40 research outputs found

    High-dynamic-range displays : contributions to signal processing and backlight control

    Get PDF

    Design, measurement and analysis of multimode light guides and waveguides for display systems and optical backplane interconnections

    Get PDF
    The aim of the research in this thesis was to design and model multimode lightguides for optimising visible light for liquid crystal display systems and to design, model and experimentally test infrared light propagation within polymer multimode waveguides as board-to-board interconnects for high data rate communication. Ray tracing models the behaviour of a novel LCD colour separating backlight to optimize its efficiency by establishing the optimum dimensions and position for a unique micro-mirror array within the light guide. The output efficiency increased by 38.2% compared to the case without the embedded mirror array. A novel simulation technique combined a model of liquid crystal director orientation and a non-sequential ray tracing program was used first time to compute the reflected intensity from a LCOS device for a rear projection TV system. The performance of the LCOS display was characterised by computing the contrast ratio over a ±15° viewing cone. Photolithographically manufactured embedded multimode waveguides made from acrylate Truemode® polymer are characterized by measuring the optical transmission loss of key waveguide components including. straight, bend and crossing. Design rules derived from the experimental measurement were used to optimize optical PCB (OPCB) layout. A most compact and complex optical interconnects layout up-to-date for data centres, including parallel straight waveguide sections, cascaded 90° bends and waveguide crossing other than 90° angles, was designed, tested and used in an optic-electrical demonstration platform to convey a 10.3 Gb/s data. A further new method for reducing the end facet roughness and so the coupling loss, by curing a thin layer of core material at the end of the waveguide facet to cover the roughness fluctuations, was proposed and successfully demonstrated giving the best results reported to date resulting in an improvement of 2.8 dB which was better than the results obtained by using index matching fluid

    Roadmap on Perovskite Light-Emitting Diodes

    Full text link
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to approaching 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community's perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization.Comment: 103 pages, 29 figures. This is the version of the article before peer review or editing, as submitted by an author to Journal of Physics: Photonics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Roadmap on perovskite light-emitting diodes

    Get PDF
    In recent years, the field of metal-halide perovskite emitters has rapidly emerged as a new community in solid-state lighting. Their exceptional optoelectronic properties have contributed to the rapid rise in external quantum efficiencies (EQEs) in perovskite light-emitting diodes (PeLEDs) from <1% (in 2014) to over 30% (in 2023) across a wide range of wavelengths. However, several challenges still hinder their commercialization, including the relatively low EQEs of blue/white devices, limited EQEs in large-area devices, poor device stability, as well as the toxicity of the easily accessible lead components and the solvents used in the synthesis and processing of PeLEDs. This roadmap addresses the current and future challenges in PeLEDs across fundamental and applied research areas, by sharing the community’s perspectives. This work will provide the field with practical guidelines to advance PeLED development and facilitate more rapid commercialization

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Liquid Crystal on Silicon Devices: Modeling and Advanced Spatial Light Modulation Applications

    Get PDF
    Liquid Crystal on Silicon (LCoS) has become one of the most widespread technologies for spatial light modulation in optics and photonics applications. These reflective microdisplays are composed of a high-performance silicon complementary metal oxide semiconductor (CMOS) backplane, which controls the light-modulating properties of the liquid crystal layer. State-of-the-art LCoS microdisplays may exhibit a very small pixel pitch (below 4 ?m), a very large number of pixels (resolutions larger than 4K), and high fill factors (larger than 90%). They modulate illumination sources covering the UV, visible, and far IR. LCoS are used not only as displays but also as polarization, amplitude, and phase-only spatial light modulators, where they achieve full phase modulation. Due to their excellent modulating properties and high degree of flexibility, they are found in all sorts of spatial light modulation applications, such as in LCOS-based display systems for augmented and virtual reality, true holographic displays, digital holography, diffractive optical elements, superresolution optical systems, beam-steering devices, holographic optical traps, and quantum optical computing. In order to fulfil the requirements in this extensive range of applications, specific models and characterization techniques are proposed. These devices may exhibit a number of degradation effects such as interpixel cross-talk and fringing field, and time flicker, which may also depend on the analog or digital backplane of the corresponding LCoS device. The use of appropriate characterization and compensation techniques is then necessary

