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Abstract: The rising demand of wireless multimedia sensor 

networks (WMSNs) has motivated academia-industries to develop 

energy efficient, Quality of Service (QoS) and delay sensitive 

communication systems to meet major real-world demands like 

multimedia broadcast, security and surveillance systems, intelligent 

transport system, etc. Typically, energy efficiency, QoS and delay 

sensitive transmission are the inevitable requirements of WMSNs. 

Majority of the existing approaches either use physical layer or 

system level schemes that individually can’t assure optimal 

transmission decision to meet the demand. The cumulative 

efficiency of physical layer power control, adaptive modulation and 

coding and system level dynamic power management (DPM) are 

found significant to achieve these demands. With this motivation, in 

this paper a unified model is derived using enhanced reinforcement 

learning and stochastic optimization method. Exploiting physical as 

well as system level network state information, our proposed 

dynamic network state learning model (NSLM) applies stochastic 

optimization to learn network state-activity that derives an optimal 

DPM policy and PHY switching scheduling. NSLM applies known 

as well as unknown network state variables to derive transmission 

and PHY switching policy, where it considers DPM as constrained 

Markov decision process (MDP) problem. Here, the use of Hidden 

Markov Model and Lagrangian relaxation has made NSLM 

convergence swift that assures delay-sensitive, QoS enriched, and 

bandwidth and energy efficient transmission for WMSN under 

uncertain network conditions. Our proposed NSLM DPM model 

has outperformed traditional Q-Learning based DPM in terms of 

buffer cost, holding cost, overflow, energy consumption and 

bandwidth utilization.  
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1. Introduction 
 

In recent years, the high pace rises in wireless 

communication systems and associated application demands 

have motivated researchers to achieve low cost, efficient and 

robust routing protocols. The ease of implementation, 

efficiency and scalability of wireless communication systems 

makes it the dominating communication system solution. 

Among varied wireless technologies, Wireless Sensor 

Network (WSN) is one of the most used technologies to 

serve an array of applications including surveillance 

facilities, industrial monitoring and control, wireless 

broadcast, defense purposes, traffic surveillance etc. Being a 

low-cost solution for an array of communication purposes, 

WSN has gained widespread interest and recently has given 

rise to a new domain called Wireless Multimedia Sensor 

Network (WMSN) that enables multimedia data transmission 

over it. WMSN has significantly high serving capacity for 

multimedia real time data (RTD) transmission for multimedia 

broadcast and decision purposes. WMSN comprises multiple 

sensor nodes interfaced through wireless communication 

media that collect event driven real time multimedia data 

from transmitter and forwards it to the sink for decision 

process [1]. Interestingly, WMSNs have been found 

significant for emerging technologies such as Internet of 

Things (IoTs) [2-4], machine learning where it requires 

enabling energy efficiency, minimal end-to-end delay, 

bandwidth utilization and QoS delivery. In practice most of 

WMSN systems undergo adversaries like computational 

overheads, energy consumption, network contention, 

congestion and data drop, etc. Furthermore, the probability of 

computational overhead, buffer cost or the holding period 

etc., can’t be ignored. Therefore, it demands certain efficient 

protocol to enrich WMSN to avoid mentioned adversaries 

[5,6]. Though, numerous efforts have been made, most of the 

existing routing approaches are found limited to provide 

timely data delivery, delay sensitive RTD delivery, energy 

and bandwidth efficient communication [7,8]. Multimedia 

communication over WMSN often demands minimal latency, 

delay sensitive transmission, higher throughput, higher 

bandwidth utilization, and low energy consumption.  

Recently, mobility-based sensor networks have gained 

significant attention due to its data gathering efficiency, 

energy reduction ability, and higher scalability. Due to 

excessive mobility there is often uncertainty in the network 

that makes forwarding decision intricate that as a result 

makes QoS delivery difficult. Median Access Control (MAC) 

optimization in physical layer transmission scheduling can 

enable better performance. However, such single layer 

optimization doesn’t yield optimal solution and requires 

certain cross layer architecture-based routing [8-11] to 

maintain overall functional efficacy of the network. Authors 

[12] developed an interference aware routing protocol for 

WMSN. Cross-layer architecture was developed by 

incorporating an integrated model connecting all layers of the 

protocol stack (IEEE 802.15.4) that was found efficient to 

achieve QoS [13]. Still, the prime limitation is the use of 

single network parameter for forwarding decision. 

Unfortunately, as per our present knowledge not much 

significant efforts are made to incorporate mobility with 

WMSN. The prime reasons of such limitations are 

topological dynamism that cumulatively makes transmission 

decision intricate. To deal with it, we developed a multi-

constraints cross-layer model named network condition 

aware routing protocol for WMSN (NCAM-RP) [14]. 

NCAM-RP focused on integrating mobility with WMSN 

while ensuring QoS delivery, higher throughput, deadline 

sensitive transmission and low data drop. In addition, it 
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emphasized on achieving higher RTD delivery, while 

maintaining best feasible resource provision for Non-real 

time (NRT) data.  

Mobility in WMSN introduces topological variations in the 

network conditions that as a result forces network to undergo 

buffer contingency, contention, data drop, delay and energy 

exhaustion [12,14]. On the contrary, multimedia 

communication often requires timely data delivery with 

minimum resource consumption [5,6]. Undeniably, 

transmission over WMSN requires minimal buffer or holding 

period (the time during which a node retains or holds packet 

before transmission and delivery to the sink), higher resource 

utilization, and minimal energy consumption at each node. 

Practically, enabling delay resilient and energy efficient 

transmission are directly related to power control at PHY. 

Literatures reveal that DPM at system level and PHY 

switching based power control at physical layer can 

cumulatively enable swift data transmission, optimal 

bandwidth utilization, and more importantly energy-efficient 

adaptive transmission [15,16]. However, in dynamic network 

topology performing transmission scheduling and PHY 

switching is highly intricate and even infeasible unless a 

controller is aware of network conditions and channel states. 

In this case, performing network state learning is always a 

dominating solution [16]. In mobile WMSN network 

parameters can vary over time and hence learning the known 

as well as unknown parameters (Ex. Buffer available at a 

node, deadline time etc.,) and adapting PHY switching 

accordingly can make overall routing efficient. Since, the 

network parameters can be in large amount and even varying 

over time, performing fast learning or convergence can make 

overall network time and QoS efficient. The classical 

learning methods such as Q-learning [15,17,18] often uses 

known parameters to make any stochastic decision. On 

contrary, mobile-WMSN requires a suitable learning 

approach that could exploit or apply both known as well as 

unknown parameters to make optimal PHY switching 

decision to achieve timely, resource efficient and QoS 

communication. Considering it as motivation, in this paper a 

robust network condition or network state learning based 

stochastic model is developed for DPM and PHY switching. 

Majority of existing approaches have applied either system 

level DPM or physical layer control such as Adaptive 

Modulation and Coding (AMC) [16]. However, these 

techniques as individual solution can’t assure optimal 

solution. Unlike traditional approaches [16-19], in our 

proposed method we have exploited the efficiency of system 

level DPM and physical layer control AMC. Thus, the 

proposed model can be stated as a cross-layer approach 

comprising both the system level design as well as physical 

layer power control. It can make the proposed approach 

suitable for mobile-WMSN. In our proposed model, we have 

developed a novel stochastic learning approach that learns 

over known as well as unknown network parameters to make 

adaptive DPM and PHY switching to achieve time, resource 

and quality efficient communication over sensor network. 

Considering the above features, here onwards we state our 

proposed model as Network State Learning Machine 

(NSLM) based DPM. The predictive characteristic of NSLM 

enables it to be called as a stochastic model that intends to 

achieve optimal DPM and transmission scheduling. To 

behave as stochastic model, NSLM exploits Markov 

Decision Process (MDP) using HMM and Lagrange 

relaxation that assures swift convergence for timely 

transmission decision. Thus, our proposed system can be 

called as the constrained MDP problem, where emphasis is 

made on achieving swift learning and PHY switching to have 

timely and resource efficient transmission. The proposed 

system is developed using MATLAB tool, where simulation 

is made to assess effectiveness in terms of delay, power, 

resource consumption, convergence rate etc. To examine 

performance of the proposed system, we have compared it 

with traditional Q-Learning based DPM, where the overall 

results affirm that our proposed NSLM technique 

outperforms classical Q-Learning based power management 

and transmission scheduling for WMSN. The results and the 

cumulative robustness of our proposed technique enable it to 

be suitable for mobile WMSNs.  

The other sections of the presented paper are divided as 

follows: Section 2 presents the related work; Section 3 

discusses the proposed research work, which is followed by 

results discussion in Section 4. Conclusion and future scopes 

are presented in Section 5. References used in this paper are 

given at the end of the manuscript. 

2. Related Work 

To derive a novel WMSN solution, enriching a protocol with 

energy efficiency, minimal delay and QoS delivery enriched 

communication in sensor network is must. To achieve it 

authors [12,13] derived a multi-relay-based delay-sensitive 

transmission for wireless communication. They [12] found 

that their approach is effective in reducing energy exhaustion. 

Considering significance of PHY layer for energy 

enhancement, authors [20, 21] examined LEACH and AODV 

routing protocols. Authors [22] applied CSMA/MAC based 

iQueue-MAC to deal with dense traffic conditions and 

transmission scheduling to achieve energy efficiency. The 

effort to use local network statistics such as node distance, 

successful transmission probability, channel statistics etc., 

were used to develop energy efficient routing protocol [23]. 

In [24] cross-layer architecture-based packet-forwarding 

scheme named channel-aware geographic-informed 

forwarding (CAGIF) was developed; however, the issue of 

topological variations and network uncertainty could not be 

addressed. For data sensitive transmission, authors [24] 

proposed “green Task-Based Sensing” (gTBS) where they 

focused on sleep-awake scheduling to reduce energy 

consumption. Authors [25] proposed a cross layer model 

where they considered application layer, network, MAC and 

PHY layer to achieve energy efficiency. Authors applied 

topological states including node’s current location to 

perform route discovery. They applied MAC to exhibit 

power control for reduction in energy consumption. In [26], 

network layer and adaptive power control approaches were 

suggested to reduce energy consumption. To deal with 

multiple constraints a convex optimization model was 

developed in [27], which was later used to design a cross-

layer model to increase network lifetime and bandwidth. In 

[28] PHY, MAC and network layers were applied to derive a 



268 
International Journal of Communication Networks and Information Security (IJCNIS)                                        Vol. 10, No. 2, August 2018 

 

cross layer formulation, where authors applied residual 

energy and link quality as the network parameters and 

applying Fuzzy learning they determined next hop decision to 

achieve low energy consumption. Considering the need of a 

network learning approach for best forwarding path 

estimation, authors [29] developed a hybrid evolutionary 

approach using genetic algorithm (GA) and bacteria foraging 

optimization (BFO). However, could not address the issue of 

dynamic or uncertain network condition. Interestingly those 

approaches are confined to provide optimal solution with 

uncertain network conditions. In [30], a mobile agent-based 

network learning model was developed for energy efficient 

routing.  

Authors made effort to derive a cross layer model-based 

routing protocol for bandwidth constrained [1] and QoS 

demanding [31] WMSNs. To achieve network condition 

adaptive data transmission, researchers [32] derived an 

entropy tracking model which uses network condition 

variations and the correlation structure (based on distance 

between nodes, characterizing spatial correlation between 

multimedia sensors) to define its multi-rate transmission 

scheduling. Authors focused on PHY scheduling in a way 

that the transmission rate could be adjusted based on 

deadline time and data rate required. In [19] a cross-layer 

model was developed; however, they could not address the 

issue of data priority and adaptive transmission. Adaptive 

link quality based WMSN routing model were developed in 

[33] and [34]. Researchers [30, 35] found geographic routing 

protocols efficient for WMSNs due to the shortest path-based 

transmission scheduling. However, it doesn’t guarantee 

performance with varying topology and uncertain network 

conditions, particularly during congestion or contention 

scenarios. A multipath routing approach was suggested in [8] 

to achieve delay sensitive transmission and per node holding 

time reduction. In [36], authors developed a cross-layer 

model-based MAC optimization scheme where they focused 

on RTD delivery by means of multiple paths. Authors [37] 

made effort to deliver QoS in WMSN, however at the cost of 

the energy consumption. In [4, 11], authors derived a QoS 

aware MAC routing protocol where they applied bandwidth 

and delay as the WMSN forwarding node selection criteria. 

