and the

transmission time of each HTT transmitters, such as to minimize the total amount

of time that the system takes to complete all transmission tasks.

5.2.2.1 Formulation under Ideal Power Consumption Model

In the ideal setting, the problem formulation is given by

P5.1 : min
B⊂{1,··· ,K},{tk:∀k∈H}

|B|τ +
∑
k∈H

tk (5.7)

s.t. tkrk ≥ l, k ∈ H, (5.8)

H = {1, · · · , K}\B,

where rk is given in (5.6).

5.2.2.2 Formulation under Realistic Power Consumption Model

Given tk, the total power for rate dependent operations and signal power amplifying is

qk− vk. Hence we require qk > vk, which from (5.4) and (5.6), is equivalent to ρk > 0
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and rk > 0. Therefore the condition tkrk ≥ l implies qk > vk. Let αk ∈ [0, 1] be the

portion of power that is allocated for rate dependent consumptions, and (1− αk) be

the portion for signal power amplifying. That is,

ρk = (1− αk)(qk − vk), ark = αk(qk − vk). (5.9)

The problem formulation under the realistic power consumption model is

P5.2 : min
B⊂{1,··· ,K},{tk:k∈H},α

|B|τ +
∑
k∈H

tk (5.10)

s.t. tkrk ≥ l, (5.9), k ∈ H, (5.11)

H = {1, · · · , K}\B,

where qk is given by (5.3) and rk is given by (5.6).

5.3 Optimal Solution for Ideal Case

We first study the scheduling problem P5.1 for ideal transmitters. Using (5.6), define

fk(tk) = tk · rk = Wtk log(1 +
Ak|B|
tk

), (5.12)

where Ak = ηPCτ |hk|4/(WN0). Then we have the following proposition. The proof

is provided in Appendix 5.8.1.

Proposition 1. fk(tk) is monotonically increasing and converges to AkW |B|, for

tk > 0.

It then follows from Prop. 1 that if AkW |B| > l, tk is minimized when fk(tk) =

tk · rk = l. Hence, tk is the unique root of fk(tk) = l < AkW |B|. The original problem

P5.1 in (5.7) is equivalent to the following combinatorial problem

P5.1′ : min
B⊂{1,··· ,K}

|B|τ +
∑
k∈H

tk

s.t. fk(tk) = l, k ∈ H,

AkW |B| > l, k ∈ H, (5.13)

H = {1, · · · , K}\B.
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Assumption 1. We assume that the received power at all transmitters is above the

backscattering sensitivity such that they can operate in BS mode, i.e., PC |hk|2 ≥ PB,

k = 1, · · · , K.

We assume that Assumption 1 holds. The reason is if there is one transmitter

that does not satisfy this assumption, then it can only be assigned to the H group,

and therefore in problem P5.1’ the optimization is essentially over transmitters that

satisfy Assumption 1. Based on this, we have the following lemma.

Lemma 4. For the optimal solution to problem P5.1’, tk < τ holds for k ∈ H.

Proof. This is because if tk ≥ τ for any k ∈ H, then by Assumption 1 we can switch

k to group B to lower the objective function value.

Lemma 4 shows that the transmission time for all HTT transmitters is upper

bounded by τ . In other words, the transmission should be completed within τ , i.e.,

fk(τ) ≥ l. This actually enforces a tighter constraint than (5.13) since AkW |B|

is the upper bound of fk(tk). After some manipulations, this condition becomes

|B| ≥ (e
rB
W −1)τ
Ak

. Thus P5.1’ becomes

P5.1′′ : min
B⊂{1,··· ,K}

|B|τ +
∑
k∈H

tk (5.14)

s.t. fk(tk) = l, k ∈ H, (5.15)

|B| ≥ (e
rB
W − 1)τ

Ak
, k ∈ H, (5.16)

H = {1, · · · , K}\B.

A straightforward approach to problem P5.1” is the exhaustive search over all

possible subset B ⊂ {1, · · · , K} which has a complexity of O(2K) and is computa-

tionally prohibitive as K becomes large. For a more efficient solution, we explore the

relationship between the two groups of transmitters.

Lemma 5. Under the optimal solution to problem P5.1”, |hi|2 ≥ |hj|2 should hold

for i ∈ H, j ∈ B.
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Proof. Suppose that there is a transmitter i ∈ H and j ∈ B such that |hi|2 ≤ |hj|2.

Then by switching i to group B and j to H, the system can achieve a time difference

of tj − ti. It can be seen that rk increases monotonically with |hk|2, and so does

fk(tk), hence fj(tj) = l > fi(tj). By Prop. 1, fk(tk) increases monotonically with tk,

thus tj − ti < 0 since fi(tj) < l = fi(ti). Therefore, swapping the groups of i and j

always guarantees the objective value to be non-increasing and improves the system

performance. This completes the proof.

Lemma 5 essentially shows that the transmitter with higher channel gain has

higher priority to be assigned to group H. This leads to the following solution with

linear complexity. We first sort the transmitters by their channel gains |hk|2 in as-

cending order. Then for each 1 ≤ k ≤ K, we assign all first k transmitters to group

B and the rest to group H, and evaluate the objective function in (5.14). Moreover,

for each k we just need to check the feasibility constraint in (5.16) for the (k + 1)-th

transmitter, instead of for all transmitters in H = {k+1, · · · , K}. This is because Ak

is sorted as well according to |hk|2, and |B| ≥ (e
rB
W −1)τ
Ak+1

≥ (e
rB
W −1)τ
Ak′

for k′ > k + 1. Fi-

nally find the optimal k with the minimum objective value which leads to the optimal

group assignment. This approach has a complexity of O(K).

Interestingly, we can further improve the efficiency by exploring the relation-

ship between B and tk. Note that, B has to be non-empty, otherwise the HTT

transmitters will have no energy for active transmission. Based on (5.12), define

%k(t, x) = Wt log(1 + Akx
t

). Then the constraint fk(tk) = l becomes %k(tk, |B|) = l.

We have the following key properties. The proof is given in Appendix 5.8.2.

Lemma 6. Given that %k(t, x) = l, then we can write t = φk(x) where the function

φk(·) has the following properties: (a) φk is convex and decreasing in x, and (b)

φk(|B|) < φk′(|B|) for |hk|2 > |hk′ |2.

Lemma 6 leads to the following theorem which is instrumental to developing an

efficient algorithm that finds the optimal group assignment. The proof is provided in

Appendix 5.8.3.
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Theorem 4. Suppose transmitters are sorted according to their channel strength in

ascending order, i.e., |h1|2 < · · · < |hK |2. Let

F (k) = kτ +
K∑

i=k+1

φi(k) (5.17)

be the objective function in (5.14) with B = {1, · · · , k}. Then, F (k + 1) − F (k) >

F (k)− F (k − 1) for k ∈ {2, · · · , K − 1}.

Note that in (5.17) φi(k) = ti is the root of fi(ti) = l with |B| = k and it can

be evaluated numerically, e.g., using the gradient descent method or the bisection

method since fi(·) is monotonic. Intuitively Theorem 4 indicates that the difference

of the objective function in (5.14) is monotonic in terms of the boundary k. Hence

we can find the optimal k using the bisection method. In particular if there exists a

k∗ such that F (k∗+ 1)−F (k∗) > 0 and F (k∗)−F (k∗− 1) < 0, then k∗ is the unique

minimizer of P5.1”. Otherwise F (k) is monotonically increasing or decreasing, which

has minimizer k∗ = 1 or k∗ = K. Taking advantage of this result, we propose an

algorithm based on the bisection method to solve the original problem P5.1. The

algorithm is presented in Alg. 5.1.

In the initialization step, the transmitters are sorted by their channel strengths,

and the left and right boundaries of the bisection procedure are initialized. In each

iteration Alg. 5.1 evaluates the objective function in (5.17) at c, c+1, and c−1 where

c is in the center between the left and right boundaries. But at the beginning of each

iteration, the algorithm first checks if the feasibility constraint (5.16) is satisfied for

k = c and |B| = c−1. If it fails, the left boundary is set to c+1 for the next iteration.

Such k and |B| values correspond to the feasibility constraint for F (c − 1), and the

reason for checking the feasibility of F (c− 1) only is that if F (c− 1) is feasible F (c)

and F (c+ 1) are also feasible. In steps 4-6, the left and right boundaries are updated

according to Theorem 4. If both F (c+ 1)−F (c) and F (c)−F (c− 1) are less than 0,

the function is decreasing at c, and the optimal k is to the right of c. Hence the left

boundary is updated as c+1. Similarly, if both terms are greater than 0, the function
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Algorithm 5.1 - Optimal Algorithm for Solving P5.1 (and P5.2)

Input: transmitter channel gains ;

Initialization: Sort the transmitters by channel gains |h1|2 ≤ · · · ≤ |hK |2;

l = 2, r = K − 1, c = d l+r
2
e

While l 6= r Do

1: If c < (e
rB
W −1)τ
Ac+1

(or if (5.25) is not satisfied for k = c and |B| = c− 1 for P5.2):

set l = c+ 1, c = d l+r
2
e;

Else Do:

2: Evaluate F (c) given in (5.17) (or G(c) given in (5.27) for P5.2, changes

apply to the remaining steps), B = {1, · · · , c}, H = {c+ 1, · · · , K}, and

φi(c) is the root of fi(ti) = l with |B| = c (or ψi(c) as the root of

gi(ti) = l for P5.2);

3: Similarly, evaluate F (c+ 1), F (c− 1);

4: If : F (c+ 1)− F (c) < 0 and F (c)− F (c− 1) < 0, set l = c+ 1, c = d l+r
2
e;

5: Else If : F (c+ 1)− F (c) > 0 and F (c)− F (c− 1) > 0, set

r = c− 1, c = d l+r
2
e;

6: Else If : F (c+ 1)− F (c) > 0 and F (c)− F (c− 1) < 0, Break;

End

Output: B = {1, · · · , c},H = {c+ 1, · · · , K}, tk as the root of fk(tk) = l (or

gk(tk) = l with αk in (5.18) for P5.2).
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is monotonically increasing at c, and the optimal k is on the left of c, hence the right

boundary is updated as c − 1. The algorithm terminates when F (c + 1) − F (c) > 0

and F (c) − F (c − 1) < 0 which indicates that c is optimal. On the other hand, it

stops when the left and right boundaries coincide. Note that Alg. 5.1 solves problem

P5.1 optimally and has a computational complexity of O(log2K).

