174 research outputs found

    A filtered-X LMS algorithm for sinusoidal reference signals - Effects of frequency mismatch

    Get PDF

    Active control of drag noise from a small axial flow fan

    Get PDF
    Noise sources in an axial flow fan can be divided into fluctuating axial thrust forces and circumferential drag forces. For the popular design of a seven-blade rotor driven by a motor supported by four struts, drag noise dominates. This study aims to suppress the drag noise globally by active control schemes. Drag noise features a rotating dipole and it has to be cancelled by a secondary source of the same nature. This is achieved experimentally by a pair of loudspeakers positioned at right angles to each other on the fan rotational plane. An adaptive LMS feedforward scheme is used to produce the control signal for one loudspeaker and the time derivative of this signal is used to drive the other loudspeaker. The antisounds radiated by the two loudspeakers have a fixed phase relation of 90° forming a rotating dipole. An open-loop control scheme is also implemented for the purpose of comparison and easier implementation in real-life applications. The results show that the globally integrated sound power is reduced by about 13 dB for both closed-and open-loop schemes. A possible limiting factor for the cancellation performance is found to be the presence of higher order modes of drag noise. © 2006 Acoustical Society of America.published_or_final_versio

    Multi-tone Active Noise Equalizer with Spatially Distributed User-selected Profiles

    Full text link
    [EN] In this work we propose a multi-channel active noise equalizer (ANE) that can deal with multi-frequency noise signals and assigns simultaneously different equalization gains to each frequency component at each monitoring sensor. For this purpose, we state a pseudo-error noise signal for each sensor of the ANE, which has to be cancelled out in order to get the desired equalization profiles. Firstly the optimal analytic solution for the ANE filters in the case of single-frequency noise is provided, and an adaptive algorithm based on the Least Mean Squared (LMS) is proposed for the same case. We also show that this adaptive strategy reaches the theoretical solution in steady state. Secondly, we state an equivalent approach for the case of multi-frequency noise based on two alternatives: a common pseudo-error signal at each sensor for all frequencies, and a different pseudo-error signal at each sensor for each frequency. The analytic and adaptive solutions for the ANE control filters have been developed for both pseudo-error alternatives. Finally, the ability of the proposed ANE to achieve simultaneously different user-selected noise profiles in different locations has been validated by their transfer functions and simulations.This work was supported by EU jointly with Spanish Government and Generalitat Valenciana under Grants RTI2018-098085-BC41, PID2021-125736OB-I00 (MCIU/AEI/FEDER), RE D2018-102668-T, and PROMETEO/2019/109.Ferrer Contreras, M.; Diego Antón, MD.; Hassani, A.; Moonen, M.; Piñero, G.; Gonzalez, A. (2022). Multi-tone Active Noise Equalizer with Spatially Distributed User-selected Profiles. IEEE/ACM Transactions on Audio Speech and Language Processing. 30:3199-3213. https://doi.org/10.1109/TASLP.2022.3212833319932133

    Complex-valued Adaptive Digital Signal Enhancement For Applications In Wireless Communication Systems

    Get PDF
    In recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices. In this dissertation, novel techniques for complex-valued digital signal enhancement are presented and analyzed for various applications in wireless communications. The first technique is a unified block processing approach to generate the complex-valued conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed algorithms exploit the concept of the complex conjugate gradients to find the orthogonal directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal direction, the presented algorithms employ the complex Taylor series expansion to calculate time-varying convergence factors tailored for the adaptive filter coefficients. The performance of the developed technique is tested in the applications of channel estimation, channel equalization, and adaptive array beamforming. Comparing with the state of the art methods, the proposed techniques demonstrate improved performance and exhibit desirable characteristics for practical use. The second complex-valued signal processing technique is a novel Optimal Block Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex iv Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch effects in analog front-end. Simulation results indicate that comparing with the existing methods, OBA-C exhibits superior convergence speed while maintaining excellent accuracy. The third technique is regarding interference rejection in communication systems. The research on both LMS and Independent Component Analysis (ICA) based techniques continues to receive significant attention in the area of interference cancellation. The performance of the LMS and ICA based approaches is studied for signals with different probabilistic distributions. Our research indicates that the ICA-based approach works better for super-Gaussian signals, while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate choice of interference suppression algorithms can be made to satisfy the ever-increasing demand for better performance in modern receiver design

    Adaptive Algorithms Design for Active Noise Control Systems with Disturbance at Reference and Error Microphones