In multimedia transmission, assigning data priority is must 

and hence with this objective, authors [38] derived a 

doubling-based service differentiation that mainly focused on 

prioritized data transmission over sensor network, though the 

QOS constraints and energy efficiency remained unexplored. 

On contrary, authors [39] derived RTD delivery model under 

resource constrained scenarios. Deadline time-based traffic 

prioritization was done in [40]; however, could not address 

the fundamental WMSN requires such as bandwidth 

utilization and energy exhaustion or node life span. Authors 

[41] developed a multipath routing scheme where they used 

traffic priority [42], link quality and energy to perform MAC 

scheduling. Considering efficient power management 

schemes for wireless sensor networks, most of approaches 

have either used power control and adaptive modulation and 

coding (AMC) at physical layer or dynamic power 

management at system layer. However, along these 

approaches are confined and hence requires a unified model 

to enable optimal DPM and PHY switching system to yield 

delay sensitive, energy and bandwidth efficient routing 

protocol for WMSNs. 

Considering the significance of a robust routing protocol for 

wireless multimedia sensor network (WMSN), in our 

previous work [14], we developed a novel multi-constraint, 

cross-layered routing protocol. With intend to develop a low 

cost and efficient WMSN solution we developed mobility 

based WMSN protocol NCAM-RP. It was implemented at 

Application layer, MAC layer and Network layer of the 

WMSN protocol stack. NCAM-RP protocol was emphasized 

on delivering higher throughput for mission critical RTD data 

transmission, while ensuring fair resource provision to the 

NRT data over WMSNs. Though, it exhibited better in terms 

of throughput and delay sensitive transmission but the key 

requirement such as bandwidth efficiency, energy efficiency 

and delay could not be addressed. Strengthening NCAM-RP 

with DPM and network adaptive PHY switching can meet 

QoS and energy efficient demand. NCAM-RP being a 

mobile-WMSN approach requires dealing with the uncertain 

network conditions caused due to dynamic (i.e., mobile) 

topology, therefore it requires certain stochastic (network) 

learning model for DPM and power control policy. 

Considering it as motivation, in this paper we have developed 

a robust dynamic network state learning model (NSLM). It 

can be considered as an enhanced reinforcement learning 

where unlike generic Q-Learning based approach, we have 

considered both the known as well as unknown network 

parameters to make transmission switching decision and 

DPM policy. The overall proposed DPM function is 

considered as constrained Markov Decision Process (MDP), 

where Hidden Markov Model (HMM) and Lagrangian 

relaxation have been applied to enhance convergence rate 

that enables swift decision policy estimation for delay-

sensitive DPM and transmission scheduling. Our proposed 

model encompasses both the stochastic optimization as well 

as enhanced reinforcement learning based online network 

state learning to derive optimal transmission or DPM policy. 

To enable a cross layer solution, our proposed NSLM model 

incorporates both physical layer components such as power 

control and AMC as well as system level components such as 

DPM. It enables our model to exploit the physical as well as 

system level information to derive a novel DPM solution or 

transmission solution. In proposed unified stochastic 

optimization and learning model based DPM, the time series 

(network) events have been learnt, based on this an optimal 

state-action policy is derived for DPM and PHY switching or 

transmission scheduling. The discussion of the overall 

proposed model and its implementation is given in the next 

section. 

3. System Model 

This section discusses the proposed NSLM based unified 

DPM and transmission scheduling (PHY switching). As the 

proposed approach considers network condition statistics to 

control transmission switching, it employs both the PHY 

layer as well as system layers components. Considering 

network condition learning, NSLM considers time-slotted 

model where the overall simulation time is divided into a 

defined time interval (say, ). Here, the time division is 

decided in way that certain  time-slot is defined in the 

form of . NSLM performs transmission 
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decisions at the start of each time-slot. Here, the network 

state has been obtained at the interval of ∆t. The channel 

states variables or network state variables (NSVs) such as 

buffer availability, bit error probability (BEP), etc are 

estimated for each slot ∆t. One of the key novelties of the 

proposed work is the consideration of the known as well as 

unknown state variables to learn network conditions and 

derive optimal PHY scheduling and transmission decision 

policy. Thus, the overall proposed model (Figure 1) intends 

to schedule PHY switching and transmission scheduling to 

accomplish optimal bandwidth utilization, low buffer holding 

period, minimal delay and energy consumption. 
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Figure 1. Proposed network condition adpative DPM and 

PHY scheduling model 
 

The following sub-sections discuss the proposed network 

condition aware DPM model. 

3.1  PHY Layer DPM and transmission Scheduling 

The present day physical layer centric approaches apply 

AMC based power control model to enable optimal power 

management and (PHY switching) transmission scheduling. 

Most of the multimedia communication systems apply AMC 

based power management policy. It signifies the robustness 

of the AMC strategies for QoS achievement. This approach 

plays vital in reducing power consumption, however 

retaining system as active even during the phase when there 

is no transmission, costs a lot and thus reduces overall 

efficiency. The use of system level components such as 

wireless card can assist scheduler to known real time network 

state to make DPM. We exploit this approach to derive 

network condition aware DPM model for WMSN. The 

proposed model considers the frequency non-selecting 

channels where  refers the channel-fading-coefficient 

(CFC) during time slot n.  Here, the channel states  can be 

considered as discrete and finite variable [43-46]. For 

computation,  is constant during a fixed interval  that 

makes channel state , and allied 

computation easy. Literatures suggest that the varying 

network states such as dynamic channel conditions, buffer 

availability, channel state information (CSI), BEP etc. can be 

obtained by means of Markov model with the transmission 

probability of . Here, physical layer is considered 

as single carrier SISO (Single Input Single Output) with fixed 

data rate. The rate of data generation is presented   

that also signifies symbols per generation. The transmitter 

node is supposed to be generating data at the rate of 

(bits/s), where presents the overall bits 

obtained by AMC’s modulation. We consider each packet of 

 bits, where  is known and fixed. To measure the BEP 

(α), receivers use detectors (maximum likelihood ) (1) 

with the transmission power  (2). Mathematically, 

  
(1) 



(2) 

where  refers the throughput for each slot . Considering 

independent bit errors across the WMSN network, the loss 

rate for the individual packet of  bit is measured in terms 

of BEP. Thus, the packet loss rate (PLR) is estimated using 

(3). 

