2 research outputs found

    An evaluation of power transfer functions for HDR video compression

    Get PDF
    High dynamic range (HDR) imaging enables the full range of light in a scene to be captured, transmitted and displayed. However, uncompressed 32-bit HDR is four times larger than traditional low dynamic range (LDR) imagery. If HDR is to fulfil its potential for use in live broadcasts and interactive remote gaming, fast, efficient compression is necessary for HDR video to be manageable on existing communications infrastructure. A number of methods have been put forward for HDR video compression. However, these can be relatively complex and frequently require the use of multiple video streams. In this paper, we propose the use of a straightforward Power Transfer Function (PTF) as a practical, computationally fast, HDR video compression solution. The use of PTF is presented and evaluated against four other HDR video compression methods. An objective evaluation shows that PTF exhibits improved quality at a range of bit-rates and, due to its straightforward nature, is highly suited for real-time HDR video applications
    corecore