3,679 research outputs found

    Hydrolink 2021/2. Artificial Intelligence

    Get PDF
    Topic: Artificial Intelligenc

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Identification and Optimal Linear Tracking Control of ODU Autonomous Surface Vehicle

    Get PDF
    Autonomous surface vehicles (ASVs) are being used for diverse applications of civilian and military importance such as: military reconnaissance, sea patrol, bathymetry, environmental monitoring, and oceanographic research. Currently, these unmanned tasks can accurately be accomplished by ASVs due to recent advancements in computing, sensing, and actuating systems. For this reason, researchers around the world have been taking interest in ASVs for the last decade. Due to the ever-changing surface of water and stochastic disturbances such as wind and tidal currents that greatly affect the path-following ability of ASVs, identification of an accurate model of inherently nonlinear and stochastic ASV system and then designing a viable control using that model for its planar motion is a challenging task. For planar motion control of ASV, the work done by researchers is mainly based on the theoretical modeling in which the nonlinear hydrodynamic terms are determined, while some work suggested the nonlinear control techniques and adhered to simulation results. Also, the majority of work is related to the mono- or twin-hull ASVs with a single rudder. The ODU-ASV used in present research is a twin-hull design having two DC trolling motors for path-following motion. A novel approach of time-domain open-loop observer Kalman filter identifications (OKID) and state-feedback optimal linear tracking control of ODU-ASV is presented, in which a linear state-space model of ODU-ASV is obtained from the measured input and output data. The accuracy of the identified model for ODU-ASV is confirmed by validation results of model output data reconstruction and benchmark residual analysis. Then, the OKID-identified model of the ODU-ASV is utilized to design the proposed controller for its planar motion such that a predefined cost function is minimized using state and control weighting matrices, which are determined by a multi-objective optimization genetic algorithm technique. The validation results of proposed controller using step inputs as well as sinusoidal and arc-like trajectories are presented to confirm the controller performance. Moreover, real-time water-trials were performed and their results confirm the validity of proposed controller in path-following motion of ODU-ASV

    Profiling Trait Anxiety: Transcriptome Analysis Reveals Cathepsin B (Ctsb) as a Novel Candidate Gene for Emotionality in Mice

    Get PDF
    Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior

    Global gene expression profiling of healthy human brain and its application in studying neurological disorders

    Get PDF
    The human brain is the most complex structure known to mankind and one of the greatest challenges in modern biology is to understand how it is built and organized. The power of the brain arises from its variety of cells and structures, and ultimately where and when different genes are switched on and off throughout the brain tissue. In other words, brain function depends on the precise regulation of gene expression in its sub-anatomical structures. But, our understanding of the complexity and dynamics of the transcriptome of the human brain is still incomplete. To fill in the need, we designed a gene expression model that accurately defines the consistent blueprint of the brain transcriptome; thereby, identifying the core brain specific transcriptional processes conserved across individuals. Functionally characterizing this model would provide profound insights into the transcriptional landscape, biological pathways and the expression distribution of neurotransmitter systems. Here, in this dissertation we developed an expression model by capturing the similarly expressed gene patterns across congruently annotated brain structures in six individual brains by using data from the Allen Brain Atlas (ABA). We found that 84% of genes are expressed in at least one of the 190 brain structures. By employing hierarchical clustering we were able to show that distinct structures of a bigger brain region can cluster together while still retaining their expression identity. Further, weighted correlation network analysis identified 19 robust modules of coexpressing genes in the brain that demonstrated a wide range of functional associations. Since signatures of local phenomena can be masked by larger signatures, we performed local analysis on each distinct brain structure. Pathway and gene ontology enrichment analysis on these structures showed, striking enrichment for brain region specific processes. Besides, we also mapped the structural distribution of the gene expression profiles of genes associated with major neurotransmission systems in the human. We also postulated the utility of healthy brain tissue gene expression to predict potential genes involved in a neurological disorder, in the absence of data from diseased tissues. To this end, we developed a supervised classification model, which achieved an accuracy of 84% and an AUC (Area Under the Curve) of 0.81 from ROC plots, for predicting autism-implicated genes using the healthy expression model as the baseline. This study represents the first use of healthy brain gene expression to predict the scope of genes in autism implication and this generic methodology can be applied to predict genes involved in other neurological disorders

    Cognitive and Autonomous Software-Defined Open Optical Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore