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A B S T R A C T

Recently, developing automated video surveillance systems (VSSs) has become crucial to ensure the security
and safety of the population, especially during events involving large crowds, such as sporting events. While
artificial intelligence (AI) smooths the path of computers to think like humans, machine learning (ML) and
deep learning (DL) pave the way more, even by adding training and learning components. DL algorithms
require data labeling and high-performance computers to effectively analyze and understand surveillance data
recorded from fixed or mobile cameras installed in indoor or outdoor environments. However, they might
not perform as expected, take much time in training, or not have enough input data to generalize well. To
that end, deep transfer learning (DTL) and deep domain adaptation (DDA) have recently been proposed as
promising solutions to alleviate these issues. Typically, they can (i) ease the training process, (ii) improve the
generalizability of ML and DL models, and (iii) overcome data scarcity problems by transferring knowledge
from one domain to another or from one task to another. Although the increasing number of articles proposed
to develop DTL- and DDA-based VSSs, a thorough review that summarizes and criticizes the state-of-the-art is
still missing. To that end, this paper introduces, to the best of the authors’ knowledge, the first overview of
existing DTL- and DDA-based video surveillance to (i) shed light on their benefits, (ii) discuss their challenges,
and (iii) highlight their future perspectives.
1. Introduction

1.1. Elementary

Deep learning (DL)-based video surveillance systems (VSSs) have
attained various inspiring results in recent years when applied to
different tasks, including crowd counting (CC) (Sánchez et al., 2020),
abnormal event detection (AED) (Belhadi et al., 2021), object detection
(OD) (Zaidi et al., 2022), human action recognition (HAR) (Sun et al.,
2019), etc. By representing high-level abstractions using multiple layers
of non-linear transformations, deep networks simulate the perception
of human brains. In doing so, DL models require copious amounts of
data to be trained. However, these algorithms work well with some
applications where it is easy to get the data, but they put many other
applications in disadvantageous positions. This is because (i) there
are not sufficient resources or scales of data needed for training DL
models from scratch; (ii) collecting large-scale datasets is an expensive
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and time-consuming process; (iii) most DL models rely on supervised
learning where datasets should be labeled prior to the training process,
and (iv) involving human experts in manually labeling training datasets
represents another substantial cost and effort (Jiao et al., 2021b).

Existing DL architectures, including convolutional neural networks
(CNNs) (Gu et al., 2018), stacked autoencoders (SAEs) (Zhang et al.,
2021e), and deep belief networks (DBNs) (Gochoo et al., 2021), among
others, have the ability of learning deep and transferable representa-
tions. However, domain shifts between the training and testing datasets
can significantly affect their performance. This is mainly due to the
transition of deep features from general to specific representations and
the sharp decrease in representation transferability in higher layers.
Specifically, in many studies, it is assumed that testing and training
samples have been taken from the same domain, meaning that the data
distribution and the input feature space are the same. Nevertheless, in
numerous real-world applications, this assumption
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Abbreviations

AI artificial intelligence
AdaIN adaptative instance normalization
AED abnormal event detection
ASNet adversarial scoring network
ATLnet adaptive TL network
CC crowd counting
CDAD cross-domain anomaly detection
CDAR cross-domain human action recognition
CDCC cross-domain crowd counting
CDDF cross-domain data fusion
CDOD cross-domain object detection
CMAR cross-media action recognition
CNN convolutional neural networks
CSCC cross-scene crowd counting
CSPD cross-spectral pedestrian detection
CSAR cross-spectral action recognition
CVAR cross-view action recognition
CVCS cross-view cross-scene
DAN density adaption network
DBN deep belief networks
DDA dynamic distribution alignment
DDAN domain-adversarial neural network
DML distance metric learning
DL deep learning
DKPNet domain-specific knowledge propagating

network
DSPNet deep scale purification network
DTL deep transfer learning
EDIREC-Net error-aware density isomorphism recon-

struction network
ELM extreme learning machine
FCL fully-connected layer
GAN generative adversarial networks
GRU gated recurrent unit
HAR human action recognition
HCN high-density counter network
HOG histogram of gradient
ILAN instance-level adaptation network
ILRT inter-layer relation transfer
ILSVRC ImageNet large scale visual recognition

challenge
IPT intra-layer pattern transfer
IRN Inception-residual network
KAIST Korea advanced institute of science &

technology
KNN K-nearest neighbors
LDCN low-density counter network
LRCN long-term recurrent convolutional network
OD object detection
M2AR multi-modal action recognition
MAML model agnostic meta-learning
MCNN multi-column CNN
MCDCD maximum cross-domain classifier discrep-

ancy
MDDA multi-source DDA
MDNet multiple descriptor network
MIST multiple instance self-training technique
MMD maximum mean discrepancy
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ML machine learning
MSDN multi-scale detection network
NLT neuron linear transformation
PTM pretrained model
RAE recursive auto-encoders
ReLu rectified linear unit
ROI region of interest
RRN region reconstruction network
S2V sensor-to-vision
SAE stacked autoencoder
SbE serial-based extended
SD source domain
SDDA single-source deep domain adaptation
SHA Shanghaitech Part_A
SHB Shanghaitech Part_B
SKT structured knowledge transfer
STL subtask-dominated transfer learning
SVAR sensor-to-vision action recognition
TD target domain
TL transfer learning
TSM temporal shift module
UDDA unsupervised deep domain adaptation
VGG visual geometry group network
VSS video surveillance systems
YOLO you only look once

does not hold (Hazarika et al., 2021). Different research groups have
proposed many datasets for VSS applications, such as CC, AED, OD,
HAR, etc. Data collected by a research group might only include
certain types of variations. For example, Shanghaitech Part_B (SHB)
is taken from the streets of metropolitan Shanghai. In the World-
Expo’10 dataset, video sequences are captured by surveillance cameras
from Shanghai 2010 WorldExpo. Shanghaitech Part_A (SHA), UCF,
and AHU datasets are scrawled from the Internet. For instance, as
illustrated in Fig. 1, it can be seen that considerable variations in
data distributions exist among these datasets. While video frames
in ShanghaiTech Part_A (SHA) (Zhang et al., 2016) illustrate con-
gested crowds, those in UCF-QNRF (Idrees et al., 2018) present highly-
congested crowds with more background scenarios. Additionally, those
in NWPU-Crowd (Wang et al., 2020b) have much more diversities in
scales, density, background, etc. However, images of ShanghaiTech
B (SHB) (Zhang et al., 2016) refer to low-density crowds and usual
street-based scenes. Because of these variations, learning a general and
robust estimating is challenging to correctly predict density crowds or
perform other related tasks. Moreover, many supervised learning-based
VSSs can perform well using large-scale annotated data. However, most
of them fail in real-world scenarios, where there are limited labeled
data, complex backgrounds, different exposures, and points of view.
Additionally, overfitting and the difficulty of generalizing to other
benchmark repositories still need to be solved.

On the other hand, successful DL models are data-hungry and
depend on the availability of comprehensive training labeled datasets
and computational resources. However, many VSS tasks cannot secure
enough annotated data to train DL models (Rezaee et al., 2022).
Moreover, an increasing demand is recently witnessed to implement
DL models on edge devices with limited computation capacities, espe-
cially after the progress made in federated learning. Additionally, most
DL models can only perform one single task, while generalizing the
acquired knowledge to other tasks requires a new set of data points
and equal or more quantities of training data, which is not practical
in real-world scenarios (Sayed et al., 2022). This means that the gen-
eralization of DL models needs to be improved, and their complexity
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Fig. 1. Data distribution comparison between: (a) SHA (Zhang et al., 2016), (b) UCF-QNRF (Idrees et al., 2018), (c) NWPU (Wang et al., 2020b) and (d) SHB (Zhang et al., 2016).
must be reduced to support real-time VSS applications and improve
their performance (Rajasekhar et al., 2021).

To that end, deep transfer learning (DTL) and deep domain adap-
tation (DDA) have recently been adopted to overcome the issues men-
tioned above. Typically, DTL, which consists of training a DL model
for a task (or on a specific domain) and then utilizing the knowledge
learned for a distinct but related task (pr on another different but
related domain), has been investigated. Concretely, it has been shown
that ‘‘reusing features – the specific quantifiable characteristics of a
phenomenon being observed – plays an essential role in successful
transfers’’ (Maschler and Weyrich, 2021). Humans have inspired this
as they do not learn everything from scratch but can transfer their
knowledge from previously learned domains to newer domains and
tasks. Thus, considering the importance of this problem, the AI re-
search community has been highly collaborative by developing several
large-scale datasets, research works, and numerous models and making
them open-source to build on them and facilitate the reproduction of
research results (Loey et al., 2021)s. DTL uses considerably less data,
which helps eliminate the necessity of data annotation. For instance,
different CNN models have been trained on the ImageNet dataset for
computer vision applications, representing a progressing work since
2005 that includes more than 14 million images classified and anno-
tated across 80,000 groups. These pre-trained models (PTMs) can be
used to perform other related tasks on small target datasets with or
without labels (Han et al., 2021a). Additionally, training most existing
DL models with AI-optimized, cutting-edge hardware can necessitate
days, if not weeks. To that end, using DTL and building on top of
the current DL architectures available as pre-trained and open-source
weights is advisable (Han et al., 2021c). When screening the VSS
literature, two main categories of DTL techniques are found. Fine-
tuning is one approach that refers to taking a network model that has
already been trained for a given task and making it perform a similar
task. DDA is the other methodology, a specific case of DTL, where the
feature spaces between the SD and TD are the same. At the same time,
the marginal probability distributions of the input data are different.
It assumes that the labeled and unlabeled data come from other, but
related domains (Triess et al., 2021).

1.2. Our contributions

Although there are some generic reviews summarizing the concept

and progress made in transfer learning (TL), e.g., Agarwal et al. (2021),

3

Zhuang et al. (2020), Durrani and Arshad (2021), Yu et al. (2022), this
paper presents the first specific review discussing the contributions of
DTL for VSSs and creating a complete unified framework of categories
and concepts. This enables the reader to scrutinize and understand the
field of DTL and its applications for VSS tasks, such as OD, CC, AED,
and HAR. Typically, the focus was on discussing both the fine-tuning-
and DA-based VSS studies, where most of the latest contributions
correspond to cross-domain object detection (CDOD), cross-domain
anomaly detection (CDAD), cross-domain human action recognition
(CDHAR), and cross-domain crowd counting (CDCC) are presented and
analyzed. Moreover, interesting insights on the use of DTL for data
fusion contexts are posed with reference to cross-domain data fusion
(CDDF). In addition to the critical challenges determined in this review,
future research directions serve as the pull factor toward generalized DL
models in VSS tasks. All in all, the novel contributions of this overview
can be summarized as follows:

• Presenting the DTL and DDA background that defines and exam-
ines the different aspects contributing to the development of DTL
and DDA models.

• Introducing a comprehensive taxonomy of DTL and DDA models
and thoroughly analyzing the existing literature on DTL-b and
DDA-based VSSs and related concepts, covering more than 200
studies sorted based on various criteria.

• Shedding light on the interesting crossroads of data fusion and
DTL/DDA, and highlighting how DTL/DDA can help develop
efficient cross-domain data fusion (CDDF)-based VSSs.

• Enumerating a series of critical challenges of DTL and DDA mod-
els used in VSSs, which still need to be resolved or insufficiently
investigated. Typically, different research needs are identified,
including (i) the accuracy saturation issue, (ii) the concepts and
metrics to measure the knowledge gain of DTL/DDA networks,
(iii) the problem of negative transfer, (iv) the overfitting problem,
etc.

• Outlining future research directions towards more generalized
DTL/DDA models with less computational complexity.

Moving on, Table 1 depicts the results of the contribution compari-
son between the proposed review and other existing TL-based surveys.
In addition to being the first review on TL-based VSSs, it is clearly seen
that the proposed study presents many new contributions in terms of
(i) including the DA part, (ii) discussing the different applications of
TL in VSSs, (iii) discussing the pre-trained models, (iv) identifying cur-
rents challenges (e.g., negative transfer, knowledge gain measurement,

unification of TL), and (iv) deriving future directions.
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Table 1
Contribution comparison of the proposed study against other TL surveys. The tick mark (✓) indicates that the specific field has been addressed, whereas the cross mark (✗) means
addressing the specific fields has been missed.

Survey Description TL Domain Applications Pretrained Current challenges Future

Background adaptation of TL in VSSs models Negative Knowledge Unification directions
transfer gain of TL

Lu et al. (2015) TL for computational intelligence ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Weiss et al. (2016) General information on TL ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Niu et al. (2020) Generic TL contributions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Agarwal et al. (2021) Categorization and general ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

applications of TL
Zhuang et al. (2020) Focus on homogeneous TL ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Durrani and Arshad (2021) TL for NLP ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Wan et al. (2021) TL in EEG ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Bashath et al. (2022) TL for text data ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Li et al. (2021b) TL for EEG ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Yu et al. (2022) TL for medical image analysis ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ours TL for VSSs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Table 2
Distribution overviewed articles with reference to the name of journal/conference.

Journal/conference name # articles Journal/conference name # articles

arXiv preprint 33 IEEE Trans. Pattern Analysis and Machine Intelligence 5
IEEE Conference on Computer Vision and 28 International Conference on Machine Learning 4
Patter recognition
Neurocomputing 11 IEEE Acces 4
AAAI Conference on Artificial Intelligence 9 International Journal of Computer Vision 4
Neurocomputing 10 Sensors 4
IEEE Trans. Image Processing 8 IEEE Trans. Industrial Informatics 3
Information Fusion 8 International Conference on Image Processing 3
ACM International Conference on Multimedia 8 Engineering Applications of Artificial Intelligence 3
European Conference on Computer Vision (ECCV) 6 Int. Conf. on Pervasive Computing and Communications 3

Workshops
∈
m
{
d
c
i

{

𝛾

1.3. Bibliometric analysis

To explore and analyze the scientific studies considered in this re-
view, a bibliometric analysis is conducted. Fig. 2 gives a brief overview
of the studies’ long-term interest in DTL-based VSSs, where it can
be seen that since 2015 an increasing interest has been witnessed in
developing DTL-based VSS solutions. Typically, this interest is shown
in Fig. 2(A), where the number of published articles has exponentially
increased. The number of papers reached 83 in 2021 and 20 in the
first quarter of 2022. Besides, Fig. 2(B) illustrates the most active
researchers in the field of VSS-based DTL since 2015, in which only
the authors that have produced more than two papers in the last half-
decade are considered. In this review, 298 articles are discussed, which
have been classified based on the application, as explained in Fig. 2(C).
Accordingly, it is clearly shown that most of the frameworks have
investigated the CDCC, CDHAR, CDOD, and CDAD tasks. At the same
time, the CDDF area has received the most attention. On the other
hand, the discussed articles include 146 research papers, 21 surveys,
111 conference papers, and 20 chapter books. Fig. 2(D) illustrates
the percentage of each type of papers in our review. We can easily
distinguish that the research journal papers take the lion’s share of the
whole published studies(49%), followed by conference papers (37%).

Table 2 presents statistics about the number of articles published
in different journals, conference proceedings, preprints, etc. Typically,
it is clearly seen that preprints come in the first position, followed
by the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) and Neurocomputing. Besides, Fig. 3 illustrates the most signif-
icant themes covered in this review, which have been extracted using
VOSviewer.1 Accordingly, it can be shown that ‘‘transfer learning’’, ‘‘ob-
ect detection’’, ‘‘domain adaptation’’, and ‘‘action recognition’’ were
he most investigated themes.

Lastly, Table 3 provides some statistics concerning the authors’
umber of publications per affiliation and country. Explicitly, the top

1 https://www.vosviewer.com/
 {
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10 institutions are illustrated in this table, where it can be seen that the
University of Oxford is ranked first, followed by Zhejiang University
and Nanjing University.

1.4. Paper organization

The rest of this paper is organized as follows. Section 2 presents
the background and taxonomy of TL. Moving on, Section 3 overviews
existing DTL studies and critically analyzes their pros and cons. Next,
DDA contributions are discussed in Section 4 while Section 5 highlights
the applications of DTL and DDA. Following, Section 6 discusses the
key challenges of using DTL and DDA in VSSs before deriving their
future directions in Section 7. Lastly, concluding remarks are drawn in
Section 8. Fig. 4 illustrates the detailed road-map of our review article
and outlines the main titles investigated in this study.

2. DTL background and taxonomy

2.1. Background

This section presents the background of DTL and explains its dif-
ferent categories. Moreover, it highlights its differences compared to
DL. As depicted in Fig. 5, in DTL, the knowledge learned in one task is
shared with other related but different tasks.

