352 research outputs found

    Wireless Mesh Networks Based on MBPSO Algorithm to Improvement Throughput

    Get PDF
    Wireless Mesh Networks can be regarded as a type of communication technology in mesh topology in which wireless nodes interconnect with one another. Wireless Mesh Networks depending on the semi-static configuration in different paths among nodes such as PDR, E2E delay and throughput. This study summarized different types of previous heuristic algorithms in order to adapt with proper algorithm that could solve the issue. Therefore, the main objective of this study is to determine the proper methods, approaches or algorithms that should be adapted to improve the throughput. A Modified Binary Particle Swarm Optimization (MBPSO) approach was adapted to improvements the throughput. Finally, the finding shows that throughput increased by 5.79% from the previous study

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    Service Delivery Utilizing Wireless Technology Within The Air Traffic Control Communication And Navigation Domain To Improve Positioning Awareness

    Get PDF
    Current air traffic levels around the world have pushed the enterprise architecture deployed to support air traffic management to the breaking point. Technology limitations prevent expansion of the current solutions to handle rising utilization levels without adopting radically different information delivery approaches. Meanwhile, an architectural transition would present the opportunity to support business and safety requirements that are not currently addressable. The purpose of this research paper is to create a framework for more effectively sharing positioning information utilizing improved air traffic control navigation and communication systems

    Network Formation Games Among Relay Stations in Next Generation Wireless Networks

    Full text link
    The introduction of relay station (RS) nodes is a key feature in next generation wireless networks such as 3GPP's long term evolution advanced (LTE-Advanced), or the forthcoming IEEE 802.16j WiMAX standard. This paper presents, using game theory, a novel approach for the formation of the tree architecture that connects the RSs and their serving base station in the \emph{uplink} of the next generation wireless multi-hop systems. Unlike existing literature which mainly focused on performance analysis, we propose a distributed algorithm for studying the \emph{structure} and \emph{dynamics} of the network. We formulate a network formation game among the RSs whereby each RS aims to maximize a cross-layer utility function that takes into account the benefit from cooperative transmission, in terms of reduced bit error rate, and the costs in terms of the delay due to multi-hop transmission. For forming the tree structure, a distributed myopic algorithm is devised. Using the proposed algorithm, each RS can individually select the path that connects it to the BS through other RSs while optimizing its utility. We show the convergence of the algorithm into a Nash tree network, and we study how the RSs can adapt the network's topology to environmental changes such as mobility or the deployment of new mobile stations. Simulation results show that the proposed algorithm presents significant gains in terms of average utility per mobile station which is at least 17.1% better relatively to the case with no RSs and reaches up to 40.3% improvement compared to a nearest neighbor algorithm (for a network with 10 RSs). The results also show that the average number of hops does not exceed 3 even for a network with up to 25 RSs.Comment: IEEE Transactions on Communications, vol. 59, no. 9, pp. 2528-2542, September 201

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Classroom Technology: Practical Approaches Synchronous Blended Learning Using Videoconferencing over lP Planning for Classroom Audiovisual Technologies Optimization Tools lmprove Bandwidth Bottom Line New Technologies Redefine the Classroom WiMax Facing the WMAN Challenge Mobility and the New Student lntegrating lnstructional and Network Technologies for Distance Education lnstitutional Excellence Award Honorable Mention Interview President\u27s Message From the Executive Director Here\u27s My Advic

    Aeronautical Mobile Airport Communications System (AeroMACS)

    Get PDF
    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA
    corecore