114 research outputs found

    Cross Layered Network Condition Aware Mobile-Wireless Multimedia Sensor Network Routing Protocol for Mission Critical Communication

    Get PDF
    The high pace emergence in wireless technologies have given rise to an immense demand towards Quality of Service (QoS) aware multimedia data transmission over mobile wireless multimedia sensor network (WMSN). Ensuring reliable communication over WMSN while fulfilling timely and optimal packet delivery over WMSN can be of great significance for emerging IoT ecosystem. With these motivations, in this paper a highly robust and efficient cross layered routing protocol named network condition aware mobile-WMSN routing protocol (NCAM-RP) has been developed. NCAM-RP introduces a proactive neighbour table management, congestion awareness, packet velocity estimation, dynamic link quality estimation (DLQE), and deadline sensitive service differentiation based multimedia traffic prioritization, and multi-constraints based best forwarding node selection mechanisms. These optimization measures have been applied on network layer, MAC layer and the physical layer of the protocol stack that eventually strengthen NCAM-RP to enable QoS-aware multimedia data transmission over WMSNs. The proposed NCAM-RP protocol intends to optimize real time mission critical (even driven) multimedia data (RTMD) transmission while ensuring best feasible resource allocation to the non-real time (NRT) data traffic over WMSNs. NCAM-RP has outperform RPAR based routing scheme in terms of higher data delivery, lower packet drops and deadline miss ratio. It signifies that NCAM-RP can ensure minimal retransmission that eventually can reduce energy consumption, delay and computational overheads. Being the mobility based WMSN protocol, NCAM-RP can play significant role in IoT ecosystem

    Dynamic Network State Learning Model for Mobility Based WMSN Routing Protocol

    Get PDF
    The rising demand of wireless multimedia sensor networks (WMSNs) has motivated academia-industries to develop energy efficient, Quality of Service (QoS) and delay sensitive communication systems to meet major real-world demands like multimedia broadcast, security and surveillance systems, intelligent transport system, etc. Typically, energy efficiency, QoS and delay sensitive transmission are the inevitable requirements of WMSNs. Majority of the existing approaches either use physical layer or system level schemes that individually can’t assure optimal transmission decision to meet the demand. The cumulative efficiency of physical layer power control, adaptive modulation and coding and system level dynamic power management (DPM) are found significant to achieve these demands. With this motivation, in this paper a unified model is derived using enhanced reinforcement learning and stochastic optimization method. Exploiting physical as well as system level network state information, our proposed dynamic network state learning model (NSLM) applies stochastic optimization to learn network state-activity that derives an optimal DPM policy and PHY switching scheduling. NSLM applies known as well as unknown network state variables to derive transmission and PHY switching policy, where it considers DPM as constrained Markov decision process (MDP) problem. Here,the use of Hidden Markov Model and Lagrangian relaxation has made NSLM convergence swift that assures delay-sensitive, QoS enriched, and bandwidth and energy efficient transmission for WMSN under uncertain network conditions. Our proposed NSLM DPM model has outperformed traditional Q-Learning based DPM in terms of buffer cost, holding cost, overflow, energy consumption and bandwidth utilization

    Wireless multimedia sensor network technology: a survey

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) is comprised of small embedded video motes capable of extracting the surrounding environmental information, locally processing it and then wirelessly transmitting it to parent node or sink. It is comprised of video sensor, digital signal processing unit and digital radio interface. In this paper we have surveyed existing WMSN hardware and communicationprotocol layer technologies for achieving or fulfilling the objectives of WMSN. We have also listed the various technical challenges posed by this technology while discussing the communication protocol layer technologies. Sensor networking capabilities are urgently required for some of our most important scientific and societal problems like understanding the international carbon budget, monitoring water resources, monitoring vehicle emissions and safeguarding public health. This is a daunting research challenge requiring distributed sensor systems operating in complex environments while providing assurance of reliable and accurate sensing

    Energy and quality of service management in wireless multimedia sensor networks

    Get PDF
    Sensor networks are composed of resource constrained nodes that capture data from the environment, preprocess it and then transmit it to a sink node. This paper presents a scenario for monitoring an electricity distribution network, an energy analysis of the used sensor nodes and an intelligent energy and quality of service (QoS) manager. This manager continuously adapts the provided QoS according to the energy level of the nodes

    A Survey of multimedia streaming in wireless sensor networks: progress, issues and design challenges

    Full text link
    Advancements in Complementary Metal Oxide Semiconductor (CMOS) technology have enabled Wireless Sensor Networks (WSN) to gather, process and transport multimedia (MM) data as well and not just limited to handling ordinary scalar data anymore. This new generation of WSN type is called Wireless Multimedia Sensor Networks (WMSNs). Better and yet relatively cheaper sensors that are able to sense both scalar data and multimedia data with more advanced functionalities such as being able to handle rather intense computations easily have sprung up. In this paper, the applications, architectures, challenges and issues faced in the design of WMSNs are explored. Security and privacy issues, over all requirements, proposed and implemented solutions so far, some of the successful achievements and other related works in the field are also highlighted. Open research areas are pointed out and a few solution suggestions to the still persistent problems are made, which, to the best of my knowledge, so far have not been explored yet

    Abstract — Wireless Multimedia Sensor Networks

    Get PDF
    (WMSN) can handle different traffic classes of multimedia content (video, audio streams and still images) as well as scalar data over the network. Use of general and efficient routing protocols for WMSN is of crucial significance. Similar to other traditional networks, in WMSN a noticeable proportion of energy is consumed due to communications. Many routing protocols have been proposed for WMSN. The design of more efficient protocols in terms of energy awareness, video packet scheduling and QoS in terms of checkpoint arrangement still remains a challenge. This paper proposes the actuation of sensor on demand basis and routing protocol based on cost function which efficiently utilizes the network resources such as the intermediate nodes energy and load. Cost function is introduced to improve the route selection and control congestion. Simulation results, using the NS-2 simulator show that the proposed protocol prolongs the network lifetime, increase the reliability and decrease the network load
    • …
    corecore