Def. 1 - Domain: Let us consider a specific dataset 𝑋 =
{

𝑥1,… , 𝑥𝑛
}

𝜒 , in which 𝜒 represents the feature space, and 𝑃 (𝑋) refers to the
arginal probability distribution of 𝑋. A domain is defined as D =
𝑋, 𝑃 (𝑋)}. In DTL, the domain that contains the initial knowledge is
efined as the source domain (SD), and it is represented by D𝑆 . By
ontrast, the domain including the unknown knowledge to be learned
s named the target domain (TD), it refers to D𝑇 (Lu et al., 2021a).
Definition 2 - Task: Considering the previously defined dataset 𝑋 =

𝑥1,… , 𝑥𝑛
}

∈ 𝜒 , which corresponds to a set of labels 𝑌 =
{

𝑦1,… , 𝑦𝑛
}

∈
, where 𝛾 represents the label space. A task can be defined as T =

𝑌 ,F(𝑋)}, where F denotes the learning objective predictive function

https://www.vosviewer.com/
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Fig. 2. Bibliometric analysis in terms of (A) the number of articles involved in this review in each year, (B) the most active and influenced authors in the DTL-based VSSs, (C)
the percentage of papers involved in describing the applications of VSS-based DTL, and (D) the type of papers and percentage of the research articles involved in our survey.
Table 3
Publications per affiliation and country of the authors.

Affiliation Country # of articles

university of oxford UK 25
Zhejiang University China 13
Nanjing University China 12
kings college london UK 11
Comsats University Islamabad Pakistan 10
Sandia National Laboratories USA 10
University of Augsburg Germany 10
Hitec University Taxila Pakistan 9
Carnegie Mellon University USA 8
Delhi Technological University India 8
Huazhong University of Science and Technology China 8
2

p
h
t
t
s
t

2

t
t
p

that could be represented as well as a conditional distribution 𝑃 (𝑌 |𝑋).
ollowing the definition of task, the label spaces of the SD and TD are
epresented as 𝛾𝑆 and 𝛾𝑇 , respectively (Ramirez et al., 2019).

Although there is no comprehensive and standardized categoriza-
ion of DTL methods, we can initially categorize them into various
ypes based on what, when, and how knowledge is transferred. Thus, a
ell-defined taxonomy of DTL algorithms is presented in this section.

a) What knowledge is transferred: inquires which characteristics of
nowledge are transferable across domains or tasks. Some information
s particular to certain domains or tasks, while other knowledge is
hared across domains and can aid increase the performance in the
arget task or domain. Based on this definition, DTL is either feature-
ased, instance-based, relation-based, or model-based (Morid et al.,
021).

b) How knowledge is transferred: inquires about which learning
lgorithms must be implemented to transfer the knowledge.

c) When knowledge is transferred: inquires as to when and under
hat circumstances knowledge should or should not be transferred.
 D

5

.2. Taxonomy

A well-defined taxonomy of DTL methodologies used for VSSs is
erformed in this section. Fig. 6 depicts the proposed taxonomy, which
as been sorted by (i) learning style, (ii) methodology, (iii) surveillance
ype, (iv) data annotation, and (v) popular DTL models. Typically, DTL
echniques can be divided into several groups according to whether the
ource and target’s domains and tasks are similar. Table 4 summarizes
hese possibilities.

.2.1. Inductive DTL
In comparison to classical ML, which may be used as a reference for

he DTL comparison, and given that the target tasks T𝑇 are distinct from
he source tasks T𝑆 , the goal of inductive DTL is to enhance the target
rediction function F𝑇 in the TD, mentioned above. However, the SD

and TD D may not always be the same ( Table 4). The inductive
𝑆 𝑇
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Fig. 3. Summary of the most significant themes covered in this review identified using knowledge graphs.
Table 4
DTL categorization is based on the similarity between the domains and tasks of the source and target, where the mark (⊊) indicates that the domains/tasks are different but
related, (∃!) indicates that there exists one and only one domain/task, and (≅) means that the domains, tasks, or spaces do not always equal.

Domains Tasks Math. propriety Sub-categories/Usage

Traditional ML/DL D𝑆 = D𝑇 T𝑆 = T𝑇 𝑋𝑆 ≠ 𝑋𝑇 ,
𝑌𝑆 = 𝑌𝑇

The DL model is trained on the 𝑋𝑆 dataset and
used to recognize the 𝑋𝑇 dataset.

Inductive DTL D𝑆 ≅ D𝑇 T𝑆 ≠ T𝑇 𝑋𝑆 ≠ 𝑋𝑇 ,
𝑌𝑆∃, 𝑌𝑇 ∃

If 𝑌𝑆∃, DTL is a multitask learning. If 𝑌𝑆∄, DTL is
a self-taught learning, thus 𝜒𝑆 ≅ 𝜒𝑇 .

Transductive DTL D𝑆 ≠ D𝑇 T𝑆 = T𝑇 𝑃 (𝑋𝑆 ) ≠ 𝑃 (𝑋𝑇 ),
𝑌𝑆∃, 𝑌𝑇 ∄ ,
𝜒𝑆 = 𝜒𝑇

When 𝜒𝑆 = 𝜒𝑇 , DTL is related to DDA. If D𝑇 ∃! and
T𝑇 ∃!, DTL is used for sample selection bias or
covariate shift.

Cross-modality DTL D𝑆 ≠ D𝑇 T𝑆 ≠ T𝑇 𝑃 (𝑌𝑆∕𝑋𝑆 ) ≠ 𝑃 (𝑌𝑇 ∕𝑋𝑇 ),
𝑌𝑆 ≠ 𝑌𝑇 , 𝜒𝑆 ≠ 𝜒𝑇

The SD and TD represent different data modalities,
e.g., the dataset 𝑋𝑆 of D𝑆 is collected from
wearable-sensors while the dataset 𝑋𝑇 of D𝑇 is
from vision-sensors.

Unsupervised DTL D𝑆 ⊊ D𝑇 T𝑆 ⊊ T𝑇 𝑌𝑆∄, 𝑌𝑇 ∄ The DTL is used for clustering, dimensionality
reduction, and density estimation,. . . , etc.
DTL can be stated similarly to the following two cases, depending on
whether labeled or unlabeled data is available:

(a) Multi-task DTL: the SD has a huge labeled database (𝑋𝑆 labeled
ith 𝑌𝑆 ), which is a distinctive form of multi-task learning. However,
ith the multi-task approaches, many tasks (𝑇 , 𝑇 ,… , 𝑇 ) are learned
1 2 𝑛

6

at the same time (in parallel), including both the source and target
tasks (Li et al., 2021b).

(b) Sequential learning: or commonly known as the self-taught learn-
ing, refers to the case where the dataset is not labeled in the SD.
Sequential learning is based on (i) the feature representation transfer,
learned from an extensive collection of unlabeled datasets, and (ii) the
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Fig. 4. Road-map of the review paper.
Fig. 5. Difference between conventional DL and DTL techniques for multiple tasks: (a) conventional ML and (b) TL.
learned representation is applied to labeled data to accomplish classi-
fication tasks. Hence, this DTL scheme refers to sequentially learning
several activities (tasks) where the gaps between the SD and TD may
differ. For example, let us suppose that we have a PTM 𝑀 and consider
applying DTL to multiple tasks (𝑇1, 𝑇2,… , 𝑇𝑛), a specific task T𝑇 at each
time step 𝑡 is learned, which is slower than the multi-task learning.
However, when not all the tasks are present at the time of the training,
7

it might be beneficial. Sequential learning can additionally be classified
into several types (Alyafeai et al., 2020):

1- Fine-tuning: it is based on learning a new function F𝑇 that
translates the parameters F𝑇 (𝑊𝑆 ) = 𝑊𝑇 by using a PTM 𝑀 . 𝑊𝑆
and 𝑊𝑇 are the weights of source and target tasks T𝑆 and T𝑇 ,
respectively. The settings can be adjusted across all the layers or
just partially (Fig. 7) and the learning rate for each layer can be



Y. Himeur, S. Al-Maadeed, H. Kheddar et al. Engineering Applications of Artificial Intelligence 119 (2023) 105698
Fig. 6. Proposed taxonomy of existing DTL algorithms for VSSs.
distinct (discriminative fine-tuning). A new set of parameters 𝐾
can be added to most of the tasks so that (Ribani and Marengoni,
2019):

F𝑇 (𝑊𝑇 , 𝐾) = 𝑊𝑆 ×𝐾 (1)

2- Adapter modules: given an 𝑀𝑆 model that has been pretrained,
and output the weights 𝑊𝑆 for a target task T𝑇 . The adapter
module aims to lunch a different set of parameters 𝐾 lower than
𝑊𝑆 , i.e., 𝐾 ≪ 𝑊𝑆 . 𝐾 and 𝑊𝑆 must have the ability to be
decomposed into more compact modules such that 𝑊𝑆 = {𝑤}𝑛
and 𝐾 = {𝑘}𝑛. The adapter module enables learning the following
new function F𝑇 :

F𝑇 (𝐾,𝑊𝑆 ) = 𝑘′1 ×𝑤1 ×⋯ 𝑘′𝑛 ×𝑤𝑛 (2)

According to Eq. (2), during the adaptation procedure, the set
of original weights 𝑊𝑆 = {𝑤}𝑛 is left unaltered, but the set of
weights 𝐾 is changed to 𝐾 ′ = {𝑘′}𝑛. The principle of DDA is
illustrated in Fig. 7.

3- Feature based: interested only in learning concepts and repre-
sentations at various image levels, such as corners/interest points,
blobs/regions of interest points, ridges, or edges 𝐸. The collection
of 𝐸 based on a PTM 𝑀 remains unaltered, i.e., F𝑇 (𝑊𝑆 , 𝐸) =
𝐸 ×𝑊 ′, in the way that 𝑊 ′ is fine-tuned.

4- Zero-shot: is the easiest method among all of the others. Making
the assumption that the parameters 𝑊 cannot be modified or add
𝑆

8

𝐾 as a new parameter to a PTM 𝑀𝑆 using 𝑊𝑆 . To put this into
context, there is no training technique to optimize or learn new
parameters in zero-shot.

2.2.2. Transductive DTL
Compared to the traditional ML, which can be considered as a

reference for DTL comparison, and given that in practical scenarios, the
TD D𝑇 is distinct from the SD D𝑆 . The SD has a labeled dataset (𝑋𝑆
labeled with 𝑌𝑆 ), whereas the TD has no labeled dataset. The source
and target tasks are similar (Table 4). The goal of transductive DTL is to
build a target prediction function F𝑇 in the D𝑇 using the knowledge of
the D𝑆 and T𝑇 . Furthermore, the transductive DTL environment may be
further classified into two categories depending on different conditions
between the source and destination domains (Wan et al., 2021):

(a) Deep domain adaptation (DDA): the feature spaces across do-
mains, 𝜒𝑆 and 𝜒𝑇 , are identical. Still, the marginal probability distri-
butions of the input dataset are not, 𝑃 (𝑌𝑆∕𝑋𝑆 ) ≠ 𝑃 (𝑌𝑇 ∕𝑋𝑇 ) (Liu et al.,
2021a). DDA is most effective when the T𝑇 has a distinct distribution
or labeled data is scarce (Tan et al., 2018).

(b) Cross-modality DTL: in most DTL methods, more or less, a relation
between feature spaces (or label spaces) should exist, i.e., D𝑆 and D𝑇 .
Put differently, DTL can only occur when the source and destination
data are both in the same modality, like video, speech, or text. Cross-
modality DTL, in contrast to all other DTL approaches, is one of the
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ost complicated issues in DTL. It is assumed that the feature spaces of
he source and destination domains are completely distinct (𝜒𝑆 ≠ 𝜒𝑇 ),
s in speech-to-image, image-to-text, and text-to-speech. Furthermore,
he label spaces of source 𝑌𝑆 and destination 𝑌𝑆 domains might differ
𝑌𝑆 ≠ 𝑌𝑇 ) (Niu et al., 2021).

c) Unsupervised DTL: it aims to enhance the learning of the target
redictive function F𝑇 in D𝑇 using the knowledge in D𝑆 and T𝑆 , where
𝑆 is different from T𝑇 but related, and the labels 𝑌𝑆 and 𝑌𝑇 are not
vailable (Si et al., 2021).

.2.3. Adversarial DTL
In contrast to the methods described above, adversarial learn-

ng (Zhou et al., 2020) aids in learning more transferable and dis-
riminative representations. The study in Ganin et al. (2016) was the
irst that introduced the domain-adversarial neural network (DANN).
nstead of using a predefined distance function, e.g., the maximum
ean discrepancy (MMD), the core idea is to use a domain-adversarial

oss in the network. This has greatly aided the network’s ability to
earn more discriminative data. Many VSS studies have used domain-
dversarial training as a result of DANN’s idea (Shen et al., 2018;
eorgescu et al., 2020; Choi et al., 2021; Georgescu et al., 2020;
oleimani and Nazerfard, 2021). All the previous works ignore the
ifferent effects of marginal and conditional distributions in adversarial
TL. In contrast, in Wang et al. (2020a), an approach based on dynamic
istribution alignment is introduced, which can dynamically evaluate
he importance of each distribution. To gradually bridge the gap among
omains from coarse to fine granularity, a unique adversarial scoring
etwork (ASNet) was developed in Zou et al. (2021). In particular,
uring the coarse-grained stage, adversarial learning is used to build
dual-discriminator technique to adjust the SD to be near the tar-

ets from both the global and local feature space viewpoints. Thus,
he distributions of the two domains may be generally aligned. The
ransferability of source attributes is investigated at the fine-grained
tage by scoring how similar source samples are to target samples at
any levels using generative probability generated from the coarse

tage. After that, the transferable source elements are carefully chosen
o aid DTL during the adaptation process. The generalization bottleneck

aused by the domain disparity may be successfully reduced using the u

9

oarse-to-fine architecture, as portrayed in Fig. 8. Specifically, the input
hotographs are encoded into density maps by the generator before
lassifying the density maps as SD or TD using the dual-discriminator.
ext, domain distributions are pulled close through adversarial training
etween the dual discriminator and generator. In the meantime, the
ual-discriminator generates four different kinds of scores as a signal
o help optimize the density of the SD during adaptation, resulting in
ine-grained transfer (Zou et al., 2021).

. Overview of DTL-based VSSs

.1. Fine-tuning

Model fine-tuning is a commonly adopted DTL scheme in VSS tasks,
hich helps fine-tune a pretrained DL network in a TD instead of

raining the whole architecture from scratch. This is a delicate task in
SSs because of the variations inside the TD, including distinct camera
iewpoints, occlusion, and illumination changes. PTMs, e.g., ResNet-50,
isual geometry group network (VGG), EfficientNet, and Inceptionv3
ave reached significant success and become a milestone in computer
ision. To that end, knowledge is encoded into huge parameters and
ine-tuned on particular tasks. The rich knowledge implicitly stored in
uge parameters can benefit a variety of downstream tasks. Three main
echniques are typically adopted to fine-tune pretrained CNN models:

.1.1. Direct use of PTMs
Directly applying an overall pretrained DL model (end-to-end) from

source task is the simplest approach for solving a VSS target task.
retrained DL models include millions of parameters, trained for days
r even weeks on state-of-the-art machines. In Sahoo et al. (2019), the
eights of pretrained VGG-16 and InceptionV3 are fine-tuned to extract

eatures from a target dataset. Similarly, in Atghaei et al. (2020), a
retrained VGG-16 is employed to identify the originality of input
atches that are produced by the generator of a GAN model in an
ttempt to learn the normal data distribution in videos. In Liu et al.
2020c), different 2D-CNN models are fine-tuned to recognize actions
n video sequences, including ResNet-50, ResNet-101, ResNeSt-50 and
esNeSt-101. Besides, in Doshi and Yilmaz (2020), to extract location
nd appearance features, a pretrained OD system based on YOLOv3 is

tilized.
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Fig. 8. The block diagram of the ASNet model based on adversarial DTL proposed in Zou et al. (2021).
3.1.2. Fine-tuning the last few layers
In this case, the first several layers usually used as a feature extrac-

tor are fixed (or frozen), and only the last few layers are fine-tuned.
Typically, the bottom and mid-level layers are considered general
features, while the top layers represent the problem-specific features.
In this regard, by fine-tuning the last few layers, two main benefits
are achieved: (i) the knowledge learned in the SD can be preserved
when freezing the first several layers, (ii) the model is adapted to the
TD by fine-tuning the last few layers. Therefore, the knowledge from
the SD and TD can be combined to improve the performance (Zhang
et al., 2016). This fine-tuning strategy has been widely adopted in
VSS problems. For instance, in Zhang et al. (2016), a DTL-based CC
approach is developed using a multi-column CNN (MCNN) model. The
latter has been trained on a large-scale dataset that contains heads of
very different sizes before transferring it to other datasets whose crowd
heads have different sizes. If the TD dataset has a few training samples,
the first layers in every column of MCNN are frozen, and only the last
few layers are fine-tuned. There are two advantages to fine-tuning the
last few layers in this case.