 
(3) 

In WMSN, the throughput being one of the most vital 

parameter for QoS delivery, characterizes the dynamic link 

quality between sensor nodes. Considering throughput as the 

significant network parameter, we have considered it as the 

decision variable. Consider a case to transmit  for a 

time slot ∆t (to achieve a cumulative throughput of 

), it is must to recognize the total bits per symbol 

( )during modulation. Here,  is obtained as (4). 

 
(4) 

The known packet throughput with , and CSI , the 

decision towards transmission power  becomes easy 

which can be further applied to estimate BEP or vice versa. 

In QoS oriented WMSN, BEP can be a suitable decision 

parameter and can be applied for transmission power 

decision which is anticipated for DPM and PHY switching. 

PHY switching and power transmission scheduling can be 

feasible with known BEP and ,; however, with mobility 

WMSN the varying topology could cause these parameter to 

vary over time and hence remains unknown. This condition is 

strongly in conjunction with NCAM-RP routing protocol 

[14]. To deal with this situation, we intend to derive a 

dynamic network state learning model to enable adaptive 

PHY switching or DPM to adapt AMC model. Noticeably, 

implementing simultaneous modulation and coding 

mechanism the equations (1-2) can force outputs (1-2) 

unachievable. To avoid it and to make the equations (1) and 

(2) known, fitting the network parameters can be vital [47-

49]. NSLM applied an enhanced reinforcement learning 

approach based stochastic optimization and learning model to 

derive optimal state-activity policy for enhanced DPM. 

NSLM DPM considers both system level as well as PHY 

level network parameters. System layer parameters typically 

considers higher layer of the protocol stack and is armored 

with wireless card to provide dynamic channel states or 

information to make proper decision. 

3.2  System-Level Model for DPM 

In addition to the DPM and AMC, which measure the active 

transmission power, we intend to introduce certain additional 

wireless components (Figure. 1) in the low power states that 

consequently can reduce power consumption. In general, the 

wireless cards of the major sophisticated communication 

system resides in the power state set  which 

can be scheduled for sleep and awake states. The sleep and 

awake state can be well understood in terms of ON and OFF 

states respectively. Let the switching functions be 

. A channel with respective state 
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conditions  characterizes the state  of the wireless card. 

Let  be the probability of the maximum BEP,  be the 

power control action to achieve dynamic power control, 

DPM or PHY switching. The variable  signifies the 

overall throughput. Thus, using these variables, the power 

required for transmission and link adaptive transmission 

scheduling can be obtained by (5). 

 

 

 
 
 
(5) 

Here,  is the transmission power in Watts unit. The other 

variables  and  signify the power consumed during 

state conditions, “ON” and “OFF”, respectively. The variable 

 presents the energy consumed during the transition (i.e., 

from ON to OFF or vice versa). Here, we assume that 

 such that there can be certain penalty 

to perform switching in between the two states [50]. 

Researchers [50] suggested that the power management states 

sequence  can be derived in the form 

of a controlled Markov model having the distinct transition 

likelihood . Let  be the transition 

likelihood matrix (TLM) conditioned on y in the way that 

. Due to the high level of 

abstraction, there could be the likelihood of a non-

deterministic delay in combination with the DPM state 

transition, and thus 

 

 

 
 
 
(6) 

In (6), the state conditions presented in row and column 

refers the present ( ) and the next state ( ), 

respectively. The variable  refers the 

successful transmission probability. In our model, to maintain 

elucidated solution, we have considered the power state 

transition (PST) as deterministic  and is applied 

with condition  (where θ can be known or unknown). 

NSLM assures non-zero throughput , when  and 

, otherwise throughput   is obtained as zero. 

3.3  Transmission Model and Buffer Modelling 

Considering functional approach, similar to our previous 

work [14] where RTD was stored in prioritized buffer while 

NRT data were queued in first-in first-out (FIFO) manner, for 

simple implementation we consider FIFO transmission buffer 

(Figure. 1). Here, the transmitter transmits  packets into the 

associated buffer in each slot n, where  has the distribution 

. Each packet is of bits size and the receiving 

process  is considered being self-directed 

and is uniformly distributed across time slot n. The received 

packets are stored in a fixed size buffer, which can store the 

maximum of  packets. The buffer state     

emerges iteratively using (7). 

 

 

 
(7) 

Where  signifies the initial buffer state and 

is the goodput during each time slot. Here, 

good-put refers the total number of packets transmitted 

successfully. Typically, good-put depends on two parameters, 

BEP  and throughput 

.  

To achieve delay sensitive delivery for WMSN, buffer cost is 

introduced that rewards the system for minimizing overall 

delay, particularly queuing delay. It also plays vital role in 

avoiding packet overflows caused due to abrupt escalation in 

transmission delay. It might occur frequently in mobility 

based WMSNs. Varying network dynamicity, fading, and 

traffic burst are the predominant reasons for the packet 

overflow conditions. Buffer cost is considered as the 

expected sum of the overall Holding Cost (HC) and the 

Overflow Cost (OC) in conjunction with the received packet 

and the good put distribution. Mathematically. 

 

 

 

(8) 

In (8) the Holding Cost (HC) refers the total packets which 

could not be delivered successful and is available in the 

buffer (initially). In fact, it is equivalent to the buffer cost. In 

case of stable buffer condition (i.e., no buffer overflow), HC 

is proportional to the queuing delay [51]. In contrast, for 

unstable buffer condition (i.e., overflow condition) the 

proposed overflow cost introduces a penalty factor  for 

each dropped packet. Here,  plays vital role in solving the 

optimization problem. 

3.4 NSLM DPM as Constrained Markov Decision 

Problem 

This section primarily discusses the implementation of the 

proposed NSLM model for DPM and PHY switching policy 

derivation. 