5.4 Optimal Solution for Realistic Case

Next we study problem P5.2 under the realistic power consumption model. Define

Ck = N0

a|hk|2
and Dk = vk|hk|2

WN0
. First we have the following theorem for the optimal αk

with given tk. The proof is given in Appendix 5.8.4.

Theorem 5. The optimal αk in problem P5.2 is given by

α∗k = 1+
tk

Ak|B| −Dktk
− tk
Ck(Ak|B| −Dktk)

W0[Ck exp{Ck(1+
Ak|B|
tk
−Dk)}], (5.18)

and the corresponding optimal rate is given by

r∗k = W
(
Ck(1 +

Ak|B|
tk
−Dk)−W0[Ck exp{Ck(1 +

Ak|B|
tk
−Dk)}]

)
(5.19)

where W0(x) : [−e−1,∞) → [−1,∞) is the principal branch of the Lambert function

which satisfies the definition W0(x)eW0(x) = x.

By Theorem 5, the optimal αk can be found analytically, and the constraint

tkrk ≥ l in (5.11) can be rewritten as

gk(tk) , tkW
(
Ck(1 +

Ak|B|
tk
−Dk)− Uk(tk)

)
≥ l, k ∈ H, (5.20)

where

Uk(tk) = W0[Ck exp{Ck(1 +
Ak|B|
tk
−Dk)}]. (5.21)

Note that W0(x) > 0 for x > 0, hence Uk(tk) > 0. Similar to the ideal case, in the

next step we show that tk is minimized when equality is achieved in (5.20). We have

the following result and the proof is given in Appendix 5.8.5.
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Proposition 2. gk(tk) in (5.20) is concave in tk for tk > 0, and it has a unique

maximizer t∗k > 0 which satisfies

g′k(t
∗
k) = Ck − Uk(t∗k) +

Uk(t
∗
k)

1 + Uk(t∗k)

AkCk|B|
t∗k

− CkDk = 0. (5.22)

By Proposition 2, gk(tk) monotonically increases in the interval tk ∈ (0, t∗k). Hence

if the problem is feasible, i.e., gk(t
∗
k) > l, tk is minimized when gk(tk) = l is achieved.

On the other hand, we assume that Assumption 1 also holds for P5.2, hence Lemma

4 is still valid as well, which requires tk < τ . As a result, we can rewrite problem

P5.2 as

P5.2′ : min
B⊂{1,··· ,K}

|B|τ +
∑
k∈H

tk (5.23)

s.t. gk(tk) = l, k ∈ H, (5.24)

gk(t
∗
k) > l, tk < t∗k, tk < τ, k ∈ H, (5.25)

H = {1, · · · , K}\B,

where qk is given by (5.3), gk(tk) and t∗k are given in (5.20) and (5.22) respectively.

Constraint in (5.25) ensures that the problem is feasible. Similar to problem P5.1’ in

the ideal setting, P5.2’ is also a combinatorial problem with the size of search space

O(2K), and its constraint has a much more complex functional form. Fortunately, the

following analysis shows that most of the results for the ideal case in Section 5.3 still

hold under the realistic power consumption model, and we can adopt the bisection

based Alg. 5.1 to find the optimal transmitter group assignment.

Similarly as in Section 5.3, first we show that the channel gain also determines

the transmitter’s transmission rate for the power consumption model. The proof is

given in Appendix 5.8.6.

Lemma 7. Under the condition qk > vk, r
∗
k in (5.19) is monotonically increasing

with channel gain |hk|2. Moreover, under the optimal solution of problem P5.2’,

|hi|2 ≥ |hj|2 should hold for i ∈ H, j ∈ B.
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Based on Lemma 7, transmitters with higher channel gains should have higher

priority to be assigned to the HTT group. Hence, the linear search method is already

applicable to P5.2’ by following the similar sorting and grouping procedure as dis-

cussed in Section 5.3. Also under such grouping, the feasibility constraint in (5.25)

is automatically fulfilled for all H = {k + 1, · · · , K} transmitters if the (k + 1)-th

transmitter is satisfied. This can be easily shown since gk′(t
∗
k) > gk(t

∗
k) = l for k′ > k.

On the other hand, we can extend Lemma 6 and Theorem 4 to problem P5.2’. Based

on (5.20), define

µk(t, x) = tW
(
Ck(1 +

Akx

t
−Dk)− Vk(t, x)

)
, (5.26)

where Vk(t, x) = W0[Ck exp{Ck(1 + Akx
t
− Dk)}]. Then the constraint gk(tk) = l

becomes κk(tk, |B|) = l. Then we have the following lemma and the proof is given in

Appendix 5.8.7.

Lemma 8. Given that µk(t, x) = l, then t can be expressed as a continuous function

of t = ψk(x) where (a) ψk is convex and decreasing in x, and (b) ψk(|B|) < ψk′(|B|)

for |hk|2 > |hk′|2.

Theorem 6. Suppose transmitters are sorted according to their channel strength in

ascending order, i.e., |hi|2 ≤ |hj|2 for i < j. Let

G(k) = kτ +
K∑

i=k+1

ψi(k) (5.27)

be the value of the objective function in (5.23) with the groups assigned as B =

{1, · · · , k} and H = {k + 1, · · · , K}. Then, G(k + 1)−G(k) > G(k)−G(k − 1) for

k ∈ {2, · · · , K − 1}.

Proof. Applying Lemma 8 and following the proof of Theorem 4 in Appendix 5.8.3,

Theorem 6 can be proved.

Therefore, we can adopt the bisection-based Alg. 5.1 to solve the problem P5.2’.

Simply replace all F (·) in Alg. 5.1 with G(·) in (5.27) and change the condition of
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Step 1 to “If (5.25) is not satisfied for k = c and |B| = c−1”. Here we also just need to

check the feasibility in (5.25) for G(c−1) since µk′(tc, k
′−1) > µc(tc, c−1) for k′ > c,

and G(c) and G(c+1) are feasible if G(c−1) is feasible. The modified algorithm finds

the optimal transmitter assignment and transmitter power consumption in O(log2K)

time complexity.

5.5 Extensions to Massive MIMO

5.5.1 Massive MIMO System Model and Problem Formula-

tion for Ideal Case

In this section we study the transmission scheduling problem under the massive

MIMO setting. We first consider the ideal case. Assume that the reader is equipped

with M(� K) antennas. The channel vector has the form hk =
√
δkh̃k ∈ CM ,

and h̃k = [hk,1, · · · , hk,M ] is the channel vector between the k-th transmitter and the

reader containing i.i.d. complex Gaussian fading coefficients with zero mean and unit

variance.

We employ the low-complexity matched-filtering (MF) beamformer for both down-

link power transfer and uplink information receiving, since it is shown to be an asymp-

totically optimal beamformer for both tasks in massive MIMO systems [56, 57, 109].

The MF beamformer of the k-th transmitter is given by wk = h̃k/‖h̃k‖. The reader

has transmit power P/M where P is constant, and it allocates βk portion of power for

each beamformer, where
∑K

k=1 βk = 1. In the massive MIMO regime, it is known that

the channels are asymptotically orthogonal, i.e., h̃Hk h̃k/M → 1 and h̃Hi h̃j/M → 0

(i 6= j) for large M [56, 109]. Hence, the massive MIMO counterpart of the received

power (5.2) is given by

pk =
P

M
βk(h

H
k

K∑
i=1

wi)
2 =

P

M
βk‖hk‖2 = Pβkδk, (5.28)
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and the total power consumption is

qk = ηpk|B|τ/tk = ηPβkδk|B|τ/tk. (5.29)

In the BS phase, the reader should allocate sufficient power to the BS transmit-

ters, i.e., pk ≥ PB. On the other hand, taking advantage of the channel orthogo-

nality of massive MIMO, in the HTT phase the H transmitters can simultaneously

transmit information to the reader without interfering with each other. Redefine

A = ητPM/(WN0) and given ρk = qk for ideal transmitters, the transmission rate

function of the massive MIMO system is given by

rk = W log(1 +
ρk‖hk‖2

WN0

) = W log(1 +
Aδ2

kβk|B|
tk

). (5.30)

Due to simultaneous transmissions, the total transmission time of the HTT phase

becomes maxk∈H tk. Define

f̃k(tk, βk) = tkrk = Wtk log(1 +
Aδ2

kβk|B|
tk

), (5.31)

and using the same analysis techniques as in Proposition 1, we have the following

proposition.

Proposition 3. f̃k(tk, βk) is monotonically increasing in tk and βk, and it converges

to AWδ2
kβk|B|, for tk > 0.

Hence, the problem formulation for massive MIMO reader under the ideal case is:

P5.3 : min
B⊂{1,··· ,K},{β1,··· ,βK}

|B|τ + max
k∈H

tk (5.32)

s.t. f̃k(tk, βk) = l, k ∈ H, (5.33)

AWδ2
kβk|B| > l, k ∈ H,

Pβkδk ≥ PB, k ∈ B,
K∑
i=1

βi = 1, H = {1, · · · , K}\B.

