6,500 research outputs found

    A novel ensemble method for electric vehicle power consumption forecasting: Application to the Spanish system

    Get PDF
    The use of electric vehicle across the world has become one of the most challenging issues for environmental policies. The galloping climate change and the expected running out of fossil fuels turns the use of such non-polluting cars into a priority for most developed countries. However, such a use has led to major concerns to power companies, since they must adapt their generation to a new scenario, in which electric vehicles will dramatically modify the curve of generation. In this paper, a novel approach based on ensemble learning is proposed. In particular, ARIMA, GARCH and PSF algorithms' performances are used to forecast the electric vehicle power consumption in Spain. It is worth noting that the studied time series of consumption is non-stationary and adds difficulties to the forecasting process. Thus, an ensemble is proposed by dynamically weighting all algorithms over time. The proposal presented has been implemented for a real case, in particular, at the Spanish Control Centre for the Electric Vehicle. The performance of the approach is assessed by means of WAPE, showing robust and promising results for this research field.Ministerio de Economía y Competitividad Proyectos ENE2016-77650-R, PCIN-2015-04 y TIN2017-88209-C2-R

    A comparison of univariate methods for forecasting electricity demand up to a day ahead

    Get PDF
    This empirical paper compares the accuracy of six univariate methods for short-term electricity demand forecasting for lead times up to a day ahead. The very short lead times are of particular interest as univariate methods are often replaced by multivariate methods for prediction beyond about six hours ahead. The methods considered include the recently proposed exponential smoothing method for double seasonality and a new method based on principal component analysis (PCA). The methods are compared using a time series of hourly demand for Rio de Janeiro and a series of half-hourly demand for England and Wales. The PCA method performed well, but, overall, the best results were achieved with the exponential smoothing method, leading us to conclude that simpler and more robust methods, which require little domain knowledge, can outperform more complex alternatives

    GEFCOM 2014 - Probabilistic Electricity Price Forecasting

    Full text link
    Energy price forecasting is a relevant yet hard task in the field of multi-step time series forecasting. In this paper we compare a well-known and established method, ARMA with exogenous variables with a relatively new technique Gradient Boosting Regression. The method was tested on data from Global Energy Forecasting Competition 2014 with a year long rolling window forecast. The results from the experiment reveal that a multi-model approach is significantly better performing in terms of error metrics. Gradient Boosting can deal with seasonality and auto-correlation out-of-the box and achieve lower rate of normalized mean absolute error on real-world data.Comment: 10 pages, 5 figures, KES-IDT 2015 conference. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19857-6_

    Power System Parameters Forecasting Using Hilbert-Huang Transform and Machine Learning

    Get PDF
    A novel hybrid data-driven approach is developed for forecasting power system parameters with the goal of increasing the efficiency of short-term forecasting studies for non-stationary time-series. The proposed approach is based on mode decomposition and a feature analysis of initial retrospective data using the Hilbert-Huang transform and machine learning algorithms. The random forests and gradient boosting trees learning techniques were examined. The decision tree techniques were used to rank the importance of variables employed in the forecasting models. The Mean Decrease Gini index is employed as an impurity function. The resulting hybrid forecasting models employ the radial basis function neural network and support vector regression. Apart from introduction and references the paper is organized as follows. The section 2 presents the background and the review of several approaches for short-term forecasting of power system parameters. In the third section a hybrid machine learning-based algorithm using Hilbert-Huang transform is developed for short-term forecasting of power system parameters. Fourth section describes the decision tree learning algorithms used for the issue of variables importance. Finally in section six the experimental results in the following electric power problems are presented: active power flow forecasting, electricity price forecasting and for the wind speed and direction forecasting
    corecore