In Ahmadi et al. (2020), Ahmadi et al. fine-tune a PTM by re-
placing the softmax layer and running backpropagation for video OD.
Yet, another work in Yu et al. (2021) study the problem of few-shot
learning for video OD produced from the frequently used ImageNet
VID dataset. To efficiently train the video object detector on many
base-class items and a few video clips of novel-class objects, a method
called Thaw is proposed. Typically, the authors first freeze the feature
extractor and fine-tune the detection head when developing a few-
shot learning scheme for video OD. Zhang et al. (2016) propose an
MCNN for CC based on density map estimation TL. In doing so, two
scenarios are implemented via (i) fine-tuning the overall network and
(ii) fine-tuning the last two layers. Typically, it has been seen that the
second strategy presents a better performance in terms of the MAE and
MSE. Similarly, in Liu et al. (2020b), unsupervised CC is explored in a
DTL setting, where people counting is learned in an unlabeled TD by
transferring bi-knowledge learned from regression- and detection-based
models in a labeled SD. Moving on, Delussu et al. (2022) introduce
a TL-based scheme to learn scene-specific CC algorithms when either
representative unlabeled or labeled images are missing. The validation
has been conducted using four global regression models (GRM)-based
and nine CNN-based CC techniques. In Liu et al. (2018c), a CC baseline
network is derived from the VGG-16 network (Simonyan and Zisser-
man, 2014), which consists of 13 convolutional layers followed by

three fully-connected layers (FCLs). The network is adapted to regress

10
the person density maps by removing its two FCLs, and the max-
pooling layer (pool5) to prevent further spatial resolution reduction.
In Wang et al. (2018b), a lightweight DL combining density adaption
network (DAN), low-density counter network (LCN), and a high-density
counter network (HCN) is proposed. DTL is performed by fine-tuning
the base model pretrained on the SD n the TD. The paper (Ahmed
et al., 2021a) presents a DTL-based multiple-person surveillance system
using top-view perspectives, providing extensive coverage of the scene
or field of view. This approach is conducted in two stages: (i) detecting
persons using YOLOv3 and (ii) tracking them using the DeepSORT
algorithm. Moreover, a DTL approach is introduced by considering a
PTM augmented with an extra trained layer using a top-view dataset.

3.1.3. Progressive learning
Progressive learning relies on using PTMs to perform a continuous

learning process, where tasks can be sequentially learned with the
possibility to utilize prior knowledge from previously learned tasks to
ease the learning and execution of new ones. In Bilal et al. (2021),
a spatiotemporal DTL-based HAR framework to recognize overlapping
human behaviors in lengthy films is proposed. Various CNN models,
i.e., Xception, VGG16, VGG19, ResNet152v2, ResNet-101v2, Incep-
tionv3, and DenseNet201 have been fine-tuned to learn the spatial
connection at the frame level.

Table 5 portrays some of the relevant VSS studies based on fine-
tuning.

3.2. Popular pretrained models (PTMs)

Using PTMs as the backbone for target tasks instead of learning
models from scratch has become the consensus of the VSS research
community. In section, we briefly present the popular PTMs and re-
cent VSS frameworks built upon them, especially by adopting DTL, to
highlight some of the critical contributions of PTMs in VSS applications.

3.2.1. Complex models
• ImageNet: a CNN model called Imagenet has been proposed in the

ILSVRC, a large-scale object recognition challenge. Typically, it has
been trained on the ImageNet repository (Russakovsky et al., 2015),
including more than 15 million labeled images. By using DTL, the
pretrained ImageNet network is leveraged and fine-tuned on curated
datasets to perform different VSS tasks, such as fire detection (Bari
et al., 2021), classification of crowd movements (Bendali-Braham
et al., 2019), high-level semantic concept recognition (Su et al.,

2014), etc.
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Table 5
Summary of existing TL-based VSS frameworks using fine-tuning.

Work Backbone Description Application Best FMD
performance

Limitation/advantage

Zhang et al. (2016) MCNN • Single-image CC via MCNN UCF_CC_50, SHA MAE=295.1,
MSE=490.23

• Although the good generalizability achieved, the
performance needs further improvement.

Sahoo et al. (2019) VGG-16,
InceptionV3

• Spatial and temporal feature
extraction using pretrained
CNN models

UCF crime
(Sultani et al.,
2018)

AUC=50.16% • Low detection performance under the UCF crime
dataset.

Atghaei et al. (2020) VGG-16 • Freezing the first five layers
and use the learned
parameters

UCSD anomaly
detection
(Mahadevan
et al., 2010)

AUC=93% • Still cannot support real-time applications.

Liu et al. (2020c) ResNet-50,
ResNet-101,
ResNeSt-50,
ResNeSt-101

• Fine-tuning 2D-CNN models
for better action recognition

CitySCENE
(Anon, 2022)

AUC=89.2% • Stronger temporal modules and deeper networks
do not bring performance improvement.

Doshi and Yilmaz (2020) YOLOv3 • AED based on Fine-tuning of
MCNN architecture (whole
MCNN)

CUHK Avenue
UCSD
SHA/SHB

AUC=97.8%
(UCSD Ped 2)

• Moderate performance on CUHK Avenue and
SHA/B datasets.

Ahmadi et al. (2020) CNN • Fine-tune a PTM by
replacing the softmax and
running backpropagation
layers

Penn-Fudan
(Wang et al.,
2007)
Daimler (Flohr
et al., 2013)
Inria person
detection (Dalal
and Triggs,
2005).

F1=91.0%
(DPSB)

• Fail in extremely complicated situations, i.e.,
when a person is hidden behind another.

Yu et al. (2021) ResNeXt-101 • Freeze the feature extractor
and fine-tune on the detection
head

Private dataset mAP50=51.38% • Improve novel-class performance on weak base
datasets and competitive novel-class performance
on strong base datasets.

Liu et al. (2020b) DSSINet • CC using regression-detection
bi-knowledge transfer from a
labeled SD to an unlabeled TD

SHA, UCF_CC_50,
UCF_QNRF

MAE=112.24,
MSE=218.18

• No limitation is reported.

Delussu et al. (2022) CNN, GRM • Scene-specific CC by
transferring the knowledge
learned on synthetic datasets
to real data.

Mall
UCSD
PETS2009

MAE=4.6,
RMSE=6.54

• The performance can significantly dropped due
to low image illumination and color degradation.

Ahmed et al. (2021a) Deep SORT and
YOLOv3

• Top view multiple people
tracking using fine-tuning of
PTMs

COCO
private data

Acc=96% • No information about the generalization of the
presented model to other existing datasets, as it is
only validated on one dataset that is not available
online.

Bilal et al. (2021) Xception,
VGG16, VGG19,
ResNet152v2,
ResNet-101v2,
Inceptionv3 and
DenseNet201

Fine-tuning based
spatiotemporal HAR
framework for long and
overlapping action classes

UCF-101 Acc=96.03% • Do not perform well to learn complex actions
containing multiple sub-actions and or
multi-view-points.

Liu et al. (2021b) ResNet-18 • CC by exploiting sample
correlation with multi-expert
network and fine-tuning

SHA/SHB
UCF-QNRF
(Idrees et al.,
2018)
NWPU-Crowd

MAE=63.1,
MSE=94.7

• The performance needs further improvement
compared to the state-of-the-art.
• AlexNet: it is the CNN architecture that won the ILSVRC2012
(Krizhevsky et al., 2012) consisting of five convolutional layers com-
bined with max-pooling (to reduce the dimensions of data) followed
by three FCLs. The activation function is a rectified linear unit
(ReLu) that presents a fast training advantage over other activation
functions (Ramachandran et al., 2017; Silver et al., 2016). In Serpush
and Rezaei (2020), an AlexNet-based DTL is used to develop a HAR
framework. In doing so, a hybrid approach based on background
subtraction and histogram of gradient (HOG) is first implemented,
followed by applying AlexNet-based DTL and long short-term memory
(LSTM) to select the best features. Moving on, human actions are la-
beled using a Softmax K-nearest neighbors (KNN) classifier. Similarly,
the representational power allowed by the AlexNet-based DTL for a
HAR task is demonstrated in Giel and Diaz (2015).

• VGGNet: VGG-16 was first proposed in ILSVRC2014 before introduc-
ing VGG-19, which both represent two models for improving AlexNet.
In doing so, large kernel-sized filters of AlexNet were replaced with
multiple small kernel-sized filters, which resulted in 13 and 16 con-
volution layers for VGG-16 and VGG-19 (Simonyan and Zisserman,
2014). In Sen and Deb (2021), an action classification scheme for
11
soccer videos is introduced by combining VGG-19 and gated recurrent
unit (GRU).

• CaffeNet: it is an improved version of AlexNet without using data
augmentation and placing the pooling layer before normalization
operation. Concretely, CaffeNet helped slightly reduce the compu-
tational cost of AlexNet, as a result of making data dimensionality
reduction before the normalization process (Jia et al., 2014).

• ZFNet: this model won first place in ILSVRC2013 and has been
built upon the architecture of AlexNet with a similar number of
architecture and other improvements (Zeiler and Fergus, 2014). Typ-
ically, ZFNet introduces the idea of deconvolutional network (Zeiler
et al., 2010) to address the black-box nature of CNN algorithms by
illustrating their use to learn the feature representation. Accordingly,
a deconvolutional network helps map characteristics learned into
input pixel spaces, thus, enhancing CNN interpretability.

• Inception: Inception-V1, also named GoogleNet, is proposed to im-
prove the performance of VGGNet regarding memory usage and
runtime while maintaining a good accuracy (Szegedy et al., 2015). In
doing so, the redundant or zero activation functions of VGGNet due
to the correlations between them are eliminated. Thus, Inception-v1
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has been augmented with Inception’s module to approximate sparse
connections between the activation functions. Following Inception-
V1, three variants have been introduced to refine the architecture
by (i) using batch normalization for training in Inception-V2 (Ioffe
and Szegedy, 2015), (ii) using a factorization approach to reduce the
computational cost of convolution layers in Inception-V3 (Szegedy
et al., 2016), and (iv) introducing a simplified uniform variant of
Inception-v3 with more inception modules in Inception V-4 (Szegedy
et al., 2017). For instance, in Mathew et al. (2017), the knowledge
learned by Inception v3 on 1,28 million images (categorized into
1000 classes) from the ImageNet LSVRC 2014 is utilized for intrusion
detection on small ATM surveillance video dataset of 4719 images.

• ResNet: augmenting CNN models with more layers can result in
vanishing gradients and accuracy saturation. Residual learning is the
backbone of the ResNet architecture and is used to solve these is-
sues (Kensert et al., 2019). Before ResNet, CNN architectures learned
the characteristics at distinct abstraction levels (at the end of every
convolution layer). By contrast, ResNet learns residuals instead of
the features, representing the subtraction of characteristics learned
from the input of every layer. This has been made using the identity
shortcut connections concept (i.e., connecting the input of a layer to
𝑥 layers after that) (He et al., 2016). Following, different improved
versions of ResNet have been developed using distinct numbers of
layers, e.g., ResNet-34, ResNet-50, and ResNet-101.

• Inception-residual network (IRN): it relies on combining the
strengths of ResNet and Inception. Typically, ResNet helps the model
in having deeper CNN for learning more complex characteristics
while maintaining good performance, whereas Inception helps in ef-
ficiently learning the characteristics at distinct resolutions within the
same convolution layer. Thus, the IRN combines these advantages in
two versions (i) Inception-ResNet-V1, which is based on Inception-V3,
and (ii) Inception-ResNet-V2 which is based on Inception-V4 (Szegedy
et al., 2017). In Khan et al. (2022), abnormal events related to
smoking in public areas are detected by transferring the knowl-
edge of the pretrained InceptionResNet-V2 model. In Suresh and
Visumathi (2020), a HAR scheme is performed on a small dataset
using Inception-ResNet-v2-based DTL and LSTM. Concretely, the
model is first trained to be deriving features from Inception-ResNet-
v2 prior to applying the output features on the LSTM to learn action
sequences.

• Xception: this model refers to extreme Inception and represents an
improved variant of Inception-V3 (Chollet, 2017). It utilizes depth-
wise separable convolution to separately entail images’ spatial di-
mensions and channel dimensions in the training stage. Moreover, it
has better performance than Inception-v3 on ImageNet, although they
have almost the same number of parameters. In Wilie et al. (2018),
the knowledge of the pretrained Xception model is adopted to develop
a CC system named CountNet. Typically, the pretrained Xception is
fine-tuned, where only the FCLs have been trained again. This results
in better performance, especially when an augmented dataset robust
to slice and scale variations is used.

• DenseNet: in this model, every convolution layer obtains the feature
maps (i.e., output) of all preceding layers as input and transfers its
feature maps (i.e., output) to all subsequent layers (Huang et al.,
2017). Accordingly, every layer receives the combined knowledge of
all preceding layers, making the resulting CNN more compact and
thinner because of the decreasing number of feature maps. Different
versions of Densenet have been proposed, including DenseNet-121,
DeneNet-169, and DenseNet-201.

• Hybrid models: it is worth mentioning that some TL-based VSSs have
been developed by combining different CNN-based DTL architectures.
For example, Huang et al. (2020) propose a hybrid CNN-based DTL
system to detect the distracted behavior of drivers using a cooperative
PTM that combines ResNet-50, Inception-v3, and Xception. In Leong
et al. (2020), a fusion of the pretrained 2D CNN models, namely
VGG-16, ResNets, and DenseNets, is proposed to develop an effective
12
video action recognition system. Typically, the DTL methodology
based on these models is used to extract spatial features. Then, a
temporal encoding is performed before connecting the output to 3D
convolution layers at the top of the architecture. In Abdulazeem et al.
(2021), TL-based HAR is adopted by pretraining a standard CNN
model on a generic dataset to adjust weights prior to applying it to a
TD dataset. Five different CNN architectures and LSTM are considered
in the recognition phase. The first three architectures are single-
stream and stand-alone, while the last two models combine the first
three networks. In Khan et al. (2021), a TL-based HAR is introduced,
in which the pretrained DensNet 201 and Inception-v3 are used to
map relevant features. Moving on, the serial-based extended (SbE)
scheme is used to fuse extracted features. Next, the kurtosis-controlled
weighted KNN is employed to select the pertinent features. Lastly,
different supervised ML models are used to classify the selected
features and perform HAR on different datasets, including KTH (Chen
et al., 2021b), IXMAS (Melhart et al., 2021), WVU (Hassan et al.,
2018), and Hollywood (Joshi et al., 2020).

3.2.2. Lightweight models
To overcome the high computation cost problem encountered with

complex CNN models and enable their implementation on mobile
terminals, numerous lightweight but efficient CNN architectures have
been proposed.

• Mobilenetv1: it relies on using a depthwise convolution for perform-
ing lightweight filtering by applying a single convolutional filter per
input channel. Moreover, it does not use pooling layers, while a
depthwise separable convolution with a step size of 2 is utilized for
downsampling operations.

• Mobilenetv2: in addition to inheriting the depthwise separable con-
volution of MobileNetVl, the width factor and resolution factor are
used for compressing the model scale. Moreover, the residual unit
used in ResNet is adopted in this architecture, where two improve-
ments are performed by introducing an inverse residual structure and
proposing a linear bottleneck structure. In Khaire and Kumar (2022),
the power of DTL is leveraged to extract relevant video features
using MobileNetv2 and develop an efficient real-time AED framework
by reducing computational complexity. This helps implement this
approach on the edge and mobile devices at the ATM surveillance
sites.

• SqueezeNet: it has almost the same accuracy as AlexNet but with 50
times fewer parameters and relies on the idea of stacking to construct
the network. It reduces the feature map with a 1 × 1 convolution
kernel to decrease network parameters. The concept of stacking is
used when creating the network (Iandola et al., 2016).

• ShuffleNet: it relies on solving the limitations of information flow
between channels caused by group convolution through shuffle oper-
ations (Zhang et al., 2018).

• MixNet: although depthwise separable convolutions have vastly been
utilized in many lightweight CNNs, limited attention was devoted
to investigating the size of the convolution kernels. In contrast,
MixNet (Tan and Le, 2019) is proposed to consistently study the
influence of the convolution kernel size on the final result based on
MobileNet.

• EfficientNet: because the generalizability of a CNN model can be
improved by increasing the depth, width, and resolution of the net-
work, EfficientNet introduces a compound coefficient for proactively
improving these parameters and optimizing them via a composite
model scaling.

4. Deep domain adaptation

Despite the simplicity of implementing fine-tuning, its efficiency
significantly drops when the distributions of SD and TD are different. To
that end, domain-distance measurement (DDM) has been considered in
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the original networks, which is called DDA. Typically, the cost function
of the initial model is adjusted by including a domain loss to quantify
the distribution of the SD and the TD. Fig. 5(b) displays a CNN example
of DDA that adjusts the distribution in FCLs through DDM. Most VSS
frameworks have separately been validated on single-domain datasets
with similar characteristics (Wang et al., 2021d; Saponara et al., 2021;
Che Aminudin and Suandi, 2022; Lamas et al., 2022) while a small
effort has been dedicated to exploring cross-domain VSS.

