426 research outputs found

    Reduced Order Optimal Control of the Convective FitzHugh-Nagumo Equation

    Full text link
    In this paper, we compare three model order reduction methods: the proper orthogonal decomposition (POD), discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD) for the optimal control of the convective FitzHugh-Nagumo (FHN) equations. The convective FHN equations consists of the semi-linear activator and the linear inhibitor equations, modeling blood coagulation in moving excitable media. The semilinear activator equation leads to a non-convex optimal control problem (OCP). The most commonly used method in reduced optimal control is POD. We use DEIM and DMD to approximate efficiently the nonlinear terms in reduced order models. We compare the accuracy and computational times of three reduced-order optimal control solutions with the full order discontinuous Galerkin finite element solution of the convection dominated FHN equations with terminal controls. Numerical results show that POD is the most accurate whereas POD-DMD is the fastest

    A local energy-based discontinuous Galerkin method for fourth order semilinear wave equations

    Full text link
    This paper generalizes the earlier work on the energy-based discontinuous Galerkin method for second-order wave equations to fourth-order semilinear wave equations. We first rewrite the problem into a system with a second-order spatial derivative, then apply the energy-based discontinuous Galerkin method to the system. The proposed scheme, on the one hand, is more computationally efficient compared with the local discontinuous Galerkin method because of fewer auxiliary variables. On the other hand, it is unconditionally stable without adding any penalty terms, and admits optimal convergence in the L2L^2 norm for both solution and auxiliary variables. In addition, the energy-dissipating or energy-conserving property of the scheme follows from simple, mesh-independent choices of the interelement fluxes. We also present a stability and convergence analysis along with numerical experiments to demonstrate optimal convergence for certain choices of the interelement fluxes

    An energy-based discontinuous Galerkin method for the nonlinear Schr\"odinger equation with wave operator

    Full text link
    This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schr\"odinger equation with the wave operator. The focus of the study is on the energy-conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a test function for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the L2 error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a specially chosen test function, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Extensive numerical experiments are provided to demonstrate the optimal convergence of the scheme in the L2 norm with our choices of the numerical flux

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure
    corecore