Due to the min-max formulation and the additional variables βk, problem P5.3 is very

different from P5.1 of the single antenna case, and the bisection based method does



CHAPTER 5. TIME SCHEDULING IN WIRELESS POWERED
BACKSCATTER COMMUNICATION NETWORKS 129

not work since some properties no longer hold anymore, e.g., Theorem 4. Nevertheless,

in the next subsection, we show that P5.3 can be solved optimally with linear time

complexity.

5.5.2 Optimal Solution for Ideal Case

First of all, it can be observed that the optimal power allocation for transmitter

k ∈ B should be exactly β∗k = PB/(Pδk). This is because higher βk will reduce

the power allocation and harvested energy for H transmitters, which leads to longer

transmission time; while lower βk will result in insufficient power for backscattering

transmission. Thus, all transmitters in the H group will share the remaining βH =

1 −
∑

i∈B βi = 1 −
∑

i∈B PB/(Pδi) portion of power. In the following theorem, we

show that the optimal power allocation can be found analytically for H. The proof

is given in Appendix 5.8.8.

Theorem 7. The optimal solution to P5.3 satisfies,

tk = t, β∗k = βH/
(∑
i∈H

δ2
k

δ2
i

)
, k ∈ H, (5.34)

for some constant t.

Substituting (5.34) into problem P5.3, the constraint (5.33) becomes independent

of k and P5.3 is simplified to:

P5.3′ : min
B⊂{1,··· ,K}

|B|τ + t (5.35)

s.t. Wt log(1 +
A(1−

∑
i∈B PB/(Pδi))|B|(∑
i∈H 1/δ2

i

)
t

) = l, (5.36)

AW (1−
∑
i∈B

PB
Pδi

)|B|/
(∑
i∈H

1

δ2
i

)
> l, (5.37)

H = {1, · · · , K}\B.

Similar as in problem P5.1, the LHS of (5.36) is monotonically increasing in t, and

therefore t can be solved numerically using e.g. the bisection method. The difference
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is that here t = maxk∈Htk only needs to be evaluated once for given B, while in P5.1

we need to evaluate tk for all k ∈ H. Problem P5.3’ is again a combinatorial problem

and the size of the search space is O(2K). We make the following assumption on

problem P5.3’.

Assumption 2. We assume that the reader transmit power P/M is sufficient to

enable all transmitters operating in the BS mode, i.e., P ≥
∑K

i=1 PB/δi.

Here since β∗k = PB/(Pδk) for k ∈ B, and
∑K

i=1 βk ≤ 1, which results in P ≥∑K
i=1 PB/δi. Assumption 2 guarantees that B can take any subset of {1, · · · , K}

including the entire set itself. Unlike the case of Assumption 1 for P5.1, if Assump-

tion 2 does not hold, then P5.3 cannot be reduced to an equivalent problem with

Assumption 2 satisfied since the power allocation on the reader makes the problem

much more complicated. However Assumption 2 is a weak assumption, and when it

holds we can show the following theorem. The proof is given in Appendix 5.8.9.

Theorem 8. Under the optimal solution to problem P5.3’, δj ≥ δi should hold for

j ∈ H, i ∈ B.

Theorem 8 guarantees that the H transmitters must have greater δk values than

the B transmitters. Thus we propose Alg. 5.2 to solve P5.3’. Alg. 5.2 first sorts

all transmitters according to δk. At iteration i the groups are set as shown in Step

1, and the algorithm checks the feasibility constraint in (5.37) based on β given in

Step 1. It then evaluates and stores the total transmission time based on the group

assignment. The minimum transmission time and optimal grouping can be found from

these evaluations. Alg. 5.2 has linear time complexity O(K) which is significantly

improved from the exhaustive search.

5.5.3 Massive MIMO with Realistic Transmitters

Now we study the system with massive MIMO reader and realistic transmitters,

where the power consumption model in (5.4) is considered for the HTT transmit-
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Algorithm 5.2 - Algorithm for Solving P5.3 (and P5.4)

Input: {δ1, · · · , δK} ;

Initialization: Sort the transmitters by δ1 ≤ · · · ≤ δK ; ttotal = [0, · · · , 0];

For i = 1 to K − 1 Do:

1: Let B = {1, · · · , i} and H = {i+ 1, · · · , K};

2: If (5.37) is satisfied (or (5.42) for P5.4):

3: Calculate ttotal[i] = i× τ + t where t satisfies (5.36) (or (5.48) for P5.4);

End

3: find tmin = min(ttotal) and i∗ = argmin(ttotal);

Output: B = {1, · · · , i∗},H = {i∗ + 1, · · · , K}, minimum time tmin,

β∗k given by (5.34) (or (5.45) for P5.4) for k ∈ H, and β∗k = PB/(Pδk) for k ∈ B.

ters. Redefine Ak =
ητPMδ2

k

WN0
, Ck = aδkM

WN0
, Dk = vkδkM

WN0
. Based on (5.28) and (5.4),

the available power for active transmission is ρk = (Pητδkβk|B| − arktk − vktk) =

WN0(Akβk|B| − Ckrktk −Dktk), and rk should satisfy the following equation

rk = W log(1 +
Akβk|B|

tk
− Ckrk −Dk). (5.38)

Define g̃k(tk) = tkrk. We have the following result. The proof is similar to that of

Prop. 2 and thus omitted.

Proposition 4. g̃k(tk) is concave in tk for tk > 0, and it has a unique maximizer

t∗k > 0 which satisfies

1

CkW
− Ũk(t∗k) +

Ũk(t
∗
k)

1 + Ũk(t∗k)

Akβk|B|
CkWt∗k

− CkDk = 0, (5.39)

where Ũk(tk) = W0[ 1
CkW

exp{ 1
CkW

(1 + Akβk|B|
tk
−Dk)}].
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Hence the problem formulation under the realistic case is given by

P5.4 : min
B⊂{1,··· ,K},{β1,··· ,βK}

|B|τ + max
k∈H

tk (5.40)

s.t. g̃k(tk) = l, k ∈ H, (5.41)

g̃k(t
∗
k) > l, tk < t∗k, k ∈ H, (5.42)

Pβkδk ≥ PB, k ∈ B,
K∑
i=1

βi = 1, H = {1, · · · , K}\B.

Same as the ideal case in Section 5.5.2, the optimal power allocation for BS trans-

mitters is given by βk = PB/(Pδk), and the H transmitters will share the rest

βH = 1 −
∑

i∈B PB/(Pδi) portion of power. In the next theorem we present the re-

sult on optimal power allocation for H transmitters. The proof is given in Appendix

5.8.10.

Theorem 9. To minimize the maximum transmission time for given H transmitters,

all transmitters should have the same transmission time t. The optimal transmission

rate of all H transmitters is given by

r∗(t) = W (−Ω

Θ
−W0[

Φ

Θ
exp{−Ω

Θ
}]), (5.43)

where

Ω =
∑
k∈H

Dk − 1

Ak|B|
− βH

t
, Θ = W

∑
k∈H

Ck
Ak|B|

, Φ =
∑
k∈H

1

Ak|B|
. (5.44)

The optimal power allocation is given by

β∗k(t) =
t(Ckr

∗(t) +Dk + e
r∗(t)
W − 1)

Ak|B|
. (5.45)

Based on Theorem 9, P5.4 can be simplified. Define ĝ(t) = tr∗(t), and simi-

lar to Prop. 2 and Prop. 4, it can be shown that ĝk(t) has unique maximizer t∗

which satisfies r∗(t∗)− t∗W 1−βH
Θ(t∗)2 (1 +W0[ Φ

Θ
exp{−Ω

Θ
}])−1 = 0. Therefore the problem
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becomes

P5.4′ : min
B⊂{1,··· ,K}

|B|τ + t (5.46)

s.t. ĝ(t) = l, (5.47)

ĝ(t∗) > l, t < t∗, (5.48)

H = {1, · · · , K}\B.

In P5.4’ t is the root of (5.47) and can be solved numerically. Due to the complexity

of ĝ(t), it is hard to analyze it or verify if Theorem 8 still holds for the realistic case.

Nevertheless, we can employ the linear search based Alg. 5.2 to solve P5.4’. This is

because P5.4’ has very similar formulation as P5.3’, and the main difference is just

the constraint on t. The only change that needs to make is to modify Step 2 where t

now satisfies (5.47), and the algorithm solves P5.4’ in linear time.

5.6 Simulation Results

5.6.1 Results for Single Antenna Reader

The simulation setup is given as the following. The default number of transmitters

is K = 30, and their distances to the reader dk are uniformly distributed between

10 to 15 meters. The transmitters operate in the UHF band with carrier frequency

fC = 915 MHz, and the system bandwidth is W = 10 kHz for HTT transmission.

The path loss is given by δk = ( λ
4πdk

)2, where λ = c/fC . The input power is PC = 5

W and the energy conversion efficiency is η = 0.2. The default data packet size is

20 kb, and the backscattering transmission rate is rB = 80 kbps, which results in the

length of time slot to be τ = 0.25 s. The tag sensitivity is set as PB = 1 × 10−7 W.

For the realistic transmitter case, the power consumption coefficients are a = 1×10−9

W/bit and vk = 1 × 10−5 mW. All the results are averaged over 100 realizations of

transmitter location distribution.
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Figure 5.3: Illustration of Theorem 4 and 6.

We first illustrate Theorems 4 and 6 via simulations. In Fig. 5.3, we plot F (k)−

F (k − 1) for the ideal case and G(k) − G(k − 1) for the realistic case for a specific

realization, where F (k) and G(k) are defined in (5.17) and (5.27) respectively. It

can be seen that both curves increase as k increases, as stated by Theorems 4 and

6. In this example, the optimal k for the ideal case is 4 since F (4) − F (3) < 0 and

F (5) − F (4) > 0, i.e., transmitters 1 to 4 are in the BS group while the remaining

transmitters are in the HTT group. On the other hand, the optimal k for the realistic

case is 20, and for smaller k the corresponding problem P5.2 is infeasible.