3.4.1 Constrained HMM Design and Decision 

Mechanism 

Our proposed model at first employs a joint state model that 

contains key network information such as buffer state 

information, power state, and link quality related 

information. Furthermore, we introduced a vector called Joint 

Action Vector (JAV) that specifically contains BEP, DPM 

action y, and the network throughput per slot . (here 

onwards we present throughput per slot by ). 

Mathematically, 

  
(9) 

 

We formulate WMSN network state as a sequential set given 

by , derived as a controlled MDP. In 

applied MDP scenario, the state transition probability is 

calculated based on certain conditionally independent 

parameters (i.e., buffer conditions or availability, DPM state 

transitions).  

 In NSLM, MDP applies decremental criterion as it needs a 

single optimality function which is independent of MDP 

chain model. Decremental objectives not only enable swift 

computation but also enable cost effective solution in 
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comparison to other state of art technique such as Q-learning. 

In practice, the traffic conditions of the WMSN and 

associated channel states are stationary only for a small-time 

period; and therefore can predict costs which DPM policy 

could use to make future decision. In this manner, the 

expected future costs can be significantly minimized during 

DPM learning and decision for each time slot . It is 

significant to optimize the time average cost, because of 

unknown lifetime of an application, where there can be 

unknown prior information. Considering this fact, we have 

assumed that the application could stop with the probability 

of   in  time slot and thus the MDP would turn into 

zero-cost power use state. In continuation of the above 

discussed optimization objectives and allied constraints, a 

penalty factor called per-packet penalty (PPP)  is estimated 

that is typically caused due to overflow in buffer cost 

function (9). To have a better solution, the penalty  must be 

optimally large so as to maintain minimal packet drop during 

transmission, which is must for multimedia communication 

over WMSNs. To achieve sub-optimal packet drop, we have 

applied penalization for each dropped packet by minimal cost 

that could induce it to the buffer for further transmission. The 

maximum cost that a packet may achieve when entering the 

buffer is the infinite holding cost (HC) incurred when the 

packets are hold for long time or forever.  

Typically, in WMSN systems, a data packet reaching a node 

at  doesn’t inevitably add any significant holding cost till 

, and hence the infinite HC can be obtained as (10). 

 

(10) 

Where  presents the reductive factor (RF) or the 

decremental factor (DF). 

3.4.2 Lagrangian Relaxation Model 

The optimization model derived based on minimize 

decremental power cost can be re-modeled as certain 

unimpeded MDP by means of Lagrange relaxation, also 

called Lagrange multiplier. The Lagrange multiplier can be 

used in relation to the delay parameter. We have derived a 

factor called Lagrangian cost function (LCF) (11): 

 
(11) 

where the value  signifies the Lagrange relaxation or 

multiplier.  presents the power cost as derived in (5) 

and signifies buffer cost (11).  

The following section discusses the brief of the DPM 

learning policy.  

The overall relationship between varying WMSN network 

states and policies or the actions at the time slot n, and the 

network state at the  time slot are presented in Figure 2. 

It also depicts the network state transition probability at 

 and associated SVF and cost functions etc. 
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Figure 2. Visualization of the MDP 

3.4.3 DPM Learning Model  

In the proposed model, we have considered the buffer cost 

and the transition probability function (TPF) as the unknown 

variables, as it varies due to topological variations [14] As a 

result, it makes the measurement of the key network 

parameters and possible through value iteration. These 

network parameters are needed to be learnt during active life 

time (i.e., online) based on the past experiences or WMSN 

network events. To perform this, we have derived a 

reinforcement learning model that learns  and  

parameters online, without even estimating the unknown cost 

and TPF. To exhibit DPM and PHY switching decision 

learning the policy parameters is needed. Here, the derived 

network state learning model (NSLM) can be considered as a 

model-free reinforcement learning approach to obtain 

optimal state-action paid for DPM and power switching 

policy. In addition, Q-learning approach that measures  

while assuming network parameters as unknown and varying 

is also developed in this paper. As an enhanced solution for 

traditional Q-Learning based network state learning (QNSL) 

to adopt mobility based WMSN, specifically for NCAM-RP 

[14] we have strengthened NSLM that could enable an 

integrated model comprising both the known as well as 

unknown network parameters. To achieve this, the buffer cost 

and the TCF are considered as learning variables. A brief of 

the conventional Q-Learning based DPM model is presented 

as follows: 

3.4.4 Q--learningBased Network State Learning 

(QNSL) 

The typical Q-learning scheme updates the step exhibited and 

evidences observed in individual time-slot on the basis of the 

evidence  mathematically, 

 
 

(12) 

In (12)  and  present the state and the performed action 

during each time slot , respectively. The variable  presents 

the associated cost with related expectation value 

The results for next  time slot is , 

which is distributed according to the condition 

. The parameter  signifies the greedy 

action during states  which minimizes the present 

measurement-value of AVF. In (23),  signifies a 

time-varying learning rate. Here,  is initiated in 

random manner for the complete set .  

To perform the approximation of , the traditional Q-

learning model uses the average of the AVF  In practice, 

the fixed instantaneous cost and TPFs, iterative explore or 



272 
International Journal of Communication Networks and Information Security (IJCNIS)                                        Vol. 10, No. 2, August 2018 

 

visit the state-action pairs, and applying the stochastic 

approximation condition , 

and ,  converges with 

probability 1 to  as . Applying QNSL it can’t be 

evident that what must be the optimal action to perform in 

each state during learning. Though,  can be obtained by 

random search of the present actions in each state; however, 

random search methods can’t ensure optimal run-time 

performance because of iterative sub-optimal solution 

occurrences. On the other hand, the greedy actions exploring 

the information available in  can be significant to achieve 

certain expected level of performance. Undeniably, learning 

something already known can avoid the search process to get 

the optimal solution. Unlike other methods [15], in our model 

a method called -greedy action selection method is 

suggested. The Q-Learning assumption that the unknown cost 

and TPFs generally depend on the action is the main reason 

of the requirement of the search. Without hesitation, QNSL 

can’t be stated as a robust and efficient approach due to the 

reason that it updates AVF for each pair of the state-action 

for complete time slots and does not achieve any known 

network parameter. Consequently, it suffers from 

convergence issue (high convergence time) to achieve the 

sub-optimal solution for DPM or PHY switching decision. 