4.1. One-step DDA

4.1.1. Homogeneous DDA

(a) Discrepancy-based: DDA and DTL aim at performing a VSS task
in a TD based on the knowledge learned from an SD. To transfer
knowledge, the SD and TD are aligned by reducing the MMD, including
DDC (Tzeng et al., 2014), JAN (Long et al., 2017), DAN (Long et al.,
2015) and RTN (Hinton et al., 2015). To enhance the model gener-
alization of TD dataset with unlabeled crowd scenes, a set of diverse
and decorrelated regressors are learned to prevent overfitting in the
SD. While in Xu et al. (2019), a learn-to-scale module is introduced to
address the density pattern shift, which maintains good transferability
across datasets. Moving on, in Shi et al. (2018), Xu et al. (2019),
the crowd information in the TD dataset, which is unlabeled, is not
exploited, which has limited the performance of cross-domain CC.
Unlike the abovementioned studies, the mutual transformations be-
tween the output of individual detection models and density regression
in the SD are modeled based on a deep structured scale integration
network (DSSINet) in Liu et al. (2020b), which uses VGG-16 as a
backbone. Next, the regression-detection bi-knowledge is propagated
over modeled transformers to the TD using a self-supervised learning
approach. This process is repeated until the performance is converged
in the TD. In Prabono et al. (2021a), the discrepancy between the
SD and TD datasets is minimized by reducing statistical distance,
which helps implement a DDA scheme based on autoencoder for HAR.
Rather than simultaneously learning the representation of SD and TD,
this method attempts to learn the representation for the domain of
interest separately to guarantee its optimality. In Guo et al. (2021),
a maximum cross-domain classifier discrepancy (MCDCD) technique
is introduced to perform a multi-source unsupervised deep domain
adaptation (UDDA) for abnormal human gait detection. In this respect,
the information from multiple training SDs is leveraged to enhance the
classification performance on the TD.

In some applications, such as cross-domain facial recognition, it
is challenging to simultaneously manage the domain shift and the
semantic gap during the DDA. Most existing techniques can only reduce
domain discrepancy for transferable characteristics but fail to decrease
the semantic one. To close this gap, a Joint Discriminative and Mutual
Adaptation Networks (JDMAN) is introduced in Li et al. (2021a), which
helps in collaboratively bridging the domain shift and semantic gap by
domain- and category-level co-adaptation based on mutual information
and discriminative metric learning techniques. In Qi et al. (2019), a
camera-aware DDA for person re-identification is developed to diminish
the discrepancy between the SD and TD as well as across the camera-
level sub-domains. Moreover, the temporal continuity in every camera
of the TD is exploited for creating discriminative information. It has
been executed by proactively producing online triplets within every
batch to fully capitalize on the steadily enhanced feature representation
in the training stage.

(b) Adversarial adaptation: the second class of methods, such as the
adversarial discriminative domain adaptation (ADDA) (Tzeng et al.,
2017), multi-adversarial domain adaptation (MADA) (Pei et al., 2018)
and conditional adversarial domain adaptation (CDAN) (Long et al.,
2018), unsupervised image-to-image translation (UNIT) (Liu et al.,
2017), Cycle-Gans (Zhu et al., 2017), CoGAN (Taigman et al., 2016)

and Disco-GAN (Kim et al., 2017). In fact, GANs play a major role in the

13
generative modeling of images, although their operation is restricted
by different assumptions, which question the efficiency of DA. They
attempt to apply adversarial learning to the training of the network.
The differences between domains are gradually eliminated since the
feature extractor keeps trying to confuse the domain classifier. For
instance, In Wang et al. (2019c), a data collection and labeling method
is developed for generating synthetic crowd scenes and concurrently
annotating without human intervention. Following, the produced syn-
thetic data is then used to improve the CC accuracy in the wild by (i)
using an SSIM embedding (SE) Cycle GAN (SE-Cycle-GAN) to transform
the synthetic video frames into the photo-realistic frames, (ii) training
a spatial fully convolutional network (SFCN) on the translated data.
Moving forward, Gao et al. (2019) introduce a domain-adaptation
CC (DACC) scheme, which relies on inter-domain features segregation
(IFS). Specifically, it consists of transforming synthetic images into
realistic data and density map reconstruction. Typically, it prompts the
translation quality by segregating domain-shared/independent features
and designing content-aware consistency loss. Thus, pseudo labels are
generated on real scenes and retrain a final counter, improving the
prediction quality.

(c) Reconstruction-based: this scheme utilizes an auxiliary recon-
struction process for creating a shared representation between the SD
and TD. For example, the Deep Reconstruction Classification Network
(DRCN) aims to solve the following two tasks concurrently: (i) classi-
fying SD samples and (ii) reconstructing unlabeled TD samples. This
results in helping the model learn to correctly discriminate between
the SD and TD samples in addition to preserving information about
the TD. For the case of autoencoders, encoder/decoder reconstruction-
based DDA techniques aim at concretely learning the domain-invariant
representation by a shared encoder and maintaining the domain-special
representation by a reconstruction loss in the SD and TD. In this
regard, aiming at learning cross-domain shared contents by suppress-
ing domain-specific variations, Deng et al. (2021b) propose the Deep
Ladder Reconstruction-Classification Network (DLaReC) approach. The
latter utilizes an encoder with cross-domain sharing and a TD recon-
struction decoder. Residual shortcuts connect the encoder and decoder
at every intermediate layer. In this regard, the domain-specific compo-
nents are directly fed to the decoder for reconstruction, which helps
alleviate the pressure of learning domain-specific variations at later
layers of the shared encoder.

To utilize data from both the SD and TD, a large-scale synthetic
dataset is established in Wang et al. (2019c) as the source, and a
UDDA is considered for reducing the discrepancy between the synthetic
SD and the real-world TD using the Cycle-Gan (Zhu et al., 2017). By
contrast, domain features in the semantic space have been selected to
be aligned using adversarial learning in Han et al. (2020). Whereas
in Zhu et al. (2017), Han et al. (2020) density regression networks for
DDA are utilized where the TD data is taken as a whole with a domain
label.

(d) Hybrid approaches there are also application scenarios where
the methods above are simultaneously utilized to obtain better perfor-
mance. For instance, the authors in Hoffman et al. (2017) combine a
soft label loss and domain confusion loss. In contrast, Long et al. (2016)
uses both architecture criteria (adapt classifier by residual function)
and statistic (MMD) for UDDA. Moving on, class-specific auxiliary
weights are assigned by the pseudo-labels into the initial MMD in Yan
et al. (2017) In Wei et al. (2018a), different domains are linked up using
common characteristics, and domain divergences are simultaneously
reduced by learning the translations between common characteris-
tics and domain-specific characteristics. Following, learned translations
are cross-used for transferring domain-specific characteristics of one
domain to another before composing a homogeneous space, where
domain divergences can be reduced. Most existing adversarial learning
techniques have focused on resorting to learning domain-transferable
feature representations by bounding the feature distribution discrep-

ancy cross-domain. However, this can result in poor generalization and
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misalignment performance without capitalizing on task-special adap-
tation and class information. To overcome these issues, Zhang et al.
(2020b) propose joint adversarial learning with a domain alignment
DNN architecture and class information, namely the hybrid adversarial
network (HAN). The letter relies on (i) incorporating a classification
loss for learning a discriminative classifier and (ii) adopting a domain
adversarial network for learning a domain-transferable representation
that diminishes domain discrepancy. Moving forward, a DNN-based
HAN for end-to-end CDHAR, namely HydraNet, is proposed in Prabono
et al. (2021b). It is built upon learning reliable domain-invariant la-
tent representations of common characteristics by decreasing statistical
shifts between domains.

4.1.2. Heterogeneous DDA
By using homogeneous feature spaces, existing techniques built

upon homogeneous DDA are less practical in real-world scenarios as
there is more chance of having heterogeneous feature spaces. Although
efforts are paid to develop heterogeneous DDA schemes, additional
information, such as instance correspondence, is still required. This is
challenging to satisfy when sensor data is processed (Prabono et al.,
2021b).

Discrepancy-based approaches: in discrepancy-based homogeneous
DDA, a model usually reuses or shares the first layers between the
SD and TD, where their features spaces have the same dimension. By
contrast, the dimensions of the feature spaces of the SD can vary from
those of the TD. When addressing the first group of heterogeneous
DDA, the video frames in different domains could be promptly rescaled
into the same dimensions. Thus, the statistic and class criteria are still
efficient and primarily utilized. For instance, by considering an RGB
video frame and its paired depth frame in Gupta et al. (2016), mid-
level representations learned by a CNN model are used as supervisory
signals for re-training a CNN on depth images.

Adversarial-based approaches: by adopting generative models, het-
rogeneous target data can be generated while transferring some in-
ormation from the SD to it. Recently, there have been several works
n video DDA. For instance, Jamal et al. (2018) utilize an adversarial
earning framework with 3D CNN to align the SD and TD. TA3N (Chen
t al., 2019) leverages a multi-level adversarial framework with tempo-
al relation and attention mechanism to align the temporal dynamics of
eature space for videos. TCoN (Pan et al., 2020) matches the feature
istributions between source and TDs, for temporal alignment using the
ross-domain co-attention mechanism.

econstruction-based approach: heterogeneous DDA can also em-
ploy adversarial reconstruction as it is presented in Zhu et al. (2017),
Kim et al. (2017) and Yi et al. (2017), where the Cycle-Gan, dual
GAN, and disco GAN are implemented, respectively. They use two
generators, GA and GB, to generate sketches from images and images
from sketches, respectively.

Hybrid approaches: hybrid DDA is a particular scenario of heteroge-
neous DDA in which common features between domains exist. More-
over, hybrid DDA can be more realistic when it is easier to satisfy
the feature commonality. Whereas existing techniques operate using
common features in the original feature space, which indeed can still
have distribution differences. Additionally, the existing ones require ex-
tracting hand-crafted features to perform more informative descriptions
while classifying video frames.

A specific scenario of heterogeneous DDA is the Hybrid DDA (Wei
et al., 2018a), which is considered an emerging framework on the DA.
It leverages the intersections of the feature space between the SD and
TD. This case can be comparatively more applicable, notably for HAR,
as various wearable devices can have similar sensing modalities and
their device-specific sensing modalities. The earliest attempts to solve
hybrid DDA problems have focused on taking similar features from
both domains and discarding the domain-specific features. In Prabono
14
et al. (2021b), a deep model for hybrid DDA is introduced, which sys-
tematically extracts high-level pertinent characteristics from raw data
and learns the domain-invariant latent representations of the common
characteristics between domains. Typically, latent representations of
the common characteristics are eventually utilized as the bridge to
transfer relevant characteristics between domains.

4.2. Multi-step DDA

4.2.1. Hand-crafted approaches
Since the intermediate domain is occasionally chosen based on

experience, it is decided in advance. For instance, if the SD consists of
synthetic video frames and the TD contains real video sequences, some
annotated synthetic frames will evidently be explored as intermediate
domain data. In this respect, Kim et al. (2021) use visual DDA and
image segmentation to measure water elevation from side-view and
top-view video data. Concretely, the SD consists of multi-view syn-
thetic data, and the DDA is then applied for estimating water levels
from top-view videos to enable the generalization of this strategy
and its application to other data repositories. Besides, a simple to
complex action TL approach, namely SCA-TLM, is proposed in Liu et al.
(2015) for complex HAR using dense trajectories to extract features.
By handling the abundant labeled simple actions, SCA-TLM helps in
(i) improving the performance of complex HAR and (ii) optimizing the
weight parameters. This enables the learning of complex actions to be
reconstructed by simple actions. Yan et al. (2018) develop an online TL
for 3D LiDAR-based person classification based on multisensor-based
tracking. In doing so, a Bayesian tracker and an SVM classifier are
used to develop a human classifier, which could be learned from the
deployment environment without relying on the training annotated
data.

4.2.2. Instance-based approaches
There are other problems where various intermediate domains are

candidates. Thus, an automatic selection process might be adopted.
As presented in Pan and Yang (2009) and similar to instance-transfer
techniques, since the observations of the SD cannot directly be utilized,
a combination of samples from both the SD and TD can be effective in
constructing the intermediate domain.

4.2.3. Multi-source DDA (MDDA)
MDDA aims to shift the knowledge learned from different SDs to

an unlabeled TD. This makes it a challenge, keeping in mind the
acute domain discrepancy that exists not only between the SD and TD
but also between the also exists among diverse sources. Prior studies
on MMDA either estimate a mixed distribution of SDs or combine
multiple single-source models, but only some delve into the relevant
information among diverse SDs. Recently, some MDDA approaches
have been introduced (Hoffman et al., 2018; Zhao et al., 2020; Sun
et al., 2015). It has been proved in many UDDA studies with multiple
annotated SDs that MDDA is better than single-source deep domain
adaptation (SDDA) (Yang et al., 2020; Zhao et al., 2019; Lin et al.,
2020; Guo et al., 2020). Existing MDDA techniques are categorized into
two groups, where the first one utilizes shared feature spaces (Peng
et al., 2019; Xu et al., 2018; Ren et al., 2022; Ahmed et al., 2021d;
Nguyen et al., 2021) to bridge the distributions of multiple SDs and TD
through the alignment of all domains using a shared network. However,
domain-specific knowledge is not completely investigated. Another
group relies on multi-model combinations (Zhu et al., 2019; Zhao et al.,
2020), which pair the TD with each SD for separately training various
classifiers. Moving forward, multiple predictions generated by different
classifiers for the same target sample in the test stage are combined to
obtain the final prediction, Techniques of this group cannot be directly
utilized in most VSS applications because of the distinct sizes and
numbers of regions produced by different detection algorithms on every
target sample. This makes obtaining the final prediction by weighting
these regions in the test stage challenging, even impossible.
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Fig. 9. The partial transfer learning problem (Li et al., 2020).
.2.4. Representation-based approaches
These techniques freeze a previously trained model and utilize its

ntermediate representations as input to a new model. A progressive
eural network (NN) that can accumulate and transfer knowledge to
ew domains over a sequence of experiences is proposed in Rusu et al.
2016). Typically, a new NN is constructed for each domain to avoid
he target model losing its capability of solving the SD. Besides, the
ransfer is performed by later connections to previously learned net-
ork features. Moreover, to remember the knowledge of intermediate
omains, the parameters in the latest network are frozen.

.3. Partial transfer learning

While most DTL algorithms minimizing the marginal distributions
iscrepancy have generally relied on assuming identical label spaces
cross different domains, a partial transfer learning process can be more
ommon for some scenarios. Typically, a discrepancy between the SD
nd TD label spaces can exist, or the TD label space can be a subspace
f the SD label space. In this case, partial transfer learning has emerged
s a complex problem since it is challenging to know where to transfer
ue to the non-availability of shared label spaces. Fig. 9 explain the
artial transfer learning problem.

Recently, various studies have been proposed to target partial trans-
er learning. For instance, Cao et al. (2018) introduced partial transfer
earning based on selective adversarial networks (SAN) to circumvent
egative transfer concurrently. Specifically, this has helped relax the
hared label space assumption to make the TD label space a subspace of
he SD label space. In doing so, the outlier source classes were ignored,
nd the positive transfer was promoted by maximally matching the
ata distributions in the shared label space. Similarly, in Li et al.
2020), Li et al. address the partial transfer learning issue by adopting a
L-based DA approach. Typically, a class-weighted adversarial neural
etwork has been developed to discard SD outliers, encouraging the
ositive transfer of the shared classes. Moving forward, a double-layer
ttention-based GAN is designed in Deng et al. (2021a) to tackle the
15
partial transfer problem. TIn this regard, a transfer that constructs
two attention matrices for domains and samples is proposed, where
the matrices can guide the model to understand which data parts to
ignore or concentrate on before performing domain adaptation. In the
same way, a GAN-based architecture, namely a deep partial transfer
learning network, is proposed in Yang et al. (2021). Notably, a domain
discriminator has been adopted to learn domain-asymmetry factors
automatically. The SD data is weighted to block irrelevant knowledge
in the maximum mean discrepancy-based distribution adaptation.

4.4. Open-set transfer learning

While conventional DL and ML models aim to train classifiers in
the closed-set world, in which the same label space is shared between
SD and TD samples, open-set learning refers to the case of having test
samples from the unseen classes during training. The authors in Fang
et al. (2021) presented the first bold attempt to investigate open-set
transfer learning by exploring its generalization error-given training
samples with size 𝑛. This work has provided a generalization bound
for open-set transfer learning, which has theoretically been made by
investigating the risk of the TD classifier on unknown classes.

Moreover, some progress has been made in open-set transfer learn-
ing, where the major issue of recognizing unknown classes has been
addressed. Typically, various techniques have been introduced, e.g., the
extreme value theory (Rudd et al., 2017; Perera and Patel, 2019) and
open-space risk and Gunther et al. (2017), Geng et al. (2020). Addi-
tionally, some studies have focused on adapting DL models to support
open-set transfer learning. For example, Han et al. (2021b) propose
open-set crowdsourcing using multiple-source transfer learning, while
open-set face recognition with DTL and extreme value statistics is
proposed in Xie et al. (2018).

