3,064 research outputs found

    Modified Level Restorers Using Current Sink and Current Source Inverter Structures for BBL-PT Full Adder

    Get PDF
    Full adder is an essential component for the design and development of all types of processors like digital signal processors (DSP), microprocessors etc. In most of these systems adder lies in the critical path that affects the overall speed of the system. So enhancing the performance of the 1-bit full adder cell is a significant goal. In this paper, we proposed two modified level restorers using current sink and current source inverter structures for branch-based logic and pass-transistor (BBL-PT) full adder [1]. In BBL-PT full adder, there lies a drawback i.e. voltage step existence that could be eliminated in the proposed logics by using the current sink inverter and current source inverter structures. The proposed full adders are compared with the two standard and well-known logic styles, i.e. conventional static CMOS logic and Complementary Pass transistor Logic (CPL), demonstrated the good delay performance. The implementation of 8-bit ripple carry adder based on proposed full adders are finally demonstrated. The CPL 8-bit RCA and as well as the proposed ones is having better delay performance than the static CMOS and BBL-PT 8-bit RCA. The performance of the proposed BBL-PT cell with current sink & current source inverter structures are examined using PSPICE and the model parameters of a 0.13 µm CMOS process

    Design of Adiabatic MTJ-CMOS Hybrid Circuits

    Full text link
    Low-power designs are a necessity with the increasing demand of portable devices which are battery operated. In many of such devices the operational speed is not as important as battery life. Logic-in-memory structures using nano-devices and adiabatic designs are two methods to reduce the static and dynamic power consumption respectively. Magnetic tunnel junction (MTJ) is an emerging technology which has many advantages when used in logic-in-memory structures in conjunction with CMOS. In this paper, we introduce a novel adiabatic hybrid MTJ/CMOS structure which is used to design AND/NAND, XOR/XNOR and 1-bit full adder circuits. We simulate the designs using HSPICE with 32nm CMOS technology and compared it with a non-adiabatic hybrid MTJ/CMOS circuits. The proposed adiabatic MTJ/CMOS full adder design has more than 7 times lower power consumtion compared to the previous MTJ/CMOS full adder

    Non-Volatile Magnonic Logic Circuits Engineering

    Full text link
    We propose a concept of magnetic logic circuits engineering, which takes an advantage of magnetization as a computational state variable and exploits spin waves for information transmission. The circuits consist of magneto-electric cells connected via spin wave buses. We present the result of numerical modeling showing the magneto-electric cell switching as a function of the amplitude as well as the phase of the spin wave. The phase-dependent switching makes it possible to engineer logic gates by exploiting spin wave buses as passive logic elements providing a certain phase-shift to the propagating spin waves. We present a library of logic gates consisting of magneto-electric cells and spin wave buses providing 0 or p phase shifts. The utilization of phases in addition to amplitudes is a powerful tool which let us construct logic circuits with a fewer number of elements than required for CMOS technology. As an example, we present the design of the magnonic Full Adder Circuit comprising only 5 magneto-electric cells. The proposed concept may provide a route to more functional wave-based logic circuitry with capabilities far beyond the limits of the traditional transistor-based approach

    Energy consumption by reversible circuits in the 130 nm and 65 nm nodes

    Get PDF
    We show that both 130 nm and 65 nm technologies are suitable for reversible computation
    corecore