This as a result can significantly reduce the run-time 

performance [17, 52]. Due to this reason, it can’t be 

suggested for NCAM-RP based WMSNs, where time and 

bandwidth efficient transmission are must.  

Considering such limitations, we have proposed NSLM is 

solved as MDP problem where the use of HMM and 

Lagrange relaxation makes it swift enough to achieve all 

major expectations.  

3.5  Network State Learning Based DPM Model for 

NCAM-RP (NSLM) Implementation 

Considering the practical NCAM-RP based WMSN scenario, 

where there are known as well as unknown network 

conditions, we developed NSLM for WMSNs dynamic 

power management and PHY switching scheduling. NSLM 

model targets achieving delay sensitive and bandwidth and 

energy efficient DPM along with optimal bandwidth 

utilization and minimum buffer cost, which are the inevitable 

needs for WMSNs. Unlike QNSL, which uses the sample 

average of the known network parameters for approximating 

the state transition parameters, NSLM uses both known as 

well as unknown network parameters to approximate network 

states for efficient DPM and PHY switching decision. 

3.5.1 Partially Known Network State Parameters 

Due to uncertain and varying topology NCAM-RP can have 

consistent topological variations and hence changing network 

status. Thus, there can be negligible or partial (i.e., very few) 

information available for run-time network functions. Before 

discussing the network state learning and scheduling, it is 

important to identify or define known and unknown 

parameters in WMSNs. Table 1 presents the parameter 

definition for WMSNs. 

 

 

 

Table 1. Parameter Definition 

 Deterministic Stochastic 

Known 

Parameters 

PHY Power 

management (PPM) 

state, overall power cost 

Good put, Holding cost 

Unknown 

Parameters 

- Packet arrival 

distribution, CSI, overflow 

cost 

Here, with known DPM state (interval (0,1)) the state 

transition can be stated to be stochastic in nature [50]. On the 

contrary, with unknown power management state the DPM 

transition can be stochastic as well as unknown. In same 

manner, if the BEP value is unknown for each time slot, then 

the respective good put and holding cost can be stated to be 

stochastic and unknown. The power transmission, the power 

cost can be considered as unknown. NSLM exploits the 

known as well as unknown parameters to enable swift PHY 

switching and eventual DPM for robust WMSN routing 

protocol. 

3.5.2 NSLM Learning 

In case of NSLM model, initially the network state is defined 

as soon as the known network dynamics have occurred just 

before the unknown network dynamics.  Let the network state 

be , for state prediction and decision process NSLM at 

 time slot is required to be associated with the current 

network state parameters given as  and the 

action parameter . With these conditions, 

states at 
th

 and 
th

 time slot would be (13) and (14) 

respectively.  

 (13) 

 
(14) 

In above expression, the transmission buffer 

presents the state of the transmission buffer 

after packet transmission. NSLM applies known network 

parameters, especially the state transition information from 

 to  state after applying action . In addition, the 

impending state applies all unknown network dynamics i.e. 

the number of packet arrivals  and next channel state 

information . The buffer state at  can be stated at 

time slot   . The relationship 

between different state parameters and associated actions are 

presented in Figure 3.  

Observing Figure 3. it can be easily found that obtaining 

single DPM information may be significant to extract 

information about various other state-action pairs causing it. 

It puts foundation of the NSLM to exhibit efficient network 

state learning and transmission scheduling. The proposed 

learning model encompasses two types of the TPF 

components, known and unknown components.  

The overall implementation model of the proposed NSLM 

model for DPM and PHY switching is briefed as follows: 
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 Figure 3. The State-Action relationship 

 

3.5.3 NSLM based optimal DPM policy 

The proposed NSLM model converges to the optimal post 

decision state value function  estimation even under 

dynamic or uncertain network condition, providing the 

learning rates  fulfills the following conditions: 

                   (15) 

A brief of the post decision state learning based on NSLM 

for DPM and PHY switching decision is presented as 

follows: 

Phase-1 Initialization: Initiate NSLM state value function  

at  

Phase-2 Initiate Greedy Action: Initiate greedy action 

function  

 (16) 

Phase-3 Measure Network states, activities and experiences  

                 (17) 

Phase-4 Estimate the network state value : 

  (18) 

Phase-5 Update NSLM value: With obtained information 

(Phase 3 and Phase-4) update the value of NSLM 

  (19) 

Phase-6 Apply Lagrange multiplier to update decision 

parameters  using equation (20)   

Phase-7 Execute Iterations: Execute iteration for the 

functions and update time index  and move to 

the Phase-2. 

To enable delay sensitive, energy efficient and resource 

efficient transmission scheduling or PHY switching, NSLM 

applies a stochastic sub-gradient learning approach for 

estimating optimal Lagrange multiplier to be used in (11). It 

is obtained as (20).  

      (20) 

where  assigns  over , presents a time-

dependent learning rate with similar characteristics as . The 

variable  presents the transmission buffer cost having 

expectation , and  converts the 

decremented delay constraint  into an average delay 

constraint. In order to achieve swift convergence of (20) an 

additional condition is needed to be meet by  and  : 

     (21) 

 

Since, the conceptual convergence of NSLM requires a fixed 

Markovian condition, and therefore it becomes possible to 

track the Markovian dynamics by altering the learning rates 

 sequences (to update network state value function) and  

(for Lagrange multiplier update). Maintaining  and  

bounded away from zero can avoid previous evidences or the 

experience from biasing the state value function and the 

Lagrange multiplier. It can significantly enable the tracking 

of the network state dynamics. This mechanism in 

conjunction with the proposed NSLM learning can enable 

swift Markovian convergence to enable fast power 

management decision and transmission scheduling. This as a 

result assure optimal bandwidth utilization, minimal delay 

and energy efficient communication. These all achievements 

are the dominating needs for WMSN communication 

systems. Thus using the known network condition or states 

through NCAM-RP, the cost and transmission probably 

functions, (  and  our proposed 

learning model can perform efficient and timely network 

learning and transmission decision to achieve optimal DPM 

and PHY switching. Furthermore, the network state 

variations in mobility based WMSN could give rise to the 

unknown network dynamics 

( and , which is independent of 

the execution function and therefore there is no need to use 

randomized search so as to identify the optimal action in the 

individual network state. It shows that the current or the latest 

estimates of the value function can be obtained and therefore 

there is no need to investigate or use any non-greedy action. 