On another side, although the studies proposed to target open-set
and partial domain adaptations, no prior data on the TD can be found in
some real-world applications, such as anomaly and fault detection. This
represents another challenging problem in TL. To that end, Zhang et al.
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(2021b) introduce a universal DA method for fault diagnosis, which
does not use any assumption on the TD label set. In doing so, a hybrid
scheme with source and target instance-wise weighting mechanism
is developed for selective adaptation. In addition to what has been
done in Zhang et al. (2021b), the authors in Zhang et al. (2021c)
propose a selective adaptation by using an additional outlier identifier.
Typically, unknown fault models can automatically be identified while
enabling class-level alignments for the shared health states without
prior information about the TD label set.

5. Applications of DTL in VSSs

5.1. Cross-domain object detection (CDOD)

In contrast to other video surveillance tasks, CDOD is significantly
challenging because object location and category need to be predicted.
State-of-the-art OD frameworks leverage either cross-spectrum or one
single spectrum (thermal or visible). For the thermal spectrum, Kieu
et al. (2020) introduce a task-conditioned DDA between daytime and
nighttime. Concretely, the principal detection task has been augmented
with an auxiliary classification stage distinguishing between nighttime
and daytime thermal images. Moving on, the classification stage has
been utilized for conditioning a YOLOv3 to enhance its adaptation to
the thermal domain.

Chen et al. (2018) propose one of the first attempts to apply
a UDDA for CDOD, namely DDA Faster-RCNN (DDA-Faster). In this
regard, to decrease the domain discrepancy, instance-level and image-
level adaptation components have been introduced. Moreover, to learn
a domain invariant RPN of the Faster R-CNN model, a consistency
regularization has been deployed as well. The suggested scheme in Ah-
madi et al. (2020) employed a PTM named YOLOv2, which is an
object detector based on CNN. The TL-based fine-tuning is then used
to overcome the problems faced in traditional CNN deep networks,
such as dealing with different sizes, high definition, or colored images,
turning any suggested AI model slower and less precise in real-time
applications. In Arruda et al. (2022), a UDDA problem is addressed
by detecting objects across different domains. Typically, a two-stage
technique is introduced, which (i) trains an unsupervised image-to-
image translation algorithm for generating a synthetic dataset that is
similar to the TD (fake-data), and (ii) trains object detectors based
on Cycle-GAN and adaptative instance normalization (AdaIN) with the
new artificial data. Unlike most CDOD techniques requiring labeled
datasets for both thermal and visible domains, a UDDA is performed
in Marnissi et al. (2022) without requiring thermal data annotation,
and it was validated on the KAIST dataset (Hwang et al., 2015). It is
worth mentioning that only a few studies addressing the UDDA for
CDOD have been investigated in the literature (Chen et al., 2020b,
2018; Saito et al., 2019). For instance, Fig. 10 portrays the flowchart of
the CDOD scheme proposed in Saito et al. (2019). It carries out weak-
global and strong-local alignments using global domain classifier and
local domain classifier networks, respectively. Following, the domain
classifiers extract a context vector, which is concatenated in the layer
before the final FCL.

Other frameworks focus on conducting adaptation from thermal
to visible domains. More specifically, some aim to use an input ther-
mal image to generate a perceptually realistic RGB image. This is
called colorization, which is generally approached using generative
networks (Devaguptapu et al., 2019; Berg et al., 2018; Kuang et al.,
2020). For better detection, other works perform this transformation
as explained in Devaguptapu et al. (2019). Typically, an improved
multimodal Faster-RCNN is introduced along with a Cycle-GAN for
unpaired image-to-image translation of thermal to pseudo-RGB data.
In Munir et al. (2020), a DDA approach built upon the style consistency
has been utilized for transferring low-level features from the visible to
the infrared domains. The OD in the infrared spectrum is conducted

using the cross-domain network with style consistency. Compared to
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the study in Kim et al. (2019), a unified detection model that defines a
common feature space is proposed, which enables making intermediate
features from the two domains for cross-spectral pedestrian detection
(CSPD). The miss rate (MR) proposed in Hwang et al. (2015) has been
used to evaluate the performance of this technique.

For adapting visible domains to thermal domains, the work in Guo
et al. (2019) generates synthetic thermal images from visible images.
This transformation operates as a data augmentation task to train a
pedestrian detector and run them on thermal images. Additionally, Xu
et al. (2017) propose a cross-modality learning technique that relies
on a multi-scale detection network (MSDN) and region reconstruction
network (RRN). The latter aims at transferring the non-linear mapping
knowledge from the RGB channels to the thermal channel to improve
detection performance from visible data. The work in Fuhl et al. (2018)
presents a multiple annotation maturation (MAM), a revolutionary
self-training approach for fully automated labeling of vast volumes
of picture data fed from a previously trained detector. MAM creates
detectors that may then be utilized online. Because of their close
association with the objects, shadows are sometimes misclassified as
foreground or part of it. The authors in Walambe et al. (2021) use an
ensemble DTL for multiscale OD from drone images. Specifically, three
pre-trained object detectors, including RetinaNet, SSD and YOLOv3, are
used to detect object in UAV images from the VisDrone dataset (Zhu
et al., 2020).

The cross-domain pedestrian detection (CDPD) is a part of CDOD
that attracts significant attention. It is built upon the assumption that
the training and test video frames are drawn from different data dis-
tributions. Existing frameworks aim to align the descriptions of whole
candidate instances between the SD and TD. Due to a substantial
visual difference between the candidate instances, the inter-instance
difference cannot be overcome through the alignment of the whole
candidate instances between two domains. In this respect, Jiao et al.
(2021a) assume the separate alignment of every type of instance can
be more efficient. Thus, a selective alignment network for CDPD is
introduced, consisting of developing (i) a base detector, (ii) an image-
level adaptation network, and (iii) an instance-level adaptation network
(ILAN). Fig. 11 presents the flowchart of this method. Specifically, 
represents the feature module employed for extracting the feature map
of a given image, and the RPN is utilized for generating various can-
didate proposals. Additionally, the detection module is considered for
predicting the location of pedestrians and their corresponding labels.
The extracted feature representation is then fed into the image-level
adaptation network (ImLAN), which includes a domain classifier  for
domain alignment. First, the candidate proposal are grouped by the
ILAN with a ‘‘Group’’ before applying the instance-level DA on the
corresponding groups in the SD and TD using two classifiers 1 and 2
f alignment module. Specifically, the parameters are shared between
he modules with the same color.

Table 6 provides a summary of relevant CDOD frameworks dis-
ussed in this paper. Their characteristics have also been described
n terms of the adopted backbones, methodology, dataset, best perfor-
ance, and limitation/advantage. Obviously, based on the summarized
DOD studies, the Faster RCNN is the most used backbone then comes
he Cycle-GAN. This is mainly due to their computational efficiency
ompared t other backbones.

.2. Cross-domain anomaly detection (CDAD)

Numerous works have explored DTL and DDA for abnormal event
etection. For instance, anomaly detectors for TDs are inferred with-
ut re-training using the latent domain vectors concept. By contrast,
earned image representations across different image datasets had been
eused in Andrews et al. (2016b). Moving on, a robust one-class DTL
pproach is designed in Xiao et al. (2015). The anomaly detectors
eveloped in these methods necessitate labeled target instances. By
ontrast, in Fan et al. (2021), this issue is overcome by transferring
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Fig. 10. Flowchart of the CDOD framework proposed in Saito et al. (2019).
Fig. 11. Flowchart of the CDPD framework proposed in Jiao et al. (2021a).
the anomaly detection knowledge in a supervised manner using im-
portance weighted adversarial autoencoder-based approach. Moreover,
a localized instance-transfer algorithm (LocIT) (Vincent et al., 2020)
selects labeled source instances to transfer by a local distribution-based
approach and constructs a KNN classifier based on these chosen source
instances and unlabeled target instances. Although LocIT can handle
the situation where SD only contains normal instances, this method
degenerates into a KNN-based unsupervised anomaly detection method
without knowledge transfer.

Regarding the feature extraction in Sahoo et al. (2019), a two-
stream two-dimensional CNN is used. The PTM parameters of VGG-16
and InceptionV3 are fine-tuned via TL. The spatial properties are
learned in one stream, while the temporal features are learned in the
other. Both learned spatial and temporal characteristics are enhanced
to build a robust feature representation. The research in Atghaei et al.
(2020) is based on DL approaches and shows how to use spatio-
temporal data to recognize and pinpoint abnormal moments in videos.
17
The proposed method employs generative adversarial networks (GANs)
and DTL on a pretrained CNN to produce a precise and efficient model.
Processing the video’s optical-flow information improves the model’s
efficiency even further. The research in ZhanLi and JiaWei (2019)
proposes a DTL recognition model based on the Inception-V3 NN for
detecting anomalous behavior in picture samples. There are two signif-
icant parts to the procedure: The first step is extracting characteristics
of picture samples using the Inception-V3 NN. The second step aims
to categorize the acquired characteristics, and an unusual behavior
recognition model is created.

The authors in Liu et al. (2020c) fine-tune two types of action
recognition models using 2D-CNN- and 3D-CNN, where the latter has
better anomaly detection accuracy due to learning fewer parameters.
In Bansod and Nandedkar (2019), the spatial level appearance char-
acteristics for abnormal and normal patterns are learned using a pre-
trained VGG-16. To detect abnormalities, two methods are investigated.
A homogeneous DTL scheme, where a PTM is utilized to fine-tune
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Table 6
Summary of existing CDOD frameworks.

Work Backbone Description Dataset Best performance Advantage/limitation

Chen et al.
(2018)

Faster RCNN • DDA Faster R-CNN for OD in the
Wild

Cityscapes (Cordts
et al., 2016), KITTI
(Geiger et al.,
2012), SIM10K

AP=38.97% • The computational complexity can be
reduced and the performance needs
more improvement.

Arruda et al.
(2022)

Cycle-Gan,
AdaIN

• CDOD using unsupervised image
translation

Cityscapes
KITTI
Foggy Cityscapes
(Sakaridis et al.,
2018)

mAP=36.8% • Benefit from generating fake-data even
when the qualitative results seem
inaccurate, however, the semantic
consistency of the translation needs
improvement.

Marnissi
et al. (2022)

Faster RCNN • Unsupervised thermal-to-visible
DDA for pedestrian detection

KAIST MR=40.01% • Feature distribution alignments of
Faster R-CNN can be replaced by other
deep detectors.

Saito et al.
(2019)

Faster RCNN • Unsupervised CDOB by transferring
knowledge from label-rich to
label-poor domains

PASCAL VOC
Clipart (Inoue et al.,
2018)
Watercolor (Inoue
et al., 2018)
Cityscapes
FoggyCityscapes
(Sakaridis et al.,
2018)
GTA
(Johnson-Roberson
et al., 2016)

AP=53.1% • The performance needs further
improvement.

Munir et al.
(2020)

MSDN • CDPD to learn cross-modal deep
representations

KAIST MR=49.55% • Enable knowledge transfer from
multispectral data and accurate
detection although under challenging
illumination conditions.

Kim et al.
(2019)

RetinaNet-C,
RetinaNet-T,
CMT-CNN ,
CMT-CNN-SA

• Unpaired CSPD using adversarial
feature learning

KAIST MR=41.51% • Address the challenging illumination
conditions for pedestrian detection
(especially at nighttime).

Guo et al.
(2019)

Cycle-Gan • CDPD in thermal images KAIST Log-average MR=42.65 • Reduce the log-average MR by up to
12%

Doersch and
Zisserman
(2019)

DANN • 3D human pose estimation using
knowledge transfer from simulation
to reality

SURREAL (Varol
et al., 2017)

PA-MPJPE=88.9% • High computational complexity.

Soviany et al.
(2021)

Cycle-GAN • CDOD using urCriculum self-paced
learning

Sim10k, Cityscapes,
KITTI, PASCAL VOC
2007, Clipart1k

mAP=27.64% • Simple and effective without overheads
during inference but still there is
significant performance gaps compared
to Faster RCNN algorithms.

Zhang et al.
(2021a)

Faster RCNN • CDOD using local–global attentive
adaptation

PASCAL VOC 2010
Clipart1K
Watercolor2K

mAP=43.8% • Achieve state-of-the-art performance
with small and large distribution shifts
between the SD and TD, however,
further improvement can be made.

Zhang et al.
(2022b)

Faster R-CNN,
VGG-16,
ResNet-101

• Multi-source unsupervised CDOD
with information fusion

Pascal VOC2007,
Clipart, Watercolor,
Comic, Cityscapes,
Foggy Cityscapes,
SIM10K, and KITTI.

mAP=64.5% • Help suppress negative transfer caused
by abnormal samples.
CNN for each dataset, but only one dataset is evaluated during test-
ing, Second, a hybrid approach, in which VGG-16 has fine-tuned one
dataset before being used on another. Similarly, the work in Doshi
and Yilmaz (2020) presents a hybrid strategy for detecting video ab-
normalities with small training data samples using NNs and statistical
online KNN decision-making. Object tracking and AED are two com-
ponents of the VSS proposed in Kale and Shriram (2020). The whole
framework identifies and tracks anomalous items. Regarding object
tracking, a DTL-based ResNet tracking approach is employed, while
the distance metric learning (DML) scheme has been used to detect
abnormal activities.

In Shin and Cho (2018), the data scarcity issue is overcome using
a GAN model to develop an underlying DTL architecture. The GAN
model consists of a generator that creates video sequences and a dis-
criminator that follows the long-term recurrent convolutional network
(LRCN) structure. In Keçeli and Kaya (2017), Mumtaz et al. (2018),
pre-trained CNN and GoogleNet are used for violent activity detection.
Typically, in Keçeli and Kaya (2017), the Lucas–Kanade technique is
first utilized to calculate the optical flows of the input videos. Then,
by adopting overlapping optical flow magnitudes and orientations,

numerous 2D templates are created. The latter is fed into a pretrained

18
CNN, which extracts deep features from several layers. Empirical val-
idation is lastly conducted on violent-flows (Hassner et al., 2012),
Hockey (Bermejo Nievas et al., 2011), and movies (Bermejo Nievas
et al., 2011) datasets.

In Zhang et al. (2020a), a DDA is adopted to minimize the distri-
bution gap between the test and training data and develop a CDAD
approach. Guo et al. (2021) develop an MCDCD that is a unique
multi-source UDDA strategy for enhancing anomaly detection using
information from several labeled training subjects (i.e., SDs). This
approach includes (i) a feature extractor to develop discriminative
gait characteristics and (ii) a domain-specific category classifier that
maximizes cross-domain discrepancy loss between any two category
classifiers. Thus, this helps reduce the domain gap between multiple
SDs and the TD while minimizing the cross-entropy loss and reliably
identifying source samples. In Arifoglu and Bouchachia (2019), the
authors propose to examine recursive auto-encoders (RAE)-based DTL
in the context of unusual behavior detection to deal with the problem
of data scarcity. They provide a strategy for creating synthetic data to
reflect on specific dementia-related behavior.

To increase detection accuracy, DTL extracts human motion char-

acteristics from RGB video frames in Al-Dhamari et al. (2020). Then,
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Table 7
Summary of existing CDAD studies with a brief description of their characteristics.

Work Backbone Description Dataset Best FMD
performance

Limitation/advantage

Sahoo et al. (2019) InceptionV3
and VGG-16

• Study the performance of different
classifiers using a two-stream CNN
architecture for unusual event detection.

UCF crime Acc= 50.16% • Less efficient than the SVM in terms of
accuracy.

Atghaei et al. (2020) VGG-16 • A GAN-based method is proposed to
address abnormal event detection
problem

UCSD Peds1
UCSD Peds2

AUC =93%
(Frame-level)

• Can be applicable for real-time with
higher video frame rates.

Liu et al. (2020c) ResNeSt50 • Anomaly detection in surveillance of
video based action recognition.

ImageNet Acc= 91.14%
(Frame level)

• Achieve promising performance and
obtain the first prize for general
anomaly detection.

Doshi and Yilmaz (2020) YOLOv3 • An online anomaly detection method
for surveillance videos using DTL and
any-shot learning

CUHK
Avenue
UCSD Ped2

AUC= 86.4%
AUC= 97.8%

• Significantly outperform the
state-of-the-art in terms of any-shot
learning.

Bendali-Braham et al. (2019) TwoStream-I3D • Ensure the safety of people on the
public area by automatic recognition of
a crowd movement

Crowd-11 Acc= 70.6% Outperform the state-of-the-art on
Crowd-11 by a consequent margin of ≈
10% accuracy.

Andrews et al. (2016b) VGG-F • Assess transfer representation-learning
for anomaly detection by: (i) DTL from
PTMs, (ii) DTL from an auxiliary task.

