662 research outputs found

    An AI-Horticulture Monitoring and Prediction System with Automatic Object Counting

    Get PDF
    Estimating density maps and counting the number of objects of interest from images has a wide range of applications, such as crowd counting, traffic monitoring, cell microscopy in biomedical imaging, plant counting in agronomy, as well as environmental survey. Manual counting is a labor-intensive and time-consuming process. Over the past few years, the topic of automatic object counting by computers has been actively evolving from the classic machine learning methods based on handcrafted image features to end-to-end deep learning methods using data-driven feature engineering, for example by Convolutional Neural Networks (CNNs). In our research, we focus on the task of counting plants for large-scale nursery farms to build an AI-horticulture monitoring and prediction system using unmanned aerial vehicle (UAV) images. The common challenges of automatic object counting as other computer vision tasks are scenario difference, object occlusion, scale variation of views, non-uniform distribution, and perspective difference. For an AI-horticulture monitoring and prediction system for large-scale analysis, the plant species various a lot, so that the image features are different based on different appearance of species. In order to solve these complex problems, the deep convolutional neural network-based approaches are proposed. Our method uses the density map as the ground truth to train the modified classic deep neural networks for object counting regression. Experiments are conducted comparing our proposed models with the state-of-the-art object counting and density estimation approaches. The results demonstrate that our proposed counting model outperforms state-of-the-art approaches by achieving the best counting performance with a mean absolute error of 1.93 and a mean square error of 2.68 on our horticulture nursery plant dataset

    Semi-supervised Regression with Generative Adversarial Networks Using Minimal Labeled Data

    Full text link
    This work studies the generalization of semi-supervised generative adversarial networks (GANs) to regression tasks. A novel feature layer contrasting optimization function, in conjunction with a feature matching optimization, allows the adversarial network to learn from unannotated data and thereby reduce the number of labels required to train a predictive network. An analysis of simulated training conditions is performed to explore the capabilities and limitations of the method. In concert with the semi-supervised regression GANs, an improved label topology and upsampling technique for multi-target regression tasks are shown to reduce data requirements. Improvements are demonstrated on a wide variety of vision tasks, including dense crowd counting, age estimation, and automotive steering angle prediction. With training data limitations arguably being the most restrictive component of deep learning, methods which reduce data requirements hold immense value. The methods proposed here are general-purpose and can be incorporated into existing network architectures with little or no modifications to the existing structure

    Generative Models for Novelty Detection Applications in abnormal event and situational changedetection from data series

    Get PDF
    Novelty detection is a process for distinguishing the observations that differ in some respect from the observations that the model is trained on. Novelty detection is one of the fundamental requirements of a good classification or identification system since sometimes the test data contains observations that were not known at the training time. In other words, the novelty class is often is not presented during the training phase or not well defined. In light of the above, one-class classifiers and generative methods can efficiently model such problems. However, due to the unavailability of data from the novelty class, training an end-to-end model is a challenging task itself. Therefore, detecting the Novel classes in unsupervised and semi-supervised settings is a crucial step in such tasks. In this thesis, we propose several methods to model the novelty detection problem in unsupervised and semi-supervised fashion. The proposed frameworks applied to different related applications of anomaly and outlier detection tasks. The results show the superior of our proposed methods in compare to the baselines and state-of-the-art methods

    Towards Large-Scale Small Object Detection: Survey and Benchmarks

    Full text link
    With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: \url{https://shaunyuan22.github.io/SODA}

    Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization

    Get PDF
    Recently, developing automated video surveillance systems (VSSs) has become crucial to ensure the security and safety of the population, especially during events involving large crowds, such as sporting events. While artificial intelligence (AI) smooths the path of computers to think like humans, machine learning (ML) and deep learning (DL) pave the way more, even by adding training and learning components. DL algorithms require data labeling and high-performance computers to effectively analyze and understand surveillance data recorded from fixed or mobile cameras installed in indoor or outdoor environments. However, they might not perform as expected, take much time in training, or not have enough input data to generalize well. To that end, deep transfer learning (DTL) and deep domain adaptation (DDA) have recently been proposed as promising solutions to alleviate these issues. Typically, they can (i) ease the training process, (ii) improve the generalizability of ML and DL models, and (iii) overcome data scarcity problems by transferring knowledge from one domain to another or from one task to another. Although the increasing number of articles proposed to develop DTL- and DDA-based VSSs, a thorough review that summarizes and criticizes the state-of-the-art is still missing. To that end, this paper introduces, to the best of the authors' knowledge, the first overview of existing DTL- and DDA-based video surveillance to (i) shed light on their benefits, (ii) discuss their challenges, and (iii) highlight their future perspectives.This research work was made possible by research grant support (QUEX-CENG-SCDL-19/20-1) from Supreme Committee for Delivery and Legacy (SC) in Qatar. The statements made herein are solely the responsibility of the authors. Open Access funding provided by the Qatar National Library.Scopu

    Deep learning in crowd counting: A survey

    Get PDF
    Counting high-density objects quickly and accurately is a popular area of research. Crowd counting has significant social and economic value and is a major focus in artificial intelligence. Despite many advancements in this field, many of them are not widely known, especially in terms of research data. The authors proposed a three-tier standardised dataset taxonomy (TSDT). The Taxonomy divides datasets into small-scale, large-scale and hyper-scale, according to different application scenarios. This theory can help researchers make more efficient use of datasets and improve the performance of AI algorithms in specific fields. Additionally, the authors proposed a new evaluation index for the clarity of the dataset: average pixel occupied by each object (APO). This new evaluation index is more suitable for evaluating the clarity of the dataset in the object counting task than the image resolution. Moreover, the authors classified the crowd counting methods from a data-driven perspective: multi-scale networks, single-column networks, multi-column networks, multi-task networks, attention networks and weak-supervised networks and introduced the classic crowd counting methods of each class. The authors classified the existing 36 datasets according to the theory of three-tier standardised dataset taxonomy and discussed and evaluated these datasets. The authors evaluated the performance of more than 100 methods in the past five years on different levels of popular datasets. Recently, progress in research on small-scale datasets has slowed down. There are few new datasets and algorithms on small-scale datasets. The studies focused on large or hyper-scale datasets appear to be reaching a saturation point. The combined use of multiple approaches began to be a major research direction. The authors discussed the theoretical and practical challenges of crowd counting from the perspective of data, algorithms and computing resources. The field of crowd counting is moving towards combining multiple methods and requires fresh, targeted datasets. Despite advancements, the field still faces challenges such as handling real-world scenarios and processing large crowds in real-time. Researchers are exploring transfer learning to overcome the limitations of small datasets. The development of effective algorithms for crowd counting remains a challenging and important task in computer vision and AI, with many opportunities for future research.BHF, AA/18/3/34220Hope Foundation for Cancer Research, RM60G0680GCRF, P202PF11;Sino‐UK Industrial Fund, RP202G0289LIAS, P202ED10, P202RE969Data Science Enhancement Fund, P202RE237Sino‐UK Education Fund, OP202006Fight for Sight, 24NN201Royal Society International Exchanges Cost Share Award, RP202G0230MRC, MC_PC_17171BBSRC, RM32G0178B
    corecore