4. Results and Discussion 

In last few years, the exponential rise in communication 

systems, particularly multimedia data communication over 

sensor networks have demanded efficient and robust routing 

approaches to ensure QoS delivery and energy efficiency. 

WMSN has emerged as one of the most demanding 

techniques to meet major low-cost communication purposes. 

To meet the key demands such as timely data delivery, higher 

throughput, data sensitive resource allocation and mission 

critical communication in our previous work [14], a cross 

layer architecture-based network condition aware routing 

protocol for WMSN named NCAM-RP was developed. Our 

effort exhibited optimal performance to meet WMSN 

requirements, however it could not deal with energy efficient 

and bandwidth efficient transmission. Since, these key factors 

are closely related to the PHY layer of the protocol stack 

enhancing dynamic power management and PHY switching 

was must. On the other hand, introducing mobility for 

WMSN requires an efficient approach to make optimal DPM 

decision under varying network conditions. With this 

motivation, in this research we hypothesized that learning 

network states dynamically and scheduling transmission 

accordingly may enable optimal resource utilization that not 

only enhance bandwidth utilization but can also enable time 

and energy efficient communication over WMSNs.  With this 
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motivation, in this paper, we have developed a novel 

dynamic network state learning based PHY scheduling and 

DPM for NCAM-RP. Since, our proposed NCAM-RP model 

employs mobile nodes to perform communication, it forces 

the system to undergo significantly higher topological 

variations and network state transition. This as a result makes 

transmission decision tough to ensure contention free, energy 

efficient and QoS enriched communication. 

In this work, the DPM and network adaptive transmission 

decision has been considered as a problem for constrained 

MDP. The proposed NSLM functions as a stochastic 

approach that learns both the known as well as unknown 

network parameters to decide optimal transmission decision 

and PHY switching. The proposed NSLM model emphasizes 

on enabling an efficient dynamic power management and 

PHY switching at the physical layer of the protocol stack. 

The proposed model is developed in a way that it supports 

quadrature amplitude modulation (QAM) constellation in 

which gray cod can be used for mapping the information bits 

in QAM symbols. Being mobility based WMSN; it 

undergoes dynamic network or topological variations. In this 

case, there can be certain known as well as unknown network 

state or variables. Unlike known network variables, 

parameters such as packet receiving rate, bits error 

probability, channel status, buffer availability etc. could be 

the unknown parameters. Unlike traditional learning 

approach such as Q-Learning, which considers only unknown 

parameters as input, in our model we have incorporated both 

the known as well as unknown network state variables as 

input. In this paper, we have formulated dynamic network 

state learning model and DPM process in the form of a 

Markov decision process. The proposed model exploits the 

state value functions and associated to learn the network. 

Moreover, we derived buffer cost and transition probability 

function to learn the network states and derive optimal DPM 

and PHY switching policy. The proposed scheme was 

developed in a time slotted model, where for each time slot 

the network conditions or network states were obtained for 

further learning and prediction. We have exploited the 

Lagrange multiplier factor to enable swift convergence of the 

proposed learning model to achieve more time efficient DPM 

and transmission scheduling. The overall proposed 

simulation model is developed using MATLAB 2015a 

software tool.  

 To perform simulation, we have applied the decremental 

factor (DF) as  that enables NSDL to converge fast. 

This as a result has strengthened NSDL to perform fast PHY 

switching decision and DPM. This is must for multimedia 

communication over sensor networks to ensure QoS delivery. 

To estimate the signal to noise ratio (SNR) or RSSI the 

power, noise and bandwidth have been applied. Here, SNR is 

obtained by (22). 

                     (22) 

where  presents the transmission power each slot , the 

noise component in the proposed learning model is given by 

, and the bandwidth is presented by term . In our 

simulation, the bandwidth is considered as 

                            (23) 

where  presents the symbol period. 

Some of the key simulation parameters applied in our 

research model is given in Table 2.  

Table 2. Simulation parameters 

Parameter Simulation Value 

Packet arrival rate (Avg.) 220 packet/sec 

Bits per symbol (BPS)  [1,2,3,…,10] 

Buffer Size  25 data packets  

Channel State  [-18.8, -13.8, -11.2, -9.3, -

7.8, -6.3, -4.7, -2.1] 

Decremental of discount factor  0.98 

Holding cost  4 packets 

Noise PSD  
 

Energy/Power in OFF status  0 Watts 

Energy/Power in ON status 80/160.320 watts 

Size of Packet  5000 bits 

DPM or PHY Switching Actions , , 

Power Management status  ON, OFF 

Symbol Rate  symbols/sec. 

Time slot  10 ms. 

Dynamic Traffic (Tx) variation Dynamic traffic load 

(0,1,2,3,…,10) packets/sec. 

Unlike Q-Learning based DPM, where sample average of the 

AVFs are used to approximate  parameter, our proposed 

NSLM model exhibits network learning because of the 

sample average value of the post decision state functions and 

associated variables like, resource states, bit error 

probability, power states etc. It enables the approximation of 

 swift and thus making NSLM time, energy as well as 

bandwidth efficient. To assess the performance of our 

proposed NSLM based DPM and PHY switching model for 

WMSN, the overall proposed model is examined in terms of 

buffer cost, bandwidth utilization, holding cost, buffer 

overflow conditions, etc. To further examine the performance 

of NSLM approach, a comparative model using Q-Learning 

is developed for DPM. NSLM applies both the known as 

well as unknown network parameters, while Q-Learning 

applied only unknown parameters to perform DPM. Here, we 

considered Q-Learning because of it model free 

reinforcement learning ability to obtain action-selection 

measure for MDP. 