XRAY
(Andrews
et al., 2016a)

Augmented
CASIA-
WebFace (Yi
et al., 2014)

AUROC= 0.99% • Not all the PTMs perform well.

Fan et al. (2021) CNN • Transfer anomaly detection knowledge
in an unsupervised manner.

Mnist (M)
USPS (U)

AUC=82% (M→U)
AUC=96% (U→M)

• The performance is comparable to that
of semi-supervised methods.

ZhanLi and JiaWei (2019) Inception-V3 • Identify abnormal behavior in image
samples

NBA Acc=0.94% • Less efficient than the three-layer
feedforward NN.

Bansod and Nandedkar (2019) VGG-16 • Anomaly detection from crowd in the
field of computer vision using:
i) homogeneous approach and
ii) hybrid approach (fine-tune CNN for
one dataset and then for other dataset.)

UCSD Ped2
UMN (Gray)

Acc=99.56%
Acc=99.78%

• Both hybrid and homogeneous
approaches detect anomalies with or
without sharing the parameters of
previous network.
VGGNet-19 is utilized as a source architecture to build a new structure
and extract descriptive features. Next, extracted features are then fed
into a binary SVM classifier. Similarly, in Lin et al. (2021a), abnormal
events in worksites are detected using a DTL-based Faster R-CNN. Feng
et al. (2021) build a multiple instance self-training technique (MIST) to
refine task-specific discriminative representations effectively for CDAD
of video sequences. To boost the performance and reduce the domain
shift between the SD and TD, MIST fine-tuned features generated using
a self-guided attention-boosted feature encoder have then been used.

Because abnormal events are generally rare, most existing datasets
are imbalanced. Therefore, most existing methods have learned the
discriminative characteristics from normal data using either semi-
supervised or unsupervised procedures. However, they are significantly
limited in capturing the abnormal discriminative features, which results
in low anomaly detection performance. To close this gap, the authors
in Sun et al. (2021) introduce a CD few-shot anomaly detection that can
utilize the knowledge learned from various SD videos for solving few-
shot anomaly detection in the TD. Specifically, self-supervised training
is leveraged on the normal TD data to reduce the domain gap. In Lin
et al. (2021b), a CDAD scheme that relies on transferring the knowledge
learned on a new synthetic anomaly event dataset is developed. While
using 3D-CNN for detecting abnormal events has shown significant
performance degradation due to the gap between synthetic and real
data, a cyclic 3D-GAN has been then adopted for DA. Table 7 presents
a summary of relevant CDAD frameworks discussed in this review.

5.3. Cross-domain human action recognition (CDHAR)

The lack of annotated samples in the TD makes it challenging to
develop efficient HAR solutions. To overcome this problem, unsuper-
vised DTL, particularly DDA, has been explored when PTMs, already
trained on SDs with a substantial amount of labeled data, are fine-tuned
on unlabeled TDs. One of the challenging tasks of HAR is multimodal

action recognition, which uses data from cameras and wearable devices
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to recognize human actions effectively. Existing techniques are cate-
gorized into three groups: (i) cross-media action recognition (CMAR)
that designs typical multimodal characteristic learning strategies to
solve image-to-video HAR problems (Yu et al., 2019; Liu et al., 2019a);
(ii) cross-spectral action recognition (CSAR) that uses DDA to address
visible-to-infrared HAR problems (Shahroudy et al., 2017; Liu et al.,
2018b). For instance, a spatial–optical sequential learning and data
organization technique using spatial–optical action data is introduced
in Yuan et al. (2018); and (iii) cross-view action recognition (CVAR)
that uses DTL techniques to diminish domain discrepancy of action data
from different points of view (Liu et al., 2018a; Wang et al., 2019b).

Overall, various frameworks have deployed homogeneous DDA
(Khan et al., 2018; Wang et al., 2018a) to adjust class-wise domain
discrepancy and promote excellent representation learning. For ex-
ample, Khan et al. (2018) propose a CNN-based technique for au-
tomatically extracting the high-level characteristics in an end-to-end
fashion. To quantify the gap of the hidden layers between domains,
the Kullback–Leibler divergence has been used. Then, the quantified
discrepancy is considered one of the terms in the objective function.
The main drawback of homogeneous DDA techniques is their ability to
only handle domain inputs with the same feature space. It is suggested
in Khan et al. (2015) that action recognition is sub-optimal and that
action class labels should be taken into account at the detection stage.
Person re-identification (Re-ID) in real-world scenarios presents a key
DL challenge, which aims at developing a DL with millions of param-
eters on a tiny training set with few or no labels. To enable that and
overcome the data scarcity problem, a DTL model is suggested in Geng
et al. (2016)., which: (a) it is better suited to transfer representations
learned from large-scale image/video classification repositories, and (b)
combines classification and verification losses, each with its dropout
strategy. Besides, the work in Liu et al. (2021e) presents a subtask-
dominated TL (STL) approach, which adopts the ResNet50-IBN-a (Pan
et al., 2018) as a backbone, to answer the problem of how to handle the
heavy unbalanced identity distributions for the one-step person search.
The STL technique tackles the long-tail problem in the pretraining stage
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Fig. 12. Flowchart of the CDHAR approach proposed in Wu et al. (2022b).
of the dominating Re-ID subtask and enhances the one-step person
search.

In Wu et al. (2022b), a CDHAR scheme is proposed using a tem-
poral shift module (TSM), which uses ResNet-50 as a backbone. This
approach relies on (i) pre-training the model on the SD, (ii) processing
the TD data (𝑉𝑡), and (iii) using the PTM for classifying the TD videos
to extract its predicted labels (pseudo labels) along with the confidence
score of pseudo labels. Fig. 12 portrays the flowchart of this scheme,
where 𝑉𝑠, 𝑙𝑎𝑏𝑒𝑙 refers to the annotated SD video and its label. After
adding 𝑉𝑠, 𝑙𝑎𝑏𝑒𝑙 and TD videos having pseudo-labels into a mix-up data
and fusion modules to generate mixed data, the output is embedded
into a model training with sampling strategies, static sampling, and dy-
namic sampling. This helps in generating fusion data with an increasing
proportion of TD data. Lastly, the model trained with the SD and fusion
data is utilized for cross-domain prediction.

Hu et al. (2021) propose a deep-frozen TL approach, namely FT-
MDnet, to extract Re-ID features from a pretrained detection network
to speed up the design and ease implementation. First, an adaptive
TL network (ATLnet) is utilized to transform the sharing data of the
underlying detection network into a Re-ID feature map using a channel-
wise attention process. Then, to extract Re-ID features from the Re-ID
feature map, a multi-branch feature representation network called the
multiple descriptor network (MDnet) is developed. Various mainstream
PTMs have been used to evaluate this approach, including CenterNet,
Mask RCNN, YOLOv3, and YOLOv4. The work in Wei et al. (2018b)
describes a DTL-based strategy for detecting and classifying people in
video data acquired by a high-power lens video camera from distances
of many kilometers. A series of computationally efficient image process-
ing procedures are evaluated to recognize moving regions that include
humans. These regions are then fed into a pretrained CNN to train
only the FCL. Similarly, a real-time top view- and DTL-based person
detection system is presented in Ahmed et al. (2021b) using a PTM,
namely, CenterNet (Zhou et al., 2019).

Thermal cameras are famous in HAR because of their accuracy in
monitoring in the dark and their ability to protect privacy, as explained
in Huda et al. (2020, 2021). Manually discovering and annotating
large-scale datasets is a costly and time-consuming task. To overcome
that, Huda et al. (2020) propose a YOLOv3-based DTL approach to
annotate person detection datasets and use the weights for model adap-
tation of new domains. The authors in Wei and Kehtarnavaz (2019)
introduce a semi-supervised faster-RCNN strategy to detect persons and
classify the load they carry in video sequences. The moving regions
in video frames that include people are first extracted and fed into
a quicker RCNN classifier with ResNet-50-based DTL convolutional
layers. In Sambolek and Ivašić-Kos (2021), the fine-tuning-based DTL,
instances-based DTL, and mapping-based DTL models are built based

on YOLOv4 for person detection in drone images. Typically, this study
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aims at improving the performance of detecting people in search and
rescue scenes, where the VisDrone dataset (Zhu et al., 2020) has been
deployed as a benchmark.

A real-time person detection based on DTL is proposed in Ahmad
et al. (2021), a pretrained cascade RCNN. Using the same process, a
social distancing tracking system is proposed in Ahmed et al. (2021c)
by detecting people in video sequences using a YOLOv3 OD system.
Also, a DTL scheme is considered to reduce computational costs and
improve detection accuracy. Fig. 13 illustrates the flowchart of the
DTL-based pedestrian detection system using overhead video frames,
which has been employed to measure the physical distances between
pedestrians. Typically, fine-tuning is adopted by freezing all the layers
of the pre-trained YOLOv3 architecture, and only one new layer is
trained on the real-world dataset.

On the other hand, the multi-modal action recognition (M2AR)
based on sensor-to-vision (S2V) adaptation (from wearable sensors to
vision sensors) is mainly a heterogeneous DDA problem that slightly
varies from CDHAR problems. This is because of the modality differ-
ences between vision sensors and wearable sensors (in terms of data
dimensionality), inherent information content, and data distribution.
However, only a few studies have explored sensor-to-vision action
recognition (SVAR). A multi-modal transfer module to fuse knowledge
from different unimodal CNNs is proposed in Joze et al. (2020) and
validated on three multi-modal fusion tasks: HAR, audio-visual speech
enhancement, and gesture recognition. However, HAR is performed
in these methods using raw 1D time-series sensor data, which means
they lack texture information, color, and local temporal relationship.
This has affected the representativity of wearable-sensor data and made
adapting pretrained DL models (e.g., ResNet, VGGNet, AlexNet, etc.)
challenging. Moreover, the semantic relationship between wearable
sensors and vision-sensors action data that can guide the knowledge
transfer is missing.

5.4. Cross-domain crowd counting (CDCC)

CC is an application-oriented activity, and the effectiveness of its
inference is critical in real-world applications. Most earlier efforts, on
the other hand, depended on large backbone networks and needed
expensive run-time consumption, thus limiting their deployment scopes
and causing poor scalability. To overcome these issues and make the
crowd-counting models more accessible, CDCC methods have been
widely investigated. Before discussing some of the relevant studies, we
briefly highlight existing datasets used to validate CDCC frameworks.
Table 8 summarizes the relevant CC datasets and their basic informa-
tion, in which Max, Ave, and Min represent the maximum, average, and

minimum number of people per image, respectively.
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Fig. 13. TL-based pedestrian detection using overhead video frames (Ahmed et al., 2021c).
Table 8
Summary of existing datasets used to validate CDCC techniques.

Dataset Total number of persons Max Ave Min Resolution No. of images

SHA (Zhang et al., 2016) 241,677 3139 501 33 – 482
SHB (Zhang et al., 2016) 88,488 578 123 9 768 × 1024 716
WorldExpo’10 (Zhang et al., 2015) 199,923 253 50 1 576 × 720 3980
UCF_CC_50 (Idrees et al., 2013) 63974 4543 1280 94 – 50
Mall (Chen et al., 2012) 63,325 53 – 13 320 × 240 2000
UCSD (Chan et al., 2008) 49,885 46 25 11 158 × 238 2000
UCF-QNRF (Idrees et al., 2018) 1,251,642 12,865 815 49 – 1535
NWPU-Crowd (Wang et al., 2020b) 2,133,375 20,033 418 0 2191 × 3209 5190
GCC (Wang et al., 2019c) 7,625,843 3995 501 0 1080 × 1920 15,212
JHU-Crowd (Sindagi et al., 2020) 1,515,005 25,791 346 0 910 × 1430 4372
City street (Zhang and Chan, 2019) 63,974 150 – 70 1520 × 2704 500
Venice (Liu et al., 2019b) 1280 × 720 167
BRAINWASH (Stewart et al., 2016) 90,330 – – – 480*640 11,769
FDST (Fang et al., 2019) 394,081 57 26.7 9 1920 × 1080 150,000

1280 × 720
The variation of the CC datasets and their challenges have helped
oost the number of CDCC studies. For instance, in Xiong et al. (2017),
wo DTL tasks are considered to transfer the knowledge acquired by
idirectional convolutional long short-term memory (Bi-ConvLSTM)
n UCSD and Mall datasets. Specifically, 800 frames from the SD
ataset are utilized for training Bi-ConvLSTM, and 50 frames of the
arget dataset are considered the adaptation set. While in Yao et al.
2017), a deep spatial regression model is proposed based on CNN
nd LSTM. Concretely, images are fed into a pretrained CNN to extract
n ensemble of high-level characteristics. Following, the characteristics
n neighboring areas are utilized for regressing the local counts with
n LSTM model, considering the spatial information. Lastly, the total
ount is achieved by summing local patches. In Tong et al. (2018),
he CNN-based DTL approach is introduced to count crowds, which
ses only five convolutional layers and removes FCLs in the traditional
NN model for achieving an end-to-end system. Geometry-adaptive
ernels are used to get the proper density map. The Shanghaitech
21
Part_A dataset was employed to pre-train the model by fixing the first
three convolutional layers of the network and training the last two
layers on the ZJU_CLASS dataset. In Wilie et al. (2018), the Xception
network pretrained parameter, proposed in Boominathan et al. (2016),
is utilized as DTL to be trained again with the FCLs. CountNet then
achieved a better CC performance by training it with an augmented
dataset robust to scale and slice variations.

While the dominant focus within the CC literature has been on
the single-frame case or applying CNNs to videos in a frame-by-frame
fashion without leveraging motion information, Hossain et al. (2020a)
propose a multiscale optical flow pyramid network. The latter con-
siders the spatiotemporal information captured in a video stream by
combining an optical flow pyramid with an appearance-based CNN.
Then, after putting the SD baseline in place, fine-tuning is performed
by simply updating the decoder of the baseline model. The authors
in Liu et al. (2020b) investigate a DTL setting in which they learn to
recognize and count people in an unlabeled target set by transferring
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bi-knowledge from regression and detection-based models to a labeled
source set. Ilyas et al. (2021) employ a CNN-based dense feature ex-
traction network for accurate CDCC, consisting of three main modules
called (i) backbone network, which has a strong DTL ability, (ii) dense
feature extraction modules, and (ii) channel attention module.

In Chen et al. (2020a), a modified VGG-16 network is adopted
as a backbone due to its strong DTL ability. Typically, a DDA is
applied to adapt the structure to arbitrary resolution by removing three
FCLs. Then, the tradeoff between the resource cost and accuracy is
considered by eliminating the last two pooling layers. A region relation-
aware module is applied at the end of VGG, followed by a bilinear
upsample. An end-to-end deep-scale purification network (DSPNet)
for dense CC that can encode multiscale characteristics and decrease
contextual information loss is proposed in Zeng et al. (2020). DTL is
considered for transferring the knowledge learned by DSPNet on the
SD datasets, i.e., a transfer from UCF-QNRF or SHB to the TD dataset
SHA. Moving forward, different camera angles, exposures, location
heights, complicated backdrops, and insufficient annotation data cause
supervised learning approaches to fail in real-world applications, and
many have overfitting issues. The work in Hou et al. (2021) focuses
on training synthetic crowd data and investigating methods to transfer
the knowledge to real-world datasets while lowering the need for
manual annotation to meet the above challenges. An adaptive domain-
invariant feature-extracting module is proposed to increase DDA in
feature extraction. In Hossain et al. (2020b), A CDCC is developed
using DDA, where the SD and a TD refer to images recorded from
cameras in distinct places (e.g., with differing viewpoints, illumina-
tion conditions, environment objects, crowd densities, etc.). Sufficient
annotated training data from the SD is available, while only a small
number of annotated data or completely unlabeled data is available in
the TD. Similarly, an error-aware density isomorphism reconstruction
network (EDIREC-Net) is proposed in He et al. (2021) for CDCC. This
model aims to jointly transfer a counting PTM to TDs and error rea-
soning to describe reconstruction erroneousness. The density maps in
neighboring frames are isomorphic because video crowd dynamics are
sequential. Moreover, the estimation–reconstruction consistency is used
to track density reconstruction errors and reduce unreliable density
reconstructions during training.

In Wang et al. (2021b), the domain discrepancy is described at the
parameter level using a neuron linear transformation (NLT) approach.
Domain shift is learned by utilizing bias weights and domain factors.
Typically, NLT utilizes a few labeled samples from the TD to learn
domain shift parameters for a specific neuron of a source model. A
linear transformation is adopted to generate the target neuron. Fig. 14
portrays the flowchart of the NLT consisting of three steps: (i) training
the source model with synthetic data; (ii) Second, using learnable
parameters 𝜃𝑓 and 𝜃𝑏, defined according to the source model, for

odeling the domain shift. Precisely, for a source neuron 𝜃𝑆𝑖 ∈ 𝜃𝑆

i is the index of neurons), there is a 𝜃𝑓𝑖 and a 𝜃𝑏𝑖 , which have been
considered for generating the target neuron 𝜃𝜌𝑖 using a linear operation;
(iii), feeding the few shot data into the target model for updating the
domain shift parameters after loading the transferred parameters 𝜃𝜌 to
the target model.