In Fig. 5.4 we plot the total transmission time against the input power, and

two values of τ are compared as well. It can be observed that in all cases the total

transmission time decreases as the input power increases. This is because higher

input power enables higher power transfer and energy harvesting, which then lead to

higher transmission rate and shorter time for the HTT transmission. Moreover, the

gaps between ideal cases and realistic cases become smaller as PC increases. This is

because when the input power is low, higher portion of the harvested energy is spent

on rate dependent and other fixed power consumptions, and the power available for

active transmission is low. Hence the gap is large for low input power. As PC becomes
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Figure 5.4: Total transmission time versus input power.
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Figure 5.5: Number of BS transmitters versus input power.

higher, the portion of power for active transmission increases, hence the difference

between the realistic case and ideal case becomes smaller. On the other hand, the

transmission time for τ = 0.4 is longer than that for τ = 0.25 as expected, since

when τ = 0.4 the transmitters have larger packages to transmit, hence it takes longer

time. It can be observed that the total transmission time for τ = 0.4 is about 1.6

times longer than that for τ = 0.25, which is the ratio of the corresponding τ ’s as

0.4/0.25 = 1.6. From another point of view, we plot the number of BS transmitters |B|
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Figure 5.6: System performance versus number of transmitters.

versus the input power in Fig. 5.5. It shows that |B| is almost the same for τ = 0.4 and

τ = 0.25 for both ideal and realistic cases. This result illustrates that B is insensitive

to the size of the transmission packages, and explains why the total transmission

time is proportional to τ . On the other hand, |B| decreases as PC increases. This is

because when the input power becomes large, the HTT transmitters can harvest “too

much” energy for the same B, and the system performance can be improved if we

move some transmitters from the BS group to the HTT group, since these switched

transmitters now take shorter transmission time than τ while the transmission times

of the other HTT transmitters remain the same.

In Fig. 5.6, we evaluate the average transmission time per transmitter, which is

defined as the total transmission time divided by K, versus number of transmitters.

It can be observed that the average transmission time per transmitter decreases as

K increases. This is because the ratio of the BS transmitter |B|/K decreases when

K becomes large, which can also be observed in Fig. 5.6. Due to Lemma 4, the

HTT transmitters always have shorter transmission time, hence lower ratio results

in lower average transmission time. Therefore in practice, the system shows better

performance per transmitter whenK is large, where the HTT phase takes the majority
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Figure 5.7: Total transmission time versus input power for massive MIMO reader.

of the time, while the BS mode is dominant when K is small.

5.6.2 Results for Massive MIMO Reader

In the massive MIMO setting, the backscatter transmission rate is 100 kbps, and the

package size is 25 kb. The system bandwidth is 2 kHz. For realistic transmitters,

we have a = 2 × 10−10. The number of antennas is M = 200. All the remaining

parameters are the same as those in Section 5.6.1.

We first show the result on the total transmission time versus the input power in

Fig. 5.7. In this simulation, the number of transmitters is K = 8. Similar to the

single antenna case, we also observe that for both ideal and realistic transmitters,

the total transmission time decreases as P increases. The difference of both cases

decreases as P increases, since when P is large higher portion of its harvested power

can be utilized for transmission, resulting in performance that is closer to that of the

ideal transmitter. To check the optimality of the Alg. 5.2 for realistic transmitters,

we also find the optimal transmission time using the exhaustive search. It can be

seen that the result of the proposed algorithm overlaps with that found by exhaustive

search, indicating that Alg. 5.2 is a near-optimal algorithm to solve P5.4.



CHAPTER 5. TIME SCHEDULING IN WIRELESS POWERED
BACKSCATTER COMMUNICATION NETWORKS 138

10 15 20 25 30
Number of Transmitter K

1

2

3

4

5

6

T
ot

al
 T

ra
ns

m
is

si
on

 T
im

e

Ideal, Proposed Alg
Realistic, Proposed Alg

Figure 5.8: Total transmission time versus number of transmitters for massive MIMO

reader.

We then show the total transmission time versus number of transmitters in Fig.

5.8. In this simulation the input power is P = 10 W. It can be seen that the trans-

mission time increases almost linearly as K increases. However, the average transmis-

sion time per transmitter decreases as K increases, especially for ideal transmitters.

Specifically, when K = 10 the average transmission time is 0.097 and 0.239 second

for the ideal and realistic cases respectively. They decease to 0.034 and 0.19 second

when K = 30. Hence, for the system with massive MIMO reader increasing K can

also improve the per-transmitter efficiency.

5.7 Conclusions

This paper studied the transmission time minimization problem for systems with

hybrid backscatter-HTT transmitters. The transmitters in this network can operate

in either the backscatter mode or the harvest-then-transmit (HTT) mode. Both ideal

and realistic transmitter power consumption models are considered. We proved that,

under both models, the optimal transmission time of each HTT transmitter can be
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calculated, and it is convex and decreasing in the number of backscatter transmitters.

We then proved that the difference in the objective function is increasing. Based on

these results, we proposed a bisection based algorithm to find the optimal transmitter

grouping and total transmission time. Finally we extended the results to the case of

massive MIMO reader.

5.8 Appendices

5.8.1 Proof of Proposition 1

We have the first- and second-order derivatives of fk(tk) in (5.12) as f ′k(tk) = W (log(1+

Ak|B|
tk

) − Ak|B|
tk+AkW |B|

), and f ′′k (tk) = W ( Ak|B|
(tk+Ak|B|)2 − Ak|B|

tk(tk+Ak|B|)
). It can be easily seen

that f ′′k (tk) < 0 for tk > 0 with given Ak > 0, hence f ′k(tk) is monotonically decreasing

for tk > 0. Also by L’Hopital’s rule, lim
tk→+∞

log(1+
Ak|B|
tk

))

Ak|B|
tk+Ak|B|

= lim
tk→+∞

(
Ak|B|/(Ak|B|tk+t2k)

Ak|B|/(tk+Ak|B|)2 =

tk+Ak|B|
tk

) > 1. Thus, lim
tk→+∞

f ′k(tk) > 0, and we have f ′k(tk) > 0 for tk > 0, which

means that fk(tk) is monotonically increasing.

On the other hand, lim
tk→0

fk(tk) = lim
tk→0

W log(1+Ak|B|/tk)
1/tk

= lim
tk→0

W Ak|B|tk
tk+Ak|B|

, thus

lim
tk→0

fk(tk) = 0. Similarly lim
tk→+∞

fk(tk) = lim
tk→+∞

W log(1+Ak|B|/tk)
1/tk

= AkW |B| by L’Hopital’s

rule. Hence fk(tk) increases from 0 and converges to AkW |B|.

5.8.2 Proof of Lemma 6

Given %k(t, x) = l, we can express x in terms of t as

x = ϕk(t) =
(el/(tW ) − 1)t

Ak
. (5.49)

Taking the first- and second-order derivatives of ϕk(t) and after some manipulations,

we have

ϕ′k(t) =
1

Ak
(el/(tW )(1− l

tW
)− 1), (5.50)

ϕ′′k(t) =
l2

Akt3W 2
el/(tW ). (5.51)
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It can be seen that ϕ′′k(t) > 0, hence φk(t) is convex and ϕ′k(t) is monotonically increas-

ing. We can further show that lim
t→+∞

ϕ′k(t) = lim
t→+∞

1
Ak

(− l
tW
el/(tW )) = lim

t→+∞
− 1
Ak
el/(tW ) =

− 1
Ak

by L’Hopital’s rule. Hence, ϕ′k(t) < 0 for all t and ϕk(t) is monotonically

decreasing. Using this result, it can further be shown that its inverse function,

φk(x) = ϕ−1
k (x) = t, has φ′k(ϕk(t)) = 1/ϕ′k(t) < 0 and φ′′k(t) = −ϕ′′k(t)/(ϕ′k(t))3 > 0.

Hence φk is convex and decreasing in x.

On the other hand, in the proof of Lemma 5 we have shown that, for |hk|2 >

|hk′|2, tk < tk′ where fk(tk) = fk′(tk′) = l. Since fk(tk) = %k(tk, |B|), it follows that

φk(|B|) = tk < tk′ = φk′(|B|).

5.8.3 Proof of Theorem 4

By Lemma 6, we can express the objective function in (5.14) as a function of k, the

number of transmitters in B, as shown (5.17). Then, we have

F (k + 1)− F (k) = (k + 1)τ +
K∑

i=k+2

φi(k + 1)− kτ −
K∑

i=k+1

φi(k)

= τ − φk+1(k) +
K∑

i=k+2

(φi(k + 1)− φi(k)), (5.52)

F (k)− F (k − 1) = kτ +
K∑

i=k+1

φi(k)− (k − 1)τ −
K∑
i=k

φi(k − 1)

= τ − φk(k − 1) + φk+1(k)− φk+1(k − 1) +
K∑

i=k+2

(φi(k)− φi(k − 1)), (5.53)

and we want to show that the difference of the RHS of (5.53) and (5.52) is greater

than 0. By Lemma 6, φi(x) is convex in x, hence 1
2
(φi(k + 1) + φi(k − 1)) ≥ φi(k),

i.e., φi(k + 1)− φi(k) ≥ φi(k)− φi(k − 1), and thus

K∑
i=k+2

(φi(k + 1)− φi(k)) ≥
K∑

i=k+2

(φi(k)− φi(k − 1)). (5.54)
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On the other hand,

τ−φk+1(k)−(τ−φk(k−1)+φk+1(k)−φk+1(k−1)) = φk(k−1)−φk+1(k)−(φk+1(k)−φk+1(k−1)).