The buffer cost, which can be stated analogous to the time 

during which the data traverses across buffer does impact the 

overall performance of WMSN, especially for timely data 

delivery. To have QoS communication over multimedia 

sensor network or WMSN, ensuring timely delivery is must 

and therefore minimal buffer cost is anticipated to avoid 

jittering type problems.  Considering the results obtained, 

here it can be found (Figure 4.) that the proposed NSLM 

exhibits significantly lower buffer cost than its counterpart Q-

learning based DPM. Here, it should be noted that the prime 

use of buffer cost was to reduce the queuing delay in the 

transmission buffer to enable swift data transmission. This as 

a result avoids the buffer overflow problems that could lead 

significantly higher transmission delay, and thus degrading 

QoS delivery of WMSNs. In the proposed DPM model, 

buffer cost (we stated it as cost in Figure 4.) has been 
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considered as the sum of holding cost and overflow cost with 

respect to the rate of data arrival and good put distribution. 

Here, the holding cost signifies the duration for which the 

data remains in the buffer. Observing Figure 5. it can be 

easily found that the proposed NSLM model reduces holding 

cost significantly and thus enabling lower buffer cost as 

depicted in Figure 4. The prime reason behind such 

optimization could be the consideration of both the known as 

well as unknown network states to enable decision state 

function for DPM and adaptive power switching.  

 

Figure 4. Buffer cost analysis 

  

Figure 5. Holding cost analysis 

As already stated that the presented work intends to 

contribute a novel dynamic network state learning approach 

for NCAM-RP functional over WMSN systems, it is 

inevitable to consider burst type transmission or packet 

arrival in real time environment for performance analysis. 

The burst type data arrival can have the direct impact on 

network stability, data drop, data retransmission, and delay. 

Considering it as vital factor for performance assessment, we 

have examined NSLM model as well as Q-learning based 

network state learning (QNSL) model and the comparative 

result obtained is presented in Figure 6. From the obtained 

results (Figure 6.), it is confirmed that the proposed approach 

exhibits significantly better overflow avoidance than QNSL. 

In directly, the efficacy of overflow avoidance strategy is 

directly related to adaptive data transmission and buffer 

utilization. Better buffer utilization can assure minimum 

overflow. This hypothesis is also confirmed by obtained 

results (Figure 7 and Figure 8)  

  

Figure 6. Packet overflow analysis 
 

One of the key QoS centric requirements of WMSNs is 

efficient bandwidth utilization that eventually leads optimal 

data transmission and its timely delivery to assure quality of 

experience (QoE) or perception. Being a post decision type 

reinforcement learning model NSLM employs dynamic 

buffer conditions too to achieve optimal DPM policy and 

transmission decision. In fact, the bandwidth utilization by 

any transmission model or PHY switching function can be 

visualized through its transmission activity. Better 

transmission activity can lead better resource utilization. This 

hypothesis can be easily observed in Figure 7 and Figure 8. 

Observing the results in Figure 7 and Figure 8, it can be 

easily found that NSLM exhibits better transmission that as a 

result enables higher resource utilization. On the other hand, 

as depicted in Figure 7, QNSL performs relatively less 

efficient or poor packet transmission that results into lower 

bandwidth occupancy. It exhibited limited efficiency of the 

QNSL approach. Considering other parameter named 

cumulative average cost (CAC) which is close related to the 

overall DPM process and transmission mechanism, it can be 

found that the CAC is minimum for NSLM based DPM as 

compared to the QNSL model (Figure 7 and Figure 8).  

 

Figure 7. Buffer occupancy and transmission action using 

Q-Learning based DPM 
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Figure 8. Buffer occupancy and transmission action using 

Proposed NSLM based DPM 
 

 

Figure 9. Power consumption during transmission 

Thus, the overall results for bandwidth efficiency state that 

the proposed NSLM based DPM model can be of paramount 

significance for multimedia transmission over WMSN under 

uncertain or dynamic topology scenario. This is the matter of 

fact that energy efficiency is one of the decisive performance 

parameters of any sensor network or communication system. 

Enabling lower energy or power consumption can make 

transmission system more efficient, particularly to enhance 

network life time. Figure 9 exhibits that the proposed NSLM 

model performs timely data delivery with optimal bandwidth 

utilization, while ensuring minimal energy consumption. 

Here, NSLM can be found more energy efficient than the 

QNSL based DPM and transmission approach for WMSN. 

5. Conclusions 

The demands of multimedia communication have established 

WMSNs to be one of the most potential communication 

network to serve real time applications, including multimedia 

broadcast, security and surveillance systems, intelligent 

transport system, industrial automation etc. These all 

applications demand certain efficient routing approach to 

ensure timely, energy and bandwidth efficient 

communication. On the other hand, mobility based WMSNs 

can enable an array of applications serving timely and low-

cost communications. However, mobility eventually results 

into significantly higher topological variations and network 

uncertainty. In such cases managing optimal physical layer 

switching or transmission switching while avoiding 

contention and packet loss becomes highly intricate. 

Furthermore, for WMSNs, assuring higher throughput, 

minimum delay, optimal bandwidth utilization, and energy 

efficiency are the key requirements. Enabling an efficient 

dynamic power management and PHY switching policy has 

been considered as an optimistic measure to achieve these 

objectives. Considering network state uncertainty during run-

time (particularly with mobility), in this paper a novel 

reinforcement learning approach called network state 

learning model (NSLM) based stochastic optimization model 

has been developed that considers known as well as unknown 

network states to derive an optimal state action pairs for 

dynamic power management policy. Unlike traditional 

learning approach such as Q-Learning, we have incorporated 

both the known as well as unknown network parameters to 

perform transmission decision, where the DPM is considered 

as a problem for constrained Markov decision process 

(MDP). In the proposed model, two functions, cost functions 

and the network state transition probability functions are used 

as input variables to learn the network and derive optimal 

transmission policy.  Here, the use of Hidden Markov Model 

(HMM) and Lagrange multiplier-based approach has enabled 

swift convergence that as a result makes transmission 

decision fast. The overall results obtained exhibit that the 

proposed NSLM based DPM and transmission scheduling 

achieves optimal bandwidth utilization, low power 

consumption, significantly low buffer cost, holding cost and 

overflow. These enhanced outcomes confirm suitability of 

the proposed DPM and transmission scheduling policy to 

enable efficient WMSNs solution. In future, the efficacy of 

other stochastic optimization approaches can be explored. 
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