In Zhang et al. (2021d), a multi-view CC paradigm called cross-view
cross-scene (CVCS) is presented using unsupervised domain transfer,
in which the training and test are processed on multiple scenes with
variable camera layouts. CVCS attentively selects and fuses numerous
views using camera layout geometry and noise view regularization
methods to train the model and handle non-correspondence errors.
When only a few training samples are available in a new scene, cross-
scene counting becomes challenging. In Yang et al. (2018), information
from other scenes is used to learn a cross-scene counting model. Regres-
sion is used to count crowds by mapping the properties of crowds to
their numbers. Hand-crafted features are generated using block robust
principal component analysis segregated crowd foregrounds. Through
DDA, existing scene samples (i.e., the SD) are adaptively transferred
22
into the new scene (i.e., the TD). Then, using iterative optimization
and training data from both domains, a counting model based on a
DDA-extreme learning machine (DDA-ELM) is efficiently learned. In Wu
et al. (2021), the C2MoT method is introduced, a novel CC architecture
based on an external momentum template that allows domain-specific
information to be encoded via an external template representation. The
momentum template is specifically learned in a momentum-updating
manner during offline training and then dynamically changed for each
test image in an online cross-dataset assessment. The framework of
multiple-instance learning (Liu et al., 2021d) presents a strategy for
learning crowd segmentation using point-level CC annotations. The
generated segments present a crowd-aware fine-grained DDA frame-
work for CC, including two new adaptation modules. The crowd region
transfer module restricts the target-domain crowd density distributions.

Besides, while supervised approaches require time-consuming la-
beling, unsupervised CDCC research utilizing synthetic datasets has
become a viable option. In Cai et al. (2021), a two-step DDA approach
with multi-level feature response branches is proposed, which takes
advantage of intra-domain knowledge to improve TD’s adaptability.
The scheme in Reddy et al. (2020) is developed to tackle the few-
shot scene adaptive CC problem. The model parameters are trained via
meta-learning to make successful fine-tuning to a new scene with a few
annotated images possible. This technique does not have the fine-tuning
limitation of updating particular layers in the decoder closer to the out-
put. Still, it may be used to adjust any decoder parameters. Wang et al.
(2019c) introduce a CDCC by proposing a two-stage DDA scheme and
establishing a large-scale synthetic repository. Specifically, a SE-Cycle-
Gan is used to (i) move synthetic data closer to real-world observations
and (ii) apply the developed network in the wild. By contrast, the
authors in Li et al. (2019) develop a density adaptation network that
aims at discriminating between the density maps produced by the SD
and TD. Following, a feature-aware adaptation scheme is proposed
in Gao et al. (2020), which extracts domain-invariant characteristics
for reducing domain discrepancy in feature layers. Next, a semantic
extractor for efficiently distinguishing the crowd and the background in
the high-level semantic information is presented in Han et al. (2020).
Similarly, a cross-scene CC (CSCC) approach is proposed in Li et al.
(2022), which relies on supervised adaptive network parameters. In Liu
et al. (2022b), a UDDA across domains using available unlabeled target
data is introduced for developing a CDCC approach. In doing so, discov-
ering bi-knowledge transfer between detection- and regression-based
networks from an annotated SD has been learned.

Table 9 illustrates the test performance of some popular CDCC
methods, where the GCC dataset is considered as the unique SD (Wang
et al., 2019c) while for the TD, six datasets are adopted, i.e., UCF-
QNRF, SHA, SHB, Mall, UCSD, and WorldExpo’10. In this regard, it
is obvious that it is challenging to reach a satisfying performance
with no adaptation (NoAdpt). This helps in validating the significant
distance between synthetic and real datasets. Also, the performance
of supervised training (FA) and fine-tuning (IFS) on a pretrained GCC
model with few-shot samples can improve the performance compared
to without adaptation. Moreover, it has clearly been seen that NLT has
reached better performance than the aforementioned techniques. Addi-
tionally, combining NLT and IFS has further improved the performance.
For example, considering MAE under UCF-QNRF, this combination
reduced the counting error by 3.7% compared to NLT.

Table 10 summarizes some of the relevant CDCC frameworks dis-
cussed above. It is clear that most of these works have used VGG-16or
VGG-19 as backbones for their models.

5.5. Cross-domain data fusion (CDDF)

Conventional ML techniques generally process data from a unique
domain; however, dealing with diverse data modalities in modern
big data applications has become the trend. Typically, data collected
from different sources can have other representations, distributions,
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Fig. 14. Flowchart of the CDCC system proposed in Wang et al. (2021b).
Table 9
Performance of some popular CDCC techniques on six different datasets. FS represents 10% shot data from the TD.

Method Backbone DA FS UCF-QNRF Shanghai Tech Part B Shanghai Tech Part A39.7

MSE MAE SSIM PSNR MSE MAE SSIM PSNR MSE MAE SSIM PSNR

Cycle-Gan (Zhu et al., 2017) VGG-16 ✓ ✗ 400.6 257.3 0.480 20.80 39.7 25.4 0.763 24.60 204.3 143.3 0.379 19.27
SE Cycle-Gan (Wang et al., 2019c) VGG-16 ✓ ✗ 384.5 230.4 0.660 21.03 28.3 19.9 0.765 24.78 193.4 123.4 0.407 18.61
SE-Cycle-Gan VGG-16 ✓ ✗ 385.7 225.9 0.642 21.10 25.8 16.4 0.786 26.17 189.1 119.6 0.429 18.69
(JT) (Wang et al., 2021a)
FSC (Han et al., 2020) VGG-16 ✓ ✗ 390.2 221.2 0.708 23.10 24.7 16.9 0.818 26.20 187.6 129.3 0.513 21.58
IFS (Gao et al., 2019) VGG-16 ✓ ✗ 357.9 211.7 0.687 21.94 19.4 13.1 0.888 28.03 176.6 112.4 0.502 21.94
FA (Gao et al., 2020) VGG-16 ✓ ✗ 407.9 269.5 - - 24.7 16.0 - - 200.6 144.6 - -
LIDK (Cai et al., 2021) VGG-16 ✓ ✗ 375.8 224.3 - - 22.8 14.3 - - - - - -
NoAdpt (Han et al., 2020) VGG-16 ✗ ✗ 453.7 276.8 0.692 22.22 29.2 20.1 0.895 26.62 279.6 188.0 0.670 20.91
DACC (Han et al., 2020) VGG-16 ✓ ✗ 343.0 203.5 0.717 21.99 19.4 13.1 0.888 28.03 176.9 112.4 0.502 21.94
NLT (Wang et al., 2021b) VGG-16 ✓ ✓ 307.1 172.3 0.729 22.8 19.2 11.8 0.937 27.58 157.2 93.8 0.729 21.89
IFS (Gao et al., 2019)+NLT VGG-16 ✓ ✓ 263.1 157.2 0.744 23.01 18.3 10.4 0.942 27.79 151.6 90.1 0.741 22.01
Wang et al. (2021b)
NLT (Wang et al., 2021b) ResNet-50 ✓ ✓ 279.7 165.8 0.734 22.89 18.8 10.4 0.942 27.79 153.4 91.4 0.749 21.45

Method Backbone DA FS MALL UCSD WorldExpo’10 (only MAE)

MSE MAE SSIM PSNR MSE MAE SSIM PSNR S1 S2 S3 S4 S5 Avg

Cycle-Gan (Zhu et al., 2017) VGG-16 ✓ ✗ - - - - - - - - 4.4 69.6 49.9 29.2 9.0 32.4
SE Cycle-Gan (Wang et al., 2019c) VGG-16 ✓ ✗ - - - - - - - - 4.3 59.1 43.7 17.0 7.6 26.3
SE-Cycle-Gan VGG-16 ✓ ✗ - - - - - - - - 4.2 49.6 41.3 19.8 7.2 24.4
(JT) (Wang et al., 2021a)
FA (Gao et al., 2020) VGG-16 ✓ ✗ 3.25 2.47 - - 2.43 2.0 - - 5.7 59.9 19.7 14.5 8.1 21.6
IFS (Gao et al., 2019) VGG-16 ✓ ✗ 2.96 2.31 0.933 25.54 2.09 1.76 0.950 24.42 4.5 33.6 14.1 30.4 4.4 17.4
NoAdpt (Han et al., 2020) VGG-16 ✗ ✗ 6.96 6.20 0.879 24.65 13.22 12.79 0.899 23.94 5.0 89.9 63.1 20.8 17.1 39.2
DACC (Han et al., 2020) VGG-16 ✓ ✗ 2.96 2.31 0.933 25.54 2.09 1.76 0.950 24.42 4.5 33.6 14.1 30.4 4.4 17.4
NLT (Wang et al., 2021b) VGG-16 ✓ ✓ 2.55 1.96 0.967 26.92 1.97 1.58 0.942 25.29 2.3 22.8 16.7 19.7 3.9 13.1
IFS (Gao et al., 2019)+NLT VGG-16 ✓ ✓ 2.39 1.86 0.944 27.03 1.81 1.48 0.965 25.58 2.0 15.3 14.7 18.8 3.4 10.8
Wang et al. (2021b)
NLT (Wang et al., 2021b) ResNet-50 ✓ ✓ 2.42 1.80 0.940 26.84 1.76 1.42 0.964 25.56 3.1 17.8 17.9 20.6 3.2 12.5
23
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Table 10
Summary of the relevant CDCC frameworks discussed in this paper.

Work Backbone Description Dataset Best
performance

Advantage/limitation

Zou et al. (2021) ASNet • CDCC using adversarial
scoring network

ShanghaiTech
UCSD
Mall
Trancos
(Guerrero-
Gómez-Olmedo
et al., 2015)

MAE=2.76,
MSE=3.55

• Mitigate the domain gap at multiple perspectives
and boost the adaptation accuracy.

Zeng et al. (2020) DeconvNet • CDCC using deep scale
purifier network

UCF-QNRF,
SHA/SHB,
UCF_CC_50

MAE=8.4,
RMSE=13.6

• Cannot count multiple types of objects and
further improvement can be achieved.

Hou et al. (2021) CSRNet • CDCC with MAML SHA/SHB
MALL
UCSD
GCC
NWPU-Crowd

MAE=2.03,
MSE=2.41

• High computation cost for training
domain-invariant features and more synthetic data
is needed for covering different scenarios.

He et al. (2021) VGG-19 • Unsupervised CDCD using
error-aware density
isomorphism reconstruction

UCF-QNRF
UCSD
MALL
VENICE
FDST (Fang
et al., 2019)

MAE=1.79,
MSE=2.47

• The erroneousness of density reconstruction is
monitored using a reconstruction erroneousness
modeling procedure.

Zhang et al. (2021d) VGG19 • Multi-view CDCC paradigm
using CVCS

PETS2009,
DukeMTMC
CityStreet

MAE=2.83,
NAE=0.525

• Can only be applied to real scenes via UDDA.

Wu et al. (2021) VGG-19 • Zero-shot CDCC using
dynamic momentum
adaptation

SHA/SHB
UCF-QNRF

MAE=12.4,
RMSE=21.1

• Achieve leading zero-shot CDCC performance
without model fine-tuning.

Liu et al. (2021d) VGG-16 • Point-derived segmentation
for fine-grained DACC

GCC (Wang
et al., 2019c),
SHA/SHB
JHU-CROWD

MAE=13.5,
RMSE=21.8

• Learn CC using pixel-level labels without extra
annotation effort in the context of multiple
instance learning.

Cai et al. (2021) Masksembles • Leveraging self-supervision
for CDCD

GCC
SHA/SHB
UCF-QNRF
UCF_CC_50
WorldExpo’10

MAE=11.4,
RMSE=17.3

• Improve CDCC performance only when labels of
synthetic image are available.

Reddy et al. (2020) CSRNet • Using meta learning for
few-shot scene CDCC

WorldExpo’10,
Mall and UCSD

MAE=3.08,
RMSE=4.16

• Learn model parameters and facilitate fast
adaptation to new target scenes.

Gao et al. (2020) VGG-16 • CDCC using density
alignment and feature-aware
adaptation

SHB,
WorldExpo’10,
Mall, UCSD

MAE=16.4,
MSE=25.4

• The counting performance in the real-world
needs to be boosted by introducing high-level
semantic data in CDCC.

Han et al. (2020) VGG-16 • Concentrate on semantic
consistency for CDCC

SHA/SHB
UCF-QNRF

MAE=16.9,
MSE=24.7

• Deep transfer should be combined with semantic
information to reach higher precision.

Wang et al. (2021b) ResNet-50 • NLT: Modeling domain shifts
for CDCC

SHA/SHB
UCF-QNRF
WorldExpo’10
UCSD
MALL

MAE=1.42,
MSE=1.76

• Perform well with increasing few-shot learning
data and enhance density maps in counting values
and details.

Li et al. (2022) VGG-16 • Supervised adaptive network
parameters for CSCC

WorldExpo’10,
Mall, PETS and
FDST

MAE=3.47,
MSE=4.32

• The performance significantly varies from a
dataset to another.
scales, and densities. In this respect, unlocking the knowledge power
from distinct but related datasets is challenging, mainly when DL
models are used. To that end, developing advanced fusion schemes that
can aggregate knowledge of different tasks or domains is paramount.
These techniques concentrate on knowledge fusion instead of data
merging or schema mapping and rely on implementing CDDF rather
than conventional data fusion. Fig. 15 explains the difference between
conventional data fusion and CDDF: (a) paradigm of conventional DF,
and (b) paradigm of CDDF (Lin et al., 2022).

When developing VSSs, various datasets from the SD and TD can be
aggregated at different levels, although every domain has its specific
distribution and representation. Typically, advanced fusion techniques
should be deployed to combine the knowledge and features from
different datasets. One option toward this goal is adopting TL-based
fusion techniques, which rely on aggregating knowledge from different
tasks or domains and not only merging data (Zheng, 2015). After
recognizing objects in the SD and TD concurrently, pertinent feature

sets are extracted at both domains to build knowledge bases. The latter

24
can then be fused to collect a more comprehensive knowledge base and
thus accurately classify objects (Ghaith et al., 2021).

In Hernandez et al. (2018), a proof-of-concept to collaborate fea-
tures from multiple modalities for HAR is presented using the teaching–
learning approach of TL. Besides, Lin et al. (2022) develop a data
fusion-based DTL-empowered granular trust evaluation mechanism.
Overall, considering the relevance of CDDF for VSSs, little work has
been identified at this study’s stage. Therefore, more research and
development efforts should be paid to this topic in the near future to
improve the performance of VSSs and widen their deployment.

6. Discussion of key challenges

6.1. Accuracy saturation

Performing TL by fine-tuning pre-trained DL models with large-scale
datasets, e.g., ImageNet helps considerably in improving and acceler-
ating training. At the same time, the accuracy is often bottlenecked

by the limited dataset sizes of the target tasks. To close this gap,
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Fig. 15. Difference between conventional data fusion and CDDF: (a) paradigm of conventional DF, and (b) paradigm of CDDF.
ome regularization techniques that constrain the outer layer weights
f the target network using the starting point as references (SPAR),
ere investigated. For instance, in Li et al. (2021d), a regularized
TL approach, namely DL transfer using a feature map with attention

DELTA), is proposed. Rather than constraining the weights of a DL
odel, DELTA attempts to preserve the outer layer outputs of the

ource model. In this regard, DELTA minimizes the empirical loss before
ligning the outer layer outputs of the two models. Accordingly, it
onstrains a subset of feature maps, which have accurately been chosen
y the attention learned in a supervised learning process.

.2. The problem of negative transfer

When the DTL degrades the classification of prediction performance
or accuracy) of the newly developed model, it is due to negative
ransfer. Indeed, DTL works perfectly if the SD and TD are sufficiently
imilar. Put differently, when the data used to pre-train the DTL model
s different enough than the data used to re-train this model (or some
f its parts), the performance might be worse than expected. Moreover,
egardless that the SD and TD can appear similar to humans, algorithms
ay only sometimes agree with them. In this context, most existing
TL- and DDA-based VSS solutions cannot handle the level variations
cross domains due to image/video level features, e.g., the category and
mount of foreground objects or object co-occurrence. This can result
n critical feature misalignment and even negative transfer.

Despite the pervasiveness of negative transfer, it is generally de-
ined informally, lacking precise definition, meticulous analysis, and
ystematic treatment. In Wang et al. (2019a), propose to filter out
nrelated source samples to reduce the impact of negative transfer in
dversarial networks. This generic approach can be used in a wide
ange of TL-based VSS solutions. Recently, some studies have been
roposed to investigate this severe issue. For example, Zhang et al.
2022b) demonstrate that the attention mechanism could promote the
ransfer of similar patterns between multiple SDs and RDs and alleviate
egative transfer.