(5.55)

By Lemma 6, φi(x) is monotonically decreasing, and φk+1(k)−φk+1(k− 1) < 0. Also

by Lemma 6, given |hk+1|2 > |hk|2, we have φk(k−1) ≥ φk+1(k−1) ≥ φk+1(k). These

lead to the conclusion that (5.55) is always negative. Hence, substituting this result

and (5.54) into (5.52) and (5.53), yields F (k + 1) − F (k) > F (k) − F (k − 1). This

completes the proof.

5.8.4 Proof of Theorem 5

Transforming (5.9) into

rk =
αk(qk − vk)

a
, (5.56)

and equating the RHS of (5.56) and (5.6), we have

W log(1 +
(1− αk)(Ak|B| −Dktk)

tk
) =

αk(Ak|B| −Dktk)WCk
tk

.

After some manipulations, we have

Ck(1 +
(1− αk)(Ak|B| −Dktk)

tk
) exp{Ck(1 +

(1− αk)(Ak|B| −Dktk)

tk
)}

= Ck exp{Ck(1 +
Ak|B|
tk
−Dk)}. (5.57)

According to the definition of the Lambert function, we have

W0[Ck exp{Ck(1 +
Ak|B|
tk

)−Dk}] = Ck(1 +
(1− αk)(Ak|B| −Dktk)

tk
). (5.58)

Solving (5.58) for αk yields (5.18). Substituting (5.18) into (5.6) gives

rk = W log
( 1

Ck
W0[Ck exp{Ck(1 +

Ak|B|
tk
−Dk)}]

)
. (5.59)
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Using the property that log(W0(x)) = log(x)−W0(x), (5.59) can be rewritten as

rk = W
(

log(1/Ck) + log(Ck) + Ck(1 +
Ak|B|
tk
−Dk)−

W0[Ck exp{Ck(1 +
Ak|B|
tk
−Dk)}]

)
= W

(
Ck(1 +

Ak|B|
tk
−Dk)−W0[Ck exp{Ck(1 +

Ak|B|
tk
−Dk)}]

)
,

which is (5.19).

5.8.5 Proof of Proposition 2

Using (5.20) and (5.21), and the derivative expression of the Lambert functionW ′
0(x) =

W0(x)
x(1+W0(x))

[110], we can write the first- and second-order derivatives of gk(tk) as

g′k(tk) = W (Ck − CkDk − Uk(tk) +
Uk(tk)

1 + Uk(tk)

AkCk|B|
tk

), (5.60)

g′′k(tk) = W (
Uk(tk)

1 + Uk(tk)

AkCk|B|
t2k

− Uk(tk)

1 + Uk(tk)

AkCk|B|
t2k

− Uk(tk)

(1 + Uk(tk))3

A2
kC

2
k |B|2

t3k
),

= −A
2
kC

2
k |B|W
t3k

Uk(tk)

(1 + Uk(tk))3
.

Since Uk(tk) > 0, g′′k(tk) < 0 for tk > 0, and hence gk(tk) is concave in tk for tk > 0.

The function gk(tk) is maximized when its first order derivative is 0. To show that

g′k(tk) = 0 exists for tk > 0, we will show that lim
tk→0

g′k(tk) > 0 and lim
tk→∞

g′k(tk) < 0.

Since lim
tk→0

Ak|B|
tk
−Dk →∞ by (5.20), lim

tk→0
Uk(tk)→∞, thus lim

tk→0
Uk(tk)/(1+Uk(tk))→

1. Also because W0(x) is monotonically increasing, lim
tk→0

Uk(tk) < lim
tk→0

W0[(Ck(1 +

Ak|B|
tk
−Dk)) exp{Ck(1 + Ak|B|

tk
−Dk)}]. Then we have

lim
tk→0

g′k(tk) = lim
tk→0

W (Ck +
AkCk|B|

tk
− CkDk − Uk(tk))

> lim
tk→0

W (Ck +
AkCk|B|

tk
− CkDk −W0[(Ck(1 +

Ak|B|
tk
−Dk))×

exp{Ck(1 +
Ak|B|
tk
−Dk)}])

= lim
tk→0

W (Ck +
AkCk|B|

tk
− CkDk − Ck(1 +

Ak|B|
tk
−Dk)) (5.61)

= 0,
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where (5.61) is due to the identity W0(xex) = x for x > 0. On the other hand,

lim
tk→∞

Ak|B|
tk
− Dk < 0 and lim

tk→∞
Uk(tk) > lim

tk→0
W0[(Ck(1 + Ak|B|

tk
− Dk)) exp{Ck(1 +

Ak|B|
tk
−Dk)}]. Also, since Uk(tk)/(1 + Uk(tk)) < 1, we have

lim
tk→∞

g′k(tk) < lim
tk→∞

W (Ck +
AkCk|B|

tk
− CkDk − Uk(tk))

< lim
tk→∞

W (Ck +
AkCk|B|

tk
− CkDk −W0[Ck(1 +

Ak|B|
tk
−Dk)×

exp{Ck(1 +
Ak|B|
tk
−Dk)}])

= 0.

Therefore g′k(tk) = 0 exists for tk > 0 and this completes the proof.

5.8.6 Proof of Lemma 7

We write r∗k in (5.19) as a function of |hk|2, i.e.,

r∗k(|hk|2) = W (
C̃

|hk|2
+ Ãk|hk|2 − D̃k − Ũk(|hk|2))

where Ãk = ητPC |B|
atkW

, C̃ = N0/a, D̃k = vk
aW

, and Ũk(|hk|2) = W0[ C̃
|hk|2

exp{ C̃
|hk|2

+

Ãk|hk|2 − D̃k}]. Take the derivative of r∗k we have

r∗k
′(|hk|2) = W (− C̃

|hk|4
+ Ãk −

Ũk(|hk|2)

1 + Ũk(|hk|2)
(− 1

|hk|2
− C̃

|hk|4
+ Ãk))

=
W

|hk|2(1 + Ũk(|hk|2))
(Ũk(|hk|2)− C̃

|hk|2
+ Ãk|hk|2). (5.62)

Since qk = Ãk|hk|2aW > vk = D̃kaW in (5.24), we have Ãk|hk|2 − D̃k > 0, and hence

Ũk(|hk|2) = W0[
C̃

|hk|2
exp{ C̃

|hk|2
} exp{Ãk|hk|2 − D̃k}]

> W0[
C̃

|hk|2
exp{ C̃

|hk|2
}}] (5.63)

=
C̃

|hk|2
, (5.64)
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where (5.63) holds because exp{Ãk|hk|2 − D̃k} > 1 and W0(x) is monotonically in-

creasing. Substitute (5.64) into (5.62) and we have r∗′(|hk|2) > WÃk|hk|2
|hk|2(1+Ũk(|hk|2))

> 0.

Therefore r∗k is monotonically increasing in |hk|2.

Apply this result and follow the proof of Lemma 5, it can be shown that ti ≤ tj for

|hi|2 ≥ |hj|2, and under the optimal solution of problem P5.2’ we have |hi|2 ≥ |hj|2

with i ∈ H, j ∈ B.

5.8.7 Proof of Lemma 8

The implicit function theorem [111] states that for (t, x) that satisfies κk(t, x) = l and

if ∂µ(t, x)/∂t 6= 0, then t can be expressed as a continuous function of x. In problem

P5.2’, we have ∂µk(t, x)/∂t = Ck − Vk(t, x) + Vk(t,x)
1+Vk(t,x)

AkCkx
t
− CkDk, and t should

satisfy ∂µk(t, x)/∂t > 0 according to (5.25). Then by the implicit function theorem,

t can be expressed as a continuous function of x, ψk(x). Intuitively the result in this

case can be understood as the following. Function µk(t, x) is monotonically increasing

in t, and it is not hard to verify that µk(t, x) is increasing in x as well. Thus there is

a one-to-one mapping between t and x, and t can be considered as a function of x. In

fact the proof of Lemma 6 can be regarded as a special case of the implicit function

theorem, where we are able to find the analytic expression of t in terms of x due to

the simple functional form of the ideal model.

Now we replace t with ψk(x) in µk(t, x) and find its first order implicit derivative by

taking derivative w.r.t. x on both sides of µk(ψk(x), x) = l. After some manipulations,

we have

0 =
∂ψk(x)

∂x

(
Ck − CkDk − Vk(ψk(x), x) +

Vk(ψk(x), x)

(1 + Vk(ψk(x), x))

AkCkx

ψk(x)

)
+

AkCk(1−
Vk(ψk(x), x)

(1 + Vk(ψk(x), x))
). (5.65)
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Solving for ∂ψk(x)/∂x yields

∂ψk(x)

∂x
=

−AkCk
(1 + Vk(ψk(x), x))(Ck − CkDk − Vk(ψk(x), x) + Vk(ψk(x),x)

(1+Vk(ψk(x),x))
AkCkx
ψk(x)

)
< 0,

(5.66)

since the denominator is always positive by (5.25). Hence ψk(x) is monotonically

decreasing. Similarly taking the second-order implicit derivative and after some ma-

nipulations, we have

(
AkCk
ψk(x)

− AkCkx

(ψk(x))2

∂ψk(x)

∂x
)
( Vk(ψk(x), x)AkCk

(1 + Vk(ψk(x), x))3
(

x

ψk(x)

∂ψk(x)

∂x
− 1)

)
= −∂

2ψk(x)

∂x2
(Ck − CkDk − Vk(ψk(x), x) +

Vk(ψk(x), x)

(1 + Vk(ψk(x), x))

AkCkx

ψk(x)
).

Solving for ∂2ψk(x)/∂x2 yields

∂2ψk(x)

∂x2
=

Vk(ψk(x), x)A2
kC

2
kψk(x)( 1

ψk(x)
− x

ψk(x)2

∂ψk(x)
∂x

)2

(1 + Vk(ψk(x), x))3(Ck − CkDk − Vk(ψk(x), x) + Vk(ψk(x),x)
(1+Vk(ψk(x),x))

AkCkx
ψk(x)

)
> 0.