    Get PDF
    Active noise control (ANC) is a popular choice for mitigating the acoustic noise in the surrounding environment resulting from industrial and medical equipment, appliances, and consumer electronics. ANC cancels the low frequency acoustic noise by generating a cancelling sound from speakers. The speakers are triggered by noise control filters and produce sound waves with the same amplitude and inverted phase to the original sound. Noise control filters are updated by adaptive algorithms. Successful applications of this technology are available in headsets, earplugs, propeller aircraft, cars and mobile phones. Since multiple applications are running simultaneously, efficiency of the adaptive control algorithms in terms of implementation, computations and performance is critical to the performance of the ANC systems. The focus of the present project is on the development of efficient adaptive algorithms that perform optimally in different configurations of ANC systems suitable for real world applications.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    Post Conversion Correction of Non-Linear Mismatches for Time Interleaved Analog-to-Digital Converters

    Get PDF
    Time Interleaved Analog-to-Digital Converters (TI-ADCs) utilize an architecture which enables conversion rates well beyond the capabilities of a single converter while preserving most or all of the other performance characteristics of the converters on which said architecture is based. Most of the approaches discussed here are independent of architecture; some solutions take advantage of specific architectures. Chapter 1 provides the problem formulation and reviews the errors found in ADCs as well as a brief literature review of available TI-ADC error correction solutions. Chapter 2 presents the methods and materials used in implementation as well as extend the state of the art for post conversion correction. Chapter 3 presents the simulation results of this work and Chapter 4 concludes the work. The contribution of this research is three fold: A new behavioral model was developed in SimulinkTM and MATLABTM to model and test linear and nonlinear mismatch errors emulating the performance data of actual converters. The details of this model are presented as well as the results of cumulant statistical calculations of the mismatch errors which is followed by the detailed explanation and performance evaluation of the extension developed in this research effort. Leading post conversion correction methods are presented and an extension with derivations is presented. It is shown that the data converter subsystem architecture developed is capable of realizing better performance of those currently reported in the literature while having a more efficient implementation