It is also worth mentioning that some studies, such as Sousa et al.
2014), have demonstrated that the quality of the DTL performance
s directly related to the Kullback–Leibler divergence estimated be-
ween the SDs and TD datasets. Put simply, it may not be practical
or some application scenarios to use a DTL, or the successful DTL’s
rchitecture should be reliable for heterogeneous problems. Addition-
lly, although these intuitive ideas have experimentally shown a re-
ation between domain divergence and DTL algorithms’ performance,
heoretical descriptions for these behaviors still need to be discovered.

Moreover, most existing DDA techniques generally address the dif-
erent OD problems using direct feature alignment between the SD and
D at the video frame level, the instance level (e.g., region proposals),
r both. However, it has been demonstrated that a direct feature
lignment of all object instances from the two domains can result in
negative transfer. This is because of (i) the existing outlier target

nstances containing confusing objects, which do not belong to any
ategory of the SD, and therefore it is challenging to detect them,
nd (ii) the low-relevance source instances, which are significantly
tatistically distinct from target instances despite that their contained
bjects are from the same class/group (Chen et al., 2021a).
25
6.3. The problem of overfitting

One of the challenges in developing DTL-based techniques for VSSs
is overcoming overfitting, mainly due to training complex DL models
with insufficient data. Although this issue is familiar with all ML
models, overfitting in DTL also occurs when the developed model learns
details and noises from SD data that negatively impact its outputs (Mu-
tasa et al., 2020). In DTL, the network layers cannot be removed to
identify with confidence the best classification/prediction parameters
of the DL models. Typically, removing the first layers may negatively
impact the dense layers since the number of trainable parameters will
change. On the flip side, the number of dense layers can be reduced;
however, analyzing the number of layers to be removed while avoiding
the overfitting of the model is time-consuming and challenging.

6.4. Measuring knowledge gains

Measuring the knowledge gained when a DTL model is adopted to
conduct specific tasks is of utmost importance. However, this challenge
has yet to receive its merit, and a few research works have targeted
it. Bengio et al. in Glorot et al. (2011) have attempted to analyze
how to quantify the DTL gain. In this regard, four measures have
been introduced to quantify the gain knowledge, i.e., transfer error,
transfer loss, transfer ratio, and in-domain ratio. Despite the fact that
these measures can overcome some interpretation issues related to
the performance results occurring when dealing with various SDs, it
is undetermined how they will behave in other TL-based methods,
especially for VSS applications where class sets are different between
problems. Further, they can result in non-definite performance if a
perfect baseline model is obtained.

6.5. Data annotation and generalization

Most VSS applications still face severe labeling problems where the
intractability to collect new large annotated amounts of data (including
plentiful images with large diversity) is perceived. In this regard,
learning generalized models is an actual problem that can be resolved
by training them with data from multiple benchmarks. This is the
case of Chen et al. (2021c), a multi-domain joint learning approach
is proposed, and a domain-specific knowledge propagating network
(DKPNet) is introduced. This helps unbiasedly and simultaneously learn
the knowledge from different data domains. Typically, a variational at-
tention scheme models the attention distributions for different domains.
In contrast, an intrinsic variational attention technique is developed to
leverage the dilemma of overlapped domains and sub-domains.

7. Future directions

Despite the great achievements of numerous DTL- and DDA-based
VSS methods, there is still rooms for improving the performance gap
between them and the upper bound. Following the aforementioned the
open challenges of existing DTL- and DDA techniques, a set of potential
future directions are identified in this section.
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7.1. Interpretability and explainability of DTL and DDA models

The popularity of DL in VSS applications is booming due to the
availability of powerful computing boards and graphic processing units
(GPUs). Typically, more complex problems have been introduced, such
as CDOD, CDAD, CDHAR, CDCC, and CDDF, which require explaining
the outputs of DL models when applied to these problems. However,
most explanations for DL algorithms are not appropriate to the video
analysis field (Wang and Breckon, 2022). This is because most of them
are overshadowed by image methods, and video analysis is usually
based on complex scene Understanding and recognition, which makes
adding explanations a challenging task (Wu et al., 2022a). To that end,
more effort has recently been devoted by the scientific community to
investigating the development of explainability techniques for DL-based
video analysis. On the other side, it has been shown in recent studies
that adding interpretability and explainability to ML models in general,
and particularly DL algorithms, can help practitioners (with or without
an ML background) in quickly inspecting their inner mechanics and
gaining some intuitions on why they are likely to succeed or fail (Dasari
et al., 2021). This is also a fundamental property in DTL and DDA
models, as interpretations can result in valuable insights, which not
only strengthen our understanding of their principles but also help us
get ideas on to fix their drawbacks (Angelov and Soares, 2020; Danso
et al., 2021).

Currently, most existing TL-based VSS algorithms introduced to
perform different tasks, such as CC, HAR, and OD, are unexplainable.
These techniques may operate well under particular scenes; however,
their performance can be dropped when the scenes in the TD differ
from those in the SD. For instance, the characteristics automatically
generated by DL models lack interpretability; thus, they do not provide
any insights to explain gaps between the SD and TD (Zhang et al.,
2022a; Krishnan et al., 2020). To that end, adding interpretability
and explainability (e.g., rule reasoning) to DTL- and DDA-based VSSs
algorithms is one of the promising research axes in the near future.
Hence, only achieving the highest performance is targeted, but also
reasonable levels of interpretability of used DTL/DDA models (Lu et al.,
2021b).

In this context, some studies have recently started investigating this
research direction. For example, to overcome the arbitrary selection of
layers in TL models, which fail to reach a high classification accuracy
for target tasks, the authors in Arefeen et al. (2021) develop an explain-
able TL scheme that intelligently selects layers from DNNs. Similarly,
in Liu et al. (2022a), an interpretable DTL technique is built by selecting
features using a group-wise feature importance scoring scheme. Moving
on, federated TL and explainable AI are combined in Raza et al. (2022)
to alleviate the data scarcity and privacy preservation issues. Besides,
an explainable by design supervised DA scheme, namely XSDA-Net,
is proposed in Kamakshi and Krishnan (2022) by integrating a case-
based reasoning strategy into the XSDA-Net. This enables explaining the
predictions of test instances related to similar-looking regions in the SD
and TD. Moving forward, in Zunino et al. (2021), explainability is used
as an approach to bridge the visual-semantic discrepancy between dis-
tinct domains. Put differently; model explanations have been deployed
to disentangle domain-specific data from other pertinent features.

In Nourani et al. (2020), the authors investigate the role of explain-
able AI and first impressions for interactive video analysis. Moving
on, Zhuo et al. (2019) deploy prior knowledge and state transitions
to develop an explainable human action analysis and understanding
system. Similarly, in Han et al. (2022), Han et al. propose an explain-
able action reasoning approach using one-shot video graph generation.
In Roy et al. (2021), the accuracy-explanability gap is addressed by
adopting an interpretable, tractable probabilistic DL algorithm. Besides,
explain AI has been also used for content based retrieval of video
frames, as explained in Chittajallu et al. (2019).

Very recently, the efforts made for developing DTL and explainable
AI have been joined to design explainable DTL. Specifically, fine-

tuning-based DTL relies on selecting some pre-trained layers of a DL

26
model to be re-trained and freezing the rest. However, arbitrarily
selecting these layers can fail to reach the desired results on the TD
task. To that end, explainability can be introduced to accurately choose
the appropriate that maximizes the performance of the DTL model on
a target task while maintaining a low overhead of successive train-
ing (Arefeen et al., 2021; Islam et al., 2022). Moving on, explainable
DTL is introduced in Liu et al. (2022a) to analyze high-dimensional
genomic data. Typically, a dimensionality reduction approach has been
developed using explainable group-wise feature importance scores.

7.2. Trust and transparency in DTL-based VSSs

AI and DL’s usefulness comes from applying computer intelligence
skills, including object detection, crowd counting, abnormal event de-
tection, etc. It is no surprise that AI- and DL-based VSSs have be-
come a hotspot for many applications across different sectors (Meske
and Bunde, 2020). Although the increasing performance achieved by
AI/DL-based VSSs, using these models results in the ‘‘black box’’ prob-
lem, which decreases trust towards AI/DL. Typically, most deployed
techniques cannot provide explainability as they use uninterpretable
feature representations that hide the decision-making process when
the different VSS tasks are conducted. On the other hand, while in-
creasing effort has been put into assessing the VSS trustworthiness
by measuring the accuracy, reliability, and generalizability, among
other characteristics, deciding that a VSS is trustworthy since it meets
its system requirements would not guarantee the widespread use of
AI/DL (Buhrmester et al., 2021). However, making AI- and DL-based
VSSs more transparent by adopting transparency and explainability
principles can help them eventually choose the right, unbiased algo-
rithms. Specifically, transparent AI and DL systems can answer why a
particular decision or prediction has been made or avoided given the
same inputs. In this context, using explainable AI has been identified
as an emerging scheme to increase trust in VSSs.

To that end, some studies have recently focused on building trans-
parency in AI and DL algorithms to help users trust computer decisions
and know how AI/DL systems arrive at their recommendations and
conclusions. For example, the authors in Meske and Bunde (2020)
present a case study of medical image analysis to demonstrate how
explainable artificial intelligence can help open the ‘‘black box’’ and
enhance the level of AI transparency and trust. Besides, a three-fold
explanation approach is proposed in Druce et al. (2021) to improve
users’ trust in deep reinforcement learning-driven autonomous systems.
However, it is worth mentioning that more effort should be dedicated
to fostering trust in AI-based VSSs, especially those relying on DTL and
DDA models.

7.3. Online DTL and DDA

Most DTL- and DDA-based VSS frameworks have focused on offline
learning, which is not the best option for various real-world appli-
cations. By contrast, adopting online learning is inevitable, especially
when small amounts of real-time data are available (Wang et al., 2013).
Specifically, online DTL relies on sequentially receiving data in the new
domains and using the knowledge of models/classifiers learned in the
SDs. However, the application of online DTL faces some challenges,
including (i) negative transfer that can be generated when using online
DTL on homogeneous domains, especially with the existence of a
considerable difference between two conditional probabilities; (ii) dif-
ficulty in continuously training old classifiers (learned on the SDs) with
the new features due to the high discrepancy between the two feature
spaces (SD and TD), and (iii) difficulty to measure the distribution
difference between the SD and TD since only a predictive model of the
SD is given while the data samples on the TD are received on-the-fly
sequentially and therefore should be predicted immediately (Wu et al.,

2017,?).
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Fig. 16. Example of an AED approach based on knowledge distillation (Georgescu et al., 2021).
7.4. Model compression and knowledge distillation (KD)

One promising way to reduce the complexity of VSSs is by develop-
ing model compression and acceleration methods. KD, a representation
type of the latter, helps efficiently learn a small student model from
a large teacher model. In this respect, a smaller student model with
few parameters can perform similarly to a larger teacher model. Most
existing CC frameworks require prohibitive computation as they rely on
heavy backbone networks, restricting their real-time implementation
and causing poor scalability. To overcome these issues, a structured
knowledge transfer (SKT) technique, exploiting the structured knowl-
edge of a well-trained teacher network, is proposed in Liu et al. (2020a)
for generating a compact but efficient student network. Similarly, in Gu
(2020), a CC scheme based on perspective-aware distillation is intro-
duced. Moving on, in Jiang et al. (2021), a task-specific KD scheme for
CC, namely ShuffleCount, is proposed. It uses hierarchic feature regu-
lation to learn from the teacher network and avoid negative knowledge
transfer from the teacher. Besides, in most HAR systems, significant
modality differences exist between data recorded by vision sensors and
wearable sensors. To that end, a semantic-aware adaptive knowledge
distillation network is proposed in Liu et al. (2021c) for enhancing the
accuracy of action recognition in vision-sensor modality. The knowl-
edge from different wearable sensors has effectively been transferred
and distilled. This approach utilizes RGB videos and multiple wearable
sensors as student and teacher modalities, respectively. In Georgescu
et al. (2021), an AED using knowledge distillation is introduced, which
relies on multi-task and self-supervised learning. Fig. 16 portrays the
flowchart of this approach. Typically, objects in videos are first detected
using YOLOv3. Then, three self-supervised tasks are devised for every
detected object (which aim to learn the arrow of time, predict motion
irregularities, and expect the object appearances in the middleboxes)
and a knowledge distillation task (based on ResNet-50 and YOLOv3 as
27
teachers). Moving on, a 3D-CNN has jointly been trained on the four
tasks.

Besides, in Wang et al. (2020c), a TL-based CC approach is de-
veloped, namely MobileCount, appropriate for embedded and mobile
devices with limited computation resources. Moreover, a multi-layer
knowledge distillation scheme is adopted to transfer a complex model’s
information to numerous layers of the developed architecture. This
helps in improving performance without increasing the number of
floating-point operations. In Kong et al. (2019), a multi-modality dis-
tillation framework with the attention process is proposed by realizing
a heterogeneous S2V DA. Besides, the CDCC framework developed
in Liu et al. (2020a) relies on transferring the structured knowledge
of a well-trained teacher network to build a lightweight but powerful
target network for CC. It includes two complementary transfer mod-
ules: an intra-layer pattern transfer (IPT) that sequentially distills the
knowledge embedded in layer-wise features of the source network to
guide feature learning of the target network and an inter-layer relation
transfer (ILRT) that densely distills the source’s cross-layer correlation
knowledge to better regulate the target’s feature progression.

7.5. CDDF and DTL-based data fusion

CDDF is a promising research direction where there is still room for
improvement. Typically, some CDDF strategies and DTL-based fusion
techniques have not been wholly used in VSSs. For instance, few DTL-
based fusion studies have discussed the aggregation of heterogeneous
tasks or features from different domains in VSS tasks. Existing ML-based
and DL-based fusion techniques proved to be efficient in other appli-
cations (e.g., the multimodal fusion of remote sensing data) and are
potential candidates to be combined with DTL and DDA schemes (De
et al., 2021). For instance, a multimodal CDDF technique is introduced

in De et al. (2021) to analyze the environmental impacts of large-scale
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events in public areas. Moving on, a GAN-based deformation invariant
CDDF scheme is proposed in Wang et al. (2021c) to synthesize medical
images.

7.6. DDA in the wild

Up to date, most DDA frameworks principally concentrate on neat
settings. However, in the real world, DDA problems can be a quite
complicated aggregation of various ‘‘clean’’ settings (Tran et al., 2019).
For instance, in some practical DDA settings, several SDs could be
available for which some could have no labeled observations, some
could have abundant labeled samples, and some could have few labeled
patterns. Simultaneously, the label spaces of the SDs and TDs may
have a significant discrepancy. Additionally, there may be numerous
TDs, where some TDs can have classes not existing in any SDs. In this
direction, resolving real-world DDA issues is an underexplored field,
where more research effort should be put in the near future (Li et al.,
2021c; Abnar et al., 2021).

8. Conclusion

This comprehensive survey has revolved around VSSs using DTL,
which has recently been found as a promising research topic to reduce
the computation complexity of DL models and overcome various issues
related to the non-availability of sufficient real data, the lack of anno-
tated datasets, the discrepancy between training and testing data, etc.
Typically, we have elaborated on this topic by (i) describing the various
purposes that motivate this research, (ii) presenting the background
of DTL and clarifying its concepts, and (ii) presenting a well-defined
taxonomy. This study has resulted in an overall taxonomy of existing
DTL-based VSS proposals discussed in the literature by classifying them
based on different aspects. Given the prevalence of contributions to
developing DTL systems, the literature dealing with fine-tuning and
DDA methodologies has thoroughly been inspected.

Moving on, the implications of adopting CDDF in multi-modal VSSs
have been explored, unveiling the potential knowledge fusion instead of
data aggregation or schema mapping. Next, our discussions have been
moved beyond the contributions in DTL-based VSSs to developing more
generalized and real-time solutions for real-world scenarios. Current
challenges related to the DTL and those specific to VSS tasks have
also been discussed. The future of DTL-based VSS methodologies has
been explored via the reflections carried out in the discussions held
throughout this review, agreeing on the imperative requirement for a
proper understanding of the potentiality and caveats opened up by DTL
approaches.

Although DTL and DDA have recently achieved success, numer-
ous challenges and issues still need further investigation. Typically,
homogeneous DDA has been the focus of most existing DTL-based
VSS techniques, where it is assumed that the feature spaces between
the SD and TD are the same. However, that is only true in some
real-world scenarios. To that end, most recent studies have focused
on heterogeneous DDA attempting to transfer knowledge without this
critical limitation and benefit from existing datasets to help with more
tasks. Moreover, heterogeneous DDA will receive further attention in
the near future. Despite the progress summarized in this review, there
is still room for improvement. On the other hand, alternative techniques
for video frames’ translation and style transfer might be investigated,
particularly those that help enhance the semantic consistencies of the
translation. This will likely boost the performance of object detectors
and VSSs in general.
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