(5.67)

Hence ψk(x) is convex.

On the other hand, by Lemma 7 we can show that, for |hk|2 > |hk′ |2, tk < tk′

where gk(tk) = gk′(tk′) = l. Since gk(tk) = µk(tk, |B|), it follows that ψk(|B|) = tk <

tk′ = ψk′(|B|).

5.8.8 Proof of Theorem 7

For given H, to minimize the maximum transmission time for the H transmitters, the

transmission time of all transmitters should be the same, i.e., ti(βi) = t,∀i ∈ H. This

can be proved by contradiction. Suppose there is an optimal solution {β̃k : k ∈ H}

such that ti < tj, i 6= j, where f̃i(ti, β̃i) = f̃j(tj, β̃j) = l. By Prop. 3 f̃k(tk, βk)

increases in βk for given tk, then for ∆ > 0 we have f̃i(ti, β̃i − ∆) < l. Also since

f̃k(tk, βk) increases in tk for given βk, there exists εi > 0 such that f̃i(ti, β̃i − ∆) <

f̃i(ti + εi, β̃i − ∆) = l, as long as f̃i is feasible for β̃i − ∆, i.e., AW (β̃i − ∆)|B| > l.

Similarly, we also have f̃j(tj, β̃j + ∆) > f̃j(tj − εj, β̃j + ∆) = l for a εj > 0, and it
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leads to

f̃i(ti, β̃i −∆) < f̃i(ti + εi, β̃i −∆) = l = f̃j(tj − εj, β̃j + ∆) < f̃j(tj, β̃j + ∆).

Therefore, the new power allocation β∗i = β̃i−∆ and β∗j = β̃j+∆ will result in a lower

maximum transmission time as tj − εj, which contradicts with the assumption that

{β̃i, β̃j} are optimal power allocation coefficients. Hence, the optimal transmission

time of all transmitters should be the same.

Then, it can be seen that to achieve the same tk for all k ∈ H, all HTT transmitters

should receive the same amount of power, i.e., AWδ2
i βi|B| = AWδ2

jβj|B|, i 6= j.

Hence, by solving the linear system

δ2
kβk = δ2

i βi, i, k ∈ H∑
i∈H

βi = βH ,

it can be shown that βi = δ2
kβk/δ

2
i , and it further leads to the optimal power allocation

in (5.34).

5.8.9 Proof of Theorem 8

Let j be the transmitter with the lowest channel gain in the HTT group, i.e., δj ≤

δj′ , j, j
′ ∈ H. We show that if there is i ∈ B such that δi > δj, then switching the

groups of i and j will result in a shorter transmission time. Using (5.35) and (5.36),

the total transmission time before switching their groups is given by |B|τ + t1 where

t1 satisfies Wt1 log(1 + Aβ1|B|
t1

) = l and

β1 =
1−

∑
k∈B PB/(Eδk)∑
k∈H 1/δ2

k

=
Λ− PB/(Eδi)

Υ + 1/δ2
j

, (5.68)

where Λ = 1 −
∑

k∈B,k 6=i PB/(Eδk) and Υ =
∑

k∈H,k 6=j 1/δ2
k. After switching their

groups, the total transmission time is |B|τ+t2 where t2 satisfies Wt2 log(1+Aβ2|B|
t2

) = l

and

β2 =
Λ− PB/(Eδj)

Υ + 1/δ2
i

. (5.69)
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After switching, the time difference is t2 − t1. By Prop. 3, f̃k(tk, βk) increases in tk

and β, hence it can be shown that tk decreases as βk increases when (tk, βk) satisfy

f̃k(tk, βk) = l. Since f̃k(tk, βk) and t log(1 + Aβ|B|
t

) has almost the same functional

form, they have the same properties as well. Hence t decreases as β increases when

(t, β) satisfies t log(1 + Aβ|B|
t

) = l. Thus, here to show t2 < t1 we just need to prove

β2 > β1.

β2 − β1 =
Λ− PB/(Eδj)

Υ + 1/δ2
i

− Λ− PB/(Eδi)
Υ + 1/δ2

j

(5.70)

=
δ2
i (Λ− PB

Eδj
)

δ2
i Υ + 1

−
δ2
j (Λ− PB

Eδi
)

δ2
jΥ + 1

(5.71)

=
Λ(δ2

i − δ2
j )− PB

E
Υδiδj(δi − δj)− PB

E
(
δ2
i

δj
− δ2

j

δi
)

(δ2
i Υ + 1)(δ2

jΥ + 1)
(5.72)

=
ΛEδiδj(δi + δj)− PBΥδ2

i δ
2
j − PB(δ2

i + δiδj + δ2
j )

Eδiδj(δi − δj)(δ2
i Υ + 1)(δ2

jΥ + 1)
. (5.73)

Since δi > δj, we simply need to show that the numerator in (5.73) is greater than 0,

i.e.,

δiδj(δi + δj)(E − PB
∑

k∈B,k 6=i

1

δk
)− PB

∑
k∈H,k 6=j

δ2
i δ

2
j

δ2
k

− PB(δ2
i + δiδj + δ2

j ) > 0. (5.74)

Because δj ≤ δk for k ∈ H, δiδj < δiδk < δjδk + δiδk, and we have
δ2
i δ

2
j

δ2
k
<

δiδj(δi+δj)δk
δ2
k

=

δiδj(δi+δj)

δk
. Also PB(δ2

i + δiδj + δ2
j ) < PB(δ2

i + 2δiδj + δ2
j ) = PB( 1

δi
+ 1

δj
)δiδj(δi + δj).

Hence,

δiδj(δi + δj)(E − PB
∑

k∈B,k 6=i

1

δk
)− PB

∑
k∈H,k 6=j

δ2
i δ

2
j

δ2
k

− PB(δ2
i + δiδj + δ2

j )

> δiδj(δi + δj)(E − PB
∑

k∈B,k 6=i

1

δk
)− PB

∑
k∈H,k 6=j

δiδj(δi + δj)

δk
− PB(

1

δi
+

1

δj
)δiδj(δi + δj)

= δiδj(δi + δj)
(
E − PB(

∑
k∈B,k 6=i

1

δk
+

∑
k∈H,k 6=j

1

δk
+

1

δi
+

1

δj
)
)

(5.75)

= δiδj(δi + δj)
(
E − PB(

K∑
k=1

1

δk
)
)
, (5.76)
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and due to Assumption 2, E ≥
∑K

k=1
PB
δk

, and (5.76) is non-negative. Hence (5.74)

holds, and β2 − β1 > 0, which means that switching the groups of i and j always

brings in shorter transmission time. Therefore for optimal solution to P5.3’, δj > δi

should hold for j ∈ H and i ∈ B. This completes the proof.

5.8.10 Proof of Theorem 9

Using the same approach as in Theorem 5, we have the transmission rate given by

rk = W log(
W

Ck
W0[

W

Ck
exp{1 +

Akβk|B|
tk

−Dk}]). (5.77)

It can be seen that rk increases as βk increases, hence g̃k(tk, βk) = tkrk increases in βk

as well. It also can be shown that g̃k increases in tk for tk ∈ (0, t∗k) by following the

proof in Prop. 2. Hence, by using the same techniques as the proof of Theorem 7, we

can show that all HTT transmitters should have the same transmission time tk = t

when the optimal achieves. In other words, they should have the same transmission

rate rk = r∗ for k ∈ H, where r∗ is optimal.

To solve for r∗, we substitute tk = t and rk = r∗ into (5.38) and it yields (5.45).

Taking (5.45) into
∑

k∈H βk = βH , and after some manipulations, we have

Θ

W
r∗e−r

∗/W + Ωe−r
∗/W = −Φ, (5.78)

where Θ,Ω,Φ are given in (5.44), which further leads to

(−Ω

Θ
− r∗

W
)e−

r∗
W
−Ω

Θ =
Φ

Θ
e−

Ω
Θ . (5.79)

Taking advantage of the Lambert function, we have

W0[
Φ

Θ
e−

Ω
Θ ] = −Ω

Θ
− r∗

W
. (5.80)

Solving (5.80) for r∗ yields (5.43).
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Chapter 6

Conclusions

Motivated by the rapid development of wireless power transfer (WPT) and backscat-

ter communication technologies the and rising demand of the Internet of Things and

wireless sensor networks applications, we focused on designing wireless power trans-

fer and backscatter communications systems to make the best use of the limited RF

power resources. In this thesis, we proposed algorithms for the following backscatter

communication and WPT systems:

• multi-antenna backscatter reader with blind adaptive beamforming

• wireless power transfer by beamspace MIMO with lens antenna array

• energy allocation and utilization for wireless powered networks

• time scheduling in wireless powered backscatter communication networks

By proposing these systems and algorithms, we aim to make the WPT and

backscatter communication system operate in an feasible and efficient way, mak-

ing the best use of the limited RF and time resource and providing reliable and

high-efficient wireless power transfer and communication services.
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[3] Z. Popović, E. A. Falkenstein, D. Costinett, and R. Zane, “Low-power far-field

wireless powering for wireless sensors,” Proceedings of the IEEE, vol. 101, no. 6,

pp. 1397–1409, June 2013.

[4] Z. Ding, C. Zhong, D. W. K. Ng, M. Peng, H. A. Suraweera, R. Schober,

and H. V. Poor, “Application of smart antenna technologies in simultaneous

wireless information and power transfer,” IEEE Communications Magazine,

vol. 53, no. 4, pp. 86–93, April 2015.

[5] B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall,

“Wi-Fi backscatter: Internet connectivity for RF-powered devices,” in

Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIGCOMM ’14.

New York, NY, USA: ACM, 2014, pp. 607–618. [Online]. Available:

http://doi.acm.org/10.1145/2619239.2626319

[6] D. M. Dobkin, the RF in RFID: Passive UHF RFID in Practice. Elsevier,

2008.