    Smart Sound Control in Acoustic Sensor Networks: a Perceptual Perspective

    Full text link
    [ES] Los sistemas de audio han experimentado un gran desarrollo en los últimos años gracias al aumento de dispositivos con procesadores de alto rendimiento capaces de realizar un procesamiento cada vez más eficiente. Además, las comunicaciones inalámbricas permiten a los dispositivos de una red estar ubicados en diferentes lugares sin limitaciones físicas. La combinación de estas tecnologías ha dado lugar a la aparición de las redes de sensores acústicos (ASN). Una ASN está compuesta por nodos equipados con transductores de audio, como micrófonos o altavoces. En el caso de la monitorización acústica del campo, sólo es necesario incorporar sensores acústicos a los nodos ASN. Sin embargo, en el caso de las aplicaciones de control, los nodos deben interactuar con el campo acústico a través de altavoces. La ASN puede implementarse mediante dispositivos de bajo coste, como Raspberry Pi o dispositivos móviles, capaces de gestionar varios micrófonos y altavoces y de ofrecer una buena capacidad de cálculo. Además, estos dispositivos pueden comunicarse mediante conexiones inalámbricas, como Wi-Fi o Bluetooth. Por lo tanto, en esta tesis, se propone una ASN compuesta por dispositivos móviles conectados a altavoces inalámbricos mediante un enlace Bluetooth. Además, el problema de la sincronización entre los dispositivos de una ASN es uno de los principales retos a abordar, ya que el rendimiento del procesamiento de audio es muy sensible a la falta de sincronismo. Por lo tanto, también se lleva a cabo un análisis del problema de sincronización entre dispositivos conectados a altavoces inalámbricos en una ASN. En este sentido, una de las principales aportaciones es el análisis de la latencia de audio cuando los nodos acústicos de la ASN están formados por dispositivos móviles que se comunican altavoces mediante enlaces Bluetooth. Una segunda contribución significativa de esta tesis es la implementación de un método para sincronizar los diferentes dispositivos de una ASN, junto con un estudio de sus limitaciones. Por último, se ha introducido el método propuesto para implementar aplicaciones de zonas sonoras personales (PSZ). Por lo tanto, la implementación y el análisis del rendimiento de diferentes aplicaciones de audio sobre una ASN compuesta por dispositivos móviles y altavoces inalámbricos es también una contribución significativa en el área de las ASN. Cuando el entorno acústico afecta negativamente a la percepción de la señal de audio emitida por los altavoces de la ASN, se uti­lizan técnicas de ecualización para mejorar la percepción de la señal de audio. Para ello, en esta tesis se implementa un sistema de ecualización inteligente. Para ello, se emplean algoritmos psicoacústicos para implementar un procesamiento inteligente basado en el sis­tema auditivo humano capaz de adaptarse a los cambios del entorno. Por ello, otra contribución importante de esta tesis es el análisis del enmas­caramiento espectral entre dos sonidos complejos. Este análisis permitirá calcular el umbral de enmascaramiento de un sonido con más precisión que los métodos utilizados actualmente. Este método se utiliza para implementar una aplicación de ecualización perceptiva que pretende mejorar la percepción de la señal de audio en presencia de un ruido ambien­tal. Para ello, esta tesis propone dos algoritmos de ecualización diferentes: 1) la pre-ecualización de la señal de audio para que se perciba por encima del umbral de enmascaramiento del ruido ambiental y 2) diseñar un con­trol de ruido ambiental perceptivo en los sistemas de ecualización activa de ruido (ANE), para que el nivel de ruido ambiental percibido esté por debajo del umbral de enmascaramiento de la señal de audio. Por lo tanto, la ultima aportación de esta tesis es la implementación de una aplicación de ecualización perceptiva con los dos diferentes algorit­mos de ecualización embebidos y el análisis de su rendimiento a través del banco de pruebas realizado en el laboratorio GTAC-iTEAM.[CA] El sistemes de so han experimentat un gran desenvolupament en els últims anys gràcies a l'augment de dispositius amb processadors d'alt rendiment capaços de realitzar un processament d'àudio cada vegada més eficient. D'altra banda, l'expansió de les comunicacions inalàmbriques ha permès implementar xarxes en les quals els dispositius poden estar situats a difer­ents llocs sense limitacions físiques. La combinació d'aquestes tecnologies ha donat lloc a l'aparició de les xarxes de sensors acústics (ASN). Una ASN està composta per nodes equipats amb transductors d'àudio, com micr`ofons o altaveus. En el cas del monitoratge del camp acústic, només cal incorporar sensors acústics als nodes de l'ASN. No obstant això, en el cas de les aplicacions de control, els nodes han d'interactuar amb el camp acústic a través d'altaveus. Una ASN pot implementar-se mitjant¿cant dispositius de baix cost, com ara Raspberry Pi o dispositius mòbils, capaços de gestionar di­versos micròfons i altaveus i d'oferir una bona capacitat computacional. A més, aquests dispositius poden comunicar-se a través de connexions inalàmbriques, com Wi-Fi o Bluetooth. Per això, en aquesta tesi es proposa una ASN composta per dispositius mòbils connectats a altaveus inalàmbrics a través d'un enllaç Bluetooth. El problema de la sincronització entre els dispositius d'una ASN és un dels principals reptes a abordar ja que el rendiment del processament d'àudio és molt sensible a la falta de sincronisme. Per tant, també es duu a terme una anàlisi profunda del problema de la sincronització entre els dispositius comercials connectats als altaveus inalàmbrics en una ASN. En aquest sentit, una de les principals contribucions és l'anàlisi de la latència d'àudio quan els nodes acústics en l'ASN estan compostos per dispositius mòbils que es comuniquen amb els altaveus corresponents mitjançant enllaços Bluetooth. Una segona contribuciò sig­nificativa d'aquesta tesi és la implementació d'un mètode per sincronitzar els diferents dispositius d'una ASN, juntament amb un estudi de les seves limitacions. Finalment, s'ha introduït el mètode proposat per implemen­tar aplicacions de zones de so personal. Per tant, la implementació i l'anàlisi del rendiment de diferents aplicacions d'àudio sobre una ASN composta per dispositius mòbils i al­taveus inalàmbrics és també una contribució significativa a l'àrea de les ASN. Quan l'entorn acústic afecta negativament a la percepció del senyal d'àudio emesa pels altaveus de l'ASN, es fan servir tècniques d'equalització per a millorar la percepció del senyal d'àudio. En consequència, en aquesta tesi s'implementa un sistema d'equalització intel·ligent. Per això, s'utilitzen algoritmes psicoacústics per implementar un processament intel·ligent basat en el sistema audi­tiu humà capaç d'adaptar-se als canvis de l'entorn. Per aquest motiu, una altra contribució important d'aquesta tesi és l'anàlisi de l'emmascarament espectral entre dos sons complexos. Aquesta anàlisi permetrà calcular el llindar d'emmascarament d'un so sobre amb més precisió que els mètodes utilitzats actualment. Aquest mètode s'utilitza per a imple­mentar una aplicació d'equalització perceptual que pretén millorar la per­cepció del senyal d'àudio en presència d'un soroll ambiental. Per això, aquesta tesi proposa dos algoritmes d'equalització diferents: 1) la pree­qualització del senyal d'àudio perquè es percebi per damunt del llindar d'emmascarament del soroll ambiental i 2) dissenyar un control de soroll ambiental perceptiu en els sistemes d'equalització activa de soroll (ANE) de manera que el nivell de soroll ambiental percebut estiga per davall del llindar d'emmascarament del senyal d'àudio. Per tant, l'última aportació d'aquesta tesi és la implementació d'una aplicació d'equalització perceptiva amb els dos algoritmes d'equalització embeguts i l'anàlisi del seu rendiment a través del banc de proves realitzat al laboratori GTAC-iTEAM.[EN] Audio systems have been extensively developed in recent years thanks to the increase of devices with high-performance processors able to per­form more efficient processing. In addition, wireless communications allow devices in a network to be located in different places without physical limitations. The combination of these technologies has led to the emergence of Acoustic Sensor Networks (ASN). An ASN is com­posed of nodes equipped with audio transducers, such as microphones or speakers. In the case of acoustic field monitoring, only acoustic sensors need to be incorporated into the ASN nodes. However, in the case of control applications, the nodes must interact with the acoustic field through loudspeakers. ASN can be implemented through low-cost devices, such as Rasp­berry Pi or mobile devices, capable of managing multiple mi­crophones and loudspeakers and offering good computational capacity. In addition, these devices can communicate through wireless connections, such as Wi-Fi or Bluetooth. Therefore, in this dissertation, an ASN composed of mobile devices connected to wireless speak­ers through a Bluetooth link is proposed. Additionally, the problem of syn­chronization between the devices in an ASN is one of the main challenges to be addressed since the audio processing performance is very sensitive to the lack of synchronism. Therefore, an analysis of the synchroniza­tion problem between devices connected to wireless speakers in an ASN is also carried out. In this regard, one of the main contributions is the analysis of the audio latency of mobile devices when the acoustic nodes in the ASN are comprised of mobile devices communicating with the corresponding loudspeakers through Bluetooth links. A second significant contribution of this dissertation is the implementation of a method to synchronize the different devices of an ASN, together with a study of its limitations. Finally, the proposed method has been introduced in order to implement personal sound zones (PSZ) applications. Therefore, the imple­mentation and analysis of the performance of different audio applications over an ASN composed of mobile devices and wireless speakers is also a significant contribution in the area of ASN. In cases where the acoustic environment negatively affects the percep­tion of the audio signal emitted by the ASN loudspeakers, equalization techniques are used with the objective of enhancing the perception thresh­old of the audio signal. For this purpose, a smart equalization system is implemented in this dissertation. In this regard, psychoacous­tic algorithms are employed to implement a smart processing based on the human hearing system capable of adapting to changes in the envi­ronment. Therefore, another important contribution of this thesis focuses on the analysis of the spectral masking between two complex sounds. This analysis will allow to calculate the masking threshold of one sound over the other in a more accurate way than the currently used methods. This method is used to implement a perceptual equalization application that aims to improve the perception threshold of the audio signal in presence of ambient noise. To this end, this thesis proposes two different equalization algorithms: 1) pre-equalizing the audio signal so that it is perceived above the ambient noise masking threshold and 2) designing a perceptual control of ambient noise in active noise equalization (ANE) systems, so that the perceived ambient noise level is below the masking threshold of the audio signal. Therefore, the last contribution of this dissertation is the imple­mentation of a perceptual equalization application with the two different embedded equalization algorithms and the analysis of their performance through the testbed carried out in the GTAC-iTEAM laboratory.This work has received financial support of the following projects: • SSPRESING: Smart Sound Processing for the Digital Living (Reference: TEC2015-67387-C4-1-R. Entity: Ministerio de Economia y Empresa. Spain). • FPI: Ayudas para contratos predoctorales para la formación de doctores (Reference: BES-2016-077899. Entity: Agencia Estatal de Investigación. Spain). DANCE: Dynamic Acoustic Networks for Changing Environments (Reference: RTI2018-098085-B-C41-AR. Entity: Agencia Estatal de Investigación. Spain). • DNOISE: Distributed Network of Active Noise Equalizers for Multi-User Sound Control (Reference: H2020-FETOPEN-4-2016-2017. Entity: I+D Colaborativa competitiva. Comisión de las comunidades europea).Estreder Campos, J. (2022). Smart Sound Control in Acoustic Sensor Networks: a Perceptual Perspective [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181597TESI

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability
    corecore