    Virtual Reality

    Get PDF
    At present, the virtual reality has impact on information organization and management and even changes design principle of information systems, which will make it adapt to application requirements. The book aims to provide a broader perspective of virtual reality on development and application. First part of the book is named as "virtual reality visualization and vision" and includes new developments in virtual reality visualization of 3D scenarios, virtual reality and vision, high fidelity immersive virtual reality included tracking, rendering and display subsystems. The second part named as "virtual reality in robot technology" brings forth applications of virtual reality in remote rehabilitation robot-based rehabilitation evaluation method and multi-legged robot adaptive walking in unstructured terrains. The third part, named as "industrial and construction applications" is about the product design, space industry, building information modeling, construction and maintenance by virtual reality, and so on. And the last part, which is named as "culture and life of human" describes applications of culture life and multimedia-technology

    Injection moulding electroluminescent devices

    Get PDF
    Electroluminescence is a developing area of research in the fields of display technology and lighting. Solution based processing of organic materials offers the opportunity to manufacture large area, low cost illuminating surfaces but current processes are limited to two dimensions. The ability to apply electroluminescent materials onto three dimensional contoured surfaces would incorporate the illuminating function into objects, enhancing usability and removing the need for an additional light source. Furthermore, the integration directly into the manufacturing process, such as injection moulding, would have the added benefits of reducing manufacturing time, handling and have environmental and economic savings. Incorporating electronics manufacturing in-mould offers considerable potential for novel research and commercial applications. Electroluminescent multi-layer structures were constructed on 3D surfaces, applying materials using an airbrush. Novel injection moulded electroluminescent devices were successfully made using insert moulding and in-mould layer application techniques, then characterised and compared to a bought device. Electroluminescent layers were also applied to injection moulded plastic parts as a post mould treatment for further comparison. In the current state of development, insert moulding using a PTFE carrier film is the most successful method of injection moulding EL parts, producing devices that light up with an average illuminance of 210.2 39.2 lx when operated at 300 V and 400 Hz. A multi-layer thermal model developed in this project confirms that the injected plastic does not transfer enough heat energy to cure materials that are applied directly in-mould. It was also found that, after 10 weeks, the airbrush made devices maintained 27.3 % points more relative illuminance compared to devices made using a conventional method. Problems associated with all of the new processes have been identified and solutions suggested, but with further research these methods could be used to routinely mould plastic parts with the ability to illuminate

    Proceedings of the 6th International Conference EEDAL'11 Energy Efficiency in Domestic Appliances and Lighting

    Get PDF
    This book contains the papers presented at the sixth international conference on Energy Efficiency in Domestic Appliances and Lighting. EEDAL'11 was organised in Copenhagen, Denmark in May 2011. This major international conference, which was previously been staged in Florence 1997, Naples 2000, Turin 2003, London 2006, Berlin 200h9a s been very successful in attracting an international community of stakeholders dealing with residential appliances, equipment, metering liagnhdti ng (including manufacturers, retailers, consumers, governments, international organisations aangde ncies, academia and experts) to discuss the progress achieved in technologies, behavioural aspects and poliacineds , the strategies that need to be implemented to further progress this important work. Potential readers who may benefit from this book include researchers, engineers, policymakers, and all those who can influence the design, selection, application, and operation of electrical appliances and lighting.JRC.F.7-Renewable Energ

    Proceedings of the 7th International Conference EEDAL 2013 Energy Efficiency in Domestic Appliances and Lighting

    Get PDF
    This book contains the papers presented at the seventh international conference on Energy Efficiency in Domestic Appliances and Lighting. EEDAL'2013 was organised in Coimbra, Portugal in September 2013. This major international conference, which was previously been staged in Florence 1997, Naples 2000, Turin 2003, London 2006, B2e0r0l9in, Copenhagen 2011 has been very successful in attracting an international community of stakeholders dealing with residential appliances, equipment, metering liagnhdti ng (including manufacturers, retailers, consumers, governments, international organisations aangde ncies, academia and experts) to discuss the progress achieved in technologies, behavioural aspects and poliacineds , the strategies that need to be implemented to further progress this important work. Potential readers who may benefit from this book include researchers, engineers, policymakers, and all those who can influence the design, selection, application, and operation of electrical appliances and lighting.JRC.F.7-Renewables and Energy Efficienc
    corecore