BIBLIOGRAPHY 151

[7] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contact-

less Smart Cards and Identification, 2nd ed. New York: Wiley, 2003.

[8] H. Vogt, “Efficient object identification with passive RFID tags,” in Pervasive

Computing, F. Mattern and M. Naghshineh, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 98–113.

[9] R. Want, “An introduction to RFID technology,” IEEE Pervasive Computing,

vol. 5, no. 1, pp. 25–33, Jan 2006.

[10] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,

“Ambient backscatter: Wireless communication out of thin air,” SIGCOMM

Comput. Commun. Rev., vol. 43, no. 4, pp. 39–50, Aug. 2013. [Online].

Available: http://doi.acm.org/10.1145/2534169.2486015

[11] N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim,

“Ambient backscatter communications: A contemporary survey,” IEEE Com-

munications Surveys Tutorials, vol. 20, no. 4, pp. 2889–2922, Fourthquarter

2018.

[12] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, and S. Gollakota,

“LoRa backscatter: Enabling the vision of ubiquitous connectivity,” Proc. ACM

Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 3, pp. 105:1–105:24,

Sep. 2017. [Online]. Available: http://doi.acm.org/10.1145/3130970

[13] H. J. Visser and R. J. M. Vullers, “RF energy harvesting and transport for

wireless sensor network applications: Principles and requirements,” Proceedings

of the IEEE, vol. 101, no. 6, pp. 1410–1423, June 2013.

[14] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to en-

ergy harvesting communication system optimization,” IEEE Transactions on

Wireless Communications, vol. 12, no. 4, pp. 1872–1882, April 2013.



BIBLIOGRAPHY 152

[15] H. Dinh Thai, D. Niyato, P. Wang, D. I. Kim, and Z. Han, “The tradeoff

analysis in RF-powered backscatter cognitive radio networks,” in 2016 IEEE

Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[16] D. T. Hoang, D. Niyato, P. Wang, and D. I. Kim, “Optimal time sharing in

RF-powered backscatter cognitive radio networks,” in 2017 IEEE International

Conference on Communications (ICC), May 2017, pp. 1–6.

[17] S. Gong, X. Huang, J. Xu, W. Liu, P. Wang, and D. Niyato, “Backscatter relay

communications powered by wireless energy beamforming,” IEEE Transactions

on Communications, vol. 66, no. 7, pp. 3187–3200, July 2018.

[18] X. Lu, G. Li, H. Jiang, D. Niyato, and P. Wang, “Performance analysis of

wireless-powered relaying with ambient backscattering,” in 2018 IEEE Inter-

national Conference on Communications (ICC), May 2018, pp. 1–6.

[19] S. H. Kim and D. I. Kim, “Hybrid backscatter communication for wireless-

powered heterogeneous networks,” IEEE Transactions on Wireless Communi-

cations, vol. 16, no. 10, pp. 6557–6570, Oct 2017.

[20] N. V. Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, D. Niyato, and

P. Wang, “Reinforcement learning approach for RF-powered cognitive radio

network with ambient backscatter,” in 2018 IEEE Global Communications Con-

ference (GLOBECOM), Dec 2018, pp. 1–6.

[21] R. Kishore, S. Gurugopinath, P. C. Sofotasios, S. Muhaidat, and N. Al-Dhahir,

“Opportunistic ambient backscatter communication in RF-powered cognitive

radio networks,” IEEE Transactions on Cognitive Communications and Net-

working, vol. 5, no. 2, pp. 413–426, June 2019.

[22] R. S. Khasgiwale, R. U. Adyanthaya, and D. W. Engels, “Extracting infor-

mation from tag collisions,” in 2009 IEEE International Conference on RFID,

April 2009, pp. 131–138.



BIBLIOGRAPHY 153

[23] J. Park, J. Jung, S. Ahn, H. Roh, H. Oh, Y. Seong, Y. Lee, and K. Choi,

“Extending the interrogation range of a passive UHF RFID system with an

external continuous wave transmitter,” IEEE Transactions on Instrumentation

and Measurement, vol. 59, no. 8, pp. 2191–2197, Aug 2010.

[24] P. V. Nikitin, D. D. Arumugam, M. J. Chabalko, B. E. Henty, and D. D. Stancil,

“Long range passive UHF RFID system using HVAC ducts,” Proceedings of the

IEEE, vol. 98, no. 9, pp. 1629–1635, Sep. 2010.

[25] D. Kim, H. Jo, H. Yoon, C. Mun, B. Jang, and J. Yook, “Reverse-link interro-

gation range of a UHF MIMO-RFID system in nakagami- m fading channels,”

IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1468–1477,

April 2010.

[26] J. D. Griffin and G. D. Durgin, “Gains for RF tags using multiple antennas,”

IEEE Transactions on Antennas and Propagation, vol. 56, no. 2, pp. 563–570,

Feb 2008.

[27] Y. Z. G. Zhang and W. Kang, “Low-complexity channel estimation for fhe

UHF MIMO-RFID systems with optimal training,” Int. J. of Advancements in

Computing Technology, vol. 4, no. 1, pp. 387–394, Jan 2012.

[28] E. Denicke, M. Henning, H. Rabe, and B. Geck, “The application of multi-

port theory for MIMO RFID backscatter channel measurements,” in 2012 42nd

European Microwave Conference, Oct 2012, pp. 522–525.

[29] C. Angerer, R. Langwieser, and M. Rupp, “RFID reader receivers for physi-

cal layer collision recovery,” IEEE Transactions on Communications, vol. 58,

no. 12, pp. 3526–3537, December 2010.

[30] F. Schoute, “Dynamic frame length ALOHA,” IEEE Transactions on Commu-

nications, vol. 31, no. 4, pp. 565–568, April 1983.



BIBLIOGRAPHY 154

[31] L. Zhu and T. P. Yum, “The optimal reading strategy for EPC gen-2 RFID

anti-collision systems,” IEEE Transactions on Communications, vol. 58, no. 9,

pp. 2725–2733, Sep. 2010.

[32] C. Wang, M. Daneshmand, K. Sohraby, and B. Li, “Performance analysis of

RFID generation-2 protocol,” IEEE Transactions on Wireless Communications,

vol. 8, no. 5, pp. 2592–2601, May 2009.

[33] W. Chen, “An accurate tag estimate method for improving the performance

of an RFID anticollision algorithm based on dynamic frame length ALOHA,”

IEEE Transactions on Automation Science and Engineering, vol. 6, no. 1, pp.

9–15, Jan 2009.

[34] Jae-Ryong Cha and Jae-Hyun Kim, “Novel anti-collision algorithms for fast

object identification in RFID system,” in 11th International Conference on

Parallel and Distributed Systems (ICPADS’05), vol. 2, July 2005, pp. 63–67.

[35] H. Wu and Y. Zeng, “Bayesian tag estimate and optimal frame length for anti-

collision ALOHA RFID system,” IEEE Transactions on Automation Science

and Engineering, vol. 7, no. 4, pp. 963–969, Oct 2010.

[36] B. C. Banister and J. R. Zeidler, “A simple gradient sign algorithm for trans-

mit antenna weight adaptation with feedback,” IEEE Transactions on Signal

Processing, vol. 51, no. 5, pp. 1156–1171, May 2003.

[37] X. W. K. Dong, N. Prasad and S. Zhu, “Adaptive antenna selection and Tx/Rx

beamforming for large-scale MIMO systems in 60 ghz channels,” EURASIP J.

Wireless Commun. and Network, vol. 59, Aug 2011.

[38] E. Inc. EPC radio-frequency identity protocols class-1 generation-2 UHF RFID

protocol for communications at 860 mhz – 960 mhz version 1.2.0. [Online].

Available: http://www.epcglobalinc.org



BIBLIOGRAPHY 155

[39] Daeyoung Kim, M. A. Ingram, and W. W. Smith, “Measurements of small-scale

fading and path loss for long range RF tags,” IEEE Transactions on Antennas

and Propagation, vol. 51, no. 8, pp. 1740–1749, Aug 2003.

[40] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO

for next generation wireless systems,” IEEE Communications Magazine, vol. 52,

no. 2, pp. 186–195, February 2014.

[41] S. Kashyap, E. Björnson, and E. G. Larsson, “On the feasibility of wireless

energy transfer using massive antenna arrays,” IEEE Transactions on Wireless

Communications, vol. 15, no. 5, pp. 3466–3480, May 2016.

[42] Y. Zeng and R. Zhang, “Optimized training design for wireless energy transfer,”

IEEE Transactions on Communications, vol. 63, no. 2, pp. 536–550, Feb 2015.

[43] J. Li, H. Zhang, D. Li, and H. Chen, “On the performance of wireless-energy-

transfer-enabled massive MIMO systems with superimposed pilot-aided channel

estimation,” IEEE Access, vol. 3, pp. 2014–2027, 2015.

[44] A. Li and C. Masouros, “Energy-efficient SWIPT: From fully digital to hy-

brid analog–digital beamforming,” IEEE Transactions on Vehicular Technol-

ogy, vol. 67, no. 4, pp. 3390–3405, April 2018.

[45] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and signals design for

wireless power transmission,” IEEE Transactions on Communications, vol. 65,

no. 5, pp. 2264–2290, May 2017.

[46] L. Wang, M. Elkashlan, R. W. Heath, M. D. Renzo, and K. Wong, “Millime-

ter wave power transfer and information transmission,” in 2015 IEEE Global

Communications Conference (GLOBECOM), Dec 2015, pp. 1–6.



BIBLIOGRAPHY 156

[47] T. A. Khan, A. Alkhateeb, and R. W. Heath, “Millimeter wave energy har-

vesting,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp.

6048–6062, Sept 2016.

[48] G. N. Kamga and S. Aı̈ssa, “Wireless power transfer in mmWave massive MIMO

systems with/without rain attenuation,” IEEE Transactions on Communica-

tions, pp. 1–1, 2018.

[49] M. Nariman, F. Shirinfar, A. P. Toda, S. Pamarti, A. Rofougaran, and F. D.

Flaviis, “A compact 60-GHz wireless power transfer system,” IEEE Transac-

tions on Microwave Theory and Techniques, vol. 64, no. 8, pp. 2664–2677, Aug

2016.

[50] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless infor-

mation and power transfer,” IEEE Transactions on Wireless Communications,

vol. 12, no. 5, pp. 1989–2001, May 2013.

[51] E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-

linear energy harvesting model and resource allocation for SWIPT systems,”

IEEE Communications Letters, vol. 19, no. 12, pp. 2082–2085, Dec 2015.

[52] S. Wang, M. Xia, K. Huang, and Y. Wu, “Wirelessly powered two-way commu-

nication with nonlinear energy harvesting model: Rate regions under fixed and

mobile relay,” IEEE Transactions on Wireless Communications, vol. 16, no. 12,

pp. 8190–8204, Dec 2017.

[53] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless infor-

mation and power transfer,” IEEE Transactions on Wireless Communications,

vol. 12, no. 5, pp. 1989–2001, May 2013.

[54] F. Yuan, S. Jin, Y. Huang, K. k. Wong, Q. T. Zhang, and H. Zhu, “Joint wireless

information and energy transfer in massive distributed antenna systems,” IEEE

Communications Magazine, vol. 53, no. 6, pp. 109–116, June 2015.



BIBLIOGRAPHY 157

[55] X. Chen, Z. Zhang, H. h. Chen, and H. Zhang, “Enhancing wireless information

and power transfer by exploiting multi-antenna techniques,” IEEE Communi-

cations Magazine, vol. 53, no. 4, pp. 133–141, April 2015.

[56] G. Yang, C. K. Ho, R. Zhang, and Y. L. Guan, “Throughput optimization for

massive MIMO systems powered by wireless energy transfer,” IEEE Journal on

Selected Areas in Communications, vol. 33, no. 8, pp. 1640–1650, Aug 2015.

[57] L. Zhao, X. Wang, and K. Zheng, “Downlink hybrid information and energy

transfer with massive MIMO,” IEEE Transactions on Wireless Communica-

tions, vol. 15, no. 2, pp. 1309–1322, Feb 2016.

[58] J. Brady, N. Behdad, and A. M. Sayeed, “Beamspace MIMO for millimeter-wave

communications: System architecture, modeling, analysis, and measurements,”

IEEE Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3814–3827,

July 2013.

[59] Y. Zeng and R. Zhang, “Millimeter wave MIMO with lens antenna array: A new

path division multiplexing paradigm,” IEEE Transactions on Communications,

vol. 64, no. 4, pp. 1557–1571, April 2016.

[60] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially

sparse precoding in millimeter wave MIMO systems,” IEEE Transactions on

Wireless Communications, vol. 13, no. 3, pp. 1499–1513, March 2014.

[61] X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selec-

tion for beamspace MmWave massive MIMO systems,” IEEE Communications

Letters, vol. 20, no. 5, pp. 1054–1057, May 2016.

[62] X. Gao, L. Dai, S. Han, C. L. I, and X. Wang, “Reliable beamspace channel es-

timation for millimeter-wave massive MIMO systems with lens antenna array,”

IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 6010–6021,

Sept 2017.



BIBLIOGRAPHY 158

[63] Y. Zeng, L. Yang, and R. Zhang, “Multi-user millimeter wave MIMO with

full-dimensional lens antenna array,” IEEE Transactions on Wireless Commu-

nications, vol. 17, no. 4, pp. 2800–2814, April 2018.

[64] H. Dai, Y. Liu, G. Chen, X. Wu, T. He, A. X. Liu, and H. Ma, “Safe charging

for wireless power transfer,” IEEE/ACM Transactions on Networking, vol. 25,

no. 6, pp. 3531–3544, Dec 2017.

[65] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,”

Journal of Computational and Graphical Statistics, vol. 15, no. 2, pp. 265–286,

2006. [Online]. Available: https://doi.org/10.1198/106186006X113430

[66] A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet,

“A direct formulation for sparse PCA using semidefinite programming,”

SIAM Review, vol. 49, no. 3, pp. 434–448, 2007. [Online]. Available:

https://doi.org/10.1137/050645506

[67] A. d’Aspremont, F. Bach, and L. E. Ghaoui, “Optimal solutions for sparse

principal component analysis,” Journal of Machine Learning Research, vol. 9,

pp. 1269–1294, 2008.

[68] X.-T. Yuan and T. Zhang, “Truncated power method for sparse eigenvalue

problems,” Journal of Machine Learning Research, vol. 14, no. 1, pp. 899–925,

Apr. 2013. [Online]. Available: http://dl.acm.org/citation.cfm?id=2502581.

2502610

[69] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-

ming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[70] C. Eckart and G. Young, “The approximation of one matrix by another of

lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, Sep 1936. [Online].

Available: https://doi.org/10.1007/BF02288367



BIBLIOGRAPHY 159

[71] R. M. P.-A. Absil and R. Sepulchre, Optimization Algorithms on Matrix Man-

ifolds. Princeton, NJ: Princeton University Press, 2007.

[72] S. E. Selvan, U. Amato, K. A. Gallivan, C. Qi, M. F. Carfora, M. Larobina,

and B. Alfano, “Descent algorithms on oblique manifold for source-adaptive

ICA contrast,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 23, no. 12, pp. 1930–1947, Dec. 2012.

[73] S. Xu, “Smoothing method for minimax problems,” Computational Optimiza-

tion and Applications, vol. 20, no. 3, pp. 267–279, 2001.

[74] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient meth-

ods,” Pacific Journal of Optimization, vol. 2, no. 1, pp. 38–58, 2006.

[75] T. Bai and R. W. Heath, “Coverage analysis for millimeter wave cellular net-

works with blockage effects,” in 2013 IEEE Global Conference on Signal and

Information Processing, Dec 2013, pp. 727–730.

[76] T. A. Khan, A. Yazdan, and R. W. Heath, “Optimization of power trans-

fer efficiency and energy efficiency for wireless-powered systems with massive

MIMO,” IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp.

7159–7172, Nov 2018.

[77] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: Survey and

implications,” IEEE Communications Surveys Tutorials, vol. 13, no. 3, pp. 443–

461, Third 2011.

[78] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless

electronics,” IEEE Pervasive Computing, vol. 4, no. 1, pp. 18–27, Jan 2005.

[79] P. S. Khairnar and N. B. Mehta, “Discrete-rate adaptation and selection in

energy harvesting wireless systems,” IEEE Transactions on Wireless Commu-

nications, vol. 14, no. 1, pp. 219–229, Jan 2015.



BIBLIOGRAPHY 160

[80] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications

with energy harvesting constraints,” IEEE Transactions on Signal Processing,

vol. 60, no. 9, pp. 4808–4818, Sept 2012.

[81] M. Kashef and A. Ephremides, “Optimal packet scheduling for energy harvest-

ing sources on time varying wireless channels,” Journal of Communications and

Networks, vol. 14, no. 2, pp. 121–129, April 2012.

[82] P. Castiglione, O. Simeone, E. Erkip, and T. Zemen, “Energy management poli-

cies for energy-neutral source-channel coding,” IEEE Transactions on Commu-

nications, vol. 60, no. 9, pp. 2668–2678, September 2012.

[83] S. Mao, M. H. Cheung, and V. W. S. Wong, “Joint energy allocation for sensing

and transmission in rechargeable wireless sensor networks,” IEEE Transactions

on Vehicular Technology, vol. 63, no. 6, pp. 2862–2875, July 2014.

[84] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in energy

harvesting communications,” IEEE Transactions on Communications, vol. 61,

no. 12, pp. 4884–4898, December 2013.

[85] Y. Wu, V. K. N. Lau, D. H. K. Tsang, and L. P. Qian, “Energy-efficient delay-

constrained transmission and sensing for cognitive radio systems,” IEEE Trans-

actions on Vehicular Technology, vol. 61, no. 7, pp. 3100–3113, Sept 2012.

[86] R. V. Bhat, M. Motani, and T. J. Lim, “Energy harvesting communication

using finite-capacity batteries with internal resistance,” IEEE Transactions on

Wireless Communications, vol. 16, no. 5, pp. 2822–2834, May 2017.

[87] H. Zhang, S. Huang, C. Jiang, K. Long, V. C. M. Leung, and H. V. Poor,

“Energy efficient user association and power allocation in millimeter-wave-based

ultra dense networks with energy harvesting base stations,” IEEE Journal on

Selected Areas in Communications, vol. 35, no. 9, pp. 1936–1947, Sept 2017.



BIBLIOGRAPHY 161

[88] S. Chen, S. Zhong, S. Yang, and X. Wang, “A multiantenna RFID reader with

blind adaptive beamforming,” IEEE Internet of Things Journal, vol. 3, no. 6,

pp. 986–996, Dec 2016.

[89] P. S. Yedavalli, T. Riihonen, X. Wang, and J. M. Rabaey, “Far-field RF wireless

power transfer with blind adaptive beamforming for internet of things devices,”

IEEE Access, vol. 5, pp. 1743–1752, 2017.

[90] K. Huang and X. Zhou, “Cutting the last wires for mobile communications by

microwave power transfer,” IEEE Communications Magazine, vol. 53, no. 6,

pp. 86–93, June 2015.

[91] A. O. Ercan, O. Sunay, and I. F. Akyildiz, “RF energy harvesting and transfer

for spectrum sharing cellular iot communications in 5g systems,” IEEE Trans-

actions on Mobile Computing, vol. PP, no. 99, pp. 1